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Abstract—The most popular Functional Size Measurement 

methods adopt a concept of “functionality” that is based 

mainly on the data involved in functions and data movements. 

Functional size measures are often used as a basis for 

estimating the effort required for software development. 

However, Functional Size Measurement does not take directly 

into consideration the amount of data processing involved in a 

process, even though it is well-known that development effort 

does depend on the amount of data processing code to be 

written. Thus, it is interesting to investigate to what extent the 

most popular functional size measures represent the data 

processing features of requirements and, consequently, the 

amount of data processing code to be written. To this end, we 

consider three applications that provide similar functionality, 

but require different amounts of data processing. These 

applications are then measured via a few Functional Size 

Measurement methods and traditional size measures (such as 

Lines of Code). A comparison of the obtained measures shows 

that differences among the applications are best represented by 

differences in Lines of Code. It is likely that the actual size of 

an application that requires substantial amounts of data 

processing is not fully represented by functional size measures. 

In summary, the paper shows that not taking into account data 

processing dramatically limits the expressiveness of the 

functional size measures. Practitioners that use size measures 

for effort estimation should complement functional size 

measures with measures that quantify data processing, to 

obtain precise effort estimates. 

Keywords- functional size measurement; Function Point 

Analysis; IFPUG Function Points;COSMIC method. 

I.  INTRODUCTION 

Functional Size Measurement (FSM) methods aim at 
quantifying the “functional size” of an application. Such size 
should represent the “amount of functionality” provided to 
the user by a software application. It is quite reasonable to 
expect that the “amount of functionality” is to some extent 
correlated to the amount of data processing performed by the 
application. In this respect, there are some doubts that FSM 
methods properly account for the amount of data processing 
when sizing software applications [1]. 

In fact, the most popular FSM methods adopt a concept 
of “functionality” that is based mainly on the number of 
operations that can be performed by the users via the 
software application and the amount of data managed by the 

application. More precisely, the most popular FSM methods 
take into account 

− the processes, named Elementary Processes (EP) in 
IFPUG and Functional Processes (FPr) in COSMIC; 

− the data that cross the boundary of the application being 
measured or that are used (i.e., read or written) in the 
context of a process. 

In this paper, we consider the most widely known and 
used FSM methods: 

− IFPUG (International Function point User Group) 
Function Points [2][3], which were originally proposed 
in 1979 [4] and are widely known and used today; 

− Mark II Function Points [5][6], which were proposed to 
improve Function Points;  

− COSMIC (Common Software Measurement 
International Consortium) [7], which aims at further 
improving the characteristics of functional size 
measures; 

− Use Case Points [8], a method that was proposed for 
usage with the Objectory process [9] (which was then 
incorporated into UML). 

Quite noticeably, none of the mentioned methods 
satisfactorily considers the amount of data processing 
involved in a process. As a matter of fact, some methods 
propose an adjustment of the size based on the characteristics 
of data processing, but quite imprecisely and ineffectively, as 
discussed in Section VIII, while other methods do not take 
the amount of data processing into account at all. 

The goal of the paper is to provide evidence, based on 
examples, that not considering data processing dramatically 
limits the expressiveness of functional size measures. 

The core of the paper can be described as follows: 

− Three applications are specified. These applications are 
similar with respect to the aims and functionality offered 
to the user, but they are very different in the amount of 
data processing required.  

− The considered applications are modeled and measured 
according to four different functional size measurement 
methods. 

− It is highlighted that the applications have the same 
functional size measures, even though the amount of 
functionality to be coded is dramatically different. 

− When measured via Lines of Code, it is apparent that the 
implementations of the applications have quite different 
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sizes. The reason is that –quite obviously– more data 
processing requires more code. 

It is unlikely that the additional code required for 
additional data processing requires a negligible additional 
amount of development effort. Thus, using only the 
functional size to estimate development effort for 
applications that require a substantial amount of data 
processing may lead to large and dangerous effort 
underestimations. 

Currently, development effort is commonly estimated 
based on the functional size and possibly some other 
environmental factors, but without taking in due 
consideration the amount of data processing required. 
Sometimes this practice is justified by the fact that the 
application to be developed is estimated using productivity 
models derived from the analysis of previous projects in the 
same application domain. There is an underlying assumption 
that applications in the same domain require approximately 
the same amount of data processing. In this paper, we show 
that the contrary is true, by measuring programs that belong 
to the same domain. 

The difficulty to quantitatively represent the amount of 
data processing appears as an intrinsic –though not generally 
recognized– limit of FSM methods. It should be noted that 
this paper does not aim at proposing a method to account for 
data processing in functional size measures. Instead, we aim 
at providing some evidence of the problem, to raise the 
awareness of the limits of FSM methods and solicit research 
efforts towards working out solutions. At the same time, we 
warn practitioners about the risks connected with assuming 
that the amount of data processing is somewhat 
automatically incorporated in traditional functional size 
measures, as such assumption could lead to severely 
underestimating the actual size of the application to be 
developed. 

The paper is structured as follows. Section II reports a 
few basic concepts of functional size measurement. Section 
III illustrates the case studies used in the paper. Section IV 
describes the models and measures of the considered 
applications: the collected measures are then compared in 
Section V. In Section VI, additional examples showing the 
limitations of FSM methods in accounting for data 
processing are given. Section VII discusses the alternatives 
that should be considered for complementing standards 
functional size measures with measures that represent data 
processing. Section VIII accounts for related work. Finally, 
Section IX draws conclusions and briefly sketches future 
work. 

This paper is an extended version of a previous paper [1]. 
Here, we use two additional sizing methods (namely Use 
Case Points and Mark II Function Points): this allows us to 
generalize the presented results. Moreover, we considered an 
additional application in the board games with artificial 
intelligence domain, which confirms the results given in [1], 
thus increasing the reliability of our conclusions. To this end, 
a discussion of different domains has also been added in 
Section VI. 

II. FSM CONCEPTS 

Functional Size Measurement methods aim at providing 
a measure of the size of the functional specifications of a 
given software application. Here, we do not need to explain 
in detail the principles upon which FSM methods are based. 
Instead, for our purposes it is important to consider what is 
actually measured, i.e., the model of software functional 
specifications that is used by FSM methods. 

A. Function Point Software Model 

The model used by Function Point Analysis (FPA) is 
given in Figure 1. Briefly, Logical files are the data 
processed by the application, and transactions are the 
operations available to users. The size measure in Function 
Points is computed as a weighted sum of the number of 
Logical files and Transactions. The weight of logical data 
files is computed based on the Record Elements Types 
(RET: subgroups of data belonging to a data file) and Data 
Element Types (DET: the elementary pieces of data). The 
weight of transactions is computed based on the Logical files 
involved –see the FTR (File Type Referenced) association in 
Figure 1– and the Data Element Types used for I/O. 

SW application functional specifications

Logical file Transaction

Data Element TypeRecord Element Type

FTR

0..*

I/O
1..*

 
Figure 1.  The model of software used in Function Point Analysis. 

It is possible to see that in the FPA model of software, 
data processing is not represented at all. 

B. COSMIC Software Model 

The model used by COSMIC is given in Figure 2.   

SW application functional specifications

Functional Process

Data processing Data movement

Data group

 

Figure 2.  The model of software used by the COSMIC method. 
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The size of the functional specification expressed in 
COSMIC function points (CFP) is the sum of the sizes of 
functional processes; the size of each functional process is 
the number of distinct data movements it involves. A data 
movement concerns exactly one data group. 

Although represented in Figure 2, neither data groups nor 
data processing are directly used in the determination of an 
application’s functional size. In particular, data processing is 
not measured, since the COSMIC method assumes that a 
fixed amount of data processing is associated with every data 
movement; however, this is not the case in the examples 
considered in this paper. 

C. Mark II FP Model 

Symons proposed Mark II Function Points as an 
improvement of Albrecht’s FPA in 1988 [5]. 

The application to be measured is modeled (see Figure 3) 
as a set of “logical transactions,” which are essentially 
equivalent to IFPUG FP transactions and COSMIC 
functional processes. Each logical transaction is 
characterized in terms of the number of input DET, the 
number of output DET, and the number of Data Entity Types 
Referenced. In the Mark II FP model, DET have the same 
meaning as in the IFPUG FP model, while entities replace 
logical files (however, today the meaning associated with 
logical files is the same as that of Symons’s entities). 

The functional size in Mark II FP is the weighted sum, 
over all Logical Transactions, of the Input Data Element 
Types (Ni), the Data Entity Types Referenced (Ne), and the 
Output Data Element Types (No). 

So the Mark II FP size for an application is: 

Size = Wi × ΣNi + We × ΣNe + Wo × ΣNo 

where ‘Σ’ means the sum over all Logical Transactions, and 
the industry average weights are Wi = 0.58, We = 1.66, and 
Wo = 0.26 [6]. 

SW application functional specifications

Logical transaction

Input Data 

Element

Entity

Output Data 
Element

Data Entity 
Type Reference

 

Figure 3.  The model of software used in Mark II FP measurement. 

D. Use Case Points Software Model 

Use Case Points (UCP) were proposed by Karner to 
measure the size of applications specified via use cases [8]. 
Thus, the model of software considered for UCP 
measurement is centered on the concept of use case [9], as 
shown in Figure 4.  

The UCP measurement process involves two phases. In 
the first one, the given application is measured in Unadjusted 
Use Case Points (UUCP). In the second one, the size 
expressed in UUCP can be “corrected” with the Technical 
Complexity Factor (TCF), which represents how difficult to 
construct the program is, and the Environmental Factor (EF), 
which represents how efficient our project is. 

To compute size in UUCP, the considered factors are the 
application’s users, the use cases, the transactions carried out 
in each use case, and the ”analysis objects” (i.e., (interface, 
control, and entity objects, as defined in Objectory process 
[9]) used to realize the use case. 

 

SW application functional specifications

Use case

Transaction

ActorAnalysis object

 
Figure 4.  The model of software used in Use Case Points measurement. 

The functional size in UUCP is the weighted sum of the 
Actors and the Use Cases. Both use cases and actors are 
weighted according to their “complexity.” The complexity of 
actors is determined by nature of the actor (human or 
external system) and the type of interaction (e.g., via a GUI, 
or a command line interface). The complexity of use cases is 
determined by the number of involved transactions and the 
number of analysis objects needed to implement the use 
case.  

The size in Use Case Points is calculated as follows. 

TCF = 0.6 + 0.01  × Σ FCi × Wi 

EF = 1.4 - 0.03  × Σ FEi × Wi 

UCP = UUCP × TCF × EF 

Where FCi are 13 factors contributing to complexity and 
FEi are 8 factors contributing to efficiency. Wi are the 
weights (integer value in the [0,5] interval) assigned to 
factors. 

The details of the measurement can be found in [8]. 

III. CASE STUDIES 

In this section, we describe the functional specifications 
of the software applications that will be used to test the 
functional sizing ability of FPA and COSMIC. 

The chosen applications are programs for playing board 
games against the computer. They are similar as for the 
functionality they provide, but they require different amounts 
of data processing. 
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The specifications that apply to both applications are as 
follows. 

− The program lets a human player play against the 
computer. 

− The program features a graphical interface in which the 
game board is represented. 

− The player makes his/her moves by clicking on the 
board. Illegal moves are detected and have no effect. As 
soon as the human player has made a move, the 
computer determines its move and shows it on the 
board. 

− When the game ends, the result is shown, and the player 
is asked if he/she wants to play another game. 

The use case diagram of the considered applications is 
shown in Figure 5. From the point of view of the player, two 
main operations are available: to initiate a new game and to 
perform a move. In the latter case, the program will also 
compute its move. In both cases, the board is updated and 
displayed. A minor functionality of the program allows the 
player to show a few pieces of information concerning the 
application and its authors. 

 
System

Player

New game

Display board

Move
Computer move

Show credits

<<include>>

<<include>>

<<include>>

 
Figure 5.  Use case diagram of the considered applications. 

It is worth stressing that the use case diagram in Figure 5 
describes all the considered applications, which differ from 
each other only for the implemented game, hence for the 
logic employed to compute the moves. 

A. A Software Application to Play Tic-tac-toe 

Tic-tac-toe is a very simple, universally known game. It 
is played on a 3×3 board, as shown in Figure 6. 

Each player in turn puts his/her token in a free cell. The 
first player to place three tokens in a line (horizontally, 
vertically, or diagonally) wins. When the board is filled and 
no three-token line exists, the match is tie.  

Playing Tic-tac-toe is very simple. In fact, to play 
optimally, a software program has just to evaluate the 
applicability of a short sequence of rules: the first applicable 
rule determines the move.  

   
Figure 6.  Tic Tac Toe playing board. 

There are a few possible rule sequences: the one 
implemented in the considered application is the following: 
1) If there is a line (row, column, or diagonal) such that 

two cells contain your token and the third cell X is 
empty, put your token in the free cell X, to win. 

2) If there is a line in which your opponent has two tokens 
and the third cell X is free, put your token in the free cell 
X, so to prevent your opponent from winning at next 
turn. 

3) If there is a move that lets you gain a winning position, 
make it. 

4) If there is any move such that the adversary will not be 
able to gain a winning position at next turn, make such 
move. If possible, put the token in central cell. 

5) If there is any cell free, put your token there. 
A position is a winning one for a player when there are 

two lines each occupied by two tokens of the player, while 
the third cell is free. 

The code that implements the playing logic described 
above is very simple and very small: we can expect that a 
few tens of lines of code are sufficient to code the game 
logic. 

B. A Software Application to Play “five in a row” 

Five in a row (aka Gomoku) can be seen as a 
generalization of Tic-tac-toe. In fact, it is played on a larger 
board (typically 19×19, as in Figure 7) and the aim of the 
game is to put five tokens of a player in a row (horizontally, 
vertically, or diagonally). 

 

 
Figure 7.  Gomoku playing board. 
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The functional specifications of Gomoku are exactly the 
same as the specifications of Tic-tac-toe, except that the size 
of the board is larger and the number of tokens to put in a 
row is 5 instead of 3. 

The combinations of tokens and free cells that can occur 
on a Gomoku board are many more than in a Tic-tac-toe 
game. Accordingly, a winning strategy is much more 
complex, as it involves considering a bigger graph of 
possibilities. 

As a matter of fact, Gomoku has been a widely 
researched artificial intelligence research domain, and there 
are Gomoku professional players and tournaments. 

Accordingly, we can safely state that Gomoku is a much 
more complex game than Tic-tac-toe and requires a large 
amount of processing, so that the machine can play at a level 
that is comparable with that of a human player. 

On the contrary, Tic-tac-toe is a very simple game: you 
do not need to be particularly smart to master it and always 
play perfectly. 

C. A Software Application to Play “Reversi” 

Reversi (aka Othello) is played on an 8×8 board. The 
initial configuration is shown in Figure 8 a). Suppose player 
A has black tokens. At his/her turn, player A has to put its 
token in a position so as to form a horizontal, vertical, or 
diagonal line of adjacent tokens that has black tokens at the 
extremes and includes only white tokens (at least one). As an 
effect of the move, the white tokens between the black 
extremes become black. For instance, in the situation shown 
in Figure 8 a), player A could place his/her black token 
below the rightmost white token: such token is between two 
black tokens and becomes black, as shown in Figure 8 b). 
The game is named “Reversi” because usually the tokens are 
black on one side and white on the opposite one, so to 
change the color of a token you reverse it. 

    

  
a) b) 

Figure 8.  Reversi playing board. 

The strategy required to win a Reversi game is definitely 
more complex than the strategy required to play Tic-tac-toe. 
However, it is simpler than the strategy required for playing 
Gomoku, as the move search space is smaller. 

IV. APPLICATION SIZING 

A. Measurement of the Tic-tac-toe Application 

Let us apply the FSM methods described in Section II to 
measure the Tic-tac-toe specifications given in Section III.A 
above. 

1) Measuring Tic-tac-toe with IFPUG Function Points. 
The software model to be used includes just a Logical 

data file: the board, which is a matrix of cells, each having 
one of three possible values (circle, cross, free). So, it is easy 
to see that there is only one Logical data file (the board), 
which is a simple Internal Logical File (ILF), contributing 7 
FP. 

The software model to be used involves the following 
elementary processes: 

− Start a new game 

− Make a move 

− Show credits. 
Start a new game is a simple External Input (EI), 

contributing 3 FP. Make a move is a simple external output, 
contributing 4 FP. One could wonder whether this operation 
should be considered an input (because the move involves 
inputting a position) or an output (because of the 
computation and visualization of the move by the computer). 
We consider that the latter is the main purpose of this 
transaction, which is thus an external output. Show credits is 
a simple External Query (EQ), contributing 3 FP. 

In summary, the FPA size of the Tic-tac-toe application 
is 17 FP. 

2) Measuring Tic-tac-toe with the COSMIC Method  
The COSMIC functional processes of the application are 

the same as the FPA elementary processes. When measuring 
the application using the COSMIC method, we have to 
consider the data movements associated with each functional 
process: 

− Start a new game involves clearing the board and 
possibly updating it, if the computer is the first to move 
(a Write) and showing it (a Read and an Exit). 
Therefore, this functional process contributes 3 CFP. 

− Make a move involves entering a move (an Entry), 
updating the board with the human player move (a 
Write), reading it (a Read), and then updating it again 
with the computer move and showing it (an Exit). In 
addition, if a move concludes the game, the result is 
shown (an Exit). Therefore, this functional process 
contributes 5 CFP. 

− Show credits involves the request to show credits (an 
Entry), reading the credits (a Read) and outputting them 
(an Exit). Thus, this functional process contributes 3 
CFP. 

In summary, the COSMIC size of the Tic-tac-toe 
application is 11 CFP. 

3) Measuring Tic-tac-toe with Use Case Points  
The Tic-tac-toe application has one user, who interacts 

with the system through a graphical user interface. 
According to UCP rules, such user is a complex actor, with 
weight 3. 
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The Tic-tac-toe application has three use cases, as shown 
in Figure 5. All of these use cases have 3 or fewer 
transactions and can be realized with less than 5 analysis 
objects; hence they are simple and their weight is 5. 

So, the size of Tic-tac-toe is 3+5+5+5=18 UUCP. 
TCF and EF involve several factors. However, only the 

“Complex internal processing” factor of TCF is relevant for 
our study, so we assume that all the factors considered in the 
TCF and EF have value 3, i.e., average relevance. As a 

consequence TCF×EF is 0.99 + 0.01 × CIP, where CIP is the 
value of the Complex Internal Processing. 

The Complex Internal Processing factor is supposed to 
represent the complexity of the processing that is carried out 
in the application. It is rated on a scale 0, 1, 2, 3, 4, and 5. 
Unfortunately, in the original definition, Karner did not 
provide criteria to rate Complex internal processing; 
therefore, different persons could rate the same application 
differently. Tic-tac-toe surely is a very simple application, 
but it is very difficult to say if its Complex Internal 
Processing factor should be rated 0 or 1. So, we can conclude 

that the size of Tic-tac-toe is 18 × (0.99 + 0.01 CIP), that is, 
either 17.82 or 18, depending on the value assigned to CIP. 

4) Measuring Tic-tac-toe with Mark II Function Points  
To size the Tic-tac-toe application using Mark II FP, it is 

first necessary to identify the involved entities and Logical 
transactions. This is very easy, since we have only two 
entities (the board and the credits) while the logical 
transactions correspond to IFPUG FP transactions, COSMIC 
functional processes and UCP Use Cases (i.e., New game, 
Move, Show credits). 

The size is computed according to the number of input 
data, entities referenced and output data as shown in TABLE 
I. While New game and Show credits have just one input 
(the event that triggers the operation), Move has two inputs: 
the row and column where the player puts his/her token. 

New game and Show credits also have just one output 
(the board and the credits’ text, respectively); Move outputs 
the board and the users’ tokens, or a diagnostic message 
(when the player clicks on an already occupied cell). 

New game and Move access the board entity, Show 
credits accesses the credits entity. 

TABLE I.  MEASURES OF TIC-TAC-TOE APPLICATION IN MARK II FP 

Logical transaction Ni Ne No MKII FP 

New game 1 1 1 2.5 

Move 2 1 3 3.6 

Show credits 1 1 1 2.5 

Total    8.60 

In conclusion, the application to play Tic-tac-toe has size 
8.60 MKII FP. 

5) Tic-tac-toe Code Measures 
Since we are also interested in indications concerning the 

amount of computation performed by the application, we 
selected an open source implementation of Tic-tac-toe and 
measured it. 

To evaluate the “physical” size of the Tic-tac-toe 
application, we looked for an open source application that 
implements the specifications described above. Two such 
applications are the programs available from [10] and [11]. 
To make the considered program functionally equivalent to 
the other applications, we performed a merge of the code 
from [10] and [11]. The main measures that characterize the 
obtained code are given in TABLE II.  

TABLE II.  MEASURES OF THE TIC-TAC-TOE APPLICATION CODE 

Measures 
Tic-tac-toe 

Total AI part 

LoC 286 146 

Number of Java statements 187 101 

McCabe (method mean) 3.6 4.5 

Num. classes 2 1 

Num. methods 26 13 

 
In TABLE I (and in TABLE II), column “AI part” 

indicates the measures concerning exclusively the part of the 
code that contains the determination of the computer move. 

We reported both the number of lines of code and the 
number of actual Java statements: the latter is a more precise 
indication of the amount of source code, since it does not 
consider blank lines, comments and lines containing only 
syntactic elements, like parentheses. We also reported the 
mean value of McCabe complexity of methods. 

B. Measurement of  Gomoku Application 

Let us measure the Gomoku specifications given in 
Section III.B above 

1) Measuring Gomoku with IFPUG Function Points 

and COSMIC 
The functional size measures of the Gomoku application 

are exactly the same as the measures of the Tic-tac-toe 
application. In fact, the specifications of the two applications 
are equal, except for the board size and winning row size, 
which do not affect the measurement, because both IFPUG 
FPA and COSMIC consider data types, not the value or 
number of instances. 

2) Measuring Gomoku with Use Case Points  
Gomoku has the same actor and use cases as Tic-tac-toe. 

Therefore, the size of Gomoku measured in UUCP is equal 
to Tic-tac-toe’s.  

As for Tic-tac-toe, we assume that the factors that 
determine TCF and EF are all average, except for the CIP; 

therefore, TCF×EF is 0.99 + 0.01 × CIP. 
Gomoku is definitely a much more complex game than 

Tic-tac-toe; therefore, the Gomoku playing program has to 
perform quite complex processing to achieve an acceptable 
playing level. We can therefore assign the Complex Internal 
Processing a high rating, even though it is not clear whether 
we should set CIP=5 or CIP=4. In conclusion, the size of 
Gomoku is 18.54 or 18.72, depending on the value of CIP. 

3) Measuring Gomoku with Mark II FP  
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The Gomoku application is characterized by the same 
actors, use cases, transactions and entities as the Tic-tac-toe 
application. Therefore, they have the same size measure 
expressed in Mark II FP. 

4) Gomoku Code Measures 
As for Tic-tac-toe, we selected an open source 

implementation of Gomoku and measured it. More precisely, 
we looked for a program capable of sophisticated 
“reasoning” that lets the program play at the level of a fairly 
good human player. One such application is the Gomoku 
Java program available from [12]. 

The main measures that characterize the code are given 
in TABLE III.  

TABLE III.  MEASURES OF THE GOMOKU APPLICATION CODE 

Measures 
Gomoku [12]  

Total AI part 

LoC 859 373 

Number of Java statements 419 212 

McCabe (method mean) 2.6 5.4 

Num. classes 17 3 

Num. methods 83 25 

 
Measures in TABLE III were derived using the same 

tools and have the same meaning as the measures in TABLE 
II.  

C. Measurement of Reversi Application 

1) Measuring Reversi with IFPUG Function Points and 

COSMIC 
The functional size measures of the Reversi application 

are exactly the same as the measures of the Tic-tac-toe and 
Gomoku applications. In fact, the specifications of the three 
applications are characterized by the same basic functional 
components. 

2) Measuring Reversi with Use Case Points  
Reversi has the same actor and use cases as Tic-tac-toe 

and Gomoku. Therefore, the size of Reversi measured in 
UUCP is equal to Tic-tac-toe’s and Gomoku’s.  

As for the other applications, we assume that the factors 
that determine TCF and EF are all average, except for the 

CIP; therefore, TCF×EF is 0.99 + 0.01 × CIP. 
Reversi is definitely more complex than Tic-tac-toe, but 

less complex than Gomoku. We can therefore assign the 
Complex Internal Processing a high rating, but not as high as 
Gomoku’s. So, it is probably reasonable to set CIP=4 or 
CIP=3. In conclusion, the size of Reversi is 18.36 or 18.54, 
depending on the value of CIP. 

Note that the value assigned to CIP is largely subjective: 
this is due to the fact that the definition of UCP does not 
provide precise guidelines for determining the values of TCF 
and EF factors.  

3) Measuring Reversi with Mark II Function Points  
When measuring the Reversi applications with Mark II 

FP, the same considerations reported for Tic-tac-toe and 

Gomoku apply. The only difference is that when the New 
game logical transaction is performed, the initial situation of 
the board is not empty, therefore we have 2 additional output 
DET associated to New game. This is shown in TABLE IV.  

TABLE IV.  MEASURES OF THE REVERSI APPLICATION IN MARK II FP 

Logical transaction Ni Ne No MKII FP 

New game 1 1 3 3.02 

Move 2 1 3 3.6 

Show credits 1 1 1 2.5 

Total    9.12 

In conclusion, the application to play Reversi has size 
9.12 MKII FP. 

4) Reversi Code Measures 
Like with the other applications, we selected an open 

source Java implementation of Reversi [13] and measured it. 
More precisely, the implementation of Reversi that we 

found [13] was richer than the implementations of Tic-tac-
toe and Gomoku in functionality (e.g., it features a help 
function, the possibility of choosing the playing level and the 
dashboard color, etc.). To make the Reversi application 
comparable to the others, we simplified the implementation, 
deleting all the additional functions and the corresponding 
code. 

The main measures that characterize the resulting code 
are given in TABLE V.  

TABLE V.  MEASURES OF THE REVERSI APPLICATION CODE 

Measures 
Reversi [13] 

Total AI part 

LoC 419 218 

Number of Java statements 290 180 

McCabe (method mean) 3.1 4.4 

Num. classes 6 4 

Num. methods 36 17 

 
Measures in TABLE V were derived using the same 

tools and have the same meaning as the measures in TABLE 
II and TABLE III.  

V. COMPARISON OF MEASURES 

The measures reported in Section IV and summarized in 
TABLE VI show that a few applications may have the same 
functional size, but very different code size: for instance, the 
Gomoku application is twice as big as the Tic-tac-toe 
application. Considering the nature of these applications, the 
difference in code is largely explained by the different 
amount of processing required. In the case of Tic-tac-toe, the 
number of possible moves is very small, as is the number of 
different possible configurations that can be achieved by 
means of a move: hence, every move computation has to 
explore a very small space. The contrary is true for the 
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Gomoku application. The consequence is that Gomoku 
requires an amount of code devoted to move computation 
that is more than twice as much as the code required by Tic-
tac-toe. Reversi requires more data processing than Tic-tac-
toe and less processing than Gomoku; accordingly, its 
implementation is bigger than Tic-tac-toe’s and smaller than 
Gomoku’s. 

The collected measures are summarized in TABLE VI. 
Both measures concerning the complete application (column 
Total) and measures concerning the artificial intelligence 
part of the application (column AI) are given. It should be 
noted that the functional size makes sense only concerning 
the complete application, since it is not allowed in FSM 
methods to measure only a portion of the application (this 
would actually be possible with the COSMIC method, but 
the resulting measure would not be comparable to those of 
the complete applications, though). 

TABLE VI.  SUMMARY OF THE APPLICATIONS’ MEASURES. 

 
Tic-tac-toe Reversi Gomoku 

Total AI Total AI Total AI 

Data proc. Average 
Very 

low 
Average 

Medium

-high 
Average High 

Java statem. 187 101 290 180 419 212 

McCabe 3.6 4.5 3.1 4.4 2.6 5.4 

Classes 2 1 6 4 17 3 

Methods 26 13 36 17 83 25 

IFPUG FP 17  17  17  

CFP 11  11  11  

UUCP 18  18  18  

UCP 17.8–18  18.4–18.5  18.5–18.7  

Mark II  FP 8.60  9.12  8.60  

 
These observations suggest a few important 

considerations, which are reported below. 

A. Functional Size and Data Processing 

The definitions of IFPUG FP, COSMIC FP, Mark II FP, 
and UUCP do not properly take into account the amount of 
processing required by software functional specifications. If 
we plot the three considered applications in a Cartesian 
plane, where the axes represent the amount of required data 
processing and the functional size (expressed via any 
functional size measure), we get the situation described in 
Figure 9 (note that the y axis is not in scale). It appears that 
there is no relationship that links the functional size and the 
amount of processing required. 

Functional Size

Tic-tac-toe

Reversi

Gomoku

Data

processing

 
Figure 9.  Plot of data processing vs. functional size for the considered 

applications. 

For the sake of precision, we must note that Mark II FP 
and UUCP measures are not equal for all the applications, 
but are only slightly different, while the differences in terms 
of data processing are fairly large. 

If we plot the three considered applications in a Cartesian 
plane, where the axes represent the amount of required data 
processing and the physical size (expressed in LoC, or 
number of statement, or in number of methods, etc.), we get 
the situation described in Figure 9 (note that axis scales are 
just indicative). It is possible to see that there is a clear 
relationship between the physical size and the amount of 
processing required. 

Data

processing

Physical Size

Tic-tac-toe

Reversi

Gomoku

 
Figure 10.  Plot of data processing vs. physical size for the considered 

applications. 

If we assume –as is generally accepted– that the effort 
required to implement a software application is related to the 
number of Lines of Code to be written, the possibility of 
having widely different sizes in LoC for applications that 
have the same functional size implies that functional size is 
not a good enough predictor of development effort. 

B. Mark II FP Measures 

In the considered cases, Mark II FP size measures 
indicate that Reversi is marginally bigger than the other 
applications. This is misleading when considering that the 
Gomoku application is actually much bigger than Reversi. In 
addition, the difference with respect to Tic-tac-toe’s size 
does not give a proper idea of the actual difference: the 
implementation of Reversi is 55% bigger than Tic-tac-toe’s, 
while the functional size in Mark II FP is only 6% bigger. 
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C. Effort Required for Non-coding Activities 

The observation reported in Section V.A above does not 
apply only to the coding phase. In fact, the difference in the 
number of classes and methods (shown in TABLE VI) 
suggests that also the effort required by design and testing 
activities is better estimated based on measures that represent 
the size of the code structure –like the number of classes– 
rather than the functional size. 

D. The Explanation Power of TCF 

In the analyzed cases, the correction to UUCP due to the 
TCF appears largely insufficient. In fact, assigning to CIP 
the biggest possible value (i.e., 5) for Gomoku and the 
smallest (i.e., 0) for Tic-tac-toe causes the size of Gomoku 
(18.72 UCP) to be only 5% bigger than the size of Tic-tac-
toe (17.82 UCP). Such difference does not appear to be able 
to predict the difference in terms of Java statements to be 
written, as the AI code of Gomoku is twice as big as the AI 
code of Tic-tac-toe. 

We should note that in this paper we considered 
Unadjusted Function Points, as defined in the ISO standard 
[3]. However, the IFPUG also defines “adjusted” Function 
Points, which are obtained by applying to the unadjusted 
measure a value adjustment factor (VAF) that is based on a 
few characteristics of the application being measured, 
including “Complex Processing” [2]. Actually, the definition 
of UCP’s TCF and EF were inspired by Function Points’ 
VAF. The considerations reported above concerning the 
representativeness of TCF apply to VAF as well. The 
“Complex Processing” component of VAF affects the size 
by less than 8%: too little to explain the observed differences 
in the considered applications’ code size. 

E. The Explanation Power of McCabe Complexity 

As a final remark, we can observe that mean McCabe 
complexity is fairly similar in all the considered applications. 
The mean McCabe complexity of the AI part of the 
applications increases with the amount of data processing 
required by the games, but the differences are very small: 
from 4.5 of Tic-tac-toe to 5.4 of Gomoku. This means that 
applications dealing with more complex games (like 
Gomoku) do not need code that is much more complex (in 
McCabe’s sense), but just more code. In other words, it is the 
difference in the amount of data processing, not in the 
complexity of the processing that is relevant, and that 
existing functional size measures fail to represent. 

VI. ADDITIONAL EVIDENCE 

The problems described above are at the level of 
elementary processes (alias transactions, alias functional 
processes). Namely, the problem with the considered board 
games is located in the Move process, which has the same 
functional size in all applications, but requires quite different 
data processing in the three considered applications. 

Readers might wonder whether the described problem is 
due to the nature of the considered applications, which 
involve the usage of artificial intelligence. Actually, the same 
type of problem can be found in different application 
domains. Let us consider the measurement of source code. 

Several processes that are frequently found in measurement 
programs share the same set of properties, namely: 

− Inputs: the request to measure and the name of the 
source code file to be measured. 

− Output: the value of the measure. 

− Data read: the code file. 
Examples of such processes are the measurement of LoC, 

the measurement of Non commenting LoC (i.e., LoC not 
including comments), the measurement of McCabe 
complexity and the measurement of the coupling between 
objects (CBO) [14]. 

It is easy to see that these processes have the same 
functional size, whatever measure they compute. More 
precisely, they all have the same functional size if IFPUG 
FP, COMSIC FP or Mark II FP are used. If UCP are used, 
the sizes could differ of up to 5%, because of differences in 
the “Complex Internal Processing” factor. 

However, different measures require different amounts of 
data processing: 

− Total LoC: the processing is extremely simple, as it just 
involves counting the number of ‘new line’ characters. 

− Non commenting: the required processing is more 
complex than in the former case, but still rather simple. 
In fact it is sufficient to recognize the beginning and end 
of comments and exclude lines that are entirely included 
in comments. 

− McCabe complexity: the processing is more complex 
than in the previous case, since syntax analysis is 
required to recognize functions (or procedures or 
methods, depending on the programming language) and 
decision statements (if, while, for, etc.). The 
computation of McCabe complexity is usually 
performed by first parsing the code to obtain an abstract 
syntax tree, and then visiting the tree to count the 
relevant syntactic elements (if, while, etc.). 

− CBO: the processing is still more complex. In fact, 
semantic analysis of code is also required, in addition to 
syntax analysis. For instance, when a statement like 
a = b.new_class(x,y,z); is found in class C, it is 

necessary to understand the type (class) returned by 
method new_class, to properly count the number of 
dependencies of class C. 

So, a program that measures McCabe complexity and 
CBO has the same functional size as a program that counts 
total LoC and non-comment LoC; however, it is quite clear 
that implementing the former program is much more 
demanding in terms of development effort, since a greater 
amount of data processing has to be implemented. 

Similar examples in different domains are easily found. 
For instance, in the statistical domain, a few processes have 
to show a series of data concerning a time period, via 
different representations. All the processes have the same 
inputs, read similar data, and output similar information 
(although using different graphical styles): accordingly, all 
the processes have the same functional size, since graphical 
styles are irrelevant. However, some of these process could 
require a very small amount of data processing. For instance, 
the process that shows data via a bar chart (Figure 11) 
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consists of a simple loop: at every iteration a value is read 
and a bar of length proportional to the value is drawn. On the 
contrary, a process that shows the data via a “smooth” 
interpolation line, e.g., a lowess (locally weighted scatterplot 
smoothing) curve [15] (Figure 12) has to perform a definitely 
greater amount of data processing, since the computation of 
weighted linear least squares regression is required. 

 

 
Figure 11.  Output of a transaction that represents a time series via an 

histogram. 

 
Figure 12.  Output of a transaction that represents a time series via a 

LOWESS curve. 

Summarizing, there are many examples of transactions (alias 
elementary processes, alias functional processes, etc.) whose 
functional size measure does not appear effective in 
representing the functionality delivered to the user, since the 
–quite variable– amount of data processing is not accounted 
for.  

VII. DISCUSSION: WHAT SOLUTIONS ARE POSSIBLE? 

The usefulness of the evidence given in this paper stems 
from a few well-known facts: 

− We need to estimate, during the early phases of a 
project, the overall software development effort. 

− Development effort has been widely reported to be 
directly related to the size in LoC of software. 
Unfortunately, the size in LoC is not available in the 
early phases of projects, when estimates are most 
needed. 

− Therefore, we need FSM methods, i.e., we need 
measures of functional specifications, because 
specifications are available in the early phases of 
projects. 

− In this paper, we provided some evidence that current 
FSM methods appear limited in representing the amount 
of data processing required by functional specifications. 
Therefore, we need to somehow enhance FSM methods 
to remove such limitation.  

So, we are facing the following research question: how 
can we improve FSM methods so that the delivered 
functional size measures account for the amount of data 
processing described or implied by the functional 
specifications? 

This is an open research question, which calls for a 
substantial amount of further studies. In the following 
sections, we report a few observations, ideas, and evaluations 
that could be useful considering when tackling the problem. 

A.  Software Models 

FSM methods –like any measurement method– are 
applied to models of the object to be measured. Hence, a 
rather straightforward consideration is that data processing 
must be represented in the model that describes the software 
application to be measured. 

We can observe that the conceptual model of software 
proposed in the COSMIC method includes data processing, 
but no criteria or procedures for measuring data processing 
are given in the context of the COSMIC method. 

In COSMIC, data processing is a sub-process of a 
functional process. Therefore, functional processes should be 
described in a manner that makes it possible to identify and 
measure the extent of data processing that occurs within a 
functional process. 

Given the similarity of COSMIC functional processes 
and FPA elementary processes (or transactions) any 
technique used to enhance the expressivity of COSMIC 
models as far as data processing is concerned should be 
readily applicable to FPA models as well. 
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B. Software Specifications 

A question that should be considered is if the information 
required for identifying and measuring data processing is 
always available from the software specifications that are 
derived from user requirements.  

FSM methods use models of functional specifications: if 
functional specifications do not include information on data 
processing, neither do their models, and FSM methods will 
not be able to account for data processing. 

So, another open question is the following: is it necessary 
to go beyond user requirements related specifications to be 
able to represent data processing? In other words: should 
elements of design be anticipated, to get better measures of 
the amount of data processing to be implemented? 

C. Qualitative Knowledge 

Current FSM methods are inherently quantitative. Even 
though some measurement activities –like deciding if two 
sets of data should be two RET of a unique logic file or they 
should belong to separate logic files– involve some 
subjectivity, they are always meant to provide measures (the 
number of ILF, RET, etc.) at the ratio level of measurement. 

One could wonder if the use of more qualitative 
knowledge, derived through inherently subjective 
evaluations and expressed via ordinal scales, would be more 
suitable for expressing the relevant information concerning 
data processing. 

For instance, after talking with stakeholders, an analyst 
could easily classify the functional process “Make a move” 
of the Tic-tac-toe application as very simple, while the same 
process of the Gomoku application could be classified as 
very complex. 

D. Towards a Measure of Data Processing 

As mentioned above, proposing a solution to the problem 
outlined above is very difficult. Here, we outline a few 
directions to be considered when addressing the problem. 

A first consideration concerns the level of description of 
data processing. At a high level, the “variability” of the 
processes in terms of number of different cases to be 
considered could easily determine the amount of data 
processing required. Consider for instance a process that 
starts by identifying users: if the specifications indicate that 
the user can be identified in three different ways (e.g., by 
name, by social security number, and by email address) it is 
likely that it will have to process three times as much data as 
a process that identifies users in a single way. 

Another observation concerns how to differentiate 
functionalities. A possibility is to account for the internal 
states a function has to deal with. In the case of tic-tac-toe, 
the number of states in which the game can be is quite small; 
on the contrary, the states of a Gomoku game are very 
numerous. Accordingly, the amount of computation could be 
proportional to the number of states, since the function has to 
properly deal with all states. However, the quantification of 
data processing could be further complicated by the presence 
of equivalent states, i.e., sets of states that are managed in the 
same way, so that having N or N+1 states in such sets would 
not affect the amount of processing required. For instance, a 

date increase function has to account for months having 28 
(or 29), 30, or 31 days: the fact that there are 7 months 
having 31 days and just one having 28 days is irrelevant. In 
complex cases, identifying the relevant states could be very 
difficult; for instance, in Gomoku several token patterns can 
be identified, and each pattern calls for a specific strategy. 
So, the interesting states are the token patterns, but 
imagining in advance all the possible patterns is quite hard. 
A qualitative indication concerning the number of states 
would probably be more appropriate, in this case. 

VIII. RELATED WORK 

Although several FSM methods (e.g., Mark II FP, 
NESMA and FiSMA) have been proposed as extensions or 
replacements of Function Point Analysis, very little attention 
has been given to the measurement of data processing. 

A noticeable exception is the proposal of Feature Points 
by Capers Jones [16]. In this functional size measure, 
algorithms were added to the set of FPA basic functional 
components (ILF, EIF, EI, EO and EQ), and each component 
type was assigned a unique value, i.e., the notion of 
complexity was removed. The method was soon abandoned, 
mainly due to the difficulty of identifying algorithms, which 
are typically not documented in functional specifications. 

Function Point Analysis and other methods –like Use 
Case Points [8]– introduce a mechanism for “adjusting” the 
size measure to take into account additional complexity 
factors that are likely to increase the effort required for 
implementation. In fact, among FPA value adjustment 
factors (VAF) we find “Complex Internal Processing,” 
which represents to what degree the application includes 
extensive logical or mathematical processing. This 
mechanism is similar to what we need, but has a few 
shortcomings, including: 

− In FPA the considered VAF’s value increases the 
application size by 4% to 8%: at least one order of 
magnitude less than needed in the Tic-tac-toe vs. 
Gomoku case. 

− The VAF applies to the whole application, so that it is 
not possible to distinguish simple and complex 
processes. 

Noticeably, only the definition of unadjusted Function 
Points was standardized [3]. 

The Path measure [17][18] represents the complexity of 
processes in terms of the number of execution paths that are 
required for each process. Although this measure proved 
fairly effective in improving effort estimation based on 
functional size measures, it is not applicable in cases like 
those considered in this paper, since the alternative courses 
of the specified processes are not known.  

IX. CONCLUSIONS 

In this paper, we have shown by means of examples that 
FSM methods fail to represent the amount of data processing 
required by software functional specifications. 

One could wonder how general are the results reported in 
the paper. As for this issue, we showed in Section VI that the 
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limits of FSM methods discussed in the paper apply to 
several application domains. 

The work reported in the paper indicates that we need a 
measure that can complement traditional FSM methods to 
represent the amount of data processing that is needed to 
provide the required functionality.  

We are interested in representing and quantifying the 
amount of data processing not because of an abstract interest 
in the definition of functional size measures, but because –as 
shown in the paper– data processing is logically related to 
code size, which in its turn is linked to the amount of 
development effort required to build a software application. 

How to measure the amount of data processing required 
by the specifications of a software application is an open 
research question of great practical interest that should 
receive much more attention than it currently does. 
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