
A Feedback-Controlled Adaptive Middleware for Near-Time Bulk Data Processing

Martin Swientek
Paul Dowland

School of Computing and Mathematics
Plymouth University

Plymouth, UK
e-mail: {martin.swientek, p.dowland}@plymouth.ac.uk

Bernhard Humm
Udo Bleimann

Department of Computer Science
University of Applied Sciences Darmstadt

Darmstadt, Germany
e-mail: {bernhard.humm, udo.bleimann}@h-da.de

Abstract—The processing type is usually a fixed property of
an enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system. This
choice depends on the non-functional requirements of the system.
These requirements are not fixed and can change over time.
In this article, the concept of a middleware is introduced that
adapts its processing type fluently between batch processing
and single-event processing using a feedback-control loop. By
adjusting the data granularity at runtime, the system is able
to minimize the end-to-end latency for different load scenarios.
The proposed middleware concept has been implemented with
a research prototype and has been evaluated. The results of the
evaluation show that the concept is viable and is able to optimize
the end-to-end latency of a system for bulk data processing.

Keywords–adaptive middleware; message aggregation; latency;
throughput.

I. INTRODUCTION

This article extends previous work in [1]. Enterprise Sys-
tems like customer-billing systems or financial transaction
systems are required to process large volumes of data in a
fixed period of time. For example, a billing system for a large
telecommunication provider has to process more than 1 million
bills per day. Those systems are increasingly required to also
provide near-time processing of data to support new service
offerings.

Traditionally, enterprise systems for bulk data processing
are implemented as batch processing systems [2]. Batch pro-
cessing delivers high throughput but cannot provide near-time
processing of data, that is, the end-to-end latency of such a
system is high. End-to-end latency refers to the period of time
that it takes for a business process, implemented by multiple
subsystems, to process a single business event. For example,
consider the following billing system of a telecommunications
provider:

• Customers are billed once per month
• Customers are partitioned in 30 billing groups
• The billing system processes 1 billing group per day,

running 24h under full load.

In this case, the mean time for a call event to be billed by
the billing system is 1/2 month. That is, the mean end-to-end
latency of this system is 1/2 month.

A. An Example: Billing Systems for Telecommunications Car-
riers

An example of a system for bulk data processing is a billing
system of a telecommunications carrier. A billing system is
a distributed system consisting of several sub components
that process the different billing sub processes like mediation,
rating, billing and presentment (see Figure 1).

The performance requirements of such a billing system are
high. It has to process more than 1 million records per hour and
the whole batch run needs to be finished in a limited timeframe
to comply with service level agreements with the print service
provider. Since delayed invoicing causes direct loss of cash, it
has to be ensured that the bill arrives at the customer on time.

Mediation Rating Billing Presentment

Figure 1. Billing process

B. Near-Time Processing of Bulk Data

A new requirement for systems for bulk data processing is
near-time processing. Near-time processing aims to reduce the
end-to-end latency of a business process, that is, the time that
is spent between the occurrence of an event and the end of its
processing. In case of a billing system, it is the time between
the user making a call and the complete processing of this call
including mediation, rating, billing and presentment.

The need for near-time charging and billing for telecom-
munications carriers is induced by market forces, such as
the increased advent of mobile data usage and real-time data
services [3]. Carriers want to offer new products and services
that require real-time or near-time charging and billing. Cus-
tomers want more transparency, for example, to set their own
limits and alerts for their data usage, which is currently only
possible for pre-paid accounts. Currently, a common approach
for carriers is to operate different platforms for real-time billing
of pre-paid accounts and traditional batch-oriented billing for
post-paid accounts. To reduce costs, carriers aim to converge
these different platforms.

A lower end-to-end latency can be achieved by using
single-event processing, for example, by utilizing a message-
oriented middleware for the integration of the services that

11

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



form the enterprise system. While this approach is able to
deliver near-time processing, it is hardly capable for bulk data
processing due to the additional communication overhead for
each processed message. Therefore, message-based processing
is usually not considered for building a system for bulk data
processing requiring high throughput.

The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system.
This choice depends on the non-functional requirements of
the system. A system is therefore either optimized for low
latency or high maximum throughput. These requirements are
not fixed and can change during the lifespan of a system, either
anticipated or not anticipated.

Additionally, enterprise systems often need to handle load
peaks that occur infrequently. For example, think of a billing
system with moderate load over most of the time, but there are
certain events with very high load such as New Year’s Eve.
Most of the time, a low end-to-end latency of the system is
preferable when the system faces moderate load. During the
peak load, it is more important that the system can handle the
load at all. A low end-to-end latency is not as important as an
optimized maximum throughput in this situation.

In this article, a solution to this problem is proposed:

• The concept of a middleware is presented that is able
to adapt its processing type fluently between batch pro-
cessing and single-event processing. By adjusting the data
granularity at runtime, the system is able to minimize the
end-to-end latency for different load scenarios.

• A prototype has been built to evaluate the concepts of the
adaptive middleware.

• A performance evaluation has been conducted using this
prototype to evaluate the proposed concept of the adaptive
middleware.

This article extends the adaptive middleware concept,
which has been presented in [1]. It adds a discussion of
its underlying concepts and design aspects, that should be
considered when implementing such an adaptive middleware
for near-time processing of bulk data. In addition, it describes
the prototype implementation of the middleware concept and
presents the results of the evalution of the propposed approach,
as well as its limitations.

The remainder of this article is organized as follows.
Section II defines the considered type of system and the terms
throughput and latency. Section III gives an overview of other
work related to this research. The concept, components and
design aspects of the adaptive middleware are presented in
Section IV through VI. Section VII describes the prototype
system that has been build to evaluate the proposed concepts.
The evaluation of the prototype system is presented in Section
VIII. Section IX describes the limitations of this research.
Finally, Section X concludes the paper and gives and outlook
to further research.

II. BACKGROUND

We consider a distributed system for bulk data processing
consisting of several subsystems running on different nodes
that together form a processing chain, that is, the output of

subsystem S1 is the input of the next subsystem S2 and so on
(see Figure 2a).

S1 S3S2

(a) Single processing line

S1 S3S2

S1 S3S2

(b) Parallel processing lines

Figure 2. A system consisting of several subsystems forming a processing
chain

To facilitate parallel processing, the system can consist of
several lines of subsystems with data being distributed among
each line. For simplification, a system with a single processing
line is considered in the remainder of this article.

We discuss two processing types for this kind of system,
batch processing and message-based processing.

A. Batch processing

The traditional operation paradigm of a system for bulk
data processing is batch processing (see Figure 3). A batch
processing system is an application that processes bulk data
without user interaction. Input and output data is usually
organized in records using a file- or database-based interface.
In the case of a file-based interface, the application reads a
record from the input file, processes it and writes the record
to the output file.

S1 S2 S3

Figure 3. Batch processing

B. Message-base processing

Messaging facilitates the integration of heterogeneous ap-
plications using asynchronous communication. Applications
are communicating with each other by sending messages (see
Figure 4). A messaging server or message-oriented middleware
handles the asynchronous exchange of messages including an
appropriate transaction control [4].

S1 S2 S3

Figure 4. Message-based processing

12

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Message-based systems are able to provide near-time pro-
cessing of data due to their lower latency compared with
batch processing systems. The advantage of a lower latency
comes with a performance cost in regard to a lower maxi-
mum throughput because of the additional overhead for each
processed message. Every message needs, amongst others,
to be serialized and deserialized, mapped between different
protocols and routed to the appropriate receiving system.

C. End-to-end Latency vs. Maximum Throughput

Throughput and latency are performance metrics of a
system. We are using the following definitions of maximum
throughput and latency in this article:

• Maximum Throughput
The number of events the system is able to process in a
fixed timeframe.

• End-To-End Latency
The period of time between the occurrence of an event
and its processing. End-to-end latency refers to the to-
tal latency of a complete business process implemented
by multiple subsystems. The remainder of this article
focusses on end-to-end latency using the general term
latency as an abbreviation.

Latency and maximum throughput are opposed to each
other given a fixed amount of processing resources. High
maximum throughput, as provided by batch processing, leads
to high latency, which impedes near-time processing. On the
other hand, low latency, as provided by a message-based
system, cannot provide the maximum throughput needed for
bulk data processing because of the additional overhead for
each processed event.

III. RELATED WORK

This section gives an overview of work related to the
research presented in this article. It discusses performance opti-
mizations in the context of transport optimization, middleware
optimizations and message batching.

The proposed middleware for high-performance near-time
processing of bulk data adjusts the data granularity itself at
runtime. Work on middleware discusses different approaches
for self-adjustment and self-awareness of middleware, which
can be classified as adaptive or reflective middleware.

Automatic scaling of server instances is another approach
to handle infrequent load spikes. Additionally, the section gives
a brief overview of feedback-control of computing systems.

Research on messaging middleware currently focusses on
Enterprise Service Bus (ESB) infrastructure. An ESB is an
integration platform that combines messaging, web services,
data transformation and intelligent routing to connect multiple
heterogeneous services [5]. It is a common middleware to
implement the integration layer of an Service Oriented Archi-
tecture (SOA) and is available in numerous commercial and
open-source packages.

A. Transport Optimization

Most of the work that aims to optimize the performance of
service-oriented systems is done in the area of Web Services
since it is a common technology to implement a SOA.

In particular, various approaches have been proposed to
optimize the performance of SOAP, the standard protocol for
Web Service communication. This includes approaches for
optimizing the processing of SOAP messages (cf. [6] [7] [8]),
compression of SOAP messages (cf. [9] [10]) and caching (cf.
[11] [12]). A survey of the current approaches to improve the
performance of SOAP can be found in [13].

[14] proposes an approach to transfer bulk data between
web services per File Transfer Protocol (FTP). The SOAP
messages transferred between the web services would only
contain the necessary details how to download the correspond-
ing data from an FTP server since this protocol is optimized
for transferring huge files. This approach solves the technical
aspect of efficiently transferring the input and output data
but does not pose any solutions how to implement loose
coupling and how to integrate heterogeneous technologies, the
fundamental means of an SOA to improve the flexibility of an
application landscape.

Data-Grey-Box Web Services are an approach to transfer
bulk data between Web Services [15]. Instead of transferring
the data wrapped in SOAP messages, it is transferred using an
external data layer. For example, when using database systems
as a data layer, this facilitates the use of special data transfer
methods such ETL (Extract, Transform, Load) to transport the
data between the database of the service requestor and the
database of the Web service. The data transfer is transparent
for both service participants in this case. The approach includes
an extension of the Web service interface with properties
describing the data aspects. Compared to the SOAP approach,
the authors measured a speedup of up to 16 using their
proposed approach. To allow the composition and execution
of Data-Grey-Box Web services, [16] developed BPEL data
transitions to explicitly specify data flows in BPEL processes.

[17] proposes three tuning strategies to improve the
performance of Java Messaging Service (JMS) for cloud-based
applications.

1) When using persistent mode for reliable messaging the
storage block size should be matched with the message
size to maximize message throughput.

2) Applying distributed persistent stores by configuring mul-
tiple JMS destinations to achieve parallel processing

3) Choosing appropriate storage profiles such as RAID-1

In contrast, the optimization approach presented in this
thesis is aimed at the integration layer of messaging system,
which allows further optimizations, such as dynamic message
batching and message routing.

B. Middleware Optimizations

Some research has been done to add real-time capabil-
ities to ESB or messaging middleware. [18] proposes an
architecture for a real-time messaging middleware based on
an ESB. It consists of an event scheduler, a JMS-like API
and a communication subsystem. While fulfilling real-time

13

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



requirements, the middleware also supports already deployed
infrastructure.

In their survey [19], the authors describe a real-time
ESB model by extending the Java Business Integration (JBI)
specification with semantics for priority and time restrictions
and modules for flow control and bandwidth allocation. The
proposed system is able to dynamically allocate bandwidth
according to business requirements.

MPAB (Massively Parallel Application Bus) is an ESB-
oriented messaging bus used for the integration of business
applications [20]. The main principle of MPAB is to fragment
an application into parallel software processing units, called
SPU. Every SPU is connected to an Application Bus Mul-
tiplexor (ABM) through an interface called Application Bus
Terminal (ABT). The Application Bus Multiplexor manages
the resources shared across the host system and communicates
with other ABM using TCP/IP. The Application Bus Terminal
contains all the resources needed by SPU to communicate with
its ABM. A performance evaluation of MPAB shows that it
achieves a lower response time compared to the open source
ESBs Fuse, Mule and Petals.

Tempo is a real-time messaging system written in Java that
can be used on either a real-time or non-real-time architecture
[21]. The authors, Bauer et al., state that existing messag-
ing systems are designed for transactional processing and
therefore not appropriate for applications with with stringent
requirements of low latency with high throughput. The main
principle of Tempo is to use an independent queuing system for
each topic. Resources are partitioned between these queueing
systems by a messaging scheduler using a time-base credit
scheduling mechanism. In a test environment, Tempo is able
to process more than 100,000 messages per second with a
maximum latency of less than 120 milliseconds.

In contrast to these approaches, the approach presented in
this thesis is based on a standard middleware and can be used
with several integration technologies, such as JMS or SOAP.

C. Message Batching

Aggregating or batching of messages is a common ap-
proach for optimizing performance and has been applied to
several domains. TCP Nagle’s algorithm is a well-known
example of this approach [22].

Message batching for optimizing the throughput of Total
Ordering Protocols (TOP) have first been investigated by [23].
In their work, the authors have compared the throughput
and latency of four different Total Ordering Protocols. They
conclude that “batching messages is the most important opti-
mization a protocol can offer”.

[24] extends the work of [23] with a policy for varying
the batch level automatically, based on dynamic estimates of
the optimal batch level.

[25] presents a mechanism for self-tuning the batching
level of Sequencer-based Total Order Broadcast Protocols
(STOB), that combines analytical modeling an Reinforcement
Learning (RL) techniques.

[26] proposes a self-tuning algorithm based on extremum
seeking optimization principles for controlling the batching

level of a Total Order Broadcast algorithm. It uses multiple
instances of extremum seeking optimizers, each instance is
associated with a distinct value of batching b and learns the
optimal waiting time for a batch of size b.

[27] describes two generic adaptive batching schemes for
replicated servers, which adapt their batching level automati-
cally and immediately according to the current communication
load, without any explicit monitoring of the system.

The approach presented in this research applies the concept
of dynamic message batching to minimize the end-to-end
latency of a message-based system for bulk data processing.

D. Self-Adaptive Middleware

[28] argues that “the most adequate level and natural locus
for applying adaption is at the middleware level”. Adaption at
the operating system level is platform-dependent and changes
at this level affect every application running on the same node.
On the other hand, adaption at application level assigns the
responsibility to the developer and is also not reusable.

[29] proposes an adaptive, general-purpose runtime infras-
tructure for effective resource management of the infrastruc-
ture. Their approach is comprised of three components:

1) dynamic performance prediction
2) adaptive intra-site performance management
3) adaptive inter-site resource management

The runtime infrastructure is able to choose from a set of
performance predictions for a given service and to dynamically
choose the most appropriate prediction over time by using the
prediction history of the service.

AutoGlobe [30] provides a platform for adaptive resource
management comprised of

1) Static resource management
2) Dynamic resource management
3) Adaptive control of Service Level Agreements (SLA)

Static resource management optimizes the allocation of ser-
vices to computing resources and is based on on automati-
cally detected service utilisation patterns. Dynamic resource
management uses a fuzzy controller to handle exceptional
situations at runtime. The Adaptive control of Service Level
Agreements (SLAs) schedules service requests depending on
their SLA agreement.

The coBRA framework proposed by [31] is an approach
to replace service implementations at runtime as a foundation
for self-adaptive applications. The framework facilitates the
replacement of software components to switch the implemen-
tation of a service with the interface of the service staying the
same.

DREAM (Dynamic Reflective Asynchronous Middleware)
[32] is a component-based framework for the construction
of reflective Message-Oriented Middleware. Reflective mid-
dleware “refers to the use of a causally connected self-
presentation to support the inspection and adaption of the
middleware system” [33]. DREAM is based on FRACTAL,
a generic component framework and supports various asyn-
chronous communication paradigms such as message passing,

14

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



event-reaction and publish/subscribe. It facilitates the construc-
tion and configuration of Message-Oriented Middleware from
a library of components such as message queues, filters, routers
and aggregators, which can be assembled either at deploy-time
or runtime.

E. Adaption in Service-Oriented Architectures

Several adaption methods have been proposed in the con-
text of service-based applications. In their survey [34], the
authors describe the following adaption methods:

• Adaption by Dynamic Service Binding
This adaption method relies on the ability to select
and dynamically substitute services at run-time or at
deployment-time. Services are selected in such a way that
the adaption requirements are satisfied in the best possible
way.

• Quality of Service (QoS)-Driven Adaption of Service
Compositions
The goal of this adaption approach is to select the best
set of services available at run-time, under consideration
of process constraints, end-user preferences and the exe-
cution context.

• Adaption of Service Interfaces and Protocols
The goal of this adaption approach is to mediate between
two services with different signatures, interfaces and pro-
tocols. This includes signature-based adaption, ontology-
based adaption or behavior-based adaption.

F. Adaptive ESB

Research on messaging middleware currently focusses on
ESB infrastructure. An ESB is an integration platform that
combines messaging, web services, data transformation and
intelligent routing to connect multiple heterogeneous services
[5]. It is a common middleware to implement the integration
layer of an Service Oriented Architecture (SOA) and is avail-
able in numerous commercial and open-source packages.

Several work has been done to extend the static service
composition and routing features of standard ESB implemen-
tations with dynamic capabilities decided at run-time, such as
dynamic service composition [35], routing [36] [37] [38] and
load balancing [39].

The DRESR (Dynamic Reconfigurable ESB Service Rout-
ing), proposed by [36], allows the routing table to be changed
dynamically at run-time based on service selection preferences,
such as response time. It defines mechanisms to test and
evaluate the availability and performance of a service and to
select services based on its testing results and historical data.

[38] proposes a framework for content-based intelligent
routing. It evaluates the service availability and selects services
based on its content and properties.

[39] proposes a load balancing mechanism that distributes
requests to services of the same service type, having the same
function and signature, and enables the dynamic selection of
the target service.

Work to manage and improve the QoS of ESB and service-
based systems in general is mainly focussed on dynamic
service composition and service selection based on monitored

QoS metrics such as throughput, availability and response time
[40].

[41] proposes an adaptive ESB infrastructure to address
QoS issues in service-based systems, which provides adaption
strategies for response time degradation and service saturation,
such as invoking an equivalent service, using previously stored
information, distributing requests to equivalent services, load
balancing and deferring service requests.

In contrast to these solutions, the approach presented in this
article uses dynamic message aggregation and message routing
as adaption mechanism to optimize the end-to-end latency of
messaging system for different load scenarios.

G. Automatic Scaling

A different solution to handle infrequent load spikes is
to automatically instantiate additional server instances, as
provided by current Platform as a Service (PaaS) offerings
such as Amazon EC2 [42] or Google App Engine [43]. While
scaling is a common approach to improve the performance of
a system, it also leads to additional operational and possible
license costs. Additionally, it is often difficult to scale certain
components or external dependencies of the system, such
as databases or external services. Of course, the approach
presented in this article can be combined with these auto-
scaling approaches.

H. Feedback-control of Computing Systems

Feedback-control has been applied to several different
domains of computing systems since the early 1990s, including
data networks, operating systems, middleware, multimedia and
power management (cf. [44]). Feedback-control of middleware
systems include application servers, such as the Apache http-
Server, database management systems, such as IBM Universal
Database Server, and e-mail servers, such as the IBM Lotus
Domino Server. [44] describes 3 basic control problems in this
context:

• Enforcing service level agreements
• Regulate resource utilization
• Optimize the system configuration

Additionally, feedback-control has been applied recently
to web environments, such as web servers and web ser-
vices, application servers, including data flow control in J2EE
servers, Repair Management in J2EE servers and improving
the performance of J2EE servers and cloud environments (cf.
[45]).

The Adaptive Middleware presented in this article utilizes
a closed-feedback loop to control the aggregation size of the
processed messages, depending on the current load of the
system to minimize the end-to-end latency of the system. This
is a novel approach that has not previously been investigated.

IV. MIDDLEWARE CONCEPTS

The adaptive middleware is based on the following core
concepts: (1) message aggregation, (2) message routing, and
(3) monitoring and control.

15

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A. Message Aggregation

Message aggregation or batching of messages is the main
feature of the adaptive middleware to provide a high maximum
throughput. The aggregation of messages has the following
goals:

• To decrease the overhead for each processed message
• To facilitate optimized processing

There are different options to aggregate messages, which
can be implemented by the Aggregator:

• No correlation: Messages are aggregated in the order in
which they are read from the input message queue. In this
case, an optimized processing is not simply possible.

• Technical correlation: Messages are aggregated by their
technical properties, for example, by message size or
message format.

• Business correlation: Messages are aggregated by busi-
ness rules, for example, by customer segments or product
segments.

In [1], a static aggregation size has been used to optimize
the latency and the throughput of a system. This is not feasible
for real systems, since the the latency and throughput also
depends on the load of the system. Therefore, a dynamic
aggregation size depending on the current load of the system
is needed.

B. Message Routing

The goal of the message routing is to route the message
aggregate to the appropriate service, which is either optimized
for batch or single event processing, to allow for an optimized
processing. Message routing depends on how messages are
aggregated. Table I shows the different strategies of message
routing.

TABLE I
STRATEGIES FOR MESSAGE ROUTING

Routing Strategy Examples Description

Technical routing Aggregation size Routing is based on the tech-
nical properties of a message
aggregate.

Content-based rout-
ing

Customer segments (e.g. busi-
ness customers or private cus-
tomers)

Routing is based on the con-
tent of the message aggregate,
that is, what type of messages
are aggregated.

With high levels of message aggregation, it is not preferred
to send the aggregated message payload itself over the message
bus using Java Messaging Service (JMS) or SOAP. Instead, the
message only contains a pointer to the data payload, which
is transferred using File Transfer Protocol (FTP) or a shared
database.

Message routing can be static or dynamic:

• Static routing:
Static routing uses static routing rules, that are not
changed automatically.

• Dynamic routing:
Dynamic routing adjusts the routing rules automatically
at run-time, for example, depending on QoS properties of
services. For example, see [36], [37] or [38].

C. Monitoring and Control

In order to optimize the end-to-end latency of the system,
the middleware needs to constantly monitor the load of the
system and control the aggregation size accordingly (see
Figure 5).

System

Feedback Control

Measure 
System Load

Control 
Aggregation

Figure 5. Monitoring and Control

If the current load of the system is low, the aggregation
size should be small to provide a low end-to-end latency of
the system. If the current load of the system is high, the
aggregation size should be high to provide a high maximum
throughput of the system.

To control the level of message aggregation at runtime, the
adaptive middleware uses a closed feedback loop as shown in
Figure 6, with the following properties:

• Input (u): Current aggregation size
• Output (y): Change of queue size measured between

sampling intervals
• Set point (r): The change of queue size should be zero.

Ultimately, we want to control the average end-to-end
latency depending on the current load of the system. The
change of queue size seems to be an appropriate quantity
because it can be directly measured without a lag at each
sampling interval, unlike for example, the average end-to-end
latency.

Controller System
y = Net change of queue sizer = 0 e = r-y

u = Aggregation size

Figure 6. Feedback loop to control the aggregation size

V. MIDDLEWARE COMPONENTS

Figure 7 shows the components of the middleware, that are
based on the Enterprise Integration Patterns described by [46].
A description of these components can be found in Table II.

VI. DESIGN ASPECTS

This section describes aspects that should be taken into
account when designing an adaptive system for bulk data
processing.

16

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



S1
Endpoint A

S1
Endpoint BAggregator Router

QueueMessages Message
Aggregate

Figure 7. Middleware components

TABLE II
COMPONENTS OF THE ADAPTIVE MIDDLEWARE. WE ARE USING THE

NOTATION DEFINED BY [46]

Symbol Component Description

Message A single message representing a
business event.

Message Aggregate A set of messages aggregated by the
Aggregator component.

Queue Storage component which stores
messages using the FIFO principle.

Aggregator

Stateful filter which stores correlated
messages until a set of messages is
complete and sends this set to the
next processing stage in the messag-
ing route.

Router Routes messages to the appropriate
service endpoint.

Service
Endpoint Service Endpoint Represents a business service.

A. Service Design

The services that implement the business functionality of
the system need to be explicitly designed to support the run-
time adaption between single-event and batch processing.

There are different options for the design of these services:

• Single service interface with distinct operations for single
and batch processing
◦ The service provides different distinct operations for

high and low aggregation sizes with optimized imple-
mentations for batch and single-event processing. The
decision which operation should be called is done by
the message router. It is generally not possible to use
different transports for different aggregation sizes.

• Single service interface with a single operation for both
single and batch processing
◦ The service provides a single operation that is called for

all aggregation sizes. The decision which optimization
should be used is done by the service implementation.
It is not possible to use different transports for different
aggregation sizes.

• Multiple service interfaces for single and batch processing
(or different aggregation sizes)
◦ The logical business service is described by distinct

service interfaces which contain operations for either
batch processing or single-event processing. The deci-
sion which operation should be called is done by the
message router. It is possible to use different transports
for different aggregation sizes.

The choice of service design relates to where you want
to have the logic for the message routing for optimized
processing. With a single service offering distinct operations
for single-event and batch processing, as well as with distinct
service for each processing style, the message router decides
which service endpoint should be called. In contrast, using
a single service with a single operation for both processing
styles, the service itself is responsible for choosing the appro-
priate processing strategy. Using a different integration type
for each processing style is not possible in this case.

Listing 1 shows the interface of a service offering differ-
ent operations for batch processing (line 6) and single-event
processing (line 10).

B. Integration and Transports

The integration architecture defines the technologies that
are used to integrate the business services. In general, different
integration styles with different transports are used for batch
processing and single-event processing, which needs to be
taken into account when designing an adaptive system for bulk
data processing.

When using high aggegration sizes, it is not feasible to
use the same transports as with low aggregation sizes. Large
messages should not be transferred over the messaging system.
Instead, a file based transport using FTP or database-based
integration should be used. When using a messaging system,
the payload of large messages should not be transported over
the messaging system. For example, by implementing the
Claim Check Enterprise Integration Pattern (EIP) (cf. [46]).

Additionally, the technical data format should be consid-
ered.

The concrete threshold between low and high aggregation
sizes depends on the integration architecture and implementa-
tion of the system, such as the integration architecture and the
deployed messaging system.

17

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Listing 1. Java interface of a web service offering different operations for single and batch processing.
1 @WebService
2 @SOAPBinding(style=Style.DOCUMENT, use=Use.LITERAL, parameterStyle=ParameterStyle.WRAPPED)
3 public interface RatingPortType {
4 @WebMethod(operationName="processCallDetails")
5 @WebResult(name="costedEvents")
6 public Costedevents processCallDetails(@WebParam(name="callDetailRecords") SimpleCDRs

callDetailRecords) throws ProcessingException, Exception;
7
8 @WebMethod(operationName="processCallDetail")
9 @WebResult(name="costedEvent")

10 public Costedevent processCallDetail(@WebParam(name="simpleCDR") SimpleCDR callDetailRecord)
throws ProcessingException, Exception;

11 } �
TABLE III

TRANSPORT OPTIONS FOR HIGH AND LOW AGGREGATION SIZES

Aggregation Size Transport Options

High
• Database
• File-based (e.g. FTP)
• Claim Check EIP

Low
• JMS
• SOAP

The choice of the appropriate integration transport for a
service is implicitly implemented by the message router (see
Section IV-B).

C. Error Handling

Message aggregation has also an impact on the handling
of errors that occur during the processing. Depending on the
cause of the error, there are two common types of errors:

• Technical errors
Technical errors are errors caused by technical reasons,
for example, an external system is not available or does
not respond within a certain timeout or the processed
message has an invalid format.

• Business errors
Business errors are caused by violation of business rules,
for example, a call detail record contains a tariff that is
no longer valid.

The following points should be taken into account, when
designing the error handling for an adaptive system for bulk
data processing:

• Write erroneous messages to an error queue for later
processing.

• Use multiple queues for different types of errors, for
example, distinct queues for technical and business errors
to allow different strategies for handling them. Some type
of errors can be fixed automatically, for example, an error
that is caused by an outage of an external system, while
other errors need to be fixed manually.

• If the erroneous messages is part of an aggregated mes-
sage, it should be extracted from the aggregate to prevent

the whole aggregate from beeing written to the error
queue, especially when using high aggregation sizes.

D. Controller Design

There are several approaches for the implementation of
feedback-control systems. [44] describes two major steps:

1) modeling the dynamics of the system
2) developing a control system

There are different approaches that are used in practice to
model the dynamics of a system [47]:

• Empirical approach using curve fitting to create a model
of the system

• Black-box modeling
• Modeling using stochastic approaches, especially queuing

theory
• Modeling using special purpose representations, for ex-

ample, the first principles analysis

For practical reasons, the following approach has been
taken in this research:

1) Define the control problem
2) Define the input and output variables of the system
3) Measure the dynamics of the system
4) Develop the control system

1) Control Problem: The control problem is defined as
follows:

• Minimize the end-to-end latency of the system by con-
trolling the message aggregation size.

• The aggregation size used by the messaging system
should depend on the current load of the system.

• When the system faces high load, the aggregation size
should be increased to maximize the maximum through-
put of the system.

• When the system faces low load, the aggregation size
should be decreased to minimize the end-to-end latency
of the system.

2) Input/Output Signals: [48] describes the following
criteria for selecting input control signals:

• Availability
It should be possible to influence the control input directly
and immediately.

18

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• Responsiveness
The system should respond quickly to a change of the
input signal. Inputs whose effect is subject to latency or
delays should be avoided when possible.

• Granularity
It should be possible to adjust the control input in small
increments. If the control input can only be adjusted in
fixed increments, then it could be necessary to consider
this in the controller or actuator implementation.

• Directionality
How does the control input impact the control output?
Does an increased control input result in increased or
decreased output?

Additionally, the following criteria should be considered
for selecting output control signals:

• Availability
The quantity must be observable without gaps and delays.

• Relevance
The output signal should be relevant for the behavior of
the system that should be controlled.

• Responsiveness
The output signal should reflect changes of the state of
the system quickly without lags and delays.

• Smoothness
The output signal should be smooth and does not need to
be filtered.

With regard to these criteria, the following input and output
control signals have been chosen

• Input (u): Current aggregation size
• Output (y): Change of queue size measured between

sampling intervals
• Set point (r): The change of queue size should be zero.

3) Control Strategy: We use a simple non-linear control
strategy that could be implemented as follows (cf. [48]):

• When the tracking error is positive, increase the aggrega-
tion size by 1

• Do nothing when the tracking error is zero.
• Periodically decrease the aggregation size to test if a

smaller queue size is able to handle the load.

VII. PROTOTYPE IMPLEMENTATION

To evaluate the proposed concepts of the adaptive middle-
ware, a prototype of a billing system has been implemented
using Apache Camel [49] as the messaging middleware.

Figure 8 shows the architecture of the prototype. It consists
of three nodes, the billing route, mediation service and rating
service. The billing route implements the main flow of the
application. It is responsible for reading messages from the
billing queue, extracting the payload, calling the mediation
and rating service and writing the processed messages to the
database. The mediation service is a webservice representing
the mediation component. It is a SOAP service implemented
using Apache CXF and runs inside an Apache Tomcat con-
tainer. The same applies to the rating service, representing the
rating component.

TABLE IV
TECHNOLOGIES AND FRAMEWORKS USED FOR THE IMPLEMENTATION OF

THE PROTOTYPES

Language Java 1.6

Dependency Injection Spring 3.0.7

Persistence API OpenJPA (JPA 2.0) 2.1.1

Database MySQL 5.5.24

Logging Logback 1.0.1

Test JUnit 4.7

Batch Framework Spring Batch 2.1.8

Messaging Middleware Apache Camel 2.10.0

Other Frameworks Joda-Time, Apache Commons

The prototypes are implemented with Java 1.6 using Java
Persistence API (JPA) for the data-access layer and a MySQL
database. See Table IV for complete list of technologies and
frameworks used for the implementation of the prototypes.

The prototype performs the following steps:

1) The message is read from the billing queue using JMS.
The queue is hosted by an Apache ActiveMQ instance.

2) The message is unmarshalled using JAXB.
3) The Mediation service is called by the CXF endpoint of

the billing route.
4) The response of the Mediation webservice, the normalized

call detail record, is unmarshalled.
5) The Rating service is called by the CXF endpoint of the

billing route.
6) The response of the Rating webservice, that is the costed

event, is unmarshalled.
7) The costed event is written to the Costed Events

Database.

The feedback-control loop of the prototype is implemented
by the following components:

• Performance Monitor
The Performance Monitor manages the feedback-control
loop by periodically calling the Sensor and updating the
Controller. Additionally, it calculates the current through-
put and end-to-end latency of the system.

• Sensor
The Sensor is responsible for getting the current size of
the message queue using Java Management Extensions
(JMX).

• Controller
The Controller calculates the new value for the aggrega-
tion size based on the setpoint and the current error.

• Actuator
The Actuator is responsible for setting the new aggrega-
tion size of the Aggregator calculated by the Controller.

A. Aggregator

The Aggregator is configured to dynamically use the ag-
gregation size (completionSize) set by a message header, as
shown in Listing 2 (line 2). This message header is set by
the Actuator (see Section VII-B3), which is controlled by the
Controller (see Section VII-B2).

19

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Camel

Billing Route
ActiveMQ

Event 
Generator

Tomcat

Costed Events

Master Data

Rating 
Service

Tomcat

Mediation 
Service

SO
AP

SO
AP

JPA

JMS

JM
S

CDR NCDR Costed 
Event

MySQL

MySQL

Qeue
Aggregator Router

Performance Monitor

Queue Sensor Controller Actuator

Figure 8. Components of the prototype system

Listing 2. Aggregator configuration in definition of BillingRoute
1 .aggregate(constant(true), new

UsageEventsAggrationStrategy())
2 .completionSize(header(completionSizeHeader)

)
3 .completionTimeout(completionTimeout)
4 .parallelProcessing() �

B. Feedback-Control Loop

Figure 9 shows the components of the feedback-control
loop.

System

Controller Message 
QueueAggregatorActuator

Sensor

e = r-y

y = Net change of queue size

u = Aggregation size

r = 0

Figure 9. Components of the feedback-control loop

1) Sensor: The JmxSensor implements the Sensor interface
(see Figure 10). It reads the current length of the input queue
of the ActiveMQ server instance using JMX.

2) Controller: A Controller has to implement the Con-
troller interface. The following implementations of the Con-
troller interface have been implemented (see Figure 11):

• BasicController
Implements a generic controller. The control strategy is
provided by an implementation of the ControllerStrategy.

• TestController
A controller used for testing the static behavior of the
system.

Figure 10. UML classdiagram showing the sensor classes

The strategy of the controller is implemented by a con-
troller strategy which implements the ControllerStrategy inter-
face.

Figure 12 shows the available implementations of the
ControllerStrategy.

Listing 3 shows the implementation of the simple control
strategy, as described in Section VI-D3:

• If the queue size increases, increase the aggregation size
(line 10-13).

• Otherwise, do not change the aggregation size (line 22).
• Periodically decrease the aggregation size by one (line

17-20).

The controller uses two different timers depending on the
previous action.

3) Actuator: The AggregateSizeActuator is responsible for
setting the aggregation size of the Aggregator and is controlled
by the Controller (see Figure 13).

The AggregateSizeActuator implements the Actuator inter-
face. It sets the aggregation size (completionSize) by setting a
specific header in the currently processed message.

4) Performance Monitor: The Performance Monitor man-
ages the feedback-control loop by periodically calling the
Sensor and updating the Controller. Additionally, it calculates
the current throughput and end-to-end latency of the system
using the StatisticsService (see Figure 14).

C. Load Generator

The Load Generator is used to generate the system load
by generating events (Call Detail Records (CDRs)) and writing
them to the input message queue of the system. It is imple-
mented as a stand-alone Java program using a command-line
interface.

The DataGenerator uses a Poisson Process to simulate
the load of the system, which is commonly used to model

20

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 11. UML classdiagram showing the controller classes

events that occur continuously and independently of each other
with exponentially distributed inter-arrival times, e.g. to model
requests on a web server [50] or telephone calls [51].

VIII. EVALUATION

The prototype described in the previous section has been
used to evaluate the general feasibility of the adaptive middle-
ware.

A. Test Environment

The tests have been run on a development machine to
decrease the development-build-deploy cycle, as described in
Table V.

TABLE V
TEST ENVIRONMENT

Memory 3 GiB

CPU Intel Core i5 M520 @ 2,40 GHz

Architecture 32-bit

Disk Drive 150 GB SSD

Operating System Windows 7

Database MySQL 5.5.24

Messaging Middleware Apache ActiveMQ 5.6.0

B. Test Design

[52] defines a set of properties, that should be considered
when designing feedback-control systems for computing sys-
tems, called the SASO properties (Stable, Accurate, Settling
times, Overshoot):

• Stability
The system should provide a bounded output for any
bounded input.

• Accuracy
The measured output of the control system should con-
verge to the reference input.

• Settling time
The system should converge quickly to its steady state.

• Overshoot
The system should achieve its objectives in a manner that
does not overshoot.

C. Static Tests

To test the relationship between the input and output
variables of the control-loop, aggregation size and change of
queue size, the following static tests have been performed:

• The TestController has been configured to periodically
increase the aggregation size after 100 time steps (1 time
step equals 1 second).

21

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 12. UML classdiagram showing the controller strategy classes

Listing 3. Implementation of the simple control strategy
1 public class SimpleControlStrategy
2 implements ControllerStrategy {
3
4 @Value("${simpleController.period1}")
5 private int period1;
6 @Value("${simpleController.period2}")
7 private int period2;
8 private int timer = 0;
9

10 public Double getOutput(Double error) {
11 if (error > 0) {
12 timer = period1;
13 return +1.0;
14 }
15
16 timer--;
17
18 if (timer == 0) {
19 timer = period2;
20 return -1.0;
21 }
22 return 0.0;
23 }
24 } �

• The test has been repeated with different load of the
system, that is, using different arrival rates for the Data-
Generator.

Figure 15 shows the queue size of the system in relation-
ship to the aggregation size, for different arrival rates.

• The system is not able to handle the load with an
aggregationsize < 5 and an arrivalrate = 50. With
an aggregationsize ≥ 5, the system is able to process
the events faster than they occur.

• With an arrivalrate = 100, the system is not able to
handle the load with an aggregationsize < 15. With an
aggregationsize ≥ 15, the system is able to process the
events faster than they occur.

• With an arrivalrate = 150, the system is not able to
handle the load with an aggregationsize < 25. With an
aggregationsize ≥ 25, the system is able process the

Figure 13. UML classdiagram showing the actuator classes

events faster than they occur.

The change of queue size between each time step is shown
in Figure 16.

D. Step Test

To measure the dynamic response of the system, the
following step test has been performed:

• The TestController has been configured to increase the
aggregation size from 1 to 50.

• Messages occur with an arrival rate of 150.

Figure 17 shows the result of the step test:

• With an aggregation size of 1, the system is not able to
handle the load. The queue length is constantly increasing.

• When the aggregation size is set to 50 at timestep 100,
the queue size is directly decreased, without a noticeable
delay.

22

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 14. UML classdiagram showing the PerformanceMonitor

0 100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100
Aggregate Size

Time steps

A
g

g
re

g
a

te
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000
Arrival Rate = 50.0

Time steps

Q
u

e
u

e
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

1

2
x 10

4 Arrival Rate = 100.0

Time steps

Q
u

e
u

e
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
0

2

4
x 10

4 Arrival Rate = 150.0

Time steps

Q
u

e
u

e
 s

iz
e

Figure 15. Static test: queue sizes

E. Controller Tests

The following test has been performed to evaluate the
performance of the Simple Controller:

0 100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100
Aggregate Size

Time steps

A
g

g
re

g
a

te
 s

iz
e

0 100 200 300 400 500 600 700 800 900 1000
−200

−100

0

100
Arrival Rate = 50.0

Time stepsQ
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

0 100 200 300 400 500 600 700 800 900 1000
−1000

−500

0

500
Arrival Rate = 100.0

Time steps

Q
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

0 100 200 300 400 500 600 700 800 900 1000
−1000

−500

0

500
Arrival Rate = 150.0

Time steps

Q
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

Figure 16. Static test: queue size changes

• Events are generated with an arrival rate = 50.0 for
100 time steps.

• At timestep = 100, the arrival rate is set to 150.0 for
another 100 time steps.

23

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0 50 100 150 200 250 300
0

25

50
Aggregate Size

Time steps

A
g

g
re

g
a
te

 s
iz

e

0 50 100 150 200 250 300
−500

0

500
Queue size change

Time steps

Q
u

e
u

e
 s

iz
e

 c
h

a
n

g
e

0 50 100 150 200 250 300
0

5000

10000
Queue size

Time steps

Q
u

e
u

e
 s

iz
e

Figure 17. Step test

• At timestep = 200, the arrival rate is set back to 50.0.

Figure 18 shows the results of the test using the Simple
Control strategy:

• The controller is reasonably able to control the size of
the queue. At timestep = 100, it increases the aggregate
size to a maximum value of 36.

• At timestep = 200, the controller starts to decrease the
aggregation size. At timestep = 375, the aggregation
size is back at 3.

0 50 100 150 200 250 300 350 400 450 500
50

100

150
Load

Time steps

A
rr

iv
a
l 
ra

te

0 50 100 150 200 250 300 350 400 450 500
−20

0

20

40
Aggregate size

Time steps

A
g
g
re

g
a
te

 s
iz

e

0 50 100 150 200 250 300 350 400 450 500
−200

−100

0

100
Queue size change

Time steps

Q
u
e
u
e
 s

iz
e
 c

h
a
n
g
e

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150
Queue size

Time steps

Q
u
e
u
e
 s

iz
e

Figure 18. Simple control strategy

F. Results

Summarizing the results of the evaluation, the proposed
concept for the adaptive middleware is a viable solution to
optimize the end-to-end latency of data processing system.
The results show that using a closed-feedback loop is a
feasible technique for implementing the dynamic control of

the aggregation size. Using the queue size change to measure
the system load is also shown to be appropriate.

IX. LIMITATIONS

The research presented in this article has some limitations,
that are summarized below:

• The services that implement the business functionality of
the system need to be explicitly designed to support the
run-time adaption between single-event and batch pro-
cessing, as described in Section VI-A. Therefore, existing
services need to be changed in order to be integrated into
the system. This can pose a problem when using off-
the-shelf services or Software as a Service (SaaS). The
integration of such services has not been considered in
this research.

• The services integrated by the prototype do not implement
any further optimizations for batch processing. They
use the same implementation for batch and single-event
processing. Thus, the impact of batch optimizations has
not been investigated. This was not necessary to show
the performance improvements of message aggregation
on the maximum throughput of the messaging prototype.

• The adaption mechanisms of the Adaptive Middleware
only uses message aggregation and message routing,
depending on the aggregation size. Other mechanisms
such as dynamic service composition and selection and
load balancing have not been investigated.

• The prototype of the Adaptive Middleware only uses a
single message queue, the integrated services are called
synchronous, using a request/response pattern. This de-
sign was chosen, to simplify the dynamics of the system.
Thus, the impact of using multiple message queues has
been investigated in the evaluation.

• The impact of different controller architectures has not
been exhaustively analyzed and researched. Only two
controller architectures have been implemented and evalu-
ated. Other controller designs, such as fuzzy control, have
not been investigated. Additionally, a formal analyzation
of the feedback-control system has not been conducted,
for example, by creating a model of the system. Instead,
an empirical approach has been taken to evaluate the
viability of the proposed solution.

X. CONCLUSION AND FURTHER RESEARCH

In this section, a novel concept of middleware for near-
time processing of bulk data has been presented, which is
able to adapt itself to changing load scenarios by fluently
shifting the processing type between single event and batch
processing. The middleware uses a closed feedback loop to
control the end-to-end latency of the system by adjusting
the level of message aggregation depending on the current
load of the system. Determined by the aggregation size of
a message, the middleware routes a message to appropriate
service endpoints, which are optimized for either single-event
or batch processing.

Additionally, several design aspects have been described
that should be taken into account when designing and im-
plementing an adaptive system for bulk data processing, such

24

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



as how to design the service interfaces, the integration and
transport mechanisms, the error-handling and controller design.

The solution is based on standard middleware, messaging
technologies and standards and fully preserves the benefits of
an SOA and messaging middleware, such as:

• Loose coupling
• Remote communication
• Platform language Integration
• Asynchronous communication
• Reliable Communication

To evaluate the proposed middleware concepts, a prototype
system has been developed. The tests show that the proposed
middleware solution is viable and is able to optimize the end-
to-end latency of a bulk data processing system for different
load scenarios.

The next steps of this research are to further analyze the
dynamics of the system and to optimize the controller.

During the implementation of the prototype of the adaptive
middleware, it became apparent that the design and imple-
mentation of such a system differs from common approaches
to implement enterprise software systems. Further research
addresses a conceptual framework that guides the design,
implementation and operation of a system for bulk data pro-
cessing based on the adaptive middleware.

REFERENCES

[1] M. Swientek, B. Humm, U. Bleimann, and P. Dowland, “An Adaptive
Middleware for Near-Time Processing of Bulk Data,” in ADAPTIVE
2014, The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications, Venice, Italy, May 2014, pp. 37–41.

[2] J. Fleck, “A distributed near real-time billing environment,” in Telecom-
munications Information Networking Architecture Conference Proceed-
ings, 1999. TINA ’99, 1999, pp. 142–148.

[3] J. Cryderman, “Is Real-Time Billing and Charging a Necessity?”
Pipeline, vol. 7, no. 11, 2011.

[4] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch, Enterprise
Application Integration: Grundlagen, Konzepte, Entwurfsmuster, Prax-
isbeispiele. Elsevier, Spektrum, Akad. Verl., 2006.

[5] D. Chappell, Enterprise Service Bus. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2004.

[6] N. Abu-Ghazaleh and M. J. Lewis, “Differential Deserialization for
Optimized SOAP Performance,” in SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2005, p. 21.

[7] T. Suzumura, T. Takase, and M. Tatsubori, “Optimizing Web Services
Performance by Differential Deserialization,” in ICWS ’05: Proceedings
of the IEEE International Conference on Web Services. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 185–192.

[8] A. Ng, “Optimising Web Services Performance with Table Driven
XML,” in ASWEC ’06: Proceedings of the Australian Software Engi-
neering Conference. Washington, DC, USA: IEEE Computer Society,
2006, pp. 100–112.

[9] J. C. Estrella, M. J. Santana, R. H. C. Santana, and F. J. Monaco,
“Real-Time Compression of SOAP Messages in a SOA Environment,”
in SIGDOC ’08: Proceedings of the 26th annual ACM international
conference on Design of communication. New York, NY, USA: ACM,
2008, pp. 163–168.

[10] A. Ng, P. Greenfield, and S. Chen, “A Study of the Impact of Compres-
sion and Binary Encoding on SOAP Performance,” in Proceedings of
the Sixth Australasian Workshop on Software and System Architectures
(AWSA2005), 2005.

[11] D. Andresen, D. Sexton, K. Devaram, and V. Ranganath, “LYE: a
high-performance caching SOAP implementation,” in Proceedings of
the 2004 International Conference on Parallel Processing (ICPP-2004),
2004, pp. 143–150.

[12] K. Devaram and D. Andresen, “SOAP optimization via parameterized
client-side caching,” in Proceedings of the IASTED International Con-
ference on Parallel and Distributed Computing and Systems (PDCS
2003), 2003, pp. 785–790.

[13] J. Tekli, E. Damiani, R. Chbeir, and G. Gianini, “Soap processing per-
formance and enhancement,” Services Computing, IEEE Transactions
on, vol. 5, no. 3, 2012, pp. 387–403.

[14] T. Wichaiwong and C. Jaruskulchai, “A Simple Approach to Optimize
Web Services’ Performance,” in NWESP ’07: Proceedings of the Third
International Conference on Next Generation Web Services Practices.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 43–48.

[15] D. Habich, S. Richly, and M. Grasselt, “Data-Grey-Box Web Services
in Data-Centric Environments,” in IEEE International Conference on
Web Services, 2007. ICWS 2007, 2007, pp. 976–983.

[16] D. Habich, S. Richly, S. Preissler, M. Grasselt, W. Lehner, and A. Maier,
“BPEL-DT – Data-Aware Extension of BPEL to Support Data-Intensive
Service Applications,” Emerging Web Services Technology, vol. 2,
2007, pp. 111–128.

[17] Z. Zhuang and Y.-M. Chen, “Optimizing jms performance for cloud-
based application servers,” in Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, 2012, pp. 828–835.

[18] L. Garces-Erice, “Building an enterprise service bus for real-time soa: A
messaging middleware stack,” in Computer Software and Applications
Conference, 2009. COMPSAC ’09. 33rd Annual IEEE International,
vol. 2, 2009, pp. 79–84.

[19] C. Xia and S. Song, “Research on real-time esb and its application
in regional medical information exchange platform,” in Biomedical
Engineering and Informatics (BMEI), 2011 4th International Conference
on, vol. 4, 2011, pp. 1933–1937.

[20] R. Benosman, Y. Albrieux, and K. Barkaoui, “Performance evaluation
of a massively parallel esb-oriented architecture,” in Service-Oriented
Computing and Applications (SOCA), 2012 5th IEEE International
Conference on, 2012, pp. 1–4.

[21] D. Bauer, L. Garces-Erice, S. Rooney, and P. Scotton, “Toward scalable
real-time messaging,” IBM Systems Journal, vol. 47, no. 2, 2008, pp.
237–250.

[22] J. Nagle, “Congestion control in ip/tcp internetworks,” SIGCOMM
Comput. Commun. Rev., vol. 14, no. 4, Oct. 1984, pp. 11–17. [Online].
Available: http://doi.acm.org/10.1145/1024908.1024910

[23] R. Friedman and R. V. Renesse, “Packing messages as a tool for boost-
ing the performance of total ordering protocls,” in Proceedings of the
6th IEEE International Symposium on High Performance Distributed
Computing, ser. HPDC ’97. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 233–.

[24] A. Bartoli, C. Calabrese, M. Prica, E. A. Di Muro, and A. Montresor,
“Adaptive Message Packing for Group Communication Systems,” 2003,
pp. 912–925.

[25] P. Romano and M. Leonetti, “Self-tuning batching in total order
broadcast protocols via analytical modelling and reinforcement learn-
ing,” in Computing, Networking and Communications (ICNC), 2012
International Conference on, Jan 2012, pp. 786–792.

[26] D. Didona, D. Carnevale, S. Galeani, and P. Romano, “An extremum
seeking algorithm for message batching in total order protocols,” in
Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE Sixth
International Conference on, Sept 2012, pp. 89–98.

[27] R. Friedman and E. Hadad, “Adaptive batching for replicated servers,”
in Reliable Distributed Systems, 2006. SRDS ’06. 25th IEEE Sympo-
sium on, 2006, pp. 311–320.

[28] H. A. Duran-Limon, G. S. Blair, and G. Coulson, “Adaptive
Resource Management in Middleware: A Survey,” IEEE Distributed
Systems Online, vol. 5, no. 7, 2004, p. 1. [Online]. Available:
http://portal.acm.org/ft_gateway.cfm?id=1018100&type=external&
coll=ACM&dl=GUIDE&CFID=59338606&CFTOKEN=18253396

[29] B.-D. Lee, J. B. Weissman, and Y.-K. Nam, “Adaptive middleware
supporting scalable performance for high-end network services,” J.
Netw. Comput. Appl., vol. 32, no. 3, 2009, pp. 510–524.

25

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[30] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper,
“Adaptive Quality of Service Management for Enterprise Services,”
ACM Trans. Web, vol. 2, no. 1, 2008, pp. 1–46.

[31] F. Irmert, T. Fischer, and K. Meyer-Wegener, “Runtime Adaptation in
a Service-Oriented Component Model,” in SEAMS ’08: Proceedings of
the 2008 international workshop on Software engineering for adaptive
and self-managing systems. New York, NY, USA: ACM, 2008, pp.
97–104.

[32] M. Leclercq, V. Quéma, and J.-B. Stefani, “DREAM: a Component
Framework for the Construction of Resource-Aware, Reconfigurable
MOMs,” in ARM ’04: Proceedings of the 3rd workshop on Adaptive
and reflective middleware. New York, NY, USA: ACM, 2004, pp.
250–255.

[33] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for Reflective
Middleware,” Commun. ACM, vol. 45, no. 6, 2002, pp. 33–38.

[34] R. Kazhamiakin, S. Benbernou, L. Baresi, P. Plebani, M. Uhlig, and
O. Barais, “Adaptation of service-based systems,” in Service Research
Challenges and Solutions for the Future Internet, ser. Lecture Notes in
Computer Science, M. Papazoglou, K. Pohl, M. Parkin, and A. Metzger,
Eds. Springer Berlin Heidelberg, 2010, vol. 6500, pp. 117–156.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-17599-2_5

[35] S.-H. Chang, H. J. La, J. S. Bae, W. Y. Jeon, and S. D. Kim, “Design of
a dynamic composition handler for esb-based services,” in e-Business
Engineering, 2007. ICEBE 2007. IEEE International Conference on,
Oct 2007, pp. 287–294.

[36] X. Bai, J. Xie, B. Chen, and S. Xiao, “Dresr: Dynamic routing in
enterprise service bus,” in e-Business Engineering, 2007. ICEBE 2007.
IEEE International Conference on, Oct 2007, pp. 528–531.

[37] B. Wu, S. Liu, and L. Wu, “Dynamic reliable service routing in
enterprise service bus,” in Asia-Pacific Services Computing Conference,
2008. APSCC ’08. IEEE, Dec 2008, pp. 349–354.

[38] G. Ziyaeva, E. Choi, and D. Min, “Content-based intelligent routing
and message processing in enterprise service bus,” in Convergence
and Hybrid Information Technology, 2008. ICHIT ’08. International
Conference on, Aug 2008, pp. 245–249.

[39] A. Jongtaveesataporn and S. Takada, “Enhancing enterprise service
bus capability for load balancing,” W. Trans. on Comp., vol. 9, no. 3,
Mar. 2010, pp. 299–308. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1852392.1852401

[40] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic qos management and optimization in service-based
systems,” Software Engineering, IEEE Transactions on, vol. 37, no. 3,
May 2011, pp. 387–409.

[41] L. González and R. Ruggia, “Addressing qos issues in service based
systems through an adaptive esb infrastructure,” in Proceedings of
the 6th Workshop on Middleware for Service Oriented Computing,
ser. MW4SOC ’11. New York, NY, USA: ACM, 2011, pp. 4:1–4:7.
[Online]. Available: http://doi.acm.org/10.1145/2093185.2093189

[42] “Amazon ec2 auto scaling,” http://aws.amazon.com/autoscaling, [re-
trieved: March 2014].

[43] “Auto scaling on the google cloud platform,”
https://cloud.google.com/developers/articles/auto-scaling-on-the-
google-cloud-platform, [retrieved: March 2014].

[44] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[45] R. K. Gullapalli, C. Muthusamy, and V. Babu, “Control systems
application in java based enterprise and cloud environments–a survey,”
Journal of ACSA, 2011.

[46] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[47] J. L. Hellerstein, “Challenges in control engineering of computing
systems,” in American Control Conference, 2004. Proceedings of the
2004, 2004, pp. 1970–1979.

[48] P. K. Janert, Feedback Control for Computer Systems. O’Reilly Media,
Inc., 2013.

[49] “Apache Camel,” http://camel.apache.org, 2014, [retrieved: July 2014].
[50] M. F. Arlitt and C. L. Williamson, “Internet Web servers: workload

characterization and performance implications,” IEEE/ACM Transac-
tions on Networking (TON), vol. 5, no. 5, Oct. 1997, pp. 631–645.

[51] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz, “Primary user
behavior in cellular networks and implications for dynamic spectrum
access,” Communications Magazine, IEEE, vol. 47, no. 3, March 2009,
pp. 88–95.

[52] T. Abdelzaher, Y. Diao, J. Hellerstein, C. Lu, and X. Zhu, “Introduction
to Control Theory And Its Application to Computing Systems,” in
Performance Modeling and Engineering, Z. Liu and C. Xia, Eds.
Springer US, 2008, pp. 185–215–215.

26

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


