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Abstract—Smart and context-aware Mobile Cloud Computing
applications challenge the way Quality-of-Service and Quality-of-
Context are maintained when operating with a federated mobile
cloud environment. Many resource and performance trade-offs
exist for the federated deployment of smart mobile applications.
Consequently, finding the best strategy to deploy and configure
intelligent applications in this federated environment is a non-
trivial task. We analyse the challenges and requirements for the
dynamic deployment of smart applications in such a setting and
present a quality-aware federated framework for the development
and deployment of smart mobile applications to use the cloud
opportunistically. Our framework utilizes Qo*-awareness and
dynamic adaptability to account for the uncertain conditions
given the partially observable context. Experiments with our
framework demonstrate the feasibility and the potential benefits
to automate the deployment and configuration decisions in the
presence of a changing environment and runtime variability.

Keywords—dynamic deployment; Bayesian models; mobile cloud
computing; smart applications; decision support.

I. INTRODUCTION

Mobility and context-awareness have multiplied the use
of mobile devices in homes or offices, health and cities
giving them a Smart label. Intelligent and smart applications
are gaining popularity day-by-day due to the ease and the
control they offer to the user. Continuous advancements in
mobile technology are changing our habits and the ways
we interact with these mobile applications [1]. This rapidly
evolving mobile technology is giving a momentum to the
smartness of these devices and a better control of our mobile
applications, considering the perspective of the user and his
situation [2]. A wide range of sensing, communication, storage
and computational resources makes these mobile devices a
perfect platform for ubiquitous computing offering pervasive
connectivity and a source for context-awareness.

Context-awareness is a congenital characteristic [3] of
intelligent applications to the notion of adaptability and smart-
ness. Context [4] is defined as any information that can be
used to characterize the situation of an entity, where an entity
can be an object, a place or a person relevant to the current
scope of the system. Research and development of context-
awareness is narrowing the gap between us, our devices and the
environment. Context aims to become the fabric of ubiquitous
computing. The consequent smart applications behave as the
constituents of ubiquitous environments as envisioned by Mark
Weiser [5].

The user takes a passive role in context-aware applications
and these mobile applications decide on his behalf. These ap-
plications require continuous processing and high-rate sensors’
data to capture the user’s context, such as his whereabouts and
ongoing activities as well as the runtime execution context

on the mobile device. However, being smart requires being
right in an adaptation decision. Context is dynamic in nature
and is prone to ambiguity. This uncertainty not only leads to
incorrect decisions but also makes proactive decision making
impossible, impacting the Quality-of-Service (QoS) of the
application in a negative fashion. We need certain attributes
that signify the adequacy or degree of suitability of the context
data. This degree of suitability, often regarded as the Quality-
of-Context (QoC) [6], can highly affect the adaptation decision.

Despite the continuous improvements in mobile technol-
ogy, the exponential growth in mobile usage is formidable to
cope with the resource limitations. Mobile Cloud Computing
(MCC) offers Mobile Cloud Augmentation (MCA) with the
aim to empower mobile devices to run more demanding or long
running tasks by providing plentiful storage and processing
capabilities on cloud servers. Cloud computing [7] offers
access to an always connected, decentralized, and abstracted
infrastructure of a heterogeneous pool of configurable com-
puting resources (e.g., networks, servers, storage, applications,
and services) that can scale up or down instantly in a controlled
fashion. This federated design can be applied to almost any
application and has been shown to improve both the speed and
energy consumption [8]. Most of the cloud applications follow
a thin client philosophy where resource intensive tasks are
outsourced to the cloud infrastructure in a brute force fashion.

A modular design philosophy for smart applications is ideal
enabling an optimal deployment in MCA. However, attaining
the most suitable deployment and configuration strategy for
these applications is not always clear and straightforward.
The MCA federation for such type of applications is a non-
trivial task. On the one hand, we have mobile devices with
built-in sensors to sense the context of user. On the other
hand, cloud resources can be utilized opportunistically to save
resources for mobile users [9][10]. At the core of such a
distributed environment, a decision of what to run where and
when is gruelling under a changing runtime execution context.
Figure 1 shows an overview of the federation in MCA for
context-aware applications. There can be multiple deployment
strategies for a smart application both at design time and at
runtime. However, it is not clear which component should
be deployed where, as the context changes at runtime. The
crux of the problem lies in the decision of when to change
the location of a component and decide where to deploy
it in an adaptive manner. The Topology and Orchestration
Standard for Cloud Applications (TOSCA) [11] is an xml-
based standard to define the topology of cloud web services,
their components, relationships, and the processes that manage
them. It can also be used to define the orchestration of a
mobile cloud application with an additional decision making
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Figure 1. Overview of context-driven optimized federation in MCA.

support to choose the location of a component, based on the
involved context factors and the resource-performance trade-
offs. Abolfazli et al. [12] define decision making factors for the
augmentation in MCC. The trade-offs between computations
versus communication and performance versus latency are
generally the most significant. User preferences with respect
to privacy and security for sensitive data also play a role in
the decision of which information to process where.

Computation on mobile devices always involves compro-
mises and trade-offs [13] with respect to the required QoS [14]
and QoC [6]. Context sensing and simple processing run on
the mobile device and other computationally more expensive
context management tasks like pattern detection, reasoning and
learning are offloaded on the cloud infrastructure. The question
is how we can effectively blend them to always achieve a
feasible and beneficial augmentation? The constraints of a
mobile environment play a role in the deployment decision.
Additionally, The requirements of semantic knowledge and the
resource characteristics of the application components make
this decision highly dynamic. A primary challenge is to liberate
device resources without compromising the QoS while pre-
serving the QoC necessitating a Qo*-awareness in deployment
decision making. Moreover, runtime uncertainty and erratic
nature of the context information [15] periodically impact these
deployment decisions and consequently performance; hence,
the decision support needs to be flexible enough to ascertain
the quality of its own decisions. The system should be aware
of the impact of its decisions over time to optimize the runtime
deployment and learn from its mistakes as humans do.

To address the needs of real-time dynamic systems,
the Monitor-Analyze-Plan-Execute (MAPE-K) [16] framework
with a concept of a feedback loop seems promising. We present
a framework for self-adaptation of smart mobile applications
as an instance of MAPE-K framework. Dynamic Decision
Networks (DDNs), a specialized form of Bayesian Networks
(BNs) are employed to analyze, plan, execute and update the
knowledge-base at runtime with the changing context of the
execution environment. Self-reinforcement [17] with the help
of utility functions and temporal delays enables the framework
to learn from its mistakes [18] in order to ascertain the
quality of the taken adaptive decisions. Building on recent
work of Bencomo et al. [19] in self-adaptive systems, we
have adopted a model @Runtime approach applying DDNs, to
incorporate the impact of trade-offs and to take an optimal

decision under variability. DDN modelling is an emerging
research topic, and researchers are investigating its use in
the area of self-adaptation for autonomous systems in several
domains [20][21][22][23].

In this work, we extend our previous work [1] and present a
multi-objective application model with a fair trade-off between
the required objectives. We highlight the challenges to exploit
the cloud infrastructure opportunistically, and investigate the
requirements to achieve a federation in MCA for smart mobile
applications. Our presented framework is able to learn the
deployment trade-offs of intelligent applications on the fly and
is capable of learning from earlier deployment or configuration
mistakes to better adapt to the settings at hand in a Qo*-
aware fashion. To verify the effectiveness of our framework, a
feasibility analysis is conducted on Smart Lens, an Augmented
Reality (AR) based use case application. Research is conducted
with respect to the communication cost and resource utilization
when extending an AR application with context-awareness and
cloud computing.

Our research offers the following contributions to support
effective smart application deployment in a Qo*-aware feder-
ated environment:

e  An investigation of the trade-offs that arise for data-
intensive context-aware smart applications in MCA

e A federated dynamic deployment with respect to Qo*
trade-offs

e Use of specialized probabilistic models to automati-
cally learn the overhead of deployment trade-offs and
compromises

This paper is structured in seven sections. In Section II, we
give an overview of the background and the related work in
MCA and discuss the gaps in state-of-the-art for federated de-
ployments and decision making under uncertainty. Section III
details our use case scenario motivating the need for smart
deployment decisions. This is followed by Section IV, where
we highlight the requirements and objectives of Qo*-aware
decisions. Section V provides a brief account of our federated
framework and the details about our approach of learning
the trade-offs for dynamic deployments using a probabilistic
decision model to mitigate the influence of runtime uncertainty.
Finally, after evaluating our approach applied on our use case
scenario in Section VI, the paper concludes and offers a
discussion of topics of interest for future work.
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TABLE I. The three offloading frameworks compared in terms of trade-off modeling and decision making.

Criteria Features MAUI CloneCloud ThinkAir Our approach
Objective Ener Performance | Performance | Both
Trade-Offs F]einbility Lowgy Medium Medium High
Context-Aware | High Low High High
Data store Remote Local Local Local
Decision Apprpach Optimization | Optimization | Rules Network
) Metric Cost Cost Property Property

II. BACKGROUND AND RELATED WORK

In this section, we discuss and examine related work in
the area of MCA, i.e., an active research domain in MCC. The
strategies for runtime optimization in the presence of uncertain
operational conditions are also briefed here.

A. Mobile cloud augmentation (MCA) and Qo*-awareness

Outsourcing the computation to the cloud can be beneficial
to achieve an ideal QoS [14][24]. It has been proven to reduce
the resource load on mobile devices [24], also for context-
aware data-intensive applications [25]. This combination may
result in improved energy efficiency and a reduced load
on resources, such as CPU and memory. Beside context-
awareness, a number of use cases combining data intensive mo-
bile application and cloud computing have been described in
the literature [26][27]. However, the use of context-awareness
in cloud computing is often approached from a functional
standpoint. The question for federated deployment is where
do you draw the line? What should be run on the cloud
and what work should be done by the mobile device? The
easiest option is to have everything stay local and not use
the cloud or Internet at all, but as mentioned earlier, this
could lead to bad performance of the application. Since the
cloud has enormous processing power, it is also possible to
adopt a thin client approach and do almost all the work
online. However, we cannot forget that communication with
the cloud has a price as well, economically and in terms of
time and energy. In this case, multiple conflicting objectives
affect the decisions and the distribution is never clear-cut
in the scenario of intelligent systems considering trade-offs
with respect to QoS and QoC [13]. Furthermore, acquiring
knowledge from the available data for context information,
requires a trustworthy mechanism where the ambiguity and
uncertainty in context data can be mitigated.

Previous research [28][29] was carried out on how to
realize platforms that allow the applications to make the
partitioning decision while it is running, providing the user
with the best experience possible. Even more impressive,
some of these platforms can let applications enjoy the best of
computation offloading by only making minor changes [28].
Context-awareness and computation offloading is added to
achieve the desired functionality but the accompanying trade-
offs regarding deciding what to offload and when are not ex-
plored. Narayanan et al. [30] predict the resource consumption
on the basis of historical data by applications. They use this
data to modify the fidelity of an application, based on the
inputs and parameters received by any mobile application at
runtime. Huerta and Lee [31] discuss a profiling based smart
offloading policy using historic resource usage data. However,
processing entire history logs is cumbersome. Cuckoo [32],
ThinkAir [29] and MAUTI [33] present an MCA model based
on multi-objective criteria with respect to the performance

and energy consumption. Cuckoo offers static offloading de-
cisions without context-awareness. ThinkAir and MAUI make
a decision based on the execution time, energy consumption,
and previous execution history. MAUI processes the offloading
requests by using the historic data to predict the execution time
of any task without considering the input size of that execution,
resulting in wrong prediction and offloading decisions [12].
We show a comparison of our approach with closely related
approaches in Table L.

Chen et al. [35] investigate challenges related to the fact
that each platform has its own capabilities and limitations to
achieve certain QoS requirements. They present a context-
aware resource management approach for service oriented
applications with the ability to handle the inherent service and
network dynamics and to provide end-to-end QoS in a secure
way. QoC attributes and their modelling comes into play to
capture the uncertainties in context data. Bellavista et al. [36]
discuss the QoC requirements and their impact on context
usage. Sheikh et al. [37] identify several quality indicators
like precision, freshness, spatial resolution, temporal resolution
and probability of correctness. The authors propose that these
quality indicators are well-suited in ubiquitous systems for
healthcare. However, no quantification mechanism has been
proposed by the authors in order to evaluate the role of
these parameters in critical decision support. Kim et al. [38]
present the quality dimensions such as accuracy, completeness,
representation consistency, access security and up-to-dateness
for measuring QoC in ubiquitous environments.

Our solution starts without historic information and uses
only the context at hand to predict the Qo*-aware dynamic
deployment scheme for each component of a smart mobile
application. Our solution does not focus on the partitioning
scheme, but the optimal decision making for each of the
component cloned on both the mobile and cloud ends.

B. Decision support under changing circumstances

Restating the obvious, intelligent applications have to take
into account the runtime uncertainty in context data. Context
sources are dynamic in nature. They can disappear and re-
appear at any time and context models change to include new
context entities and types. The properties of context sources
and context types can change randomly and the uncertainty
can vary too. Pearl [39] explains the problem of uncertainty
and argues that extensional or rule based systems cannot
perform well under uncertainty. Probabilistic theory allows
complex reasoning with a combination of observed evidences.
Probabilistic systems can handle unseen situations addressing
the influence of involved uncertainty. In our work, we are
concerned with the mechanism of deciding when to reconfigure
the deployment under a changing context at runtime.

Context-aware applications borrow decision models from
artificial intelligence and machine learning field such as su-
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Figure 2. Structure of a DDN with dynamic chance nodes affecting utility nodes with decision nodes and evidences [34].

pervised learning (Bayesian models, decision trees, Markov
models), unsupervised models (Neural networks), rules and
fuzzy logic [25]. BNs are usually used to combine uncertain
information from several sources to interpret high-level con-
text information. Wolski et al. [40] presented the offloading
decision as a Bayesian decision problem with a point of
view of when to decide offloading under changing bandwidth
using Bayesian theory arguing that in a Bayesian decision
the inference of a new prediction is a well-defined function
of the previously inferred prediction. Fenton and Neil [41]
have used BNs for predictions of the satisfaction of non-
functional aspects of a system. Esfahani et al. [42] employ
fuzzy mathematical models to tackle the inherent uncertainty
in their GuideArch framework while making decisions on soft-
ware architectures. Dynamic configuration of service oriented
systems was investigated by Filieri et al. [43] using Markov
models. Many works use utility functions to qualify and
quantify the desirability of different adaptation alternatives.
These works are QoS-based, applied in different domains for
resource allocation [44], typically in component-based mobile
and pervasive systems such as Odyssey [45] and QuA [46].

Bayesian based models are well researched in multi-
criteria decision making [41][47] as well and generally ap-
plied in clinical artificial intelligence [48]. Nonetheless, re-
searchers [19][49][50] have investigated the feasibility and
tractability of DDNs to solve the problem of decision making
under uncertainty in self-adaptive systems. Bencomo et al. [19]
used DDNs to deal with the runtime uncertainty in self-
adaptive systems. In recent years, two optimization techniques
have been developed to address dynamic decision scenarios:
partially observable Markov decision processes (POMDP) and
dynamic decision networks (DDNs). Both techniques are pow-
erful enough and aim at solving complex, real-life problems
that rely on the postulates of multi-attribute utility theory and
probability theory. Costa and Buede [50] present a comparison
between both the approaches and conclude that POMDP lacks
an ability to achieve any tractable model [51], while DDN
systems can present feasible solutions for complex cases.
The value structure can not be replicated in an explicit way
in POMDP for a multi-optimal decision environment. The
current state of the system has to be known, in order to
use Markovian decision models. It involves an extensive re-
engineering effort to the system since its value structure is
implicit in its every state and transition. Although the basic

dynamics of POMDP are still Markovian, as the current state
is not directly accessible, decisions require keeping track of
(possibly) the entire history of the process, contrary to the
Markovian property where there is no need to keep a track of
all the previous states and observations to take a decision or
perform an action [52][53]. In a DDN, all nodes that contain
value objectives are explicitly connected to a utility/value node.

C. Learning the deployment trade-offs using DDNs

Conditional probability distributions (CPDs) derived by
analysing historical attribute values helped solve stochastic
problems in the past. The runtime setting for every component
is hard to determine in advance due to the dynamic interaction
of these components with the environment and the user. The
adaptation module in our framework takes an advantage of
probability theory and statistics to describe uncertain attributes.
Probabilistic reasoning allows the system to reach rational
decisions even when complete information is not available.
We give a brief overview of the concepts of BNs and DDNs
to understand the structure of the model used at runtime and
how it is applied.

A BN is a Directed Acyclic Graph (DAG) that depends on
Bayes’ theorem [54] and CPDs. The graph is represented by a
triplet (N, E, P), where N is the set of parameters, E is the set
of arcs where each arrow declares the one parameter directly
dependent on the one at the tail of the arrow, and P is the CPD
for each parameter [34]. Figure 2 shows a BN with two chance
nodes and two observation nodes. Chance nodes represent the
influencing factors. BNs are able to reverse their inference
logic due to the symmetry and usage of Bayes rule (given in
Eq. (1)) and are able to update their beliefs on the fly as soon
as a new evidence is observed [55]. Moreover, the Markov
assumption (given in Eq. (2)) enables BNs and its dynamic
counterparts, i.e., Dynamic Bayesian Networks (DBNs) to be
fully operational even if an expert’s opinion is fed to the model
instead of an account of historic events.

_ P(BlA)P(A)
At+1 LA(O:t_1)|At )

The computation of a posterior probability distribution over
a model (or parameters) is called inference. It is one of the
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TABLE II. Functional and non-functional (Qo*) requirements of the Smart Lens use case scenario.

Requirement Description

Localization (QoS) Smart Lens localizes the user within a building based on the camera. After recognizing a scene, it displays the

position and orientation on a floor map and can give additional information about the user’s surroundings.

Maximum Reliability (QoC) | The application should run reliably between the mobile and the cloud end without draining the mobile resources for
other applications. A low reliability signifies that mobile is not the ideal execution environment, so the component

should be deployed on the cloud.

Minimum Latency (QoS) In MCC, the response time and performance of the application depends upon the location of the components and
the amount of communication required to fulfil a task. Based on test data from CloneCloud [26], it should be

reasonable to expect the application to return the results under 15 seconds.

Minimum Cost (QoC) The switching cost between mobile and cloud impacts the performance of an application. It depends on the

execution context, hence is considered a QoC requirement

Accuracy (QoS) The results should be accurate. Because of the multitude of scenes that can be added to the dataset, it is also

likely different locations will be represented by similar scenes, corridors and hallways.

basic operations offered by a BN. The precondition for infer-
ence is that the structure of the network/model is known and
the prior probability distribution is already available. Learning
can refer to the structure of the model, or the parameters, or
both. Furthermore, learning may take place under either fully
or partially observed variables. Learning offers a way to know
the values of the parameters to properly explain the observed
evidence. To represent parameters that change over time, it is
possible to use a time-sliced network such that each time-slice
corresponds to a time point in a form of a DBN. A BN/DBN
does not necessarily require a historic data from one state to
another for its inference, it can be suitable to perform the
context reasoning for high-level context [56]. In order to realize
proactive and situational decision making, two main concepts
of Bayesian models are utilized, (1) Probabilistic QoS and QoC
awareness using DBNs, and (2) dynamic decision making with
DDNs to decide when to redeploy and where.

A DDN is a DBN that also includes a set of decision
and utility nodes. The basic structure of a DDN is depicted
in Figure 2. Decision node represents all the desired decision
alternatives, connected to the utility node to compute its impact
while making a decision. A chance node and other decision
nodes can be the parents of a decision node. The utility
nodes express the preferences among possible states of the
world in terms of a subset of chance nodes and decision
nodes. A probability-weighted expected utility is calculated
for each decision alternative given the evidence. A chance
node, decision node and even utility node can be expressed
as its parents. The decision alternative is chosen according to
the Maximum Expected Utility (MEU) principle. If a decision
parameter D contains decision alternatives {d1,ds,..d,} and
E is the evidence parameter containing {eq,es,..c,} for a
state parameter with states {si,ss,..s,}, then the expected
utility based on Bernoulli’s equation [57] for taking a decision
alternative is give as:

We have employed DDNs to solve multi-objective, con-
flicting criteria problems while making Qo*-aware decisions
over time for smart applications in MCC. Using a DDN is
crucial in this research work for following reasons, given as:

e  The type of relevant contexts evolve over time. There-
fore, capturing the dependencies between the tempo-
rally variable relevance is difficult.

e If a static BN is employed, the interpretation of
new evidence will lead to reinterpretation of previous
evidence [58]. In order to overcome such a drawback,
a DDN should be employed instead of a static BN.

Several intelligent applications are pretty lightweight, but
others require a lot of computational effort (e.g., for predic-
tion) or require analysis of large amounts of data (e.g., for
pattern analysis). This work explores and utilizes the trade-
offs involved in combining a data-intensive mobile application
with context-awareness and cloud computing, and investigates
the deployment of such applications in federated MCC envi-
ronment. After identifying the deployment and performance
trade-offs for outsourcing data and computation, our approach
addresses the federation concern by continuously learning and
adapting under multiple conflicting QoS and QoC objectives.

In the next section, we explain a use case scenario of a
smart application, motivating the federated deployment of its
components with our Qo*-aware framework.

III. MOTIVATING SCENARIO FOR THE DYNAMIC
DEPLOYMENT DECISION

Advances in mobile technology accelerate the use of high-
end data-intensive platforms on mobile devices using built-
in sensors, such as an AR platform using the camera of the
device. Mobile AR allows the devices to recognise objects.
It requires extensive processing for image recognition and
matching.

A. Use case scenario

We considered an indoor positioning use case application
called Smart Lens [59] to investigate the relevant trade-offs
motivating the runtime deployment requirements for context-
aware applications in MCC. Context-aware intelligence is often
found in AR applications to help the user explore certain
places, be it cities, expositions, museums or malls.

In many cases, it makes the phone act as a camera but adds
extra information next or onto objects that appear on screen.
The core functionality of the application is to position the user
based on the view of the camera. As soon as the application
recognizes the scene, it displays additional information, such
as a floor map, to give the user an idea of where he is as shown
in Figure 3. Table II shows the functional and non-functional,
i.e., Qo* requirements of the use case.

Smart Lens localizes the user within a building based
on camera frames taken from a doorway. After recognizing
a scene, it displays the position and orientation on a floor
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Figure 3. Scene recognition and image matching in the Smart Lens.

map and can give additional information about the user’s
surroundings. The dataset can be large and continue to grow,
adding more locations and poses, but can also be restricted
to specific positions such as doorways to keep it practical.
Modifiability can help the expansion of the dataset, which
is having users capture and register their own scenes with
the application. These users could be system operators, ad-
ministrators of cooperating buildings, robots that explore the
buildings or simply any user who wishes to register a location
to navigate from or to. This application utilizes the location
information of the user and the time of the day to further
reduce the search space of objects to recognize and make the
comparison smarter. We have analysed the performance and
resource utilization trade-offs for our use case, motivating the
need of the smart offloading decision. The next subsection
discusses few of them.

B. Trade-off analysis

The AR components Feature Extraction and Object Recog-
nition components require a relatively large amount of process-
ing time, which not only drain the battery further but causes
the application and the phone as a whole to slow down as
well. Figure 4, provides an overview of the composition of the
components for the Smart Lens. The resource and performance
trade-offs are investigated for AR components by analysing a
correlation between the latency of recognition, the structure
of the dataset, i.e., its size and the quality of the images.
Communication and computation trade-offs are also analysed
for our use case.

The mobile device is held up facing an exact copy of
a sample in the set. The use case application is started and
shortly after, the time until recognition of the scene is printed
on the screen. It is repeated for datasets of size 3, 50, and 100,
consisting of high quality samples, low quality samples or a
mixture of both. The size determines against what number of
samples each scene needs to be compared, and the quality and
detail in the samples themselves affect the amount of work
needed for such comparisons.

Two different experiment scenarios are conducted: 1) when
dataset is stored on the mobile device and the AR components
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Figure 4. Overview of the components of Smart Lens use case.

perform the computations locally on the device, 2) when the
cloud deployment for AR components is used keeping the
entire dataset on the remote location as well.

1) Performance vs dataset size on the mobile: The results
in Figure 5 demonstrate the effects of the dataset structure (on
x-axis) on the recognition latency (on y-axis). Choosing the
right dataset has an important influence on the performance.
Larger local datasets slow down any data intensive scenario, in
our case image recognition and AR based application requiring
more resources impacting the performance negatively, and the
use of high quality feature rich samples slows down detection
when faced with an ideal scene.

However, it should be noted that smaller sets are less likely
to contain the correct sample and require more computations
if the applications is used for multiple detections, and lower
quality samples have considerably more difficulties detecting
scenes from a perspective that is not the same as the one
when capturing the sample. Similarly, low quality samples
also reduce the file size of the dataset. A smaller set not
only reduces latency, calculation time and therefore energy
consumption, it also reduces the file size, lowering the need
for memory and possibly data communication. Smaller datasets
can be obtained by filtering all samples in the system to those
that are plausible given the current context of the device and
the users. Additionally, devices with limited resources can
choose to use datasets of lower quality, if offered, to save
energy and calculations while sacrificing performance, hence
instating the decision making on trade-offs.

2) Performance vs dataset size on the cloud: Figure 6
shows the latency when the dataset is placed on the cloud and
the computation is done on the cloud. Lower latency with Wi-
Fi shows that the performance of the application now improves
with better Internet connectivity, as could be expected. It is not
possible to offload fewer computations without fetching a part
of the dataset, requiring additional communication with remote
servers and anticipation and filtering of the dataset. AR appli-
cations using context-awareness to filter datasets, results in less
memory usage and lower detection latency, whereas with cloud
computing detection latency is approximately constant with
respect to the dataset size, and no local memory is occupied
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Figure 5. The latency in milliseconds (scaled logarithmically), when the recognition is
performed on the mobile device with local dataset.

by the dataset. But the latency due to connectivity type and the
amount of data to be communicated is a major trade-off. The
trade-off curves for our use are also shown in Figure 6. Placing
the dataset on the cloud servers with the computation intensive
components, leads to a need for a smart computation offloading
method on the mobile device that learns the resource utilization
and performance trade-offs in order to dynamically deploy the
components between mobile and cloud infrastructure.

We will discuss the research requirements for automated
decision support for the dynamic deployment considering the
above mentioned trade-offs.

IV. REQUIREMENTS FOR QO*-AWARE SMART
DEPLOYMENT DECISION

A modular design philosophy for data and control pro-
cessing on the mobile and cloud ends is needed to achieve
a flexible distributed deployment. It simplifies redeployments
and reconfigurations significantly. In our previous work [60],
we demonstrated that a modular application design philosophy
helps to support optimal mobile cloud application deploy-
ments. Moreover, we identified that many resource and perfor-
mance trade-offs exist [13] in such a federated deployments for
other use cases as well. The large number of parameters associ-
ated with the deployment configurations for these applications
make it nearly impossible for developers to fine tune them
manually. Therefore, automated deployment and optimization
are necessary [61].

Many opportunities for optimization exist as there are sev-
eral distributed deployments of the application components and
different configurations per component possible. The challenge
is to find and analyse different optimization trade-offs in a
federated environment of MCC, each characterized by varying
sensing, communication, computation and storage capabilities.
Furthermore, addressing the influence of runtime uncertainty
in the context and its quality is an utmost essential task.

The investigated research requirements for a Qo*-aware
deployment framework are given below:

1) Offer reflective decision support: The decision
maker should be able to decide for which execution
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Figure 6. The latency in milliseconds with AR components and the dataset are
offloaded to the cloud and accessed via WiFi. The trade-off curves of latency average
for datasets stored on mobile and accessed via 3G are shown by the dashed lines.

scenario the cloud is better and for which ones a cloud
based deployment does not bring any added value,
addressing when to offload in an automated way.
Generally, the adaptation decision includes the ways
to split responsibilities between devices, applications
and the cloud servers. Since last decade, MCC re-
search focus is to develop algorithms and techniques
for deciding whether offloading would be beneficial
or not and what to offload [62]. With continuous
improvements in connectivity and mobile technology,
the focus is shifting to smart offloading where the de-
cision support is required with an aim of when to use
MCA. Context-aware applications generate data at a
large rate and sometimes in an uncontrollable fashion.
The essence of the problem is finding the middle
ground, determining what the mobile devices should
handle and what the cloud should handle. Sending
the raw data to the remote cloud servers is not always
feasible [13]. Moreover, smart offloading demands a
reflective decision support where the decision maker
can look-ahead for the impact of the current decision
and predict its impact on future situations.

2)  Process and provision the context: As context is an
essential constituent of smart applications. Runtime
Context provisioning is inevitable in such a federated
decision making. It always incurs a cost to profile
the resources or other context parameters in mobile
runtime environment. Furthermore, the continuous
varying context and processing of the heterogeneous
sensory data introduce challenges to take the most
rational decision.

3)  Process the Quality-of-Context (QoC): QoC raises
more questions while dealing with automated adap-
tation. Context provisioning is a multi-level pro-
cess [36] where low-level events are enriched through
filtering and aggregation. For example, GPS coordi-
nates are read from the sensor and translated into
a high-level description of the location of the user.
Finally, the desired high-level context is inferred
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TABLE III. Objectives of the Qo*-aware offloading in MCC.

Objective Description

Qo*-awareness

A traditional QoS & QoC requirements gathering to identify and model the required quality attributes at design
time. It is domain specific and involves the type of context being utilized. The system should be able to capture
the real-time context of the user and his environment.

Self-Adaptive
outsourcing few components to the cloud.

The system must be self-adaptive at runtime to optimize the resource consumption of the application by

Optimize Offloading

any decision.

The system should detect the runtime context of the mobile device, i.e., CPU usage, memory consumption
and battery usage. Runtime support to detect a change in QoC in a particular context type and optimize the
offloading for Qo* requirements while performing opportunistic offloading. System should measure its impact
on other context types before making any decision. Runtime support to detect a change in QoS before making

Resolve conflicts

should be met in our use case.

The system should select the deployment strategy with respect to QoS & QoC requirements from the application’s
perspective in a total qo*-aware fashion, such as Maximum Reliability, Minimum Latency and Minimum Cost

through context reasoning. For instance, presence of
the user can be inferred by his/her location. The
adaptation decision is based upon this high-level
context. End-to-end QoC control is a safeguard to
monitor the quality of the context data through-
out this multi-level process. The framework should
consolidate the requirements of QoC in the context
provisioning under varying context.

4)  Maintain the Quality-of-Service (QoS): The re-
configuration adaptation needs to be performed in
an efficacious way without hindering the QoS of the
applications. The possible re-configuration variants of
any application can be determined at design-time in
a static way but to achieve the multiple-objectives in
MCA, it highly depends on the varying situation at
runtime introducing the need of a decision support
at runtime that does not hurt the QoS requirements
of the smart applications in all possible deployment
scenarios. This imposes a big challenge, especially
for resource-limited mobile devices, when conflicting
optimization objectives are involved. The decision
maker should not only process the context but also
predict the effect of the decision for future QoS
requirements.

5) Display retrospective behaviour for trade-offs in
federated deployments: Ascertaining the quality of
the decisions is an important aspect in order to meet
the QoS requirements that are directly affected by the
context and its quality for smart applications.

Decision
Support ®
Qo*-aware decisions

Probabilistic
Model

Processing
Engine

High-level context
Context
Reasoning

Low-level

QoS & QoC
Requirements
context with QoC

Figure 7. An abstract view of QoC-aware decision support in our framework.

Context data is generated depending on the objectives
of any smart application and its size varies accord-
ingly. If the decision maker decides to achieve a
certain requirement, obviously it has to compromise
on another aspect. It is non-trivial for the decision
maker to learn and memorize the decisions taken.
Attaining a retrospective behaviour for MCC feder-
ated deployment decision is challenging due to the
constrained mobile environment and the overhead has
to be taken into account.

Table III shows the overall objectives of our framework accord-
ing to the above mentioned requirements. An abstract overview
of the QoC-aware adaptation is shown in Figure 7. It depicts
the flow of end-to-end QoC and its processing at each level of
the context-processing. The dotted area shows the significance
of QoC-awareness in decision support using probabilistic mod-
els. We have used probabilistic models to mitigate the runtime
uncertainty in the available context. In the next section, we will
explain our Qo*-aware dynamic deployment framework and
its learning mechanism using probabilistic models to achieve
well-informed and reflective decision making with the above
described features.

V. CONTEXT-DRIVEN DYNAMIC DEPLOYMENT APPROACH

Our framework consists of a loosely-coupled context-
processing system along with an adaptation module. As shown
in Figure 8, mobile hosts a Dynamic Adaptation Module, i.e.,

Mobile

<:> Run-time
Resource Profiler

Context-Awareness

Cloud

QoC

I Context
Provisioning
Components

<:> Smart
Applications

Figure 8. A blueprint of our federated framework and its dynamic deployment modules.

Service Adaptation Module

Dynamic Adaptation Module
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a component running on the mobile device to adapt the de-
ployment configuration of the applications. However, the cloud
environment hosts a Service Adaptation Module, which aims to
optimize the runtime deployment of the required components
and acts as an entry point for the adaptation module on mobile
client. This module receives raw or pre-processed context data
(including the type of the content and the identity of the
source) and forwards it to a publish/subscribe subsystem so
that interested parties (i.e., the subscribers) receive context up-
dates. Dynamic Adaptation Module uses the model @ Runtime
approach and hosts the DDN model for adaptation. The next
subsection details the working procedure of this module.

A. Deployment and reconfiguration decision making

Deployment Adaptation Module takes the decision
of how to split responsibilities between mobile devices,
applications and the framework itself. It is able to decide
on the opportunistic use of the cloud. Our decision making
approach for redeployment and reconfiguration is explained
in the steps mentioned below:

Information discovery and selection — The framework
discovers and explores the application’s runtime environment
in order to get the context information to work with. Figure 9
shows a taxonomy of the runtime environment of a mobile
device. Its resources can affect the ability to meet the
QoS requirements and eventually, the decision of dynamic
deployment. Our framework discovers the sensors and context
types required for the smart application. Built-in sensors in
mobile devices are important to fetch the context data, but
the size of the acquired context data varies, depending on the
application’s objectives. The framework filters the acquired
context according to specific needs of the application. This
selection process can be fairly complex as it may require
complex filtering techniques to decide which sensor or device
is offering relevant information. QoS and QoC requirements
are gathered at this step to bootstrap the decision making.
Runtime Resource Profiler component deployed on the
mobile side, gathers these requirements. The utility structure
of the system is maintained here corresponding to the
QoS requirements of Minimum Latency (Lp,;n) and QoC
requirement of Maximum Reliability (R,,q;) for the mobile
device.

Analysis and decision making — The inferred context
information is used to bootstrap the deployment decision or
to change the configuration or behaviour of the application.
System does a probabilistic analysis among the conflicting

software

application

provides

h -
Resource 422 Mobile ‘

device
has

uses

i \/irtual Machine User

‘1 Operating System
Middleware
Rendering Engine

Figure 9. Taxonomy of the runtime environment of a mobile.
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objectives in order to achieve the QoS and QoC requirements
while making a decision. The computation or storage resources
on the device and the communication cost affect the decision.
For instance, the user points his mobile device on a scene. The
image/video frame from the mobile device is captured. The
feature points for the image in the frame are extracted. With
these feature points, scenes are then identified by matching
the extracted feature points to those of known scenes in a
database. There is little memory because of his running video
player. In this situation, a thin client configuration is chosen
for Smart Lens, delegating Spatial Reasoning and Object
Recognition components to cloud infrastructure. Furthermore,
when the user shuts down the video player, a context change
is raised: the free memory on the hand-held increases.

Enactment of the decisions — With a thin client configuration
as in the previous step, the framework has to observe the
real-time impact of the configuration to maintain QoS
requirement of L,,;,. In order to decrease the application
response time Smart Lens is reconfigured with a thick client
and caching of data to save power and to become less
vulnerable to network instability. The decision making is
a continuous process, where the framework optimizes the
application behaviour to reach certain objectives on the basis
of the required attributes. When the availability of required
resources varies significantly, the framework has to decide
whether to trigger an adaptation in the form of reconfiguration
of the components. It learns from its previous decisions and
the available context in order to ascertain the quality of the
decision and learn from its own mistakes to achieve better
results in the future. The adaptation modules on both the
ends communicates with the QoC Processing Engine for
the deployment decision support. The context provisioning
services use the QoC Processing Engine in order to provide
Qo*-awareness.

B. Model structure

We present the details of the model structure and the
involved multi-criteria parameters in this section. A DDN is
modelled for the enactment of the decisions that change over
time influenced by dynamic states and preferences. The first
step is to identify the involved uncertain parameters and the
causal relationships between those parameters [47]. Extensive
interaction with the domain experts is vital to structure a
quality model in order to fulfil the requirements. Table IV
shows the identified parameters for our problem domain and
their nature based on the requirements of the use case (see
Section III). The value of the static variables is independent of
their counterpart in multiple time slices. Dynamic parameters
are affected in multiple time slices by their historic values.
The effectiveness of reconfiguration decisions over time are
investigated for multiple consecutive time slices. Each time
slice contains an action taken by the system.

TABLE IV. Parameters types and values for QoC*-aware dynamic deployment.

Parameters

Values

Nature

Availability

CPU Usage

high, low

static

observed

Memory Usage

high, low

static

observed

Data Storage

remote, local

static

provided

Available Bandwidth

Tow, high

static

observed

Available Resources

yes, no

static

inferred

Required Connectivity

yes, no

static

inferred

Maximum Reliability

low, medium, high

dynamic

inferred

Minimum Switching cost

low, high

dynamic

inferred

Minimum Latency

average, maximum

dynamic

inferred
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Figure 10. DDN model for dynamic deployment domain expanded in two time slices.

We have designed a DBN model to tackle the requirements
2, 3, and 4 identified in Section IV and a refined in the form
of a two time sliced DDN model to address the rest of the
requirements, i.e., 1 and 5 from Section IV. Figure 10 shows
our DDN model.

The Deployment Adaptation Module uses this network
to decide about the dynamic redeployments for the smart
application components. We modelled the decision as a finite-
horizon, sequential decision process [34]. At each time slice,
the Deployment Adaptation Module decides on the fly about
a component, whether to put it on the mobile or it should be
running on the cloud. The time slice corresponds to a change in
the context values of the execution environment of the mobile
device depending upon the profiling interval. The use and
feasibility of the DDN models are evaluated in [19][49] for
other self-adaptive domains.

Our model expresses QoS and QoC requirements (REQ)
by chance nodes and these requirements are causally linked
by the involved context expressed as the observation nodes
as shown in Figure 10. These chance nodes make a BN
with the CPDs corresponding to the effects of Deployment
Decision Dj alternatives {mobile, cloud} over conflicting
REQs {Maximum_Reliability, Minimum_Cost} expressed as
P(REQ; | d;). Available Resources is a context parameter
that stochastically varies according to the runtime environment
parameters, i.e., CPU usage and Memory bringing uncertainty.
Bandwidth is a random parameter observed dynamically. Max-
imum Reliability is the QoC parameter as it is inferred from
the Available Resources on the mobile device and Available
Bandwidth information, playing a vital role in decision making.
Its value low shows that mobile device is not a reliable exe-
cution environment for the components, therefore, Maximum
Reliability effects the utility of the decision. Minimum Switch-
ing Cost is another QoC parameter casually linked with Data
Storage to capture the communication trade-offs while taking
a Deployment Decision. The QoS parameter Minimum Latency
is effected from the QoC parameter Maximum Reliability and
plays a vital role in decision prediction, hence it is causally
linked with the Deployment Decision in future time slice.

C. Utility function

A utility function computes the subjective choices of a deci-
sion maker for available decision alternatives and its outcomes.
Elicitation of utility values requires the knowledge of the
involved subjective probabilities [63]. In Bayesian inference,
a decision is determined with both the utility function and the
posterior probabilities. The utility values can be obtained by
the domain experts or from the decision making preferences.
We assigned the utility function for each of the preference
criteria same as defined in [47]. We applied a linear trans-
formation to normalize the utility values in order to reduce
the computations for our DDN. The normalization formula is
given as [47]:

Vma:r - sz
Uj=1-——mer Tt 4
‘/maa: - Vmin ( )

The normalized utility values are given in Figure 11 for
the most desirable decision alternative in the range from 1
to 100. For each REQ;, the utility nodes express the utility
function that takes the CPDs of the REQs and their priorities
into account. U(REQ; | D;) represents the numerical weight
of each requirement and P(REQ; | E, D;) represents the con-
ditional probability for each REQ under the current observed
context (evidence) E {CPU Usage, Memory Usage, Available
Bandwidth, Data Storage}. The expected utility [34] for each
decision is computed by Eq. (5) and the decision is chosen by
the MEU principle.

EU(D, | E) = P(REQ; | E,D;)U(REQ;,D;) (5)

VI. EXPERIMENTAL EVALUATION

In this section, we discuss the experimental setup and the
results obtained towards an opportunistic offloading decision
support using DDNs.
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Figure 11. The numeric weights assigned to the conflicting objectives, the most favourable path is highlighted with a green line.
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Figure 12. Prior probabilities of our DDN in two time slices.

A. Enabling technologies & implementation

In order to implement our framework, discussed in Sec-
tion V-A, we are using an HTC One X with a 1.5 GHz Quad
Core ARM Cortex processor (at about 2.5 MIPS per MHz per
core) to run the Android-based Smart Lens, augmented reality
application, which embeds the Vuforia library to recognize any
scene.

Our infrastructure runs VMware’s open source Platform-
as-a-Service (PaaS) offering known as Cloud Foundry on a
server with 8 GB of memory and an Intel i5-2400 3.1 GHz
running a 64-bit edition of Ubuntu Linux 12.04. A Java-
based implementation has been used for Runtime Resource
Profiler that captures the runtime context of mobile device.
We have modelled a DDN-based probabilistic model for the
components of our Smart Lens use case using the Netica
development environment (http://www.norsys.com). We give
a detailed account of the experiments conducted in Netica to
analyse the deployment adaptation decisions in our model.

B. Belief propagation and computation of the expected utilities

We investigated the belief propagation in our DDN model
to analyse the decisions taken by it under changing context of
the mobile device. The model can be bootstrapped with prior
probabilities. These probabilities are learnt from experience
dataset or can be set by domain experts in the same way as the

policies can be set for rule based systems. Figure 12 depicts
the initial computation of our model bootstrapped with the
prior probabilities set according to the domain requirements.
Under favourable conditions for execution environment, it can
be seen that the decision to run the component on mobile has
higher expected utility. As context is generated from mobile
device, the prior probability for Data Storage is set to local.
These prior probabilities are overwritten by the evidence in the
form of observations from mobile resource profiling for belief
propagation in the network. The experiments are conducted for
the redeployment of Object Recognition component, whenever
the execution environment changes on the mobile device.

In our first scenario, we observed the CPU usage as high
with all the other parameters uncertain, the expected utility
for the decision changes on the basis of the inferred Maximum
Reliability as the Switching Cost remains min (see Figure 13a).
When the Switching Cost changes to max, the expected utility
is recalculated and it is triggered to choose mobile as a
deployment option (see Figure 13b). This experiment shows
that our model can effectively cope with the conflicting trade-
offs and choose a favourable decision. In the second time slice,
state of the Qo*-parameters are predicted and analysed. Once
the decision is chosen it updates the decision for the future
and recompute the belief propagation as shown in Figure 13c.

To evaluate the proactive adaptivity of our DDN model, we
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(c) Predicted state of the Qo*-parameters and beliefs in future.

Figure 13. Belief propagation in our DDN model for dynamic deployments on the fly.
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TABLE V. Evaluation of our DDN model for different dynamic deployment
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Figure 14. Expected utilities when there are no resources available on mobile device.

have conducted several experiments with the changing context
environment on the mobile device. Table V shows the sce-
narios and the Maximum expected utility for these scenarios.
Figure 14 depicts a snapshot of all the parameters and their
beliefs. The Maximum Latency value is always analysed in
the second time slice to achieve a proactive behaviour. In
our first experiment, an automated trade-off analysis is done
before choosing the cloud as the Available Bandwidth is high
but Resources are on a low side. The decision model triggers
an adaptation decision on the basis of the context parameters
for mobile execution environment and do a trade-off analysis
for Qo*-awareness. The most favourable decision alternative
is chosen, as evident from the results in every case. Figure 15
shows the results for these experiments and chosen decision
alternative for each runtime setting. The third scenario in
the graph shows the intelligence of our model when there
is no information available and it makes a decision in total

Decision-making with DDN under changing context
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Figure 15. Dynamic decision making for the changing context on the mobile device.

uncertainty based on the prior beliefs.

We have conducted several experiments with and without
stressing the CPU, in order to evaluate the performance over-
head of processing a DDN-based model for deployment deci-
sion making. The performance overhead of running a 2-sliced
DDN on a Samsung S4 Android device is 5.8 milliseconds
without stressing the CPU. But if the CPU is busy and stressed,
the processing time goes up to 6 milliseconds. There is an
overhead involved due to the evidence collection for runtime
context. The processing with stressed CPU on the same device
goes up to 16 milliseconds with an overhead of 10 milliseconds
for the evidence collection.

VIIL

MCA addresses the challenges to the resource limitation for
mobile devices preserving the QoS requirements. Deployment
for the components of smart applications in MCA is a non-
trivial task in the presence of many resource-performance
trade-offs and compromises. These compromises can affect
the QoS or QoC for context-aware applications. The opti-
mal strategy to deploy and configure intelligent applications
with dynamic and heterogeneous resource availability cannot
ignore the interplay between QoS and QoC. A modular design
philosophy for developing intelligent applications helps to
dynamically configure, compose and deploy these components.
The overall aim of our work is to intelligently automate the
distributed deployment and configuration of the components
across the mobile and cloud infrastructure, and to realize an
opportunistic use of the cloud.

CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel approach for
dynamic deployment decision making in federated environ-
ment of MCC by leveraging DDN to automate decisions in
a continuously evolving runtime environment context. DDNs
build upon DBNs. However, the latter is only able to learn

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



conditional probabilities based on a dataset, whereas DDNs
can quantify the impact of the evidence and the effect of the
decisions. Furthermore, by exploiting the utility of deployment
decisions, our framework can learn how to automatically
improve its decisions for future. Our first contribution is an
analysis for the involved trade-offs for smart applications.
To cope with the trade-offs for quality-aware deployment
decisions, we present a Qo*-aware decision making frame-
work based on DDNs in MCC domain. A feasibility analysis
of incorporating DDNs for decision making was performed,
and our experiments have clearly demonstrated the ability of
adapting its decision in the presence of evolving situations
and an uncertain context of the environment. By incorporating
QoS and QoC in our DDNs, we are able to assess the quality
of our context-driven decisions, ascertain their quality and
update future decisions and corresponding actions according
to the outcome and impact. Our experiments have shown that
an intelligent application can achieve optimal deployment for
its components under a reasonable overhead, whenever the
context is updated. However, the overall success of the model
highly depends on the subjective probabilities and the utility
function and its values. The sensitivity analysis [19][39] of
these models validates their dependency on the prior beliefs
and the utility values.

Applications of probabilistic theory and other artificial
intelligence techniques can help to achieve the real meaning
of smartness in several domains particularly in MCC. The
limited tool support for their application is indeed a hurdle
to widely utilize these techniques. We are actively working
on our framework to realize the practical use of DDNs for
dynamic deployment purposes in MCC using different avail-
able platforms for Bayesian inference and DDN support. In our
work, we used two time slices network but we are interested to
conduct a performance analysis of DDNs on a mobile device
where it can be investigated that how many time slices are
important in order to practically utilize these models in mobile
environment without creating an overhead on device resources.
Further work is required towards more systematic techniques
for the runtime synchronization of multiple DDN models and
to empirically study the scalability of these models. The value
of the probabilities that change over time and their impact on
alternative decisions can also be of interest. Finally, developing
tools to specify the QoC requirements would be certainly very
helpful as current tools support is fairly limited.
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