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Abstract—The automotive domain, with its increasing number of
comfort and infotainment functions, offers a field of opportunities
for pervasive and context-aware personalization. This can range
from simple recommendations up to fully automated systems,
depending on the information available. In this respect, frequent
trips of individual drivers provide promising and interesting
features, on the basis of which, usage patterns may possibly
be learned and automated. This automation of functions could
increase safety as well as comfort, as the driver can concentrate
more on the experience of driving instead of repeatedly and
manually adjusting comfort- or entertainment-related systems. To
identify frequent driving contexts in a set of recorded signal in a
vehicle, e.g., GPS tracks, this paper presents two different clus-
tering algorithms: First, a hierarchical Drive-Clustering, which
combines drives based on their number of common GPS points.
Second, a Start-Stop-Clustering, which combines trips with the
same start- and stop-cluster utilizing density based clustering. The
Start-Stop-Clustering showed particularly good results, as it does
not depend on the concrete routes taken to a stop position and it
is still able to detect more trip clusters. To predict these drives,
a Bayesian network is presented and evaluated, with logged trip
data of 21 drivers. The Bayes Net uses context information, i.e.,
the time, weekday and the number of people in the car, to predict
the most likely drive context with high accuracy. A new automated
entertainment source selection algorithm demonstrates the use-
fulness of the retrieved information. The algorithm learns and
predicts a driver’s preferences for selected entertainment sources
depending on recognized drive contexts.

Keywords–Context-aware Vehicle; Spatial Clustering; Drive
Context Prediction; In-Car Infotainment; Automation

I. INTRODUCTION

Many different definitions for context exist, depending on
the domain and conception. In [1], the frequent drives of a
car owner considered contextual information useful for vehicle
personalization.

In common literature, there seems to be a general notion
for the meaning of the term context. However, up until now,
there is no single definition accepted as the common standard.
In [2], context is described as ”. . . any information that can
be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves.” [3] claims to have found
over a 150 definitions for context. Despite lacking a single,
universally accepted definition, there is no argument about
it’s usefulness in certain applications. Context-awareness is
considered an important building block in the development
of intelligent systems as it is said to significantly improve the
interaction between a user and a system. Knowledge about
a specific context is normally gathered by sensor readings
and their interpretation [4], [5]. In the course of this article,
context will be considered any piece of information that can
be aggregated in a vehicle and enables ”intelligent behavior”
of in-car systems. This includes not only information such
as daytime, weekday, number of passengers, fuel level and
frequent trip targets, but also the driver’s control behavior in
terms of the car’s functions.

With its increasing number of comfort and infotainment
functions, the automotive domain offers a unique field of
opportunities for context-sensitive functions. In recent years,
many different context-aware advanced driver assistance sys-
tems (ADAS) have been introduced. They depend on infor-
mation provided by dedicated sensor systems, particularly in
the areas of safety and comfort. The lane departure warning
system (LDW), adaptive cruise control (ACC) and intelligent
speed adaption (ISA) are well-known examples for context-
aware ADAS.

Another interesting and promising context to advance ve-
hicle personalization is the drive itself. Above all, the repeated
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drives of a person offer a lot of potential for finding consistent
usage patterns. Subsequently, the found user behavior can be
used for automating certain comfort functions. For example,
if a driver usually checks received emails on the way to work
or likes to listen to the news, the vehicle could adapt to these
preferences by recognizing the drive context as a regularly
drive to work and by automating the desired functions. This
automation of functions could improve safety as well as
comfort because the driver is no longer forced to adjust his
personal settings by himself.

In the following, we will describe and evaluate different
methods for the detection and prediction of repeated drives
of individual drivers. To develop and evaluate our proposed
methods, we had the possibility of utilizing recorded vehicle
sensor data of 21 drivers collected over several months by a
data logger. The collected data includes many different sen-
sor signals exchanged between the different in-car electronic
control units (ECU) over the Controller Area Network (CAN)
bus, ranging from Global Positioning System (GPS) position
to seat belt status.

The contributions of our article are two novel clustering
methods for detecting repeated trips of individual drivers, a
novel distance measure based on the Jaccard distance for
comparing GPS tracks and a hybrid Bayesian network for
predicting frequent drive contexts right away from the start
of the trip based on contextual information, e.g., the time of
the day and the number of passengers in the car. The frequent
drives and the additional context information will be used to
infer the intention of drives, e.g., ”drive to work” or ”drive to
spare time activity”, what we consider as the drive context.

The article is structured as follows. Section II gives an
overview on existing work in the fields of route prediction,
route recognition, destination prediction, and place mining.
Section III outlines two new spatial clustering methods for
detecting the frequent drive contexts of a particular driver.
In Section IV, we present a hybrid Bayesian network to
predict the frequent drive contexts of an individual driver
immediately from the start of the trip, or even during a trip.
The results we obtained running the algorithms individually
on the collected drive data of each driver are described in
Section V. Additionally, in Section VI, we provide a case study
for in-car infotainment automation based on the presented
algorithms. The results prove our claim about the usefulness
of the presented algorithm. We close our work in Section VII
with a summary and an outlook on possible future work.

II. RELATED WORK

Route recognition and prediction systems have been pro-
posed in many different works [6], [7], [8], [9], [10]. In the
majority of these publications, the general way to predict,
and respectively recognize, the current route is based on the
comparison of the current driving trajectory to previously
recorded trajectories through suitable distance measures. Com-
paring GPS tracks can not be done with classic Lp metrics
due to their length related inequality, dimension and noise.
As a result, more elastic similarity measures are necessary.
Already proposed distance measures are, for instance, based
on the longest common sub-sequence (LCSS) algorithm [6],
[11], [12], the Hausdorff distance [7] or the Jaccard distance
[13]. In [11], this simple instance based learning approach
of comparing the current route to already recorded routes is
further enhanced by the inclusion of contextual information,

e.g., time of the day, to better differentiate overlapping routes.
Probabilistic approaches for route and destination predic-

tion have been presented amongst others in [13], [14], [15] and
[16]. The investigated prediction methods are frequently based
on Bayesian techniques and include additional contextual
information, such as the time of the day, the particular weekday
or even background information about locations to infer the
most likely route or destination [16]. By contrast, [15] uses
an unspecified type of Markov model instead of a Bayesian
approach to predict the next location of a user.

Identifying personally important places of users in recorded
GPS data has, for example been investigated in [17], [18], [19],
[15], [10] and [20]. Density based clustering hereby proved
more efficient than classic partitioning algorithms like k-means
[21], [22], [17], [18], as the final clusters only consist of dense
regions in the data space. Regions of low object density are
not included in the final clusters and are considered as noise.

Also, there has been work on using location based contex-
tual information in proactive recommendation and automation.
In [20], a probabilistic approach was presented for learning
individual locations of interest. The learned locations were
then used for recommendation and automation of a vehicular
comfort function. The approach of learning an explicit user
preference model proves helpful, especially for integration of
user feedback and uncertainty quantification.

Our work differs from existing publications, as we focus
on the personal, repeated drives of individual drivers and their
prediction. This helps recognizing individual drive contexts.
The drive contexts themselves denote regular drives, e.g.,
”drive from home to work” or ”drive from work to home”. We
consider the drive contexts as the basis for learning a driver’s
control behavior of certain functions. Therefore, the learned
behavior is useful for recommendation and automation, which
we will prove in a short-term study.

III. DETECTING FREQUENT DRIVES

The basis for drive context recognition will be the fre-
quent drives of a driver. To detect frequent drive clusters of
an individual driver, we present and evaluate two different
spatial clustering methods explained in the following two
subsections. Drive-Clustering is based on the Jaccard distance
and compares whole trajectories using hierarchical clustering.
In contrast, Start-Stop-Clustering focuses on more semantic
similarity measurement of routes, based on the determination
of frequent start and stop positions of a particular driver. The
goal of both algorithms is to identify repeated patterns in
the set of recorded GPS tracks in order to detect repeatedly
occurring drive contexts, e.g., drives from home to work. In
Section V, we compare the obtained results of both algorithms
applied to our test data set.

A. Drive-Clustering
An important factor in cluster analysis is a similarity mea-

sure to determine the distances between elements contained in
the data, for the purpose of grouping similar elements together
in clusters. In trajectory data the standard way for identifying
patterns is to compare whole trajectories. In our case, the
trajectory data of each drive is stored as a sequence of GPS
points Si = {pi,1, pi,2, ..., pi,n}, with pi,1 being the start point
of the drive and pi,n being the end or stop point.

To compare two point sequences we use a dissimilarity
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measure based on the well known Jaccard distance, which
measures dissimilarity between sample sets [23] (see equation
(1)):

d(X,Y ) = 1− |X ∩ Y |
|X ∪ Y |

. (1)

Our dissimilarity measure thereby calculates the intersec-
tion of the two GPS sequences Si and Sj by counting the
number of common points NOCP (Si, Sj) contained in both
sequences starting from the shorter sequence (see equation (2)).
This number of common points is then divided by the number
of points contained in the shorter sequence min(|Si|, |Sj |).
In order to obtain a dissimilarity measure the quotient is
subtracted from 1, so that a result of 0 indicates maximum
similarity and a value of 1 maximum dissimilarity.

d(Si, Sj) = 1− NOCP (Si, Sj)

min(|Si|, |Sj |)
. (2)

GPS points of two geometrically similar trajectories are
unlikely to have exactly the same coordinates. Even if a
drive can be done exactly the same way several times, the
GPS sequences will not be equal because of the noisy nature
of GPS measurements. Hence, it is necessary to define a
threshold distance Θ, e.g., 50 meters, to decide whether two
GPS points from two sequences can be considered as ”equal”.
This is necessary to find the GPS points shared by both
sequences, i.e., the ”common points”. The threshold needs to
be defined dependent on the logging frequency, assumed the
GPS measurements were done periodically. In our case, the
logging frequency is f = 1Hz. If we, for example, consider
135 km/h as the maximum vehicle speed, the maximum
distance between two subsequent measured GPS points will be
(135 · 1000)m/3600s = 37.5m. In the evaluation we set the
threshold to 50 meters, which is sufficient for driving speeds
up to 180 km/h with a logging frequency of f = 1Hz.

The number of common points (NOCP) algorithm iterates
over all points pi,k ∈ Si included in the shorter sequence
and tries to find at least one point in the other sequence
pj,l ∈ Sj whose distance is less or equal than the defined
threshold distance Θ. If the set of found points in range is not
empty, the number of common points counter is increased.
Consequently, the presented distance measure is more elastic
than distance measures based on dynamic programming, such
as the longest common sub-sequence (LCSS) or dynamic time
warping (DTW), as it is able to match several elements of one
sequence to just one element of the other sequence, without
taking into account the sequence ordering. This behavior is
important in our case to handle traffic jams and different
driving speeds. The implementation of the number of common
points (NOCP) function can be significantly sped up by storing
the queried sequences’ points in a k-d tree [24].

To calculate the distance between two-dimensional GPS
points we use a simplification of the haversine formula [25]
based on the Euclidean distance, which in contrast to the
standard Euclidean distance allows metric parametrization of
our algorithms (φ latitude, λ longitude) (see equation (3)).

dist(φ1, λ1, φ2, λ2) = (((111.3 · cos (
φ1 + φ2

2
)·

(λ1 − λ2)2) + (111.3 · (φ1 − φ2)2))
1
2 · 1000.

(3)

The haversine formula calculates the distance of two points

on a sphere along their respective great-circle. While the
original haversine formula is costly to calculate with all it’s
trigonometric functions, the given approximation is fast and
precise for world GPS coordinates.

In order to avoid the problem of a much shorter sequence
being contained in a longer sequence and to speed up the
comparison, the number of common points in the two se-
quences is only calculated, when the first and last points of
the two sequences are sufficiently similar. This means their
respective distances do not exceed a predefined threshold, e.g.,
250 meters (pi,1 ∼ pj,1 and pi,n ∼ pj,m). Otherwise, the
maximum dissimilarity value 1 is returned without any further
calculation (see equation (4)).

dopt(Si, Sj) =


1− NOCP (Si,Sj)

min(Si,Sj)
, if pi,1 ∼ pj,1

and pi,n ∼ pj,m
1, otherwise

. (4)

To group similar routes in clusters, we use single-linkage
clustering, an agglomerative hierarchical clustering method,
starting from single GPS sequences. We use the function
dopt for distance measurement. A merging threshold ε decides
whether two clusters are close or similar enough to be merged,
e.g., ε = 0.05. The clustering stops when there are no clusters
left for merging. The smaller the value ε the more similar the
trips contained in a cluster are, but in general, less clusters will
be merged. This threshold will cut the dendrogram at a certain
level and lead to the final drive clusters. The resulting clusters
without enough observations can be considered outliers and
will be deleted. To predefine the minimum cluster size we use
another parameter MinDrives. As every point in our clusters
represents a single drive, MinDrives represents the parameter
MinPoints introduced in the density based clustering in [22].
This renaming was done for the purpose of convenience.

B. Start-Stop-Clustering
Another way of determining frequent drives of a certain

driver is based on his frequent start and stop positions of
drives. The start and stop positions are the GPS locations,
where the car is started and parked respectively. In contrast to
the above presented trajectory clustering method, this method
focuses on drives with the same start and stop positions, not
on geometrically similar routes.

As the vehicle is typically not parked at the exact same
coordinates, it is necessary to merge similar parking positions
to start-stop-clusters. To obtain these frequent start and stop
position clusters of a particular driver, we use a density based
clustering, the DJ-Cluster algorithm presented in [17], which
is a simplification of DBSCAN [22], [26]. Density based
clustering has the advantage of explicitly eliminating outlier
points compared to partitioning clustering, e.g., k-means [21],
[26]. As we are only interested in dense regions included in the
set of start and stop positions of an individual driver in order
to identify frequent drive contexts, density based clustering is
suitable for our task.

Consequently, the first step in Start-Stop-Clustering is to
calculate dense regions of start and stop positions in the set
of GPS sequences and to store the cluster IDs of every GPS
sequences’ start and stop points. Therefore, it is necessary to
specify the two parameters MinDrives and ε, representing
the minimum cluster size and search radius respectively. Figure
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1 shows an example of a dense point cluster found in the drive
data of a particular driver with ε = 100m.

Figure 1. Visualization of the start (red) and stop points (blue) of a driver.
All shown points are included in the same point cluster.

The equality of GPS sequences for Start-Stop-Clustering is
determined by a binary function (see equation (5)).

d(Si, Sj) =


0, if Cs(pi,1) = Cs(pj,1)

and Ce(pi,n) = Ce(pj,m)

1, otherwise
. (5)

Trip A

Trip B

Start-Cluster End-Cluster

Figure 2. Illustration of a route-independent Start-Stop-Cluster.

Two GPS sequences Si and Sj are considered as equal,
when their corresponding start (pi,1, pj,1) and stop points (pi,n,
pj,m) lie in the same start Cs, respectively end cluster Ce.
Hence, the final frequent drive clusters are comprised of GPS
sequences whose start and stop points lie in the same dense
region or point cluster and therefore have the same cluster IDs.
The clusters are direction-dependent just like those obtained
with the above presented Drive-Clustering approach. However,
the drives included in a Start-Stop-Clustering drive context
cluster do not necessarily follow the same routes (see Figure
2). To predefine the minimum cluster size we also use the
MinDrives parameter.

IV. PREDICTING FREQUENT DRIVE CONTEXTS

The frequent drive clusters will be merged with additional
information, forming a new context we will call frequent drive
context. A drive context denotes a contextual description, or
at least a semantic clustering of drives, depending on the
intention of the drive, e.g., ”drive to work” or ”drive to gas
station”. Frequent drive contexts denote drives that happen to
be periodic or frequent in a sense, e.g., daily drive to work and
back home. As we will concentrate on frequent drives from

now on, we will refer to them simply as drive contexts.
To predict frequent drive contexts that have been identified

with one of the above presented methods, we propose a hybrid
Bayesian network, incorporating more than just the clustered
frequent drives as location based features. This is a basic
requirement stated in [27], where contexts should not only
consist of location based features. The structure of the network
is shown in Figure 3.

Start Point

Frequent 
Drive 

Context

No. of 
Passengers

Passengers

Weekday

Start Time

Fuel Level

Figure 3. Topology of the hybrid Bayesian network for predicting the most
likely frequent drive context.

Using the start point of the drive we are able to eliminate
impossible contexts, e.g., a drive from work to home if the
start point is home, which significantly reduces the possible
contexts, prevents false positives and speeds up the imple-
mentation. The variable Frequent Drive/Context represents
the a priori probability distribution over the set of identified
drive contexts, already constrained by the current start point.
The variables Weekday, No. of Passengers and Fuel level
are conditionally independent of each other given the class
variable Frequent Drive Cluster. The variables described so far
all underlie a discrete probability distribution. The fuel level is
discretized to ”at least half full” and ”not half full”, in order
to ease modeling. The number of passengers are discretized to
1, 2, 3, 4, 5.

In contrast to the other probability variables, we model
the variable Start Time as a continuous variable. By the
edges between Frequent Drive/Context, Day and Start Time
we receive a drive context dependent start time probability
density function (PDF) for every single day. This enables a
stronger differentiation between the drive contexts, as the start
time probabilities for the different contexts are also dependent
on the day.

To approximate the probability density function for the start
times associated with a certain drive context we use kernel
density estimation (KDE) (equation (6)) with a Gaussian kernel
(equation (7)) and Scott’s rule of thumb (equation (8)) for
bandwidth selection h [28]:

f̂(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K(
x− xi
h

). (6)
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K(x) =
1√
2π

exp (−x
2

2
). (7)

hscott = n−1/(d+4). (8)

n is the number of observed starting times for approxi-
mating the underlying probability distribution. K ∈ [0, 24]→
R+

0 defines the kernel function used in the estimator, with
x ∈ [0, 24] being the daytime and d the dimensionality of the
problem.

By using kernel density estimation, we receive a continuous
approximation of the probability density of starting points (see
Figure 4).

0 2 4 6 8 10 12 14 16 18 20 22 24
Time

0.00

0.05

0.10

0.15

0.20

D
e
n
si

ty
 f

u
n
ct

io
n

Gaussian kernel

Figure 4. Example of a probability density function for the Start Time
variable of a particular drive context.

When a drive context has not occurred before, at a certain
day or time, the probability for the whole context will be zero.
This kind of behavior is not always acceptable. A Laplacian
correction, also called Laplacian estimator, is a common
technique to solve this problem, as it adds observations to
the dataset for unseen entities to prevent zero probabilities.
We deliberately do not use Laplacian correction, thereby
improving on false positives. In general, we assume a long-
term observation phase for our proposed system, effectively
eliminating this problem.

The probability for a certain context C, given the start point
s, the weekday d, the time t, the number of persons in the car p
and the fuel level f , can then be calculated with the following
formula:

P (C|s, d, t, p, f) ∝
P (C|s)P (d|C)P (t|d,C)P (p|C)P (f |C). (9)

The context Ci leading to the highest probability value
P (Ci|s, d, t, p, f) is then assumed to be the present context:

arg max
Ci

{P (Ci|s, d, t, p, f)}. (10)

The prediction in the presented form lacks the possibility
to make online adaptions and corrections of the predictions.

This may be necessary due to ambiguous information at the
beginning of a trip, which prevents a good prediction of the
current drive context. In the case where the starting points do
not deliver enough information to predict the frequent drive
cluster, the Bayes Net can be re-evaluated when the drive
cluster is known during the trip. For instance, this can be
achieved by constantly calculating the similarity of the current
route to the frequent drive clusters. To that end, the similarity
measure from Section III-A can be used. If the predicted
frequent drive class of the current drive changes, the presented
Bayes Net re-predicts the current drive context.

V. EVALUATION

To evaluate the described methods, we have access to a data
set collected from 21 drivers over several months. The logger
used for collecting the data, records all kinds of data bus traffic,
also when the car is not moved, e.g., when the electronic key
is pressed. To filter out this unwanted ”noise”, we only used
recorded data for our evaluation where the vehicle was at least
moved 1 kilometer (air-line distance). The number of filtered
drives per driver ranged from 225 to 983 drives. This wide-
spread distribution is related to the 3 to 8 months of recording
duration and the individual use of the cars. The majority of
the subjects ranged between 400 to 600 recorded drives.

A. Drive clustering
Figures 5 and 6 show the results obtained applying Start-

Stop-Clustering and Drive-Clustering to the data set. Figure 5
illustrates the average number of found clusters for different
minimum cluster sizes (MinDrives = {3, 5, 10}). Figure
6 presents the average share of frequent drives of the total
quantity of drives, i.e., ”frequent” and ”non-frequent” drives.
As no ground truth could be gathered, the analysis must follow
qualitative and quantitative reasoning.

MinDrives = 3 MinDrives = 5 MinDrives = 10
0
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25
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a
v
e
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g
e
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u
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b
e
r 

o
f 
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u
st

e
rs

30

25

14
13

7 6

average number of found clusters

Start-Stop-Clustering
Drive-Clustering

Figure 5. Average number of found clusters with Start-Stop- and
Drive-Clustering dependent on the minimum number of drives contained in

the clusters (MinDrives).

As one can see, Start-Stop-Clustering is on an average able
to identify more clusters than Drive-Clustering (see Figure 5).
However, with increasing minimum cluster size, the difference
between the average number of found clusters by Start-Stop-
Clustering and Drive-Clustering decreases. This leads to the

57

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



MinDrives = 3 MinDrives = 5 MinDrives = 10
0

10

20

30

40

50

60
p
e
rc

e
n
ta

g
e
 o

f 
re

p
e
a
te

d
 d

ri
v
e
s

52

46

42

37

32

28

percentage of repeated drives

Start-Stop-Clustering
Drive-Clustering

Figure 6. Percentage of repeated drives identified with Start-Stop- and
Drive-Clustering dependent on the minimum number of drives contained in

the clusters (MinDrives).

assumption that for frequent drives (MinDrives = 10),
drivers usually have a preferred route that they normally take,
whereas for less frequent drives (MinDrives = 3) they also
take different routes to the same destination. Furthermore,
Start-Stop-Clustering includes all route alternatives (see Figure
6), thus, assigning a larger fraction of the overall number of
drives to a repeated drive cluster.

As we are rather interested in detecting frequent drive
contexts than the frequent routes taken by a driver, Start-Stop-
Clustering is more appropriate for our use case. Large clusters
(MinDrives ≥ 10) may provide promising and interesting
contexts, on the basis of which usage patterns may possibly be
learned and automated. The average fraction of trips, repeated
at least 10 times by the participants during the survey, amounts
to approximately 30% of the overall trips (see Figure 6).

To keep the set of frequent driving contexts up-to-date one
could use a shifting time frame and only consider drives for
the cluster calculation that for example occurred during the last
6 months. This would lead to a slow exclusion of no longer
appearing driving contexts over time and also limit the amount
of data used for the context identification.

B. Prediction
To evaluate our proposed Bayesian inference system for

predicting frequent drive contexts, we made use of cross-
validation and focused on clusters identified by Start-Stop-
Clustering with a cluster size larger than 10 drives. The cross-
validation was done for every driver to even out the different
recording times and to be able to differentiate between different
types of drivers. The applied evaluation method was leave-one-
out cross-validation to cope with the small data sets.

Figure 7 shows the overall prediction result for all drives,
including also non-frequent drives, as well as the prediction
result for solely frequent drives belonging to a cluster. The pre-
diction result improves significantly, to almost 100% (∼97%),
when a prediction result is considered correct when lying
within the top 3 predictions.

Evaluating the top 3 results shows the usability in recom-
mendation systems. Presenting the user a recommendation for

each of the n most likely drive contexts is a common setup. In
the case of recommendation based on learned user preferences,
showing the most likely recommendation to the most likely
contexts leads to a higher chance of user acceptance.

all drives only frequent drives
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97drive context prediction

top match
whithin top 3 matches

Figure 7. Prediction result for all drives and only frequent drive contexts
(MinDrives = 10).

The differentiation between the different drive contexts
is relatively accurate (∼ 89% respectively ∼97% for top
3 matches). Moreover, in Figure 8 one can see that, when
considering all drives, the main share in false predictions
not lying within the top 3 matches is produced by false
positives. A false positive is the classification of a starting
drive as a ”frequent drive”, when it is not. A large fraction
of false positives could be detected correctly (∼60%), but as
there might be highly frequent start and stop positions, e.g.,
home coordinates, with overlapping context information, e.g.,
time and weekday, some infrequent drives were predicted as
belonging to a frequent drive context.

In the evaluation, we used a binary probability distribution
for the day variable (workday, weekend) due to the relatively
small minimal cluster size of 10 drives. It might be possible to
achieve a better recognition of infrequent drives by assuming
a discrete probability distribution for every day (Monday,
Tuesday, Wednesday, etc.), which would also lead to time
probabilities for every day for each drive context. However,
this would only make sense with a higher minimal cluster
size, in order to get representative probability distributions for
every day.

Compared to the rate of false positives the rate of true
negatives is extremely low and underlines the accuracy of our
inference system related to the prediction of frequent drive
contexts (see Figure 8). However, eliminating false positives
is crucial in order to not annoy the driver with unwanted
function automation and might only be solvable with little
driver interaction. A solution could be to provide the driver
with the top 3 most likely contexts. Then, the driver is able
to choose the most appropriate one. If none is selected by the
driver after a certain driving time, the system assumes that, in
the current situation, no function automation is wanted by the
driver.
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Figure 8. Overall prediction error rate and the share of false positives at the
overall error rate.

VI. CONTEXT-AWARE AUTOMATION CASE STUDY

The use of comfort and infotainment functions in a car
generally depends on the driver’s preferences. In turn, those
depend strongly on the intention for the drive, represented by
drive contexts. As a consequence, the use of comfort functions
depends on the drive context, e.g., commuting drive or regular
fitness club visit. The class of climatic functions are a good
example. For instance, while a driver heats up the car in the
morning, lower temperatures may be wished-for after regular
fitness center visits.

In the case of infotainment functions, e.g., integrated TV
or audio player, this dependence is also visible. The selected
audio source can be related to the driver’s mood, time of the
day, or again on the drive context. A driver may always listen
to a certain radio station for traffic information on the way
to work. But then, leaving work, she listens to CDs, music
from the connected smartphone, or any other device connected.
While this can have different reasons, the trip’s goal or the
intention behind the trip may be the most important. This leads
to the idea of using the previously recognized drive contexts
for audio source automation.

Starting from this idea and the presented drive context
recognition, an explicit user preference model for infotainment
functions can be realized. In the following, we will present an
audio source selection automation algorithm. The algorithm
will serve as a showcase for the usefulness of the drive
context information in infotainment automation. Also, it will
demonstrate a modular, purely probabilistic view for the use
of an explicitly modeled user preference relying on contextual
information.

A. Entertainment source selection
In a modern car, there are several different audio sources

to choose from. Typically, these include various types of radio
sources, TV, internal storage and connected personal devices
or a subset of these. The driver can select one of them at a
time or disable all audio sources. Depending on the car’s user
interface, disabling audio is either done by disabling audio
output or decreasing volume to zero.

The goal of the following case study is to showcase
the use of the drive context recognition integrated into an

automation of an infotainment function. The chosen function
is the selection of the current entertainment source in the car.
This means that we would like to recognize a driver’s behavior
in terms of selecting entertainment sources depending on the
current drive context.

For the justification of declaring the drive context as the
main context for entertainment source selection, we conducted
a preliminary study. 30 subjects were interviewed and ques-
tioned about their user behavior in terms of infotainment
systems. This also included the use of the navigation system,
eliminating the need for the prediction of the current drive
cluster related to the current drive context.

While 80% of the subjects always use the navigation
system, 7% use it frequently and 13% use it occasionally, no
one would never use it. This indicates the necessity of the
prediction of the current drive cluster, hence the target of the
current drive.

28 of the 30 use more than just one entertainment source.
While two subjects would listen to the radio only, one of
them depicted music as generally not important. The different
sources used are listed in Figure 9.
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Figure 9. The amount of subjects using the different entertainment sources
available.

25 of the 30 subjects stated to choose the entertainment
source depending on the drive context. One answer was given,
that because of the spare time drives mostly going abroad, the
subject listened to the online entertainment rather than listening
to the local radio. Another representative answer was that the
subject listens to the radio to get to work and ”moderately”
start into the day, while listening to CDs or making calls on
the way back home.

Three of the 30 subjects would never change their behavior
according to the co-driver or the passengers in the back.
The rest of the subjects would either give the control of
the entertainment source to the passengers or completely go
without any entertainment source. In Figure 10, additional
influencing contexts were given.

The results from the interviews give some important indi-
cations about using the drive context for learning the driver’s
entertainment source behavior. The contextual information
used in Section IV, daytime, number of passengers and the
frequent drive clusters are the most important information
for predicting the selected entertainment source. Therefore,
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Figure 10. Additional dependencies influencing entertainment source
selection.

the drive clusters abstraction delivers most of the information
necessary for predicting the selected sources.

B. Probabilistic view
This case study is targeted at automating a comfort function

through imitating the driver’s control behavior. In [20], a
similar problem is formulated: Proactive recommendation or
automatic activation of a certain camera-based comfort system
at locations of interest. The locations are learned by observing
a driver’s individual use of the camera system. As an outcome,
a modular system for location based activation of comfort
functions is presented. It relies on a probabilistic view on
the integration of abstract contextual information into the
process of automation. This has several advantages over non-
probabilistic methods, also discussed thoroughly in [20]. The
main goal in [20] is formulated as

p(A|B) =
∑
O

p(A,O|B) (11)

being the probability of the driver intending to activate a
comfort function under observation B and learned locations O.
With some basic assumptions, the probability of an intended
activation A can be simplified to

p(A|B) ≈ p(A|Oj) · p(Oj |B), (12)

where Oj is a context, describing an ”abstract location”. The
observation B can be any information currently accessible to
the car. This separation of activation and location context in
[20], makes it possible to model both contexts differently. In
[20], this was used to implement user feedback and uncertainty
quantification for better decision making.

This approach of separating the intention of an activation
and the major influencing contexts of the decision can be
adapted to our showcase. Instead of the probability of an acti-
vation A, we want the probability about the possibly selected
audio sources. The selections of available audio sources will be
denoted by E = (En)n∈N , with N = {0, 1, . . . , ]sources−1}.
Every En represents a different audio source, e.g., radio, DVB-
T or disc player. E0 is not an active audio source itself, but
implies ”disabled audio” output of the entertainment system.

This simple definition will be useful later on, enforcing∑
i∈N

p(Ei) = 1. (13)

This implies that we always want an answer for the
automation mechanism.

The targeted automation does not depend on the notion
of a learned location of interest, but rather on the current
drive context. Therefore, the probability of an audio source
Ei being selected under individually learned drive contexts
can be described as

p(Ei|B) =
∑
C

p(Ei, C|B) (14)

=
∑
C

p(Ei|C,B) · p(C|B). (15)

C = (Cm)m∈M is the family of observable drive contexts
indexed by M = {0, 1, . . . , ]drive contexts− 1}.

This is analogous to the situation in [20]. It is important to
notice, that in [20], the probability of ”no activation desired”
is not calculated explicitly, but rather included in working
with the probability of a wanted activation. In our case of
automating the entertainment selection, the ”disabled audio”
selection is treated as another selection. Thus, the system
always selects and activates a source.

In [20], some assumptions were made regarding the prob-
ability densities involved in equation (11). This allows the
deduction of equation (12) for estimating p(A|B). In our case
study, similar assumptions can be made to estimate p(Ei|B):

1) Given the information of the current drive context,
any other information denoted by B does not gain
additional valuable information for the automation.
This is inferred from our basic assumption that the
drive context is the major dependence for the driver’s
audio source preference. This means all information
of the observation B is included in the context. This
assumption induces the following simplification:

p(Ei|C,B) ≈ p(Ei|C) (16)

In the case of having more than one context, this can
be a dangerous assumption, but is viable for the case
study.

2) The previous evaluation of the presented drive context
recognition in Section V-B shows a high accuracy.
Taking the k most likely drive contexts into account,
the accuracy is close to 100%. If I is the index set
for the k most likely selected audio sources,

∀j /∈ I : p(Cj |B) ≈ 0 (17)

can be seen as a viable assumption. Taking an even
sharper condition, setting k = 1, the same assumption
as in [20] can be made, leading to

∀i /∈ N\I : p(Ci|B) ≈ 0 (18)
i ∈ I : p(Cj |B) ≈ 1 (19)

for Cj being the most likely drive context to be
predicted. This approximation is supported by the
high accuracy evaluated for only taking the most
likely drive context.
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Essentially, this simplifies the prediction of the audio
source selection. Analogous to [20], the estimation of the
probability for the selection of a specific source Ei simplifies
to

p(Ei|B) ≈ p(Ei|Cj) · p(Cj |B) (20)

In the case of a recommendation system, the system may
be free to offer the driver to play the audio source with
the highest likelihood. If a source would not be available,
the system should not recommend it and, therefore, does not
have to recommend anything at all. But, in the case of a
fully automated system, logic dictates to choose and play the
most likely audio source available. If a source is unavailable,
the source with the closest likelihood will be selected. The
automatically selected source Ei0 then is determined by

i0 = arg max
i∈Iavail

p(Ei|Cj) · p(Cj |B) (21)

where Iavail is the index set for the available audio sources.
As p(Cj |B) is the probability of the current drive context, its
calculation can be seen in Section V-B. From now on we will
call it Drive Context Distribution. The probability distribution
of the selected source, i.e., p(Ei|Cj) will be shown in Section
VI-C. The term will be called the Source Distribution.

Still, there is another simplification possible in equation
(21). Since the p(Cj |B) is a constant in equation (21), it can
be eliminated, not changing the decision process on Ei0 . Thus,
under given context drive Cj , the automated selection of the
audio source can be formulated as

i0 = arg max
i∈Iavail

p(Ei|Cj) (22)

When radio is selected as an audio channel, the preferred
radio channel should also be automated depending on the drive
context. Therefore, we define all radio channels to be denoted
by R = (Rk)k∈K with K being the index set for every listened
or known radio channel. Analogue to the entertainment source
selection, the most likely selected radio channel Rk0 given a
specified drive context Cj can be formulated as

k0 = arg max
k

arg p(Rk|Cj , E1) (23)

when E1 denotes the radio source.

C. Selected source
For the final decision, which source must be selected

by the presented system, Source Distribution p(Ei|Cj) must
be learned. This can be done in several ways, involving to
”observe” the active source on a trip. We will present two
intuitive approaches to decide which entertainment source is
considered to be ”listened to”. One will serve as example for
a whole class of point evaluation methods, while the other is
motivated differently. As the same ideas for finding the active
entertainment source apply to the active radio source, it will be
referred to as active source of a trip from now on. These two
basic ideas are illustrated in Figure 11. Figure 11a illustrates
the time-lines for three different trips from a drive cluster. The
colors orange and blue imply the relative time of one of the
two active sources along each trips time line.

The first approach is to observe the activated source at a

predefined point in time, relative to the drive’s beginning or
ending and declare it the active source of the trip. In Figure
11b, the first source that is observed as being active at the
beginning of the trip is declared to be the active source of
the trip. Defining a point in time, to designate the currently
selected entertainment source as the active source of the trip
is difficult. While the targeted automation should work at the
beginning of the trip, it is hardly a good idea to do so. Most
automotive audio systems will start when starting the car and
choose to play the last active source or radio station. If the
driver now has a different preference, the automation system
must recognize this. Defining when the driver has settled for an
active source is also non-trivial, because the driver may change
the source periodically. This is illustrated in the middle trip in
Figure 11a.

The second approach is to decide the active source de-
pending on the source switching behavior from the driver.
Periodic changes of the active source may strongly depend
on other influences from the environment and the content of
the audio source itself. In Figure 11a, the top trip shows some
switching between the two sources. While the orange source
may be solely for entertainment purposes, the second one may
be preferred by the driver as news or traffic information source.
The driver then would switch in between sources when this
information is wanted, e.g., when stuck in traffic. Taking the
longest active source is acceptable, as the driver listened to it
for the longest, thus the audio source delivering most of the
preferred content to the driver.

As for the sake of practicability of this case study, the latter
approach was used. The focus is on the demonstration of the
drive context for entertainment source selection.

D. Case study data
For this case study of drive context for personalized en-

tertainment source prediction, eight drivers participated in a
short-term study. The drivers were provided with prepared cars,
logging the standard bus systems and the central entertain-
ment system. The logging system was a prototype explicitly
developed for this study and had to be installed in the cars
with connections to the internal data bus system of the central
entertainment system. The cars were provided for about four
to six days to each participating subject, being enough time
to recognize the working time. This provided the data for
an offline evaluation of the algorithms. The entertainment
system could not be controlled externally, making testing the
automation online impossible.

The drivers were also interviewed, allowing the comparison
of the offline prediction and the subjects statements. This
would ensure a higher expressiveness of the short-term results
of the study.

Gathering enough data from the subjects over this short
time span was not possible with every subject. For the
previously presented drive context algorithm to work, at
least several drives for every context must be observed.
The MinDrives, declared in Section III-A, was set to
MinDrives = 3 for the GPS route clustering, as it was
proved to work accurately with small values for MinDrives
(see Section V). Also, the predicting algorithm for the source
selection automation needs some observations of every drive
context.

In the case of this study, only six subjects delivered enough
data for a significant analysis. This is enough to give a coarse
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Figure 11. Two approaches for tagging the active source of a trip: 11a illustrates an example for a drive context’s current active source (orange and blue) on
time scales from Start to Target. 11b and 11c demonstrate declaring either one of the listened sources or the longest listened source of a trip as the trip’s

observed active source.

quality indication for the usefulness of the drive context in
automation and the integration for the entertainment source
prediction.

E. Evaluation

For the evaluation of the in-field case study, the logs
of the 6 subjects were analyzed. The analysis includes the
clustering of frequent drives and subsequent recognition of
the drive context. On top of the recognized context, the
presented algorithm from Section VI-B was used to learn the
subjects’ current audio listening preference. The outcome of
the comparison of the predicted information and the subjects’
interviews are listed in Table I.

In the interview, the subjects were asked about their
personal preferences of infotainment use. This included the
dependence on the frequent drives, passengers, co-passengers
and mood. The given information was useful for a better
understanding of the preferences learned in the study. The
information of the preferred audio sources itself was divided
into three different categories of drive context: home to work,
work to home and non-work related / leisure drives.

Table I was structured for ease of comparison between
the prediction and the data from the interviews. While on the
leftmost side are the numbers of 6 useful subjects, on the right
side are the most three categories of detected drive contexts.
Per category of drive context, the table includes the prediction
of the presented automation algorithm, as well as the answer
from the interview. The table shows the information given in
the interview, while on the right, the algorithm estimated the
user’s preference.

A general problem was that the non-work related drives
were not properly detected. This is due to the short-term of
the study, as well as the time of the recordings. The cars
were provided mostly over working days, while most non-
work related drives are done at weekends. Nevertheless, Table
I, showing the detected preferences and the information given
at the interviews, indicates promising results.

The trivial case of a constant preference, non-dependent
on drive context or any contextual information must not be a
problem for the algorithm from Section VI-B. Subject number
4 never changes the active audio source and, therefore, is a
good example for trivial preferences. The presented algorithm
indeed has no problem recognizing the constant behavior and
predicts radio and the channel properly and verifiable.

Subject 3 also shows the working of the preference recogni-
tion. The subject said it would not listen to different radio chan-
nels, thus, recognizing the radio as the preferred source was
the primary target. The presented recognition always chooses
the most likely radio channel as explained in Section VI-C.
To stabilize the automation in a long-term study, the presented
learning of entertainment source preferences has to implement
a form of uncertainty quantification as shown in [20]. Also,
the preference recognition does not take into account the use
the telephone, because calls are not necessarily made for the
same reason as audio source are selected. Therefore, CD was
the best prediction result possible on work to home drives.

Subject 5 provided 4 days of logged information, mostly
on workdays. Despite the small amount of data gathered, the
prediction showed a significant difference in preference on
work travel. While listening to CDs in the morning work
travel, listening to the radio driving back home was clear and
coincided with the data given at the interview. The non-work
drives did not deliver enough information for a significant
statement, but gave a coarse direction. The given influencing
factors confirmed the use of the indicated information in Figure
10.

The presented case study showed that the presented drive
context recognition works well as a basis for an explicit
user preference model. Using the number of passengers and
daytime information in the drive contexts is clearly a benefit as
shown in the evaluation of the study. The influencing factors
given at the interviews approve the benefits. This confirms the
initial assumption, that the drive context is a major dependency
of driver preferences in comfort functions and useful for
recommendation and automation systems.

VII. CONCLUSION AND FUTURE WORK

In this article, we investigated the detection and prediction
of frequent drive contexts as an important building block
for automatized vehicle personalization. We proposed two
different spatial clustering approaches for identifying frequent
drive patterns in a GPS data set. The route independent Start-
Stop-Clustering is promising, as it detects patterns indepen-
dently of the chosen routes. The presented Bayesian Net’s
accuracy in differentiating frequent drive contexts was about
89% respectively 97% for a top 3 match.

We also presented a case study incorporating the rec-
ognized drive context. The study showcased the usefulness
of the presented drive context recognition algorithm, when
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TABLE I. Offline evaluation example and interview comparison.

Subject Home to work Work to home Non-work related Influencing factors
Driver Predicted Driver Predicted Driver Predicted

1 radio DAB, R1,0 radio DAB, R1,1 Bluetooth - daytime, co-driver
2 radio DAB, R2,0 radio/telephone AuxIn mostly radio DAB, R2,0 daytime, co-driver
3 radio FM, R3,0 CD/telephone CD CD/radio radio daytime, mood, co-driver
4 radio FM, R4,0 radio FM, R4,0 radio FM, R4,0 passengers
5 CD CD DAB, R5,0 DAB, R5,1 misc. - daytime, co-driver
6 radio FM, R6,0 radio/telephone FM, R6,1 radio FM, R6,2 weather, road type,

passengers

learning driver preferences. The targeted comfort function
was the entertainment source selection and proved to work
very well. It also showed a modular way incorporating such
context information. The next step should be a long-term
study for significant confirmation of the results. Also, the
number of contexts should be increased and techniques for
reducing the burn-in phase of the preference learning should
be investigated. This would include techniques ranging from
uncertainty quantification to collaborative approaches.

The duration of the learning phase is critical for using
learning systems in the field of comfort and infotainment. In
this regard, the presented algorithms need to be evaluated with
further field studies before being deployed in series production
vehicles.
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