
Modeling Responsibilities of Graphical User Interface Architectures via Software

Categories

Stefan Wendler
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

stefan.wendler@tu-ilmenau.de

Abstract — Business information of our days systems heavily

rely on graphical user interfaces (GUIs) as a sub-system that

provides rich interaction options to access business services

and stands out with high usability. To develop and maintain a

GUI sub-system, high efforts accumulate due to missing

standard solutions and limited reuse of already established

architectures. Published architectural patterns and few

reference architectures are primary sources for GUI

architecture development. However, these concepts need to be

extensively adapted, since individual requirements are to be

met and available sources do not describe all necessary details.

These are fine-grained GUI responsibilities, differentiated state

handling for application and presentation as well as

implementation structures. Therefore, GUI development

projects create high efforts and their resulting architecture

often does not represent the desired separation of concerns,

and so, is hard to maintain. These architectures are no proper

foundation for the integration of recent user interface pattern

(UIP) concepts, which promise a reuse of proven usability

concepts and enable the automated generation of vast GUI

parts. In this work, the design issues that occur during GUI

architecture development are to be analyzed. To prepare the

analysis, selected GUI architecture and pattern concepts are

presented. Furthermore, the general responsibilities of GUI

sub-systems and their structural elements are identified. In

detail, software categories are applied to model the GUI

responsibilities and their relationships by separating their

concerns based on several dimensions of knowledge. The

resulting software category tree serves as a basis to review the

well-known model view controller pattern and the Quasar

client architecture, which is a detailed GUI reference

architecture of the domain. As result, the major design issues

of GUI systems are derived and summarized. Eventually, the

created GUI software category tree can be applied as a

foundation for the creation, understanding and assessment of

other GUI patterns or reference architectures.

Keywords — GUI software architecture; software

architecture; user interface patterns; graphical user interface.

I. INTRODUCTION

A. Motivation

Domain. Business information systems represent a
domain that is largely influenced by software architecture
considerations. Especially the graphical user interface (GUI)
sub-system is likely to induce high efforts [2] for both
development and later maintenance. According to a survey
among 23 major Germany-based IT service companies, IT

departments of banking, logistics and power supply
industries, as well as medium-sized IT developers, the
development efforts for GUI systems is still estimated to be
considerably high compared to other common sub-systems
of business information systems. On a basis of 100% total
development effort, the aggregated efforts across all
development phases were estimated for the four principal
business information systems layers as follows: workflow
layer 24,8%; presentation layer or GUI 26,8%; application
layer 29,8% and lastly persistence layer 18,6%. In sum, the
presentation layer was rated as the second highest concerning
total effort.

The high efforts for GUI development apply for both
standard and individual software systems as a high demand
for individually designed GUI systems is actually present.
The companies require their business information systems to
be closely matched to their business processes. As a
consequence, custom services are often to be developed or
configured, which require a customized GUI to reflect the
functional aspects. In addition, a high usability is almost
always a desired goal to achieve during the development of
new GUI dialogs.

Problems. However, GUI architectures are not
standardized to the required detail, since historically applied
patterns have not converged towards a detailed standard
architecture that models every responsibility needed for
considering current functional, usability and technological
influences during development or maintenance. According to
functional aspects, the higher degree of system integration
into business processes demands for exact implementations
of comprehensive requirement artifact types like use cases,
tasks and business processes. The customers expect the GUI
system to closely match the specified scenarios with dialogs
that reflect the flow and branching of actions along with the
proper display of context relevant and even optional data.
Users no longer reenact those scenarios by activating the
single functions with their belonging dialogs in the right
order. They expect the GUI system to provide guidance
instead, navigation facilities and adequate presentation
layouts to attain a dialog structure that perfectly mirrors and
complements the functional requirements specification.

Those current GUI development needs are facing rather
old GUI architecture patterns like model view controller
(MVC) [3] and its variants [4], which did not consider such a
deep and vast requirements basis. To resolve some MVC
limitations or add some detail, other MVC pattern derivates
like HMVC [5], MVP [6][7], MVVM [8] and MVA, RMR,
ADR (reference [9] provides some overview only) were This work is an extensively revised and substantially augmented version of

“A Software Category Model for Graphical User Interface Architectures”,
which appeared in the Proceedings of The Ninth International Conference
on Software Engineering Advances (ICSEA 2014) [1].

182

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

introduced and occasionally found their role as a principal
architecture of GUI frameworks. However, mostly single
dialogs are considered by those patterns, so that concerns
like the design of navigation among dialogs, the structuring
and separation of visual layout, presentation control, dialog
control [10] and application flow are not comprehensively
described by a single pattern. There is no standard solution
available by the books; many sources [11][12][13] focus on
the proper handling of programming languages or mastering
certain GUI framework facilities without paying much
attention to architecture structuring. Thus, many details
remain to be refined by the developers [14], who will adapt
architectures individually for each system and most likely
will not extract a commonly reusable architecture due to
lacking time or budget.

According to Fowler [15], during the course of analyzing
and refining patterns many different interpretations may
emerge, so that there will be no common understanding of a
single pattern and its involved roles. This may due to the
complex structure of patterns, which are regularly containing
several ideas at once that may even comprise smaller sub-
patterns. Thus, developers will instantiate one pattern
according to their gained understanding, experience with
other patterns and the integration of surrounding frameworks
and architecture aspects to be addressed.

Ultimately, there is no consensus on GUI patterns, which
one offers the optimal structuring of responsibilities, so that
it is fairly common to decide on their application and
adaptation anew for each GUI development project.
Although MVC is very commonly applied, this pattern also
is very often misunderstood [15]. To apply common GUI
architecture patterns in practice, several implementation
problems have to be solved that are not sufficiently
addressed by the patterns [10]. Besides, reference
architectures [2][16] and several patterns (design and
architectural) [17][18] had been suggested, but have not been
properly integrated with traceability [19][20] concepts to
keep track of requirements during architecture design.

Moreover, GUI frameworks often dictate to closely adopt
a certain pattern-based architecture, so that they have a large
impact on the GUI system’s structure and often cannot be
isolated properly to separate technical implementations from
domain or project specific requirements.

So far, the functional aspects were considered. As far as
the demand for high usability is concerned, the above
mentioned patterns do not solve the integration of
ergonomically effective presentation layouts or interaction
designs. They focus on mere technical reuse of software
architecture structure and do not consider content-based
reuse.

Consequences. Foremost, GUI systems remain hard to
develop concerning the effective adaptation of available
patterns or reference architectures, as well as the cost-
efficient implementation of current functional and usability
requirements. In addition, developers may be frequently
required to work with a certain GUI framework to be able to
integrate the new created GUI system parts with an existing
system or maintain a certain corporate design already in use
with other neighboring systems. In the end, the coupling
between system layers and the separation of concerns remain

vague due to different pattern characteristics and project
budgets.

Furthermore, when systems have grown after several
maintenance steps, different concerns tend to be mixed up
within the GUI architecture the larger the requirements basis
is and the more complicated the integrated frameworks are.
For instance, application server calls, data handling, task and
dialog control flow can no longer clearly allocated to certain
elements of the software architecture. These concerns are
likely to be scattered among several units of design. Finally,
the GUI and application sub-systems cannot be separated
easily, so that the evolution of both depends on each other.
Business logic tends to be scattered in the GUI dialogs [21]
and the “smart UI antipattern” [22] may become a regular
problem. Initially, the architecture was layered during design
phase, but the encapsulation of components and separation of
concerns did not prove in practice [21]. This is maybe due to
used frameworks that expect a certain architecture, which
alters original design. More likely is the phenomenon that the
architecture was based on common patterns and reference
architectures that could not be refined in time with respect to
desired quality and extensibility. Lastly, the two concluding
points from Siedersleben [21] are still of relevance:
standardized interfaces between layers are missing and
technical frameworks dominate the architecture and
evolution. Currently, there are often more than three layers in
business information systems and the segregation got even
more complex.

User interface patterns. There are perspectives that are
promising to address the persisting issues. Current research
is occupied with the integration of a new artifact type in the
development of GUI systems. Being based on design pattern
concepts and likewise description schemes [23], user
interface patterns (UIPs) have been approached [24][25][26]
to facilitate the generative development of GUIs and highly
increase the reuse of proven visual and interaction design
solutions that originate from descriptive human computer
interaction (HCI) patterns [27][28].

According to the generative nature of UIP integration
approaches, the development of GUIs shall be shortened by
model-based sources that specify both the GUI system’s
view instances and the coupling between functional related
and GUI system architecture components. This new kind of
pattern is intended to bridge the gap between descriptive HCI
patterns and implementation oriented architecture patterns.
Ultimately, with the application of UIPs the technical reuse
of architecture structures of common design or architecture
patterns shall be combined with the reuse of content relevant
for ergonomics (visual design and layout, interaction design,
HCI patterns) bound to certain design units, which usually
remain abstract in common pattern descriptions. In that way,
UIPs shall be stored in a repository to be configured and
instantiated for different projects. In short, both technical
architecture parts and visual design shall be coupled and
reused in different contexts.

Current limitations. Currently, there are still design
issues within GUI patterns or reference architectures that
hinder the evolution and maintenance of existing systems. To
establish a target software architecture of high quality for the
implementation of UIPs, these issues have to be addressed in

183

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the first place. A commonly applicable GUI architecture has
to be derived. In fact, UIPs need a clear basis of reuse: an
architecture with well separated concerns that permits the
flexible allocation and exchange of these greater units of
design without the need to adapt other components.
Otherwise, the previously described problems would persist:
due to lacking standard solutions, each project would need an
individual target architecture with every responsibility
detailed to accept UIP instances. Generator templates would
have to be created and revised over and over again for any
GUI framework or platform. The visual designs of UIPs
would only be available for specification and context
configuration, but would miss a technical architecture for
their implementation on a certain system. To be able to
increase reuse with UIPs, a standardized architecture solution
is truly needed. The individual refinement of patterns will
greatly hinder the benefits UIP-based reuse would promise.

Whether UIPs will be generated, interpreted or provided
by a virtual user interface [29][30] the resulting architecture
will be at least as complex as for standard GUIs. Therefore,
the common issues in design will prevail and affect UIP
based solutions.

B. Objectives

To prepare the integration of UIPs into GUI architecture
and at the same time preserve their reusability and variability
in different contexts, open issues in GUI architecture
development have to be identified and solved. Therefore, our
first objective is to provide a detailed analysis of perpetual
design problems. Design issues regularly occur whenever
one of the following cases is encountered:

• Requirements are not met due to missing allocation

of responsibilities to design units.
• Several design units share are certain set of

responsibilities, so that either cohesion or separation
of concerns is not ideal.

• One design unit takes responsibility for many tasks
at once, and thus, may not represent a proper degree
of cohesion.

Hence, we will have to identify the re-occurring

responsibilities of GUI architectures to be able to analyze
possible GUI design issues. In this regard, our second
objective is to derive a pattern- and architecture-independent
model of those responsibilities and their relationships.

On that basis, the frequently applied MVC pattern is
reviewed. In addition, we will analyze the Quasar client
reference architecture [2] that provides more detail than
regular patterns and was created especially for the domain.
Together with the presentation of selected related work, the
responsibilities model and the analysis will lead us to reveal
persisting issues in GUI design.

C. Structure of the Paper

The following section provides descriptions of common
patterns and reference architecture considerations for GUIs
of our particular domain. In the third section, we will
elaborate a general responsibilities model for GUI
architectures. In Section IV, the GUI architecture patterns are

reviewed. The results are summarized and discussed in
Section V, before we conclude in Section VI.

II. RELATED WORK

A. Architecture Patterns for Graphical User Interfaces

With the invention of object oriented programming
languages, a clear assignment of the cross-cutting concerns,
which are common for a GUI dialog, had to be enforced.

Eventually, the MVC pattern was introduced [3], which
distinguishes three object types as abstractions to accept
defined responsibilities. The typical roles of an MVC triad
are the following: View and Controller comprise the GUI
part; the Model represents the application parts with the core
functionality and data structures [18].

With these roles, the MVC pattern promised a separation
of concerns, modularity and even reuse of selected
abstractions [31]. According to Fowler, one main idea of
MVC was the concept of “Separated Presentation” [15][32].
Hereby, an application layer is separated from the GUI layer,
which regularly accesses the former but not vice versa. In
other words, the GUI part of a system strictly represents an
independently developed sub-system, comprised of View and
Controller elements, that calls the application or domain
layer services by using a dedicated interface element
provided by the Model of the MVC triad. Thus, the
communication with the application layer is mostly initiated
and controlled by the GUI part of a system. However, the
application layer does call the GUI layer in a clearly defined
way: by applying the observer pattern [18][17] Views are
promptly updated whenever changes to the application layer
or Model part are committed. This design allows for multiple
Views sharing a certain Model and displaying different data
in different ways.

In Figure 1, we present a possible architecture application
diagram of the classic MVC pattern. Please note that an
interface notation was used to describe the visibility (a
certain set of operations) each involved design unit has on its
interaction partners.

cmp Classic MVC

MVC triad

Model

GUI Framework

PresentationEvent

RegisterNotification

ApplicationKernelService

DataRetrieval

ViewLayoutDefinition

ObserverUpdate

DomainObject

View

Controller

DataEdit

DomainServiceObject

ChangeView

«use»

«use»

«call»

«call»

«call»

«use»

«call»

«call»

«call»

Figure 1. The classic MVC architecture pattern described by the three

roles Model, View and Controller and their typical interfaces.

184

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The initial setup of the triad is supported by the interfaces
ViewLayoutDefinition (creation of screen layout, definition
of UI-Controls) and RegisterNotification, which enables both
Views and Controllers to receive notifications whenever
Model data has changed. So, the latter is part of the observer
pattern implementation. It should be considered that in the
original MVC design applied in Smalltalk environments the
access to the Model was strictly differentiated among View
and Controller: the read-only DataRetrieval interface is used
by the View to update its UI-Controls with current data
whenever changes to Model have been applied. The retrieval
of data by the View is typically preceded by a call from the
Model via ObserverUpdate. In contrast, the DataEdit is a
write-operation interface exclusively called by the Controller
to apply changes to the Model, e.g., when the user has
entered new data during interaction with the View’s UI-
Controls. Typical results that follow a user interaction
scenario from the Controller’s perspective are the previously
mentioned change of Model’s data (DataEdit), a request to
the View to alter its display (ChangeView), and finally, a
value creating call to the Model (ApplicationKernelService)
that processes application data and changes the system’s
state concerning business data.

Besides these elementary interfaces and basic interaction
mechanisms, the MVC pattern is affected by several
problems.

Firstly, there exist many sources of the MVC pattern,
which either do not cover the pattern with its multiple facets
in entirety or are more or less influenced by the specific
requirements of an application environment like certain GUI
frameworks for either desktop or web clients. We consulted
references [15], [31], [32], [33], [34] and [35] for related
work. In addition, a widely accepted and often cited
description can be found in [18], which was considered here
of course. As mentioned in the introduction, there is no
consensus on GUI patterns and their details. Ultimately,
MVC ends up as “the most misquoted” pattern [15].

Secondly, the classic MVC pattern is bound to the
Smalltalk environment and its basic facilities like abstract
classes to create each specific member of the triad by using
inheritance. As a result, the complete application was woven
in MVC as a principal architecture or architectural style. This
is often not applicable for nowadays system layers and
current GUI frameworks. The classic MVC is conflicting and
must be adapted to modern needs. For instance, Karagkasidis
[10] discussed some implementation variants for a Java
based MVC design.

Thirdly, from a practical point of view the classic MVC
pattern misses many details that are essential to enable its
benefits of modularity and separated concerns. Karagkasidis
[10] already provided an elaborate examination of different
concerns among popular GUI architecture patterns including
MVC. In sum, the creation and assembly of GUI layout, user
event handling, dialog control and the integration with
business logic were identified as topics with several
implementation issues.

In this regard, the MVC pattern leaves the task to
decouple the three abstractions to be solved by the developer.
It is noteworthy that the Controller is in charge of many
responsibilities at once: a Controller has to handle the

technical events (PresentationEvent), update the data of the
Model (DataEdit), delegate the View to adapt its layout
(ChangeView) to current data state, and finally, initiate the
concluding processing of Model data by the application
kernel (ApplicationKernelService). Therefore, this design
unit is closely coupled to the View, as well as to the Model.
As far as the View is concerned, the structure of the Model
has to be known to enable the update of defined UI-Controls
via DataRetrieval.

To cope with the close coupling and missing details,
several variations of the MVC have been discussed [4][10].
In general, the variations in design differ concerning the
distribution of responsibilities among the three abstractions.
Several more patterns [6][7][18][32] occurred that mainly
altered the control or introduced new concerns and
abstractions. Nevertheless, they fulfill the same purpose of
guiding the identification and modularization of classes in
object-oriented GUI architectures. Their effectiveness can
hardly be evaluated for the long term maintenance or a
standardization perspective, since there are no elaborate or
comprehensive descriptions available; some MVC derivates
are only sourced from websites or weblogs [9][36];
comprehensive accounts on MVC variations are still under
construction [37] or do not cover all variations.

B. Graphical User Interface Event Processing Chain

To be able to discuss the GUI responsibilities with
increasing detail, we would like to refer to the conceptual
model of the event processing within GUI architectures as
described by Siedersleben [38]. In Figure 2, a variation of
this model is displayed. Thereby, technical events will be
emitted from the Operating System or later the GUI
Framework when the user has interacted with a certain GUI
element. Within the architecture, the event is either
processed or forwarded by the individual components
depicted in Figure 2 and the associations between
components therein.

It is notable that there is a distinction of events inside the
Dialog component. For reasons of separation of concerns,
and ultimately, better maintenance of systems, the
Presentation was assigned responsibilities with a closer
connection to the technical aspects of the GUI Framework.
Accordingly, the Presentation is in charge of governing the
layout of the current Dialog and applies changes in layout,
e.g., mark the UI-Controls where entered data failed the
validation or activate panels when current data state requires
for additional inputs. In contrast, the DialogKernel is to be
kept independent from any technical issues as far as this is
possible. So, the latter is assigned the task to communicate
with the ApplicationKernel and its components instead.

sd Event Processing Chain

Operating
System

GUI Framework

Dialog
Presentation DialogKernel

ApplicationKernel

ApplicationComponent

Application

eventsDialog events

Presentation

eventsTechnical

events

Figure 2. Value creation chain of graphical user interfaces derived from

[38].

185

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

By flowing all the way from the Operating System
towards the Application Component, a tiny technical event
may result in the initiation of greater operations inside the
DialogKernel or even ApplicationComponent. Thereby, the
Dialogs fulfill the purpose to connect the users with the main
business services provided by ApplicationComponents. First
of all, several user inputs that result in events need to be
enhanced with further information. Then they can finally be
forwarded through the components to trigger business
services, which create business value. That is why
Siedersleben speaks of a “value creation chain” [16][38].

C. Standard Architecture for Business Information

Systems

Siedersleben and Denert tended to the issues of close
coupling and a better separation of concerns for GUI
architectures in [29]. The main goal of their attempts was to
improve the general quality of the software architecture of
business information systems. With respect to the GUI, they
made suggestions [29] that would prepare the standardization
of the architecture of the particular domain.

Quasar. Siedersleben pushed towards further
standardization attempts concerning the GUI architecture of
business information systems. His efforts culminated in the
creation of the quality software architecture (Quasar) [16].
Acclaimed design principles and architectural patterns, as
well as the vast usage of interfaces for decoupling in
combination with a new instrument for component
identification were incorporated into a single software
architecture manifest, which was intended to become the
domain’s standard.

Parts of a reference architecture [2] and the object-
relational mapper Quasar Persistence [39] have been
published. Conversely, the main ideas of standardization
were neglected in [2] and reference architecture elements
should fill the gap.

Software categories. As far as the component
identification is concerned, so called software categories [16]
were introduced. They consist of the five categories 0, A, T,
R and AT.

0 software designates elements that are reusable in any
domain like this is applicable for very basic data types a
programming language would offer.

A software is dedicated to implement a certain domain’s
requirements, meaning particular functions like the
calculation of target costing or the scheduling of production
plans for a certain machinery. So, A software would
represent the core of each business information system.

In contrast, T software is responsible for the integration
of technical aspects like data bases and GUI frameworks.

R software is needed whenever a technical data
representation has to be converted for processing with A
software types, e.g., a GUI string type describing a book
attribute is converted to a ISSN or ISBN. In fact, R software
also is AT software per definition as both domain specific
and technical knowledge or types are mixed up. Thus, AT
software should be avoided and would be an indicator for the
quality of the implementation or architecture [16]. Only the
R software used for type conversions would be permitted.

GUI reference architecture. Concerning the reference
architecture portions of Quasar, the GUI client architecture
[2][16] has to be mentioned for the scope of our work.
Compared to common GUI architecture patterns, the Quasar
GUI client architecture resembles a comprehensive
architecture addressing the specific needs of a domain by
incorporation of pattern elements and certain refinements.

The main parts of that architecture are illustrated by
Figure 3 that is derived from [16], since this is the most
detailed source available. The interface names in brackets
quote the original but not very descriptive designations. The
unique elements of the Quasar client architecture are the
following three aspects:

Firstly, there was made a distinction of presentation and
application related handling of events; the basic concept of
the “value creation chain” introduced in Section II.B was
developed further. Thus, there are the two design units
Presentation and DialogKernel that resume original MVC
Controller tasks besides other ones. The software categories
mark both units according to their general responsibilities:
the Presentation possesses the knowledge how certain data is
to be displayed and how the user may trigger events. In
contrast, the DialogKernel determines what data needs to be
displayed and how the application logic should react to the
triggered events. The communication between them is
exclusively conducted via three A type interfaces.

Secondly, the Quasar client introduces relatively detailed
interfaces and communication facilities between components
compared to other GUI patterns.

To be able to fulfill its objectives, the Presentation relies
on the ViewDefinition interface to construct the visual part of
the dialog. Via InputDataQuery, the current data stored in
the technical data model of respective UI-Control instances
can be altered or read by the Presentation. Events emitted
from UI-Control instances are forwarded to the Presentation
with the operations of PresentationEvent.

The interfaces between Presentation and DialogKernel
are mainly concerned with event forwarding and the
synchronization of data between both components.

cmp Quasar client

Dialog
DialogManager

DialogEvent (DE)

InputDataQuery (A)

GUI Framework

PresentationEvent (PE)

DataUpdate (SY)

ApplicationKernelService (AF)

DialogActivity (U)

DialogCompletion (V)

ApplicationEventsRegistration (DA)

ViewDefinition (DP)

ApplicationEvents (AE)

Presentation

DialogKernel

DataRead (R)

ApplicationKernel

SessionControl

A
T
AT
0

Software categories

«call»

«use» «use»

«call»«call»

«call»

«call»

«call»

«call»

«create»

«create»

«call»

«call»

Figure 3. The Quasar client architecture based on [16].

186

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In detail, DialogEvent is called by the Presentation
whenever the DialogKernel has to be notified of an event
relevant for application logic processing, e.g., a command
button like OK or a search for available data was initiated.
The Quasar client foresees two options for data
synchronization. This communication step is essential, since
both components possess different knowledge, and thus,
work with different data structures, what is marked by the
different software categories. Either the Presentation could
read current data via DataRead or the DialogKernel would
update the Presentation by the means of DataUpdate. This
design shall decouple the application logic from technical
aspects found inside Presentation and its interfaces for
interaction with the current GUI Framework.

Thirdly, aspects that are concerned with surrounding
components are also described with the Quasar client. These
are interfaces dealing with the construction, deletion of
dialog instances (DialogActivity) and reporting of results
(DialogCompletion). Furthermore, a DialogKernel can
register for notification (ApplicationEventsRegistration)
about events (ApplicationEvents) originated from
ApplicationKernel. To create value relevant for business
logic, the interface ApplicationKernelService is called by the
DialogKernel. There are more interfaces available for the
coordination of transactions and the checking of permissions
via an authorization component. For more details, interface
specifications and a dynamic view on the architecture, please
consult [2].

III. GENERAL GUI RESPONSIBILITIES MODEL

A. Problem Statement

As we learned from the introduction, standardized GUI
architectures are not available, so that custom architectures
prevail. Accessible architecture sources remain only as
references to be adapted to specific requirements besides
standardization efforts. The basic GUI patterns and the more
detailed Quasar client reference architecture are too abstract
and general to describe detailed responsibilities required for
implementation purposes. Hence, our conclusion from
Section II is that developers have to select and always adapt
a MVC or other GUI architecture pattern variant suitable for
their domain.

Although the available sources will not model an
extensive set of GUI responsibilities, they provide a basic set
of tasks and associated components. A closer examination of
given sources proved that they may complement each other,
as some sources are more focused on certain responsibilities
than others. A common intersection of responsibilities can
easily be found. However, it is challenging to enhance this
intersection in order to obtain an almost complete set of GUI
responsibilities.

Finally, those GUI responsibilities have to be modeled in
a systematic way, but independently from any specific
pattern or framework. The target architecture for UIPs has
yet to be created and it would be of little use to modify
existing architectures without having identified the
prevailing design issues. In addition, the influence of UIPs
on the target architecture and these issues can only be
understood when a complete set of GUI responsibilities was
identified.

The software categories of Quasar, which were
introduced in Section II.C, can serve the purpose of
modeling the GUI responsibilities, since they were invented
to model the occurring concerns of a system’s architecture
prior to the identification of components. In the following
section, we will review this concept.

B. Quasar Software Categories Reviewed

We found that the concept of the Quasar software
categories is ambiguous. They promise to be an instrument
for component identification and quick software quality
assessments. Nevertheless, they were not provided along
with a clearly defined method for their proper definition or
application.

Relationships. The software category types defined by
Quasar can be applied for the very basic valuation of
architectures, since they symbolize a very rudimentary
separation of concerns between neutral (0), domain (A) and
technical related (T) as well as mixed domain and technical
(AT) concepts. Figure 4 displays those basic categories and
their relationships. The dependencies in Figure 4 symbolize,
which specialized category is derived from a more basic one.
In this regard, 0 software is the parent category to be used for
the composition of every other category. The elementary
data structures and operations of 0 software are used to form
other and often more complex data structures with their
specialized operations that are unique in their purpose, which
designates their final categorization.

Refinement. The further and project relevant refinement
of the basic categories A and T will eventually lead to a much
more powerful representation of design criteria like cohesion
and coupling or design principles like modularization as well
as hierarchy. During refinement each category will
symbolize a certain concern of system. In this regard,
“concerns” represent heavily abstracted requirements and
related functions. Siedersleben [16] states that each software
category ideally acts as a representative for a certain
delimited topic. Consequently, the preparation of
components with the aid of software category trees shall help
to create high cohesive and encapsulated design units.

Complexity. By refining parent categories, a number of
child categories are created that directly depend on each
parent category and implicitly take over the dependencies of
their parents. Following that way, it is ensured that every
category may access the basic programming language
facilities modeled by the 0 software category. Moreover,
Siedersleben [16] speaks of complexity when refinements
are created. It is obvious that refined categories truly create
more complex units of design, since they potentially contain
or access their own knowledge with the addition of all
ancestor parent categories.

cmp Quasar basic categories

0

A T

AT

Figure 4. The basic software categories of Quasar [16].

187

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Traceability. On that basis, refined software categories
can be used to judge the purity of traceability-link [19][20]
targets, meaning that these artifacts will be examined with
respect to their responsibilities. When a target is made up of
a mixed category, in the worst case AT, then it will be
considered either as a model lacking detail or a design that is
harder to maintain, since the developers will eventually
separate the concerns during implementation by themselves.
The latter is a major aspect besides the identification of
potential components; that is why we consider software
categories as a relevant marker.

In sum, software categories can be useful to reduce the
complexity while tracing requirements to design: the
categories could be kept in order to mark certain design
elements inside traceability-metamodels, which are outlined
in [20]. Thus, the general or refined responsibilities of design
elements will be visible, so traceability-link targets can be
more detailed and better differentiated.

Problems. A major problem lies in the definition and
segregation of software categories. It was not clearly defined
what elements drive the creation and delimitation of a
software category. According to known sources [16][21],
this might either be specialized knowledge how to handle
certain algorithms and data structures or dependencies of an
entity.

Moreover, there are only few examples [16] that explain
the proper usage of the software categories. The related
sources about Quasar [2][38][40][41] only use the basic
software categories to mark components, but do not establish
a category tree with refinements like this is done for a card
game in [16].

Lastly, there exists no standard modeling concept for the
software categories of Quasar. This issue could be regarded
as a problem in analogy how to model architectures or
identify classes. One could imply that the software categories
miss comparative hierarchical concepts for their modeling
like they are available for common design of architectures:
architectural styles drive the identification of components.
The inner design of greater components can be guided by
selected architectural patterns (MVC can be given as an
example). Consequently, the patterns with their defined roles
drive the identification of classes and the latter serve to
instantiate needed objects. However, nothing comparative is
mentioned by available sources about the software categories
of Quasar.

In sum, missing aspects for software category modeling
are the following:

• Software category definition and delimitation,

• Software category identification approach,

• Software category standard modeling levels or style,
arrangement for ease of readability or understanding

In the next sub-section, we will try to resolve these issues

of software category modeling as far as our gathered
knowledge and experience on this concept will guide us.

C. Rationale on Software Category Modeling

In this section, we will have to cope with the previously
described problems of the software category modeling. We

will have to find a way how a fine-grained responsibilities
model based on the software category instrument suggested
by Quasar can be established.

1) Software Category Modeling Purpose

The software categories are intended to refine tasks and
document gaps left open by the available patterns. According
to the Quasar rules and ideals [16], the category model to be
created will represent a model with least coupling and
cohesive elements that allows for planning dependencies
among potential units of design. The categorization will be
used in analogy to the suggested identification of
components [16]; this step is essential to maintain separated
concerns between identified responsibilities. Thus, the found
responsibilities can be re-allocated during the development
of a target architecture for UIPs or for solving common GUI
design issues, but their separation can be maintained for a
gain in software architecture quality and interface design
with least coupling.

2) Software Category Modeling Levels

Quasar examples. With the given explanations, the
software categories’ scope remains vague. Therefore, we
analyzed the provided example software category trees in
reference [16]: on the one hand, some trees model abstract
concepts like GUI, Swing and data access. On the other
hand, the categories are applied to express certain component
instances of a particular sub-system, as this is shown for an
application kernel component dedicated to services a book
library would offer.

From these examples, we conclude that a category tree
can be situated on two principal levels of refinement: a
software category tree that models abstract concepts and a
tree, which is used to represent certain instances of a chosen
concept of the former, are to be differentiated.

Abstract concept tree. The abstract description level is
used to identify the general areas of knowledge that occur in
a system and its components. This category tree is an
abstract view on responsibilities that we understand as the
arrangement of meta-types, which are permitted to occur in a
system. So, the software categories on that level determine
what type of tasks or sets of responsibilities are to be
considered. Each set of responsibilities will correspond to a
certain component stereotype. We understand that level of
modeling in analogy to the object-oriented (OO) class
concept: software categories model meta-types for design
units to be identified. As OO classes determine what kind of
objects can be instantiated, the software categories establish
the types of design units, which define the software
architecture’s structural components.

The software categories of the abstract level are derived
from the two basic categories A and T, and thus, the
fundamental areas of knowledge of domain specific logic
and technical interactions within the software architecture.
Figure 5 illustrates an example for an abstract software
category tree and its meta-types. Each meta-type expresses a
set of tasks or responsibilities like this is the case for
categories like GUI dialog component, Application kernel
component and File system persistence, which express that
layers or even components fulfilling the general task of
proving application logic, a graphical user interface and file

188

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system based access will be present in the system. This kind
of modeling of software categories can be understood as
principal or general architecture modeling where the required
layers and major component types are identified. In other
words, the abstract software category tree answers the
following question: what layer, component or other types of
design units do occur in a system?

 The sub-categories of the meta-types will be the actual
layers, components, classes, and operations depending on the
chosen detail in the hierarchy of modeling. According to
traceability concepts mentioned in the previous section, the
meta-types symbolize traceability-link targets in a
taceability-metamodel: these are the principally allowed
target types. For instance, a primary and simple distinction
based on Figure 5 can be made between application and GUI
components. So, requirements can either be associated to one
of each type. This distinction is rather simple, but more
effective than just allow the requirements to be traced to any
arbitrary design entity. Another example can be derived from
Evans’ [22] domain model stereotypes. He identified
concepts like services, entities, factories and value objects.
These are abstract, but more concrete than arbitrary design
units, and could be modeled in a software category tree as
meta-types. Any other pattern type that has distinctive roles
and their tasks described could be modeled with an abstract
software category tree. In this regard, patterns with their set
of characteristic classes can fill the gap that exists between
components and bare classes: with the aid of software
categories they permit the modeling of collaborations.

The sole modeling of one pattern makes little sense as the
pattern’s own description would suffice and most likely
would be more detailed rather than a corresponding software
categories tree. However, the modeling of system specific
meta-types and the integration of patterns could be
beneficial. Thereby, the categories would express the sum of
all potential instances and the fact, that a certain pattern is
present at a certain level in the systems’s hierarchy of needed
or allowed software categories. In addition, the software
categories could be used to arrange a certain pattern and its
roles in order with the existing hierarchy of design units. As
result, the single roles or elements of a pattern do not need to
be allocated to a fixed design hierarchy level like OO
classes; they could be assigned to components as well.

cmp Abstract categories

0

A T

Application kernel

component

Java Swing

GUI

File system

persistence

GUI dialog

component

Model

View

Controller

Figure 5. An example of an abstract software category tree.

This approach could be used for the refinement or even the
combination of several patterns to structure a custom
hierarchy or collaboration of classes.

For the sake of the example, Figure 5 was detailed with
the categories Model, View and Controller to express that the
MVC pattern (see Section II.A) will be applied in this
system. In addition, the influences for that specific pattern
application were added as dependencies among the software
categories.

Accordingly, the View will be determined both by
knowledge how to build visual forms with Java Swing GUI
and how to properly access (assignment of data to UI-
Controls in the correct order) the business data provided by
the Model. In addition, View is implicitly determined by
knowledge about the system’s GUI specification with
required layouts for certain functions or use cases
represented by the GUI dialog component category. By
maintaining the dependency to the Model, the View
implicitly is connected to the parent categories including
GUI dialog component on higher levels up to the basic 0
category, which is needed for the realization of every
software category. Moreover, the Controller category is both
influenced by the Model and View category: to perform data
changes and coordinate application service calls, the
dependency or knowledge of the Controller category must
span the Model internals. The dependency on the View
expresses that the Controller has to know about the View’s
structure or state to be able to request a proper change of the
current screen layout or react on a certain UI-Control event
trigger. The knowledge on Java Swing GUI, which is
required for the Controller to be able to implement GUI
framework specific event listener interfaces, is incorporated
implicitly with the dependency on the View category.

However, this example points out what difficulties may
occur by the integration of GUI or architectural patterns in a
custom component architecture. Foremost, the three
categories Model, View and Controller symbolize rather
abstract concepts as they are described by the sources
mentioned in Section II.A. More details about these three
stereotypes have to be revealed in order to prepare the
derivation of system specific instances and their
implementation. Therein the difficulties are situated, whilst
there is no consensus about the further refinement of each
category or pattern role. Since acclaimed sources [3][18][32]
do not provide sufficient details for current requirements,
several different refinements [4][10] or interpretations for the
MVC exist that result in varying dependencies and may
differ from our example in Figure 5. Thus, the inner structure
of each MVC category is not clearly determined and may
vary as well. So will be the final quality of architecture and
the separation of concerns depended on individual
refinements. We could further detail each MVC category to
achieve a clear distribution of responsibilities and guide the
identification of smaller design units such as interfaces,
classes and operations. This step can be quite helpful, since
components are the ordinary corresponding unit of design for
software categories [16], but these units are to be assigned to
available programming language elements. Common
programming languages do not feature a component as a unit
for implementation after all.

189

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cmp Instance categories

Application kernel

component

Book catalog

Customers

Fees

Lendings

Book inventory

Figure 6. An example software category tree derived from [16] displaying

identified components on the basis of a meta-type software category.

Refined software categories on the basis of certain class
collaborations provide a modeling level in between and may
fill the gap.

Instance tree. A second modeling level of software
categories can be applied on the basis of the abstract concept
tree. When the meta-types have been identified, the system
specific instances or actual components or even classes need
to be identified based on the found categories.

For instance, a software project would need 20 dialogs to
appear in a system, which would contain 30 View instances,
since 10 dialogs each would require two separate Views.
These categories with their scope set to instances resemble
concrete traceability-link targets in a project that are part of
certain associations or dependencies.

Figure 6 displays an example based on Figure 5 where
the abstract meta-type category Application kernel
component was detailed with five needed instances as sub-
categories. One could insert a suitable pattern for Application

kernel component in Figure 5 like this was done for the
MVC. Maybe Evans’ domain concepts [22] could detail the
Application kernel component as mentioned above, but this
would alter the level of detail of Figure 6 as well.

It is obvious that the relationships of Figure 6 are rather
simple and stereotype. We are inclined that the instance
categories may introduce relationships among each other and
eventually alter the dependencies inherited from the abstract
parent software category. But these considerations are out of
the scope of this work.

Summary. We outlined how the software categories of
Quasar can be used to describe patterns in more detail or
independently describe their responsibilities. We will tend to
the described pattern refinement problem, and so, follow a
similar way as seen in Figure 5. Our idea is to compose the
GUI responsibilities from several sources at once and make
use of an abstract software category tree to arrange them in
an appropriate way. So, the categories will serve as the
means for structuring, grouping and proper separation of
responsibilities.

3) Software Category Identification Approach

We seek to establish a basis for the responsibilities that
are regularly discovered in a GUI architecture. Our approach
is depicted in Figure 7.

In detail, we will rely on four different kinds of sources
and analyze them to identify the GUI responsibilities:

cmp Classic MVC

Model

Notification

DataRead

Observer

View

Controller
DataEdit

«ca ll»

«call»

«call»

«call»

req U ser In terface Pattern s Infl ue nce factors

UIP

de finition
View
aspect

Interactio n
aspect

Hiera rchi cal c ontrol fl ow for UIP co mpo si tio ns
C ontro l

a spect

Da ta-binding

Configuration o f U IP contex t a t design-timeR eusabil ity
of U IPs Vari ability o f

UIP

instances

Structural

composition
abili ty

Acc eptance of
data types

A da ptabili ty

o f view
structure

Behavi oral
composition
ability

Visual el ement structur e definitionVi sual element structure states definition

Intercommuni cation eve nts definition

Sty le defi ni tio n

La yout definiti on

Encapsula tio n of UIP ar tifacts

Dia log action-binding

C onfig ura ti on of UIP co ntext at run-ti me

C onfig ur ati on of UIP
i nsta nc es

Presenta ti on action-binding

View
definiti on

V iew
v aria bi lity

para meters

Enumer ati on of elements

Orderi ng of eleme nts

N aming o f elements

La yout pl acement of elements

Styl e customi zati on of elements

Adaptio n o f presenta ti on contro l in

correspondence to a ctual visual structure

cmp GU I Software C ategori es

TA

View

Definition

Presentation

Event Handling

Presentation
(FUI)

Arrangement of

UI-Controls

Layout

Definition

UI-Control

Configuration

View State
Changes

Construction of

UI-Controls

Re-Arrangement

of UI-Controls

Technical Data

Models

Model Data
Edit

Modification of

UI-Control Properties

Addition and Removal of

UI-Controls

Dialog Logic

Data

Validation

Application
Logic

Application

Server Calls

Dialog

Navigation

Dialog Data

Model

Dialog Lifecycle

Actions

GUI

Framework

UI-Control

Library

Layout

Manager

Event

Forwarding

Action

Binding

Dialog Event

Handling

Domain Data
Model

Data Types and

Validation Rules

Data

Conversion

0

Construction and

Configuration

UI-Control

PropertiesPresentation

Data H andling

Model Data
O bserverData

Quer ies

Application
Services Event Listener

Definition

Dialog State

Changes

Presentation

State Update

Data

Display

View
Navigation

Dialog Logic
Construction

P resentation

Construction

Figure 7. Process applied for the derivation of GUI software categories.

relevant responsibilities will be derived mainly from related
work about patterns and reference architectures; considered
sources are references [3], [4], [5], [6], [7], [8], [10], [14],
[15], [16], [18], [29], [31], [32], [33], [34], [35], [36], [37]
and [38]. In addition, we rely on more sources not described
in this work: we use sample dialogs, consult the UIP factor
model [42] and integrate own experiences from software
development projects.

In fact, we do a decomposition of GUI architectures to
rather atomic object types, related operations and nested
object types. These entities will be separated and delimited in
order to establish a unique software category tree. We
examine, what can be solved with 0 or A software and what
concerns are definitely dependent on GUI framework code
(T software). Finally, the found responsibilities will be
assigned to individual software categories, which will be
used according to the rules of Quasar to synthesize an
abstract software category tree displaying GUI architecture
responsibility concepts.

Basic software categories. As the software categories
are not clearly defined in original sources, we will have to
point out how to create new and delimit existing software
categories.

On the root level, we will comply with Quasar and use
the basic categories 0 (white), A (light grey), T (medium grey
with white caption) and AT (dark grey with white caption).
The basic category Construction and Configuration was
added to represent the creation of new objects as well as the
configuration of interfaces with implementing objects.

On the next level, layers and technological boundaries of
the application architecture are represented. With that step,
the main ordering concept of the analysis in the middle
column of Figure 7 is established. Finally, the main layer
categories Application Kernel, Dialog Logic, Presentation
were identified as A category children, since they depend on
the individual domain-specific requirements of a software
system. Moreover, Presentation and Dialog Logic were
separated as software categories according to the event
processing chain of Figure 2.

Category identification. As the tree gets more detailed,
software categories will become very fine grained and
embody components, collaborations, classes or even
operations. Since the categories can distinguish components
and their dependencies, they could be applicable for the
delimitation of the smaller units of design, too.

190

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To identify each of the refined categories, we applied
several rules of thumb. During the analysis of GUI
architectures and patterns, we derived categories from the
different families of operations that regularly occur in the
scope of certain units of design. In general, these were the
definition or modification of object types or their data types,
event triggering or processing, as well as forwarding of both
data and events. These kinds of operations occur for different
layers like technical or application related objects of general
GUI pattern components that are common for MVC or the
Quasar client. The different layers symbolize certain levels
in the software category tree and were derived from
reasonable abstractions like application logic, presentation
logic and presentation technology. These layers should help
us to prepare a coarse-grained order principle of GUI
responsibilities and let us establish a high level
categorization. The applied layers are partially related to the
ones outlined in [10]. We alter and extend the given
description. The layers will be explained in the following
listing:

• Application logic: The objects and operations are
dedicated to realize the core functional requirements
of a business information system.

• Presentation logic: This layer is settled in-between
the two other layers. So, it resumes tasks that cannot
clearly be assigned to one of the other layers. These
tasks include the handling of states that affect the
visual appearance and navigation among different
screens or dialogs. Furthermore, the logic that
determines what application logic calls are
appropriate in a certain state or how data states
influence the screen layout and its UI-Control states
is realizes in that layer. In sum, it couples application
logic and presentation technology layers to create a
seamless flow of interaction. This is done by
translation of events emitted from presentation
technology to application logic services and data
changes. Changed data has to be reflected on the
presentation technology layer; hence the presentation
logic has to initiate a respective update of the
presentation technology layer. Basically, this layer
addresses the need that the different components on
the various layers do influence each other with their
internal state changes as this is described by
Karagkasidis [10].

• Presentation technology: Both GUI framework and
system objects are combined to create or alter the
views and visual effects of a GUI for displaying data
and interaction facilities. The visual states are
implemented with that layer’s objects and
operations, but its tasks do not include the logic
required for deciding what state is appropriate in a
certain situation. In addition, the reaction to user
inputs and the activation of event processing are
further tasks of that layer.

For each of the layers, we distinguished the belonging

operations and data structures according to the knowledge
and types required for their processing. When operations
demanded for the usage of certain types in a context that was

not in scope of the originator then categories were definitely
of a mixed kind. In contrast, categories were left pure when
interfaces using neutral 0 or A types could be used for
delegations. A hint close to implementation considers what
would be the import declarations in a unit of design with
respect to Java language. If the import was based on
interface types using neutral 0 types, the category would
remain pure. The software category would be mixed, if the
imports will demand for the addition of types defined
exclusively in the imported unit of design.

These considerations led us to finding software
categories on different levels of an abstract software category
tree; it also inspired us to establish a clear definition of
software categories that is presented in the following sub-
section.

4) Software Category Definition and Delimitation

So far, the fundamentals surrounding software categories
were described. It is still to be declared what are the concrete
contents of a software category. This aspect is essential to
describe each software category’s individual details and to be
able to delimit them.

However, the clarification of software category contents
is not supported by available sources. Therefore, we derived
certain dimensions that exist in a hierarchical order of
dependency. These dimensions outline the contents of one
specific software category. Figure 8 illustrates what
dimensions define the knowledge that resides inside software
categories. The following paragraphs will explain each of the
dimensions.

Specific content. Each software category is dedicated to
a specific topic or area of knowledge. All sub-ordinate
dimensions depend on the choice of that content. Thus, the
dimension acts as a filter to permit the inclusion or exclusion
of certain Contained entities, what Type of operation is to be
performed with them, and finally, what Knowledge must be
possessed for the implementation or usage of defined
operations.

Figure 8. Software category definition via successive dimensions.

191

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For instance, the software category Java Swing GUI of
Figure 5 permits the containment of every class of the Java
Swing GUI framework and all basic Java foundation classes
that can be assigned to 0 Software further upwards in the
tree.

The expression of that dimension can hardly be formal. A
semi-formal approach may be established by assigning
certain requirement models as the specific content.

Contained entities. This dimension determines what
object types or units of design are to be considered inside the
software category. Two particular cases are to be
differentiated: in the first case, a software category may
introduce and define specific units of design. These originate
from and exist in the scope of that particular software
category. In the other case, the software category is
referencing entities or units of design that originate from
other software categories and are not defined inside the
current software category. This case often occurs for the
import of interfaces connecting different components or
classes or for the incorporation of foreign data structures.

The entities may consist of layers, components,
interfaces, classes or even smaller units of design. It largely
depends on the hierarchy level the software category resides
on. To constrain the set of entities the first dimension puts up
a global limitation for the software category. The scope of
topics, and so, the number of contained entities differs
greatly with respect to the given software category hierarchy
level. Thus, the concept of software categories follows a
hierarchical de-composition downwards the tree. It is of the
essence for each architect to find a suitable level for detailed
modeling to achieve proper cohesion and no coarse or too
fine-grained units of design.

Besides, the second dimension affects the third
dimension in a way that objects and data structures both for
calling (allowed parameters) and implementing (interfaces
and data structures) operations are defined. According to the
refinement of software categories, the dependencies of the
current software category express that all Contained entities
from the previously defined parent categories are implicitly
contained as Referenced entities.

With the given definition of the second dimension a
software category may formally be defined by the entities it
contains or references.

Type of operations. The next dimension is concerned
about the general type of operations performed with the
previously Contained entities. There are various options:

• Creation: Entities are created with the knowledge of
the software category. Additionally, the entire
lifecycle of entities may be governed.

• Implementation: Interfaces required to interact with
certain entities are implemented. These can be call-
back interfaces that are typical for the event listeners
of GUI frameworks. Furthermore, interfaces can be
defined by superior entities that need a certain set of
operations to be implemented by lower situated
interaction partners.

• Calls / delegations: Operations of other entities are
called and the control is passed on to them.

• Control: Other entities are called with their
operations but the control remains inside the
software category. This kind of operation is applied
in order to coordinate a flow of operations or events.

• Algorithms: Domain specific calculations are
performed or technical routines activated. The
results are obtained from the knowledge present in
the software category or are gathered from
Referenced entities operations that may eventually
be used for enhancement or aggregation.

Depending on the type of operation combined with the
considered entities, the software category type, its purity or
coloring may change. For instance, the Controller of Figure
5 is no pure category, but of a mixed type, since it controls
both the appearance of the View (compare ChangeView
interface of Figure 1) and simultaneously coordinates calls to
the Application kernel components (compare
ApplicationKernelService interface of Figure 1). So it must
possess knowledge about both topics at once. In addition, the
Controller has to implement event call-back interfaces that
are referenced within its scope but are defined in and
constitute parts of other software categories like Java Swing
GUI.

Both the second and third dimension can be sharply
determined and delimited by enumeration of entities and
operation types performed with them. Therefore, the two
dimensions together represent the formal part of a software
category’s definition.

Knowlegde of operations. This final dimension
expresses the proper moment in time and purpose of a
contained operation inside the software category. Essentially,
it represents the proper sequence, atomic steps and meaning
of operations. This knowledge combined with the definitions
of the previous dimensions embodies the ability to finally
implement the operations of a software category.

D. Graphical User Interface Software Category Model

In this section, we will apply the approach presented with
Figure 7 before we describe the GUI software category tree.
Hence, the following sub-sections will analyze the
responsibilities covered by GUI architectural patterns and
their sources introduced in Section II. We will begin with the
MVC and its variants, which is followed by the analysis of
the Quasar client.

1) Analysis of the Model View Controller

Responsibilities

The responsibilities described by the MVC pattern and its
variants are summarized in TABLE I. Please note that the
sources for the different MVC responsibilities are not
completely mentioned; only the primary or sources with
significant descriptions of these responsibilities are
considered. Moreover, the assignments of operations may
vary due to several MVC design options, which are
exemplarily described in [4] and [10]. Our scope is the
completeness of responsibilities and not the display of
different design options.

192

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Analysis of the Quasar Client Reference Architecture

Responsibilities

Compared to the previously illustrated MVC
responsibilities, the Quasar client includes many of these but
considerably adds detail concerning the presentation logic

and application logic layers. According to Siedersleben [16],
the Quasar client compares to MVC as follows: the View is
contained in the Presentation.

TABLE I. MODEL VIEW CONTROLLER PATTERN RESPONSIBILITIES.

Pattern role Responsibility Operations Defined / referenced entities Layer

stores business data [18][31],
provides results of data queries or
intermediary object data [31]

read model data,
change model data

Defined / referenced:
data read and write interfaces for business objects and data
types, aggregates or selections of business objects and their
attributes (intermediaries [31])
(Inclusion or references depend on the realization of the
model as a part of the application / business layer or as a
separate unit of design.)

application
logic

validate data [4][35],
provide additional information for
visual interpretation of data [15]

validate data,
read data interpretation
information

Defined:
data interpretation information
Referenced:
business data types and validation information

application
logic

provide an interface for calling
application services [18]

call application service Referenced:
application services,
business objects and data types as parameters

application
logic

register observers to be notified
upon data changes [18]

register observer,
deregister observer

Defined:
list of observers
Referenced:
observer interface

presentation
logic

Model

notify observers about data changes
[18][31]

notify observers Defined:
setChanged interface
Referenced:
observer interface

presentation
logic

display data, information and
functions [18][31],
arrange screen layout [31][15],
visually interpret data [15],
highlight validation errors

display initial screen,
change screen layout,
read model data,
interpret model data

Defined:
possibly specializations of GUI framework classes (may be
used for data interpretation)
Referenced:
UI-Controls and layout managing facilities provided by the
GUI framework,
model data

presentation
technology

update data display [18] read model data,
update UI-Controls

Defined:
update display interface
Referenced:
UI-Controls provided by the GUI framework,
model data

presentation
technology

transform business data to technical
GUI data model [31][35][16]

read model data,
transform data

Referenced:
model data,
UI-Control data models required by the GUI framework

application
logic,
presentation
technology

create corresponding controller [18] create controller Referenced:
associated controller

presentation
logic

register as observer of the model
[18]

register observer,
deregister observer

Referenced:
model observer interface

presentation
logic

View

composition of hierarchical views
[18][10]

create sub-view Referenced:
subordinate views,
UI-Controls provided by the GUI framework

presentation
technology

receive and react to user input
[18][31]

handle event Referenced:
event listener interface provided by the GUI framework,
possibly view’s UI-Controls to determine event source and
react differentiated

presentation
technology

translate events to service requests
of either model or view [18][31]

call model service,
change model data,
call view display update

Referenced:
model service interface,
model data interface,
view state change interface

presentation
logic,
presentation
technology

register as observer of the model
[18]

register observer,
deregister observer

Referenced:
model observer interface

presentation
logic

Controller

update upon receiving notification
from model [18]

update controller state,
update view state

Defined:
update controller interface
Referenced:
view state change interface,
model data

presentation
technology,
presentation
logic

193

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. QUASAR CLIENT REFERENCE ARCHITECTURE RESPONSIBILITIES.

Pattern role Responsibility Operations Defined / referenced entities Layer

display data, information and
screen layout, provide a proper
localization

display initial screen,
change screen layout (DP),
read dialog data (R)

Defined:
possibly specializations of GUI framework classes
(may be used for data interpretation),
presentation data model
Referenced:
UI-Controls and layout managing facilities provided
by the GUI framework,
dialog data model, localization data

presentation
technology

react to user input handle presentation event (PE) Referenced:
event listener interface provided by the GUI
framework

presentation
technology

forward events to dialog kernel
when events are out of
presentations’ scope, attach event
data

forward dialog event (DE),
forward event data

Referenced:
dialog event interface,
presentation data model

presentation
logic

update upon receiving
notification from dialog kernel

update presentation state (SY) Defined:
presentation data model,
update presentation state interface
Referenced:
UI-Controls provided by the GUI framework,
dialog data model

presentation
technology,
presentation
logic

control presentation states and
trigger changes in screen display

change presentation state Defined:
presentation states
Referenced:
UI-Controls and layout state,
presentation data model

presentation
technology,
presentation
logic

transform dialog data to
presentation data

read dialog data (R),
transform data

Defined:
presentation data model
Referenced:
dialog data model,
UI-Control data models required by the GUI
framework

application
logic,
presentation
technology

Presentation

validate input data to ensure
proper formats are entered by the
user

validate presentation data Defined:
presentation data model
Referenced:
business data types and validation information

application
logic

handle dialog events,
control dialog states and dialog
lifecycle

forward dialog event (DE),
change dialog states,
close dialog,
open sub-dialog

Defined:
dialog states model
Referenced:
sub-dialogs

presentation
logic

control data states and retrieve
data from the application kernel

ApplicationKernelService (AF),
update dialog data model,
update dialog state

Defined:
dialog data model
Referenced:
application data model,
application data queries

presentation
logic,
application
logic

notify presentation about data
changes

update presentation state (SY) Referenced:
update presentation state interface

presentation
logic

translate events to service
requests for the application
kernel

ApplicationKernelService (AF) Defined:
dialog data model
Referenced:
application kernel service interface,
application data model

application
logic

update upon receiving
notification from application
kernel

ApplicationEvents (AE),
update dialog state,
update dialog data model

Defined:
dialog data model,
dialog states model,
ApplicationEvents interface

application
logic,
presentation
logic

register application kernel as
observers of data or state changes

ApplicationEventsRegistration
(DA)

Defined:
ApplicationEventsRegistration interface
Referenced:
ApplicationKernelService interface, list of observers

application
logic

Dialog

kernel

validate dialog data before
calling application kernel
services

validate dialog data Defined:
dialog data model
Referenced:
application data model,
business data types and validation information

application
logic

Dialog

manager

control the lifecycle of the dialog
composition

create and close dialog kernel,
create and close presentation

Referenced:
associated dialog kernel and presentation

presentation
logic

194

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Controller tasks are shared among Presentation and
DialogKernel; they implement different control facilities
with respect to their individual scopes (presentation
technology and presentation logic). Lastly, the Model is
realized by the data models of Presentation and
DialogKernel.

In TABLE II, the responsibilities of the Quasar client,
which we could reveal from references [2][14][16], are
presented. Please note that Siedersleben mentions several
design options in reference [16] that affect the
communication between Presentation and DialogKernel
(Figure 3). We based our description of the responsibilities
on the architecture diagram of Figure 3; the displayed
interfaces were considered in TABLE II accordingly.

3) Synthesis and Description of the Graphical User

Interface Software Category Model

The resulting software category tree is depicted in Figure
10 and will be developed in the following paragraphs. It has
to be considered that the software categories do model
dependencies between units of design and no flow of events
or algorithms. Although there will be interfaces between
software categories for later implementation, these cannot be
illustrated by the software category tree but can be later on
determined concerning the possible type.

Principal units of GUI design. To clarify what units of
design will be considered for a GUI system, we consulted the
directions given by related work. Our findings were that
MVC patterns often relate to single Views that model the
visual display for a certain state of data or processing. In
contrast, the Quasar client considers Dialog units that
comprise of visual and logic components. Additionally,
Dialogs feature an own life cycle and can activate or de-
active each other, so that a flow of Dialogs and
corresponding presentations or Views is established.

For a general GUI responsibilities model and its possible
practical applications, the given definitions of both MVC and
Quasar client were not entirely sufficient. As far as the
Quasar client [16] is concerned, the relationship between
input masks (or views) and dialogs is not entirely clarified,
so that we received the impression that each Quasar client
Dialog (Figure 3) is expected to have only one dialog data
model and one Presentation (Figure 3) unit. As a
consequence, we incorporated the following enhancements
in the hierarchy of GUI design units:

A Dialog corresponds to one or more Use Cases of the
system requirements specification and may be associated
with several follow-up dialogs or auxiliary dialogs [16]. To
provide data for display, processing and storing user inputs,
each Dialog unit contains a Dialog Data Model. This model
is closely related to the data requirements of the realized Use
Cases. To be able to present several Use Cases steps
individually or partition data among several views, each
Dialog is associated with one to many Presentation units,
which realize the corresponding display of a given Dialog or
Dialog Data Model state.

From our experience, it is reasonable to keep dialog data
and consecutive user interaction steps with several different
displays together in one GUI design unit.

cmp GUI design units

Dialog

Use Case

Presentation

Sub-Dialog

included Use Case

extending Use Case

Dialog Data Model

11

«extend»

1..* «trace»

0..*

1..*

«trace»

0..*

«include»

-main dialog

1

-auxiliary dialogs

0..*

-main dialog 1

-follow-up dialogs 0..*

-Dialog Logic

1

-Views

1..*

1

«trace»

1..*

Figure 9. Principal units of GUI design and their requirement sources.

For instance, a Dialog may consist of a Dialog Data Model
with several objects that cannot be displayed with one single
window. Accordingly, the data is structured among several
Views, which can be realized with different tabs of one
window or with several windows. That is why each Dialog
may reference several Presentation units, which serve as
different Views (Figure 1) with their sets of UI-Controls and
layout definitions. Accordingly, the user may proceed with
required Use Case interaction steps straight forward or may
return to previous steps in order to revise inputs. The data for
all steps is kept together in one Dialog unit and its respective
Dialog Data Model. Therefore, the communication needs
between Dialogs concerning data exchange is reduced to a
required minimum.

Furthermore, a Dialog may reference Sub-Dialogs that
are closely related to either included or extending Use Cases.
For instance, a search for certain objects can be added to
some Dialogs as a Sub-Dialog to support the user during the
selection of relevant data (included Use Case) for a certain
context (Use Case). The particular search Sub-Dialog may
appear in other Dialogs as well.

Figure 9 illustrates the GUI design units and their
described relationships. The GUI design units were
identified in correspondence to the event processing chain of
Figure 2 and the basic software categories and layers of
Section III.C.3) we apply for software category modeling.
Thus, the Dialog serves the presentation logic and
Presentation is responsible for presentation technology. Both
GUI design units will lead the identification of detailed
software categories and respective responsibilities within
their scope of data and event handling.

The sub-trees of software categories illustrated by Figure
10 will be described with respect to their different scope as
follows.

Presentation layout. The categories derived from
Presentation are closely related to the View and Controller
of the MVC pattern [18] and detail both their
responsibilities. TABLE III provides a summary of the
software categories modeling Presentation layout concerns.

195

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Presentation is marked with FUI (final user interface)
[43] given that this category symbolizes the certain
knowledge required for creating the specific View part of a
given GUI system. This category is further branched into
View Definition, View Navigation and Presentation Event
Handling. The involved software categories have to comply

with project specific dialog specifications and at the same
time need to possess knowledge about the types and
operations the integrated GUI Framework offers. Hence, all
sub-categories heavily depend on technical aspects. They
each constitute a mixed category.

TABLE III. PRESENTATION SUB-TREE SOFTWARE CATEGORIES.

Sub-Category Topic Contained entities Operations

Presentation Visual parts of a Dialog that realize the presentation
technology layer.
defines interfaces used in child software categories
for construction purposes

Defined:
Presentation Construction interface,
View Definition interface,
Presentation Event Handling
interface

Abstract

Presentation
Construction

constructor of a Presentation unit Referenced:
Presentation Construction interface,
View Definition interface,
Presentation Event Handling
interface

Creation:
Presentation (View) units with their
comprising parts of View
Definition, Presentation Event
Handling and View Navigation
Implementation:
Presentation Construction interface
(activates the constructor of a View
to enable its creation along with
associated UI-Controls, layout and
event handling)

View Navigation Changes and activates the Views that can be part of
of one Dialog unit. This responsibility is essential
for Dialogs that constitute several steps with or
without different choices leading to certain Views.
Views shall be decoupled from each other to
facilitate their exchangeability and even reuse. That
is why the View Navigation interface has to be
called from outside the Presentation.

Defined:
View Navigation interface,
states or target Views for navigation
Referenced:
Presentation interface

Creation:
Creates different Views by calling
Presentation interface
Implementation:
View Navigation interface (offers
access for entities outside
Presentation to trigger View
changes)

View Definition Visual part of a View that creates and holds all UI-
Control and layout information

Defined:
UI-Control Configuration interface,
Layout Definition interface
Referenced:
View Definition interface

Creation:
UI-Control Configuration,
Layout Definition
Implementation: View Definition
interface (constructor)

UI-Control
Configuration

construction of UI-Controls, setting of UI-Control
specific properties

Defined:
possibly specialized UI-Controls
created by inheritance from the GUI
framework,
UI-Control state data
Referenced:
UI-Controls of the GUI framework
and their properties,
UI-Control Configuration interface

Creation:
create UI-Control
Delegation:
set UI-Control property
Implementation:
UI-Control Configuration interface
(creates the UI-Controls upon being
called by View Definition)

Data Display UI-Control specific display of data, interpretation of
model data [15] like coloring and highlighting of
validation errors
The dependency to the GUI framework Technical

Data Models is derived from Model Data Observer
and its parent software category Presentation Data

Handling.

Defined:
UI-Control display data (for simple
data display and interpretation of
data)
Referenced:
Dialog Data Model read interface
Technical data model interface

Delegation:
Read Dialog Data Model
Algorithm:
Interpret Dialog Data Model
Control:
change the technical data model and
associated display of UI-Controls
based on Dialog Data Model
contents and its interpretation

Layout Definition

Creates and defines the layout of the View
The category itself is abstract, so that its child
software categories do the actual implementation of
layout creation. Thus, the child categories can be
regarded as different strategies of the Layout

Definition interface.

Referenced:
Layout Definition interface,
Layout managers of the GUI
framework,
UI-Controls of the View

abstract

Arrangement of UI-
Controls

Creates the general View layout,
assigns layout to containers like panels, parts, cells
positions UI-Controls inside layout containers

Referenced:
Layout Definition interface

Implementation:
Layout Definition interface (creates
the View layout upon being called
by View Definition)
Algorithm:
create View layout with the help of
layout manager operations

196

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The View Definition category is detailed with the
responsibilities required for the initial creation of the visual
parts of a Dialog and the declaration of layout specific
elements. We separated the Layout Definition and UI-
Control Configuration as the layout aspects often involve the
usage of dedicated objects and operations that considerable
differ from the instantiation and configuration of UI-
Controls. For the reasons that events require dedicated
operations and not all created UI-Controls have to be bound
to certain events, the category Action Binding was separated
as a specialization of the UI-Control Configuration.

View Navigation enables the change of different
Presentations of a Dialog with respect to Figure 9.

Data Display was added to better reflect the visual
presentation of data, which was formerly [1] included in UI-
Control Configuration (setting properties for data values),
and includes the interpretation of certain data values as an
additional responsibility derived from [15].

Presentation event handling. The Presentation Event
Handling category serves the task to receive and evaluate
Presentation events according to Figure 2. It is branched into

Presentation Data Handling, View State Changes and Event
Forwarding. The first child handles both the reading (Model
Data Observer) and editing (Model Data Edit) of Dialog
data from the Presentation perspective. The changes in
layout, properties and arrangement of active UI-Control
instances during runtime are optional tasks that are embodied
by the category View State Changes and its children. Certain
events cannot be further processed by the visual dialog units,
so that they need to notify the next unit in the chain of
responsibility. This rationale is based on Figure 2. The
required knowledge how to react to any received events is
concentrated in Presentation Event Handling. Its child
software categories serve the above described
responsibilities on demand of the superior evaluation of
Presentation Event Handling. For instance, the decision
about what respective events are to be forwarded is made by
Presentation Event Handling and the actual forwarding
command is encapsulated by Event Forwarding.

In TABLE IV, the software categories responsible for
Presentation based event handling are summarized.

TABLE IV. PRESENTATION EVENT HANDLING SOFTWARE CATEGORY SUB-TREE.

Sub-Category Topic Contained entities Operations

Presentation Event
Handling

Event handler called by an UI-Control with active
Action Binding

This software category evaluates any incoming
events from UI-Controls and decides on a proper
reaction: Presentation Data Handling, View State

Changes or Event Forwarding are triggered. For
instance, it decides what events can and cannot be
processed by the Presentation and must be
forwarded to the Dialog Event Handling. Just the
decision is covered here, how the forwarding is
performed is in the scope of the respective child
software category.

Defined:
Event Forwarding Interface,
View State Change Interface,
Presentation Data Handling
interface,
Action Binding interface
Referenced:
Presentation Event Handling
interface

Implementation:
Presentation Event Handling
interface (constructor),
Action Binding interface (to be
notified of any event intercepted by
UI-Control Action Binding)
Algorithm:
Determine the proper reaction in
response of the received event
Control:
Activate the proper reaction
implemented by its child software
categories

Action Binding definition of various event listeners for UI-Controls
to enable a reaction to specific events
The event is just intercepted by the implementation
of the event listener interface. Eventually, the
resulting reaction is not covered but prepared with
the delegation to the presentation event handling.

Referenced:
Event listener interfaces of the GUI
framework,
Action Binding interface

Implementation:
specific event listener interfaces of
the GUI framework
Delegation:
call Action Binding interface to
notify Presentation Event Handling
about user inputs

Event Forwarding forwards events to the Dialog Event Handling Referenced:
Event Forwarding interface,
Dialog Event Handling interface

Implementation:
Event Forwarding interface
Delegation:
forward event (Dialog Event
Handling interface)

View State Changes Interface that permits the change of Presentation
states, which can be called by the Presentation

State Update. May be called for changes like the
activation of hidden or collapsed panels.
The possible states a View can adopt are modeled
by this software category.

Defined:
Interfaces of child software
categories (Re-Arrangement of UI-
Controls, Modification of UI-
Control Properties, Addition and
Removal of UI-Controls),
View state model
Referenced:
View State Change Interface

Implementation:
View State Change Interface
Control:
Call appropriate child interface to
enable the appropriate change of
visual state

Re-Arrangement of
UI-Controls

Change the position of UI-Controls inside the View
layout on request of View State Changes

Referenced:
Re-Arrangement of UI-Controls
interface

Implementation:
Re-Arrangement of UI-Controls
interface
Algorithm:
alter View layout with the help of
layout manager operations

197

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sub-Category Topic Contained entities Operations

Modification of UI-
Control Properties

activate, hide, or change UI-Controls in size, color
or any other visual property on request of View

State Changes
May be called when data validation failed or new
data state requires the update of particular UI-
Controls only. In addition, UI-Controls can be set to
be read-only when no further editing shall be
permitted.

Referenced:
Modification of UI-Control
Properties interface,
UI-Control state data,
UI-Controls of the GUI framework
and their properties

Implementation:
Modification of UI-Control
Properties interface
Delegation:
set UI-Control property

Addition and
Removal of UI-
Controls

change the set of active UI-Controls of a particular
View on request of View State Changes
UI-Controls may be added or removed as a result
depending on the current data state or events
evaluation.

Defined:
possibly specialized UI-Controls
created by inheritance from the GUI
framework,
UI-Control state data
Referenced:
Addition and Removal of UI-
Controls interface,
UI-Controls of the GUI framework
and their properties

Implementation:
Addition and Removal of UI-
Controls interface
Creation:
create UI-Control,
delete UI-Control
Delegation:
set UI-Control property

Presentation Data
Handling

event handling that is only concerned about data
changes and storage from the Presentation point of
view

Defined:
Model Data Edit interface,
Model Data Observer interface
Referenced:
Domain Data Model,
Technical Data Models of the GUI
framework,
Dialog Data Model interface,
Dialog Data Model observer
registration interface

Delegation:
register as observer with Dialog

Data Model
Algorithm:
determine proper data handling
reaction
Control:
initiate data update via Model Data
Observer interface,
Activate Model Data Edit interface

Model Data Edit changes Dialog Data Model in order to store user
inputs present in active UI-Controls

Referenced:
Dialog Data Model write interface,
Model Data Edit interface

Implementation:
Model Data Edit interface
Delegation:
change dialog data

Model Data
Observer

retrieves data from the Dialog Data Model after
being notified as observer of that model,
loads data for Presentation

Referenced:
Dialog Data Model read interface,
Model Data Observer interface

Implementation:
Model Data Observer interface
Delegation:
read dialog data

With respect to View State Changes, the Quasar client

reference architecture [16] seems to miss an interface
provided by Presentation that can be called by the
DialogKernel to trigger changes like the activation of a
dedicated panel that displays properties when the user
performs a certain selection. Reference [14] states that this
problem can be solved via an additional observer pattern
instance.

GUI Framework. As far as the GUI Framework is
concerned, we decided for the distinction of layout and UI-
Control specific knowledge or types. The UI-Control
Library implements all operations and types that are required
for the instantiation of any available UI-Control, the
modification of its properties (UI-Control Properties) and
the definition of its data content (Technical Data Models).
Often there are various data types with different complexity
associated to the available UI-Controls of a framework. They
need to be handled by the Presentation Data Handling
category in order to store and retrieve data in the specific
formats like lists, trees, text areas or table grids.

The applied branching of the GUI Framework serves the
fine-grained presentation of dependencies, so that these
model what detailed relationships the other software
categories have with T software categories.

Dialog Logic. The last main category that is to be placed
in the vicinity of a Dialog is the Dialog Logic. Software
categories that are involved in the data structure definition
and its logical processing refine the Dialog Logic. The basis

of these categories is provided by the Quasar client [2][16]
and the Model part of the MVC pattern [18]. In analogy to
the Presentation category, we distinguish the definition of
data objects (Dialog Data Model) with associated operations
and the event handling (Dialog Event Handling). The latter
are based on Dialog Data Model, since dialog state
evaluations largely depend on current Dialog Data Model
states, which already reflect the inputs and choices the user
may has actuated.

Dialog Data Model. The software category Dialog Data
Model depends on knowledge about the Domain Data Model
defined by the Application Kernel as well as Data Queries
that may deliver the composition of selected attributes from
different entities in order to create new aggregates relevant
for display. The Data Queries category belongs to the
Application Server Calls category, which encapsulates
knowledge about the available application services, their pre-
conditions, invariants and possible results with respect to the
presentation logic layer (see Section III.C.3)).

The Dialog Logic category graph mostly constitutes pure
A category refinements. However, the Data Conversion
category is of mixed character. To define data structures that
can be used in close cooperation with the Application
Services, it needs to know about Dialog Data Model, and
thus, incorporates its dependencies to the Data Queries and
Domain Data Model. Besides, the Data Conversion category
has to be aware of the current Technical Data Models in
order to provide access for Presentation Data Handling. The

198

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

latter has to know about the structure of defined data models
(Dialog Data Model and Technical Data Models) to be able
to delegate proper updates in both directions.

TABLE V summarizes the responsibilities that are
concerned with handling Dialog data.

TABLE V. DIALOG DATA MODEL SOFTWARE CATEGORIES SUB-TREE.

Sub-Category Topic Contained entities Operations

Dialog Data Model establishes the data model used in the entire Dialog
unit,
serves as a global Model element according to
MVC terms

Defined:
Dialog Data read interface,
Dialog Data write interface,
aggregates or selections of business
objects and their attributes
(intermediaries [31]),
additional data evaluation or
interpretation information not
present in Domain Data Model,
list of observers
Referenced:
data read and write interfaces of
Domain Data Model and data types
(Data Types and Validation Rules),
Presentation Data Handling
interface (observer update),
Dialog Data Model interface

Delegation:
data read and write operations on
the Domain Data Model and its data
types,
notifies Presentation Data

Handling about data changes
(observer pattern)
Algorithm:
offer browsing and selections of
contained Dialog Data Model
elements specific for display choice
options
Implementation:
Dialog Data read interface,
Dialog Data write interface,
Dialog Data Model interface

Data Validation validates Dialog data
This responsibility may cover the comprehensive
validation of multiple attributes or objects at once.
Otherwise just the validation interface of individual
objects is called and evaluated in order to provide
validation information for the Presentation.

Defined:
validation information beyond the
scope of single business objects or
data types
Referenced:
validation interface of Domain Data

Model or its data types (Data Types
and Validation Rules),
Dialog Data write interface

Creation:
validation information
Algorithms:
validation of Dialog data objects
beyond the scope of single objects
Delegation:
call the validation interface of
Domain Data Model or its data
types
Control:
Change Dialog Data Model based
on validation results

Data Conversion offers transformations between technical and
domain data model formats
The Dialog Data Model may define new getters and
setters that accept GUI Technical Data Models
types or may trigger the call of a dedicated
component (R software) [6] providing generic
conversions.

Referenced:
data read interface of Domain Data

Model and data types (Data Types

and Validation Rules) (derived from
parent category Dialog Data

Model),
Technical Data Models

Algorithm:
data conversion operations
Delegation:
data read operations from both data
model formats

The Dialog Data Model serves as the primary Model

according to MVC terms; UI-Controls do only hold their
properties that mirror small parts of the Dialog Data Model.
Furthermore, observer functions are considered 0 software
and can be included anywhere, so they require no special
interfaces. For the sake of completeness, selected operations
have been included in TABLE IV and TABLE V.

Dialog event processing. The entire event processing
chain and its association to software categories was
challenging; our rationale will be explained as follows.

Foremost, logical and presentation states were separated:
presentation logic tends to be stable (enter data, evaluate,
present suggestions, make a choice and confirm), is traced to
functional requirements (see Figure 9), and thus, should be
decoupled from GUI layout specifications. Although the
flow of presentation logic is unaffected, the GUI and its
technology supporting the user in his tasks may be altered
several times starting with updated visual specifications and
ending with the deployment of different GUI Frameworks.

Additionally, the Presentation can be further differentiated
into abstract visual states that have a close connection to the
current application state (or Dialog Data Model of Figure 9)
and technological or concrete presentation states, which
implement the former by using visual appearances. The latter
is translated to GUI UI-Controls via GUI Framework and its
sub-categories. As result, we identified three major
categories for state control to be considered below.

The Dialog Event Handling tree governs the presentation
logic part of a Dialog and has no concrete visual
representations or related tasks. In contrast, it assumes the
Presentation to maintain appropriate visual representations,
but these remain abstract for the Dialog Event Handling,
e.g., a View for data input is activated, data input was
completed or current data leads to another View state for data
input.

The responsibilities for dialog event handling and
respective software categories are summarized in TABLE
VI.

199

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. SOFTWARE CATEGORIES RESPONSIBLE FOR DIALOG EVENT HANDLING.

Sub-Category Topic Contained entities Operations

Dialog Logic The software category and its children are
responsible for the presentation logic part of a
Dialog that connects application logic and
presentation technology.
Defines interfaces used in child software categories
for construction purposes.

Defined:
Dialog Data Model interface,
Dialog Event Handling interface,
Dialog Logic Construction interface

Abstract

Dialog Logic
Construction

constructor of a Dialog Logic unit Referenced:
Dialog Data Model interface,
Dialog Event Handling interface,
Presentation Construction interface,
Dialog Logic Construction interface

Creation:
Dialog units with their comprising
parts of Dialog Data Model, Dialog

Event Handling,
Presentation (initial state of a
Dialog is created)
Implementation:
Dialog Logic Construction interface

Dialog Event
Handling

definition of Dialog states and associated actions

It is computed what actions are allowed (reload
data, confirm) in a given Dialog state and how the
Dialog is altered because of received events. The
results or reactions of the Dialog Event Handling
are each modeled by child software categories:
Dialog Lifecycle Actions, Application Server Calls
or Presentation State Updates are activated, which
enable different behavior or control states of other
lower situated entities (sub-dialogs, follow-up

dialogs, Presentation). However, the parent
category Dialog Event Handling resumes the task to
decide what child category is finally called in a
certain Dialog state.
In some Dialogs data evaluations are needed to
trigger the proper View from several configurations,
which may be rule-based. In this regard, the logic
required for changing pages in large scale Dialogs
like wizards when data was validated successfully
is modeled by this software category. The
evaluation is done by the Dialog Event Handling,
but the actual change of View is performed by
Presentation State Update. The latter receives the
command to just switch to a certain View. The
decision to what view is to be switched lies in the
scope of Dialog Event Handling.
Please note that the branching of Views is not
assigned to the Dialog Data Model, since the model
can be reused elsewhere with different rules for
navigation or display.

Defined:
dialog state model,
dialog event forwarding interface,
dialog event reaction interfaces
(Dialog Lifecycle Actions interface,
Application Server Calls interface,
Data Queries interface, Presentation
State Update interface)
Referenced:
Dialog Event Handling interface,
Dialog Data Model

Creation:
dialog state model
Algorithm:
evaluate current Dialog state and
determine appropriate reactions
(e.g., evaluate Dialog state on the
basis of Dialog data in order to
determine navigation options)
Implementation:
Dialog Event Handling interface
(constructor),
dialog event forwarding interface
(called by Presentation Event

Handling to notify about events to
be processed)
Control:
Call appropriate event reaction
interfaces,
proper sequences of Application

Server calls or Dialog Navigation

Dialog Lifecycle
Actions

construction of Dialog units, changes global states
of current and other Dialogs

The scope of this category is the reaction on special
events like OK, Cancel and similar terminal
notifications. As a result, an entire Dialog unit is
created or discarded. The associated design units
represented by Dialog Data Model and
Presentation are created indirectly by activating a
cascade controlled by the Dialog Logic and its
states. In addition, other Dialog units may be
ordered to be activated or de-activated by calling
the Dialog Navigation interface.

Defined:
Dialog Navigation interface
Referenced:
Dialog Logic,
Dialog Lifecycle Actions interface,
Dialog Logic Construction interface

Creation:
Dialog Logic creation / deletion
(Dialog Data Model and associated
Presentation are created or deleted
implicitly)
Implementation:
Dialog Lifecycle Actions interface
(called by Dialog Event Handling)
Control:
determines the proper sequence of
Dialog units to be activated and de-
activated (Dialog Navigation
interface)

Dialog Navigation performs the navigation among Dialogs or
activation of Sub-Dialogs

The opening and closing of auxiliary Dialogs like
search dialogs for master data (e.g., customer ID
and address) is performed.

Referenced:
Dialog Navigation interface,
Dialog Data Model,
Dialog Logic Construction interface
(other Dialog instance units)

Create:
Create and discard sub- or follow-up

dialogs
Implementation:
Dialog Navigation interface

Dialog State
Changes

addresses the possible changes in state with respect
to the currently active Dialog only

Abstract Abstract

200

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sub-Category Topic Contained entities Operations

Application Server
Calls

event handling routines that interact with the
Application Logic services
This software category models the reactions on
particular events that require the activation of
services of the Application Logic.

Referenced:
Application Server Calls interface,
Application Services interface,
Domain Data Model

Implementation:
Application Server Calls interface
Delegation:
Application Services interface

Data Queries loading and updating domain layer data
As a specialization of Application Server Calls, the
retrieval and sending of data in correspondence
with the interfaces of Application Services is of
particular interest.

Referenced:
Data Queries interface,
Application Services interface,
Domain Data Model,
Dialog data interface

Algorithm:
Assembly or selection of
appropriate data queries provided
by Application Services
Implementation:
Data Queries interface
Delegation:
Proper calling sequence of
Application Services for data
retrieval
Control:
Setting Dialog data

Presentation State
Update

triggers the change of Presentation states / visual
layout

Referenced:
Presentation State Update interface,
View State Change interface,
View Navigation interface

Implementation:
Presentation State Update interface
Delegation:
calling of state change notifications
of the Presentation (View State
Change Interface, View Navigation
interface)

The interfaces that connect the software categories for

event handling are to be defined in detail as reusable 0 or A
software (much like the observer pattern [17]). That is why
there are no dependencies visible in Figure 10 between
Dialog Event Handling and Presentation Event Handling.
The same applies for the visibility between Presentation
State Update and View State Changes or View Navigation.
Finally, a command [17] interface may be used that contains
only stereotype operations and can be typed as 0 software.
Each of the involved event handling software categories is
implicitly connected to 0 software via the various parent
software categories in the hierarchy.

Please note that the parent software categories of Dialog
Event Handling and Presentation Event Handling define
most interfaces for their children, so that they are able to
control them but do not depend on their detailed actions,
internal types or implementations. The children encapsulate
the results of a response chosen by the parent category for a
certain event.

From the presentation logic’s perspective, a Dialog may
adopt different states during runtime. The required
knowledge to enact these states is represented by the abstract
category Dialog State Changes: only its refinements will be
assigned to design units; the parent software category Dialog
State Changes serves grouping purposes and summarizes
commonalities of the children. Dialog State Changes is
separated into children, which either interact with the
ApplicationKernel or the Presentation. Both its categories
reflect the two general situations that may occur in any
Dialog: Application Server Calls may be initiated or a
Presentation State Update can be triggered. The parent
category Dialog Event Handling possesses the knowledge
how to react in a given situation. Its children are dedicated to
solely apply the required change of state that either addresses
the Application Server or Presentation, which provide the
state change execution. Thus, the children and other server-
like entities (e.g., Application Services, View Navigation and
State Changes) do not know when their services are called.

cmp GUI Software Categories

TA

View

Definition

Presentation

Event Handling

Presentation

(FUI)

Arrangement of

UI-Controls

Layout

Definition

UI-Control

Configuration

View State

Changes

Construction of

UI-Controls

Re-Arrangement

of UI-Controls

Technical Data

Models

Model Data

Edit

Modification of

UI-Control Properties

Addition and Removal of

UI-Controls

Dialog Logic

Data

Validation

Application

Logic

Application

Server Calls

Dialog

Navigation

Dialog Data

Model

Dialog Lifecycle

Actions

GUI

Framework

UI-Control

Library

Layout

Manager

Event

Forwarding

Action

Binding

Dialog Event

Handling

Domain Data

Model

Data Types and

Validation Rules

Data

Conversion

0

Construction and

Configuration

UI-Control

PropertiesPresentation

Data Handling

Model Data

ObserverData

Queries

Application

Services Event Listener

Definition

Dialog State

Changes

Presentation

State Update

Data

Display

View

Navigation

Dialog Logic

Construction

Presentation

Construction

Figure 10. GUI responsibilities modeled as a software category tree.

201

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Object Lifecycles and Construction

In this Section, we briefly describe how the construction
of instances is considered by the software categories of
Figure 10.

As we learned from Figure 9, there are the principal GUI
design units Dialog, Sub-Dialog and associated
Presentations, which will bear the major part of
responsibilities in real GUI systems. To lead to creation of
these units, we have incorporated constructor responsibilities
within the software category tree that compare to the
DialogManger of the Quasar client (see Figure 3).
Particularly, the Dialog and Presentation both were
supplemented with responsibilities dedicated to construct the
child elements of these parent software categories.

In this regard, the Dialog Logic Construction is
responsible for the creation of the main Dialog unit. We
assume that a Dialog design unit will correspond to the
software category sub-tree modeled by Dialog Logic. Based
on the responsibilities a Dialog has to fulfill, it initiates the
construction of the starting Presentation as an entry point for
user interaction after the creation of own member objects.
This sequence is to be followed, since the Dialog Logic
controls the states of the Presentation anyway.

Concerning the Presentation, this design unit also
features a software category (Presentation Construction)
dedicated to the construction of its child elements.

Both the Presentation and Dialog Logic may call the
construction of additional units of their type when respective
events occur: for the Presentation, new Views will be
requested by View Navigation upon a call from Presentation
State Update was received. With respect to the Dialog Logic,
during the event processing by Dialog Event Handling a
Dialog may be finalized or a new Dialog instance may be
created as a result of a Dialog Navigation event reaction.
Both options are controlled by Dialog Lifecycle Actions.

Figure 11 provides an overview about the dependencies
concerning lifecycles and construction of instances based on
the software categories of Figure 10.

cmp Lifecycles

ViewUnit :

Presentation (FUI)

DialogUnit :

Dialog Logic

ViewConstructor :

Presentation

Construction

DialogConstructor :

Dialog Logic

Construction

InitialView :View

Definition

ViewEventHandler :

Presentation Event

Handling

DialogData :

Dialog Data

Model

DialogEventHandler :

Dialog Event Handling
ViewNavigator :

View Navigation

DialogLifecycle :

Dialog Lifecycle

Actions

ViewUpdater :

Presentation

State Update

«call»

«create»

«create»

«create»

«create»

«create»

«create»

«create»

«create»
«call»

«call»

«call»

«create»

Figure 11. Intended lifecycle dependencies and constructors of possible

objects derived from the GUI software category model.

Whenever new instances are to be created, an object that
implements the respective construction responsibility of
either Dialog Logic Construction or Presentation
Construction is to be delegated.

5) The Event Processing of the Software Categories

Figure 12 provides an overview of possible interface
connections between software categories involved in event
processing. Please note that the interfaces need to be of the
basic A category type as this is the common parent category
of the displayed interacting categories. Basically, three
different scopes for states are modeled by the software
categories. They are the following:

• Dialog Logic - Application Services: The scope of

this state model is concerned with the data model of
the entire Dialog unit and the interaction with
Application Services. Decisions are to be taken what
services and data contents are to be combined for the
required interaction of a given Use Case. As a result
of the Dialog Logic state model evaluation, a change
of the visual state may need to be delegated. It
depends on the GUI specification with respect to the
required steps a given Use Case scenario may
demand for.

• Dialog Logic - Presentation, View level: A Dialog
may require consecutive Views to be displayed in a
certain sequence or based on user decisions. These
changes of Views are in the scope of a dedicated
state model.

• Presentation, UI-control level: The different states a
particular View may adopt are considered herein.
This covers different changes in layouts and UI-
Control configurations.

The general flow of events is indented to work as

follows: initially, the user triggers some events that are
intercepted by UI-Controls that have an Action Binding
configuration. In any case, the event is passed on via
PresentationEventHandlingInterface to the Presentation
Event Handling. A first evaluation of that event may result in
a decision by Presentation Event Handling to further move
the event on the event processing chain via
EventForwardingInterface to Dialog Event Handling for the
final evaluation.

Depending on the current state of the Dialog, Dialog
Lifecycle Actions (creation and deletion of Dialogs and their
objects), a Dialog Navigation (change of current View or the
instantiation of Sub-Dialogs), Application Server Calls
(commit a sequence of service calls) or a Presentation State
Update (change of the visual representation) may be
activated as reactions by Dialog Event Handling.

In this regard, the key design issue is that the
Presentation has no knowledge in its sub-categories how to
decide on a proper reaction for events relevant for Dialog
Logic. Please remember that Presentations or Views may be
reused in different contexts (compare pluggable Views in
reference [31]), and so, a direct binding of their UI-Control
events to state changes would greatly limit their flexibility
and adaptability. Therefore, the event firstly is forwarded via

202

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the DialogEventHandlingInterface interface of Figure 12.
Then, the Dialog Event Handling evaluates the event and
controls one of its children, which further delegates to the
displayed interfaces of Figure 12 and initiates the final
change of state. Concerning the Presentation State Update in
Figure 12, View State Changes (panels are activated) or View
Navigations (wizard steps or tabs are switched) are
committed via interfaces. Another option would be a change
of the Dialog’s lifecycle or even a Dialog Navigation
(separate Dialogs or an auxiliary search Dialog are
instantiated) could be performed.

In this context, the knowledge when to trigger any of the
interface operations is kept in the parent category Dialog
Event Handling. In contrast, the execution of the respective
state change is encapsulated in the child categories, which
are marked by a white border in Figure 12 and implement the
interfaces. At last, the state changes are completely
decoupled from the point in time when they are requested.

Moreover, the Presentation Event Handling is separated
into event processing that is either concerned with data or the
visual structure. Mostly the data relevant events can be
processed locally by the Presentation if no forwarding is
registered. However, the View State Changes do require the
forwarding of events to the Dialog Event Handling first,
before they can be committed. This is due to the decoupling
of View states and their better exchangeability. Furthermore,
the differentiation of event evaluation, triggering and state
change execution supports the reuse and change of Views as
they are better decoupled from Dialog Logic components. In
this regard, View states are relevant for the Dialog Logic but
not their concrete appearance, which can be adapted
frequently.

cmp Event handling categories and interfaces

View State
Changes

Application
Server Calls

Dialog
Navigation

Event
Forwarding

Application
Services

Presentation
State Update

ViewStateChangesInterface

DialogNavigationInterface

Dialog Event
Handling

DialogEventHandlingInterface

Dialog State
Changes

ApplicationServicesInterface

Dialog Lifecycle
Actions

Presentation
Event Handling

Action
Binding

PresentationEventHandlingInterface

EventForwardingInterface

ApplicationServerCallsInterface

PresentationStateUpdateInterface

DialogLifecycleActionsInterface

View Navigation

ViewNavigationInterface

«call»

«call»

«call»

«call»

«call»

«call»

«call»

«call»

«call»

«call»

Figure 12. Software categories relevant for event processing and possible

interfaces.

To conclude, the event handling approach and its
respective software categories ensure that the layers of
presentation technology and logic (introduced in Section
III.C.3)) remain strictly separated. In fact, there will be
dependencies among Dialog Logic and Presentation that
cannot be avoided like the consistency of logic and visual
states. However, the control of all states remains centered in
one unit of design (Dialog Logic), which will facilitate
development and maintenance of complex Dialogs.

IV. REVIEW OF GUI ARCHITECTURE PATTERNS

In this section, we review the presented GUI patterns of
Section II in the light of the elaborated software categories.

A. MVC Variants

For the review of classic GUI architecture patterns, we
would like to refer to exemplary work published in [4] and
[10], which is valuable for filling gaps and giving directions
for related design decisions. Therein, options for refinement
and customizing MVC based architectures are proposed and
discussed. It is still up to the developer to decide on the
several choices. In contrast, the Quasar client architecture
presents a reference for our domain that already has some
refinements incorporated.

1) Positive Aspects

Both patterns and Quasar client share two positive
aspects that motivate their application. Firstly, the data
storing component does not depend on any other of the
components, and so, can independently evolve. Secondly,
only one of the components resumes the task to call
ApplicationKernel services. This aspect eases the design
efforts for interfaces and data exchange formats between
Dialogs and ApplicationKernel.

2) Issues

According to the MVC variants, we see major design
issues that will be described in the following paragraphs.

Separation of concerns. To begin with, the degree of
encapsulation and separation of concerns of MVC variants is
very limited. There is no variant that is able to reduce the
dependencies of all three abstractions altogether. Solely, the
distribution of tasks is altered, and so, the visibility among
components changes accordingly. In the end, one component
will be assigned responsibilities that originate from the two
other components as they are defined by classic MVC [31].
Therefore, the component with concentrated tasks tends to be
overburdened, and finally, can end up as the bottleneck from
a maintenance perspective. Additionally, altering the tasks of
the three components in certain variants may result in a
simplification of one component that can only be employed
for stereotype tasks but fails to suit more complex scenarios.
There seems to be no ideal separation of concerns among the
three components. A fourth element may be missing.

In general, there are no hints given how the display for
certain portions of business logic or data can be decoupled
from their technical manifestation. More precisely, the View
part is directly coupled to the GUI Framework (Figure 1). In
addition, the knowledge of the View has to constitute of how
to operate the GUI Framework facilities (to construct the
visual dialog parts) and what layout as well as what

203

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

selection, order and arrangement of UI-Controls are needed
to embody the domain and the current service in use.

Event differentiation and related control. With regard
to the event processing chain of Section II.B, the GUI
patterns do not distinguish clearly between events related to
technical or application concerns. In general, a guideline is
missing for the decision when to shift between presentation
technology or presentation logic related processing of events.
TABLE I provides an overview about the assignment of
these layer specific responsibilities to MVC pattern roles.

Although the MVP variants [6][7] and HMVC [5]
employ a “Supervising Controller” [15], which receives each
event from any UI-Control and acts as a global MVC
Controller, the problem persists: the Presenter as well as the
HMVC Controller still have to decide whether the incoming
events require an presentation technology or presentation
logic specific processing and have to react accordingly. Yet,
these approaches solve the “visibility problem” described by
Karagkasidis [10] where the Controller and View are
separate classes. In any case, the developer has to refine the
architecture by himself to enable a differentiated handling of
presentation and application related events. Finally, the reuse
may be affected, since the Controllers end up processing
both types of events for the sake of initially quick releases.

Cohesion and granularity of triads. With the
application of MVC derivates that differ from the classic
MVC approach [31] a problem occurs concerning the
identification of possible instances and their proper size.
There are hardly any hints when to create new Dialog
instances or MVC-triads. Thus, the proper modularization of
Dialog components is to be done on behalf of the developer.
Only the HMVC [5] gives some rudimentary hints. In the
end, the general size and scope of MVC triads is not clear.
According to Karagkasidis [10], a View may constitute of
single UI-Controls (widgets), containers like panels with a
certain set of UI-Controls or complete Dialogs. The classic
MVC approach [31] was clearer on that topic, since MVC
triads were very fine-granular starting at the UI-Control
(widget) level and building a corresponding triad for every
element of the visual object hierarchy, ultimately ending
with a last triad at the window level. However, the classic
approach is not likely to be feasible for modern and more
complex application scenarios: the high integration of
business systems and their complexity would demand for a
large number of Dialogs that would result in myriad of MVC
triads.

Coupling of Controllers to both Model and View. With
respect to the above described limited separation of concerns
more issues arise. The controlling of both Presentation states
and the handling of application related events to initiate
ApplicationKernelService calls inside the Controller creates
close coupling of Controllers to both View elements and
naturally the Model. Usually, in many MVC variants
Controller and View maintain a strong dependency where the
Controller is fully aware of the UI-Controls of the View. In
fact, both components build an aggregated unit of design
(rather than representing separated classes) that cannot be
reused and is harder to maintain. Eventually, a Controller
can only interact with Views that comply with a certain set of
states. Whenever the set of UI-Controls changes the possible

states of the entire Dialog alter as well, so that the Controller
implementation may have to be revised each time. This is
due to the awareness of Controllers about the View’s UI-
Controls what results from the following. In modern GUI
frameworks the Controllers obtain user entered data directly
from UI-Controls and not as the payload of an incoming
event, as this was the case in Smalltalk or classic MVC [31].
With the latter, separate classes for View and Controller
could be realized but current GUI frameworks demand for
alternative solutions. Karagkasidis [10] exemplarily
discusses the solution provided by HMVC.

To partly resolve this issue and decouple the Controller
at least from application aspects, a developer could revert to
the “Model as a Services Façade” [4] MVC variant. The
Model would be assigned both data structures and related
service calls for interaction with the ApplicationKernel. This
step would raise a comparative discussion as whether it is
favorable to build a separate service layer [44] or use the
domain model pattern [32] exclusively for the structuring of
the ApplicationKernel. In our opinion, the Model should not
act as a service façade, since it would make parts of an
ApplicationKernel service layer obsolete. According to the
resulting dependencies to functional requirements, the
traceability-links of Use Cases or tasks would be scattered
among different Models and parts of the ApplicationKernel.
Furthermore, the operations of the Model would be closely
coupled to a certain data structure so that a Model cannot be
easily combined with other application services in the future.
Lastly, services should prevail, since there might be other
clients besides a particular GUI to rely on services. There are
more disadvantages with that solution like the stereotype
character of the Controller [4], which will only serve a
certain pattern of interaction. Thus, the Model should only
contain data-relevant operations (getter, setter, aggregation
and conversion, a state of current selections, validation state)
and be reusable with other services. In this regard, the Model
should act as a mere preparation of a data structure that is
useful in the context of a View, its display, as well as in- and
outputs.

3) Summary

The MVC and its derivates require much adaptation in
order to be prepared for implementation [14]. The above
mentioned issues may considerably have a negative impact
on the resulting architecture quality. The available patterns
are definitely not easy to interpret with respect to the
common set of GUI responsibilities illustrated by the
software category tree in Figure 10.

The tracing of functional requirements to the parts of the
GUI, which coordinates ApplicationKernel service calls, will
largely depend on the refinements the developers have
incorporated in the GUI architecture. Additionally, a clear
separation of presentation technology and logic (see Section
III.C.3)) is not supported in any variant, so that event
handling will always consume high efforts for development
and especially maintenance.

Anyway, the resulting architectures will be
heterogeneous and may add complexity to quickly provide
an adapted solution for the particular domain. As long as
there are no standard architectures or standardized

204

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

responsibilities available, the developer is left with many
choices that potentially will lead to vast differences in
software architecture quality. The improved segregation of
software categories in component architectures is a
challenging goal hard to achieve with available patterns.
Project budgets may severely limit the software architecture
quality to be attained.

B. Quasar Client Reference Architecture

1) General Valuation

The Quasar client architecture provides the most detailed
architecture view on GUI systems published so far and can
be regarded as a refinement of the common GUI patterns.

Positive aspects. In contrast to the MVC variants, the
Quasar client separates Presentation and DialogKernel as
principal dialog components. This separation is the main
source for its virtues, since more clearly distinguished
Controller tasks are achieved. In this regard, the
Presentation is required to handle technical events and the
DialogKernel will process application related events in close
cooperation with the ApplicationKernel services.

States and control. According to Siedersleben [16], the
Presentation and DialogKernel components share a common
structure: both possess memory for storing data, states and a
control. Thus, both components are able to manage their
states independently. A change of layout aspects in the
Presentation would not affect the DialogKernel accordingly.

In theory, the changes of states are implemented in each
component individually and can be triggered by A typed
interfaces that may be designed on the basis of a command
[17] pattern [14]. Consequently, the DialogKernel does not
require knowledge about the inner structure of the
Presentation and vice versa. Thereby, the Presentation may
provide a set of operations that alter the layout of a Dialog
depending on the current content of data received from the
DialogKernel via DataUpdate interface. The triggering of
visual state changes on behalf of the DialogKernel
(Presentation State Update) may be possible that way but is
not considered. For instance, a DialogKernel was notified
via DialogEvent that the user has selected an item in a table
listing available products. But the product is on back-order,
so the Presentation should receive the command to display a
certain state of the button bar, e.g., deactivate the “add to
cart” button. According to Siedersleben [16], the states of
visual elements are exclusively controlled by the
Presentation. However, in the particular example only the
DialogKernel would possess the knowledge when to trigger
the state change of the Presentation. It seems that the
cooperation of both units of design needs further elaboration
to be able to be implemented in practical examples. Besides,
a DialogKernel could be able to coordinate the inputs of a
user working with two Presentations simultaneously.

2) Traceability-Links to GUI Software Categories

To be able to better valuate the Quasar client
architecture, we traced the identified software categories of
Section III.D to its structural elements. Figure 13 displays
the resulting traceability matrix. The sources for traceability-
links constitute software categories of varying detail
arranged on the left hand side.

Figure 13. The GUI software categories traced to Quasar client reference

architecture components and interfaces.

Please note that the general parent software categories were
excluded, since all child categories are presented in the
matrix. On top of the matrix, the traceability-link targets are
represented either by the components or interfaces of the
Quasar client. Components not relevant as traceability-link
targets were excluded.

Interpretation. We need to provide directions about the
treatment of interfaces and connected dependencies, which
are depicted in Figure 3. A client that imports and calls a
foreign interface must have knowledge about the proper
usage and sequences of operations. In fact, the deeper and
more chained the commands (compare delegation and
control of Section III.C.4)) are the more likely is the mixture
of software categories. Finally, the client will be dependent
on the same software category the interface is composed of.

This particularly applies to the Presentation (obviously
an AT component) that extensively uses the GUI Framework
interfaces, which are to be included in the traceability matrix.

In contrast, single commands of abstract or stereotype
nature like notify calls can be realized with a 0 type
interface. Yet, the interfaces pose hard to valuate concepts as
they inspire a dynamic view on the architecture like the
sequences of commands or flow of algorithms. Ultimately,
the interface operations would need further refinement for a
final valuation. Partly, the Quasar reference architecture
provides basic sequences for interfaces in [2].

205

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Separation of concerns. For the valuation of both
cohesion and separation of concerns two directions inside the
traceability matrix of Figure 13 have to be considered.

Horizontal. The horizontal direction displays a number
of marks for the realization of software categories though
components or interfaces. For a high cohesion and well
separated concerns, there should be software categories
realized only by components or interfaces that belong to one
unit of design. In sum, Application Server Calls, Data
Queries, Data Validation, Dialog Lifecycle Actions, Dialog
Navigation, Model Data Edit and Model Data Observer are
realized by several Quasar elements, and thus, different units
of design.

The first three software categories mentioned before are
shared among the ApplicationKernel and DialogKernel.
Thus, the resulting coupling between these design units will
largely depend on the refinement of interfaces between both
components. Eventually, a mixture of A software categories
can be a probable result when no 0 interfaces can be
invented. The details of this client and server communication
remain an open issue as well as the construction of Data
Queries.

Besides, Model Data Observer is presented with two
options that are either implemented by the DialogKernel
(DataRead) or Presentation (DataUpdate). However, the
complementary task of Model Data Edit is only briefly
mentioned. Siedersleben states that the Presentation may
know the DialogKernel and its data interface (see association
in Figure 3) but not vice versa [16]. As an alternative, newly
entered data may be included as payload of the event emitted
via DialogEvent by the Presentation [16]. How the important
task of changing dialog data is performed in detail by the
Presentation and what interfaces are required is finally left
open.

Moreover, Dialog Lifecycle Actions are of less
importance. They are rather stereotype operations that could
be detailed by 0 type software. In contrast, for the Dialog
Navigation there may be missing directions in the Quasar
client reference architecture, so that responsibilities have to
be refined on behalf of the developer. We wonder how
dialog sequences resulting from task model specifications
[45] would affect the software category assignments. Maybe
the Session cannot be marked as 0 software anymore, since it
would need knowledge of the proper sequence of dialogs,
and thus, would be designated as A software that could not
be reused for different task model instances.

Vertical. A further assessment considers the vertical
direction that reveals targets with many traceability-links.
This can be a marker for lacking detail or even low cohesion.
Those targets would take on too many responsibilities at
once. There are multiple candidates that awake our attention.

As already stated above, the ApplicationKernelService
needs further refinement, so that the way how calls and data
queries are performed by the DialogKernel are both detailed
and differentiated concerning allowed data types and
resulting coupling. Consequently, another major issue is the
DialogKernel itself. This component is relatively vague in
definition, so that tasks like calls to the ApplicationKernel,
Data Queries, the Dialog Data Model definition, Data

Validation and the control of states need to be elaborated
from scratch.

Concerning functional requirements tracing, the
DialogKernel’s internal structure and state control are
important issues that affect the resulting dependencies to
requirements. For instance, it has to be decided what portions
of a use case will be exclusively realized by the Application
Services and what parts the DialogKernel is in charge of.
Above all, the DialogKernel is likely to depend to some
considerable extent on the ApplicationKernel and its Domain
Data Model. In this regard, it has to be cleared how Data
Queries are to be handled from the Dialog Data Model’s
point of view. The Dialog Data Model can either be
composed of pure entities, which may be embedded as
interfaces or data transfer objects, or aggregations that are
sourced from selected attributes of several entities retrieved
by a query.

Furthermore, the Presentation also requires further
elaboration in design. Being the complementary part of the
DialogKernel in a Dialog, the Presentation is declared as
having its own data model in parallel to the DialogKernel in
order to perform conversions to the Technical Data Models.
The main data definition is assigned to the DialogKernel,
since this component is in charge of any data retrieval from
the ApplicationKernel.

How the data related communication (read and edit)
besides the notification of updates between Presentation and
DialogKernel is originally intended remains another open
issue. In this regard, design decisions on both interfaces and
data types as well as their connection to the Domain Data
Model have to be considered. Moreover, details about the
triggering (Presentation State Update) and execution of View

State Changes are missing. This is due to the unclear
connection between Presentation and DialogKernel. When
decisions about reactions on events are bound to
Presentation, logical behavior will be closely coupled to
certain Views, so that they are less flexible for change and
reuse. In addition, events can only be emitted by View
elements and cannot be triggered by the evaluation of
gathered Dialog data alone, since there is no link for the
DialogKernel to initiate a View State Change via
Presentation State Update when an event was forwarded.

A look at the matrix of Figure 13 reveals that the event
handling of the Quasar client architecture with respect to
presentation technology and logic concerns seems not to be
elaborated with the necessary care and accuracy; there are
several responsibilities mixed within and among
Presentation and DialogKernel: firstly, the Presentation is in
charge of both receiving events (Presentation Event
Handling), deciding on visual states (Presentation State
Update) and executing them (e.g., Addition and Removal of
UI-Controls). Secondly, the needed knowledge for decisions,
and thus, presentation logic is likely to be based within the
DialogKernel as far as the interaction with the Application
Services is concerned. Yet, the latter is assigned to handle its
own state model (Dialog Event Handling) and partly
manages the Dialog data (Dialog Data Model) together with
Presentation. So, both design units share the information
necessary for deciding upon state changes. In contrast to the
GUI software category model of Figure 10, the Quasar client

206

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

architecture assigns state decisions and executions based on
a different point of view: presentation logic is strictly
separated between application (DialogKernel - Application
Server Calls) and visual behavior (Presentation -
Presentation State Updates), so that the Dialog Logic and its
state model is not centered but shared among two design
units. For that reason, with the Quasar client a Dialog will be
harder to adapt to a changed Use Case scenario affecting the
Dialog state model (a new step with a new or updated View
is required), since the Presentation is designed to both
manage and execute the View state changes. So, the
presentation logic required for deciding on a change or
update of the Views is lost and has to be re-implemented
whenever the Presentation has changed. From our point of
view, a centralization of event-based decisions found in the
GUI software category tree of Figure 10 would reduce the
portions of AT software existent in any Presentation and
could partly facilitate the exchange of Views.

As far as the visual part of the Presentation is concerned,
the ViewDefinition interface and related implementations
inside the Presentation need more refinement. The coarse
grained interface is employed for both handling view states
and their initial construction. In this context, a developer
would have to decide on how the DialogKernel may trigger
the visual state changes as a result of its own states defined
by Dialog State Changes and its children.

Lastly, the Presentation is assigned quite a are large set
of responsibilities, but is the design unit that is not likely to
be stable or reusable after technological changes compared
to the DialogKernel, which does not depend on any T
software influences.

Missing responsibilities. Responsibilities that were
entirely not mentioned with respect to the Quasar client
reference architecture, was the View Navigation. This task
may be confused with Dialog Navigation. Siedersleben
approaches the architecture of a Dialog with the definition of
the relevant terms in reference [16], but he does not use them
in a consistent way, so that some terms are only mentioned
and remain unrelated to the Quasar client architecture itself.
As a consequence, the design unit of a Dialog remains
unclear with respect to the delimitation of other Dialog
instances, Sub-Dialogs, and more urgently, Presentations or
Views of Figure 9 that express the different interaction steps
with a user.

3) Summary

Our review of the Quasar client revealed that this
reference architecture is more advanced than common GUI
patterns. It includes most of the common MVC pattern
responsibilities (TABLE I) and adds several additional ones
(TABLE II). Besides, its main advantage lies in the division
of Controller tasks among the Presentation and
DialogController, so a better separation of concerns can be
achieved. However, this results in increased complexity
concerning the number and type of interfaces to be
implemented.

In comparison to other architectural patterns, the Quasar
client provides more detail and descriptions that give hints to
many design decisions, but these are scattered among several
sources [16][29][38][14] only available in German language.

There was no comprehensive or updated description
published, which would provide the needed implementation
details. In the end, the Quasar client remains vague with
many important issues to solve by individual design
decisions. Nevertheless, we learn from the traceability matrix
of Figure 13 that there are already hints, which component is
to take on what responsibility. In practice, this would yield
only a partial improvement with respect to the common GUI
patterns. In reference [2], Haft et al. state that the Quasar
client could not be standardized, since most software projects
required specific adaptations. The many individual
refinements would affect the marking of software categories,
so that the purity of them and the separation of concerns may
not be maintained as intended. Even the Quasar client
assumes that some portions of AT software cannot be
avoided with conventional architectures relying on invasive
frameworks.

 To conclude, the Quasar architecture is not suitable for a
straight forward implementation. As we see, there are still
gaps in the reference architecture and the developer has to
incorporate own thoughts in order reach the desired quality
architecture. The separation of concerns can be improved
with a customized Quasar client architecture, but this largely
depends on the skills of the architect. In the end, the Quasar
client may be a better, and foremost higher detailed, basis for
reuse of architectural knowledge than the MVC variants
alone.

V. RESULTS AND DISCUSSION

1) GUI Responsibilities Software Category Tree

One of our objectives was to provide a software category
tree with separated concerns to describe a complete
decomposition of GUI architecture responsibilities.

Software category model. We derived a software
category model that structures the dependencies among
common responsibilities of GUI architecture design units
without being biased towards a certain GUI architectural
pattern or framework.

Software category definition and modeling. To be able
to model detailed, refined software categories and finally
delimit them, we had to invent modeling rules that were not
provided in the original sources. We are convinced that these
enhanced rules create a solid foundation for modeling
responsibilities of software architectures, since the results
make sense in our case of a better understanding of GUI
architecture patterns and bring us further towards UIP
integration.

Compared to the CRC method applied for the GUI
patterns in [18], the collaborators of a certain software
category are summarized in the second dimension but are
further outlined by the association with detailed operations.
On the CRC cards, every responsibility of a design unit is
noted on one card and there are not details about their
relationships to the mentioned collaborators on that card.

Nevertheless, there are not only positive aspects about
the software category modeling approach. In fact, there are
some weaknesses of the software categories tree display: For
instance, there is no hint what elements are actually derived
from the dependencies of parent software categories.
Generally, there can be all included or referenced entities or

207

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

only a sub-set of them considered in the child software
category. Some contained entities can even be derived from
the parents of a parent category (e.g., Data Display - Model
Data Observer - Presentation Data Handling - Technical
Data Models is an example of such a cascade of
dependencies or refinements to be discovered in Figure 10).
Moreover, there is also no hint, which parent categories are
skipped and will not be considered in child software
categories. In most cases 0 software is used and almost never
skipped, but along the way up to 0 not all software categories
are always considered. Some relationships just model the
potential visibility of entities. Maybe the detailed modeling
of instance based software category trees can remedy some
of these aspects by providing further detail.

Shape of the tree. Concerning the actual shape of the
software categories tree, there might be different structures
or aggregations possible (intermediate categories) but the
final child elements clearly mark the occurring
responsibilities. In this regard, is has to be noticed that the
software categories displayed here are pure and intended to
be well separated. This arrangement of responsibilities is
mostly not the case in real systems and designs; the software
category tree is an ideal construction.

Software architecture relationship. From our point of
view, the different MVC pattern variants are hard to
understand with all their facets concerning detailed
responsibilities and dependencies on other design units they
need to interact with. Often the MVC variants compose of
smaller patterns like “Supervising Controller” [15] and
“Presentation Model” [15], which are a proof of the ever
present complexity of GUI design.

To partly address the complexity issue, the software
category model presented in this work aims to display the
responsibilities of GUI architectures without favoring certain
structuring or role assignment of design units. They are
created to provide an overview of the general responsibilities
that may occur in GUI systems instead. Architects and
developers shall get a guide what tasks are to be fulfilled
within the GUI system.

There may be an inherent or obvious structure hidden in
the separated sub-trees with Presentation and Dialog Logic.
However, this structure simply emerges from the
dependencies of knowledge (modeled by the dimensions of
Figure 8), which is required for the different responsibilities.
The displayed separation or decomposition of software
categories has not to be strictly followed; there is rather high
degree of flexibility: the software categories can be
distributed differently to design units. For instance, the Data
Conversion responsibility is often differently solved in
designs. Some responsibilities may be omitted when
requirements do not demand for them. Eventually, the
resulting distribution of software categories to design units
determines the final quality of the software architecture.

In this regard, architects can consult this model without
the need to be restricted by given designs, their roles and
relationships. The descriptions and sources used for the
composition of the software category tree are not entirely
distracting or misleading, yet they are quite helpful for
understand certain designs. But their weakness is that they
are already biased towards a certain structure of design or

effects to achieve like this was elaborated by Alpaev in [4]
for the MVC design options.

Software category refinement level. One may argue
that the consideration and segregation of software categories
may overburden an architect with additional tasks and he
will eventually loose overview due to the management of a
set of fine-grained responsibilities. In contrast, the software
category tree shall be helpful and not a burden. In fact, the
software categories build on the refinement from basic to
detailed categories in a hierarchical tree. So, the architect
principally can decide on the level of detail he applies for
modeling, mapping or assessment of design. In this regard,
software categories always group several responsibilities into
a family of cohesive entities; children retain the more
detailed responsibilities and parents serve as a more general
aggregation. In that way, an architecturally meaningful re-
composition of GUI responsibilities is created. The architect
may pick a certain detail level of the category tree, which
ideally resembles a prepared separation of concerns in any
case, in order to re-distribute these responsibilities in a new
system design. This choice decides whether only basic
software categories are used for architecture planning or
refined ones are applied instead in order to achieve a much
better accuracy for cohesion as well as the evaluation of how
well concerns were separated.

Software architecture assessments. Furthermore, the
software category model can be of aid for the valuation of
the detail, cohesion and separation of concerns of reference
architectures or patterns. Section IV.B outlined the principal
approach and an example that assessed the Quasar client
reference architecture. In sum, the software categories
approach can reveal not supported tasks, design units that
bear many tasks at once, perfect matches and tasks that are
shared among two or more units of design.

In our opinion, the established software category tree is
well-suited for GUI architecture assessments: the software
categories embody a set union of the responsibilities of many
of the common GUI architecture patterns. In the context of
GUI design, the software categories resemble different and
delimited packages of knowledge, which are used to identify
and map components or smaller units of design. Later on, the
dependencies among the software categories will lead the
design of interfaces between components [16] to achieve a
minimum of coupling based on the rules established in
reference [16]. Thus, the proper distribution of identified
software categories among design units can have an
enormous impact on software quality. During assessments,
this intended way of identifying design units and delimiting
them by assigning distinct tasks to them can be reversed.
This enables an evaluation of the rationale the design is
based on.

Available architecture patterns cannot provide a
comparative view on GUI responsibilities, since they miss
some details, are interpreted differently among developers,
can be biased towards a certain programming language, and
the discussion of their trade-offs is limited to their scope, so
that the impact on the general architecture can only be partly
valuated. In addition, patterns often need to be combined
within a design, so that their different effects depend on the
actual combination and their adaptations.

208

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Interface design. When common GUI architecture
responsibilities have been identified and systematically
analyzed concerning their dependencies, the potential
interfaces for communication between components or classes
can be derived. According to Quasar [16], an interface
ideally should be defined on the basis of a software category
that serves as a parent for both software categories to be
linked. That way, the least coupling is ensured. Not always
can a shared parent software category be found to serve as a
basis for an interface between components. This may be due
to an improper distribution of responsibilities among design
units. As a result, the underlying software category model
needs to be revised. Anyway, the identification of design
units and their interface structure requires some detailed
planning.

Relationship to implementations. The responsibilities
modeled by the software category tree can be used to analyze
and reflect implementations. According to Quasar
references, this is only done on the level of the very basic
software categories 0, A, T and AT. With the now available
refinements for GUI architectures, an actual design or
implementation can be evaluated concerning the
correspondence to software categories. Thus, the cohesion
and separation of concerns ca be assessed. The other way
around, given implementations may refine the software
category tree and it could be practically examined if the
visibility is sufficient moving the tree upwards starting from
a certain category or if additional dependencies have to be
modeled.

Missing concerns. Currently, concerns like user profiles,
additional assistance, session management [14] and
authorization are not included. In general, terms in the field
of GUI architecture are not used uniformly, so we rely on
our category model that provides a clear description of tasks.
Furthermore, the software categories may be adapted to fit
other domains, since the separation of concerns is essential in
most software architectures.

Summary. By the application of software categories, the
GUI responsibilities to be identified have been ordered and
grouped according to their knowledge and purpose, but this
was modeled independently from any specific software
architecture. The software categories in that role are suitable
to represent a set of GUI responsibilities without the need to
mention specific data types or operations of certain
frameworks. Finally, the way how frameworks are applied
shall be adapted to the required set of responsibilities as well
as the software architecture based thereupon and not vice
versa.

2) Major Issues in GUI Architecture Design

Our first objective was to identify GUI design issues.
These issues naturally result from points of improper
coupling, non-separated concerns and in general missing
responsibilities not modeled by available GUI architectures
or patterns. We had to analyze the available architectural
patterns, which differ in structure as well as the
encapsulation of concerns. Finally, there is no standardized
GUI architecture ready for implementation. This is an issue
here but also for mobile devices [46]. We analyzed the
differences or missing details of presented architectural

patterns and identified four major design issues that may
have a considerable impact on GUI development and
maintenance.

Presentation logic and application control flow.
Firstly, a design decision has to treat the question what and
how much application logic is being processed by a single
Dialog, or particularly its Dialog Logic or DialogKernel.
Thus, the coordination and division of labor between dialog
and application related components should clearly define
what portions of the event processing chain will just be
handled by the DialogKernel.

As the primary controlling entity of a dialog, the
DialogKernel acts as a client of the ApplicationKernel and
its services [16][14]. The architect has to decide how much
control flow will be implemented by the client and what
operations or services are to be integrated in the controlling
object’s flow definition. For instance, the business logic can
be separated by different layers like services, auxiliary
services, domain model entities and data types [47]. The
coordination of the various algorithms and delegations,
which is essential to achieve the goals defined by use cases,
can either be performed by the ApplicationKernel or the
DialogKernel may govern the sequence of service calls and
their combination. The so called orchestration of services to
realize a certain use case is an option for the DialogKernel,
since this design unit determines the data structure for user
interaction. In this context, the DialogKernel directly can
react to valid user inputs and may decide on the further
processing via services or may even trigger corresponding
state changes for the Presentation. How the latter is to be
designed remains an open issue.

Siedersleben states that the ApplicationKernel
components constitute of use case realizations [16].
However, these components would definitely be incomplete
use cases realizations, since the latter regularly require much
user interaction. To conclude, the question arises how use
case realizations are sub-divided among ApplicationKernel
services (management of data structures and relationships,
service hierarchy), DialogKernels (logic for dialog flow and
control of user interaction) and finally Presentations (visual
part, in- and output UI-Controls, realization of visual states).
Ultimately, this design decision depends on the navigation
structure and whether one DialogKernel may control a
composition of Presentation units or Sub-Dialogs that form a
complete Dialog unit for the sake of one use case realization.

Dialog navigation. This leads us to the second issue that
is concerned with the flow of Dialog units or navigation
among them. Karagkasidis [10] already described this issue
from the perspective of an example with opening and closing
Sub-Dialogs. Important aspects mentioned by Karagkasidis
are the lifecycle management of Sub-Dialogs that can be
related to our presented GUI design units of Dialog, Sub-
Dialogs and Views from Figure 9: they need to be controlled
by a dedicated entity that is able to assign data to them,
which is appropriate in a certain context. In addition, events
from every GUI design unit of the hierarchy, which are
significant for the further event handling or application data,
have to be integrated in the presentation logic flow or event
processing chain, so that individual units do not act isolated
but create a comprehensive sequence of events.

209

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Recent research [48][49] investigated on the role of task
models for structuring the flow of dialogs. In analogy to the
above described issue of division of labor for use case
realizations between ApplicationKernel and DialogKernel,
the architect has to decide on the responsibilities of a single
DialogKernel concerning the flow of Dialogs. The question
arises what part of the navigation is governed by higher
situated components, e.g., a dedicated task controller, and
what view changes are in the responsibility of the
DialogKernel.

Large AT software portions. Thirdly, the Quasar
software categories serve a main purpose to separate
application from technical aspects, and thus, avoid AT
software.

As far as the GUI architecture is concerned, we identified
two aspects where AT software does regularly occur. The
Presentation communicates with both the GUI Framework
and DialogKernel in order to retrieve and store data inputs
from the user. Eventually, the Technical Data Models of the
GUI Framework and the Dialog Data Model have to be
converted in the respective formats to enable information
exchange. There may be a second conversion necessary
between Dialog Data Model and Domain Data Model when
the DialogKernel has to use a different data format.

Another aspect of AT software is the transformation of
the Dialog Data Model to visual representations, which are
constructed by the Presentation. Accordingly, the
Presentation needs to possess knowledge of both the proper
selection, arrangement of UI-Controls and the usage,
creation of the latter via the specific GUI Framework
facilities. Besides the first two issues, these two AT software
aspects can additionally increase maintenance efforts. To
solve the third issue, conventional architectures will not
suffice and specific designs for additional decoupling have to
be invented. An initial approach was formulated by
Siedersleben and Denert in [29].

Granularity of GUI pattern design units. Another GUI
design issue could be identified that is cross-cutting along
the previously described three GUI design problems. It is
concerned with the proper sizing of GUI design units, or
with respect to common GUI patterns, MVC triads [10]. In
detail, the main objective is keeping the event processing
chain of the GUI perfectly matched with the functional
requirement side of the value creation chain represented by
business processes and corresponding use cases. Ultimately,
these two mental models of event flows have to be kept in
close synchronization to be able to firstly realize
requirements properly and secondly apply changes to the
GUI system efficiently when requirements are altered or
added. Simple MVC or even greater HMVC [5] or MVP
[6][7] Controllers are quickly overburdened in their scope in
the attempt to trace functional requirements of the value
creation chain, and so, keep track individual steps of
application control flow.

The introduced GUI software categories (Figure 10) shed
light on the granularity problem as they clearly distinguish
greater and lesser components like Dialog Logic,
Presentation, View Definition and Presentation Event
Handling.

Originally, the MVC and its derivates were not designed
to address such complex and hierarchical structures within
information systems. Please remember that the classic MVC
was built with the assumption in mind having this
architecture applied as the global architectural style: there
were no additional units of application or domain related
design (generally A software descendants in terms of Quasar
software categories) besides Models.

Nowadays, application and presentation logic as well as
business processes do pose a difference to that rather simple
Model design of the past. Therefore, Controllers face a
different scope inside the value creation chain. To be able to
separate concerns and keep a high cohesion, Controllers
need to be assigned a proper level of responsibilities within
the GUI software category tree. This in turn requires a
corresponding sizing of triads or other pattern based GUI
design units.

Identification of GUI design unit instances. Besides
the granularity problem, there is an additional conflict
whether to provide a custom identified structure of MVP or
HMVC instances with better overview due to the reduced set
of design units or to adopt an easy to identify hierarchical
structure of classic MVC [31] with small fine-grained triads
that follow a stereotype assignment approach of GUI design
units (every UI-Control potentially serves as a triad
connected to a global Model or a part of it). It has to be
considered that the classic MVC approach can only be relied
on as far as the Presentation is concerned. A Dialog Logic or
DialogKernel unit of design and their responsibilities cannot
be covered and have to be realized by custom solutions.
According to the HMVC or MVP approach, the Controllers
couple the different triads for communication and navigation
purposes, so that the evolution or maintenance of both
Presentation and Dialog Logic or DialogKernel units of
design is closely coupled. Finally, this approach needs a
further separation of concerns to resolve the issue. A perfect
distribution of responsibilities will be difficult to achieve,
since there are only certain triad members to accept the set of
responsibilities symbolized by the principal software
categories View Definition, View Navigation, Presentation
Event Handling, Dialog Data Model and Dialog Event
Handling. These need to be distributed among the triad
members.

3) User Interface Patterns and Solution Approaches

Before we draw our conclusions, we briefly discuss how
the incorporation of UIPs for the Presentation component
may directly or indirectly resolve some of the identified GUI
design issues.

AT software. At first, the mixture of application and
technical aspects can directly be avoided by the integration
of UIPs. In this context, UIPs promise the reuse of visual
layout and related interaction. Thereby, the stereotype parts
therein would be implemented once and encapsulated in the
UIP units. Then the Presentation could be composed of these
pattern units and would specify their contents via parameters.
The UIP implementations would directly depend on the GUI
Framework and no longer each Presentation unit. Therefore,
fewer efforts would have to be spent on programming with
GUI Framework facilities in the long run when UIPs could

210

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be reused extensively. The development could be focused on
the DialogKernel design issues instead.

Event differentiation by software categories. To
integrate UIPs in the Presentation, the differentiated
software categories for event processing will be of great
value. The differentiation of events is a fundamental
preparation for UIP integration as they prepare the better
adaptability and even exchange of Presentation units.
Responsibilities would be centered in the DialogKernel to
raise the flexibility of UIPs.

We favor a solution that corresponds to the
responsibilities of the software category tree and identifies
Controller like design units accordingly. In detail, we think
about moving away from the concrete representation of
visual elements in each View of any triad. Controllers on
different A software levels should be established along with
abstract to more concretely defined View contents:
Controllers based on the Presentation sub-tree of software
categories can be closer coupled to a View, than Controllers
of the Dialog Logic sub-tree. For instance, for a Dialog
Logic level based Controller a visibility could be defined
that describes an associated View to be controlled in state
with only abstract elements like inputs, outputs, commands
and navigation signals (compare abstract user interface,
abstract interaction components of reference [50]), since this
level of detail is completely sufficient for this type of
Controller. In addition, this design keeps the opportunity to
easily change the concrete details of the concrete Views
lower in hierarchy. The higher situated Controllers do not
depend on the concrete details; as long as the number of
view states and in- as well as output events remain the same,
details of views concerning layout may freely be changed.
View states will be relevant for the Dialog Logic, but not
their concrete visual appearance. The Dialog Logic is
decoupled and kept independent from Views in turn.

In common MVC architectures, the Controllers are
closely coupled to the View they are associated with. When
the Views are altered or exchanged, the Controllers need to
be also adapted or will not be reusable at all. For UIPs, these
circumstances are not desirable; some Controller tasks need
to be stable and reusable, so that at least the design units
controlling the presentation logic states remain unaffected.

The above described approach to a solution is exactly
what UIPs may need: Controllers cannot rely on knowledge
about the View’s concrete visual composition, instead a small
interface is required that is both used for communication
between Dialogs and UIPs as units on Presentation level and
for the configuration or instantiation of UIPs. The UIP just
required to provide the states, in- and outputs of data
required by the Dialog Logic part. Anyway, these
requirements have to be met by any other Presentation,
which may be not UIP based, in order to comply with the
underlying use case. Therefore, we suggest that an abstract
representation of the Presentation from the Dialog Logic’s
point of view is sufficient and are confident that this
approach will improve software architecture quality.

UIP impacts. To conclude, the software category tree
displays the dependencies among the occurring GUI
responsibilities. When UIPs are to be integrated in the GUI
software architecture, an architect is able to assess the

impacts UIPs may have on the established relationships. In
particular, he can decide what interactions require a different
design for coupling in order to enable the reusability and
exchangeability of UIPs. A first description of such
assessments was presented in reference [51], but this was
based on an earlier revision of the software category tree.

VI. CONCLUSION AND FUTURE WORK

The scope of this work is a study of the prevailing issues
of GUI architecture design. A software category tree on the
basis of Quasar was elaborated, which displays common
responsibilities for GUI architectures and their dependencies.
This display is independent of any platform, framework or
architecture pattern. In contrast, available patterns can be be
detailed or adapted on that basis. Eventually, the identified
and described responsibilities can be re-structured in a GUI
software architecture that may serve as a basis for a
standardization of UIP integration. When no concern is
mixed-up, reuse of UIPs is principally facilitated.

With the aid of the software categories, we have analyzed
the common GUI MVC pattern and the Quasar client
reference architecture. As result, we identified pattern
specific and general issues of relevance for design decisions
within GUI architecture development. The herein applied
method with a decomposition of software categories and the
tracing to an architecture model can be applied for other
domains to assess the separation of concerns, cohesion and
coupling.

Software categories and their relationship to patterns
and design. One might ask what the difference is between
the reviewed GUI architecture patterns with the presented
tables of their responsibilities and the software category
model, which nearly contains the same set of responsibilities.

Foremost, the software category model of course
contains each responsibility of the patterns and is partly
sourced from them. Nevertheless, the difference of capital
importance is that the patterns already contain roles or design
units with their fixed interfaces, dependencies and
associations. These comprise the design as a structural and
behavioral pattern unit and cannot be altered without
changing the entire pattern concept.

On the contrary, the software categories model the
responsibilities not from a fixed role perspective but from a
point of view what topic, entities and operation types with
their intended purpose are required for a certain
responsibility. Hence, responsibilities in the software
category tree are based on differentiated areas of knowledge
and not on structural relationships in the first place. The
advantage of the software categories is that they can be re-
assigned to different designs, so that developers can be
assured of completeness when each of the software
categories can be traced to the resulting design. In that way,
the same tasks the patterns serve are realized but different
variations in design can be probed in a controllable manner.
The patterns do not enable such a fine-grained
decomposition of their responsibilities and allow no easy
modifications without compromising the pattern’
characteristic effects or forces.

Finally, the software categories do not only allow the
allocation of responsibilities to designs; they are essentially

211

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

supplemented with rules [6] that are to be applied on the
design of interfaces between interacting entities. This
concept of rules shall ensure an improvement of coupling
and a reduction of dependencies.

Future work. The findings of this work will influence
our further research into the implementation options for
UIPs. The Quasar client proved to be the most advanced
architecture publicly available. On the basis of the identified
issues of that architecture, we will have to develop dedicated
solutions to prepare a suitable target architecture for UIPs.
We need to further assess the architecture variants outlined
in our previous work [30]. The software categories will help
us to plan and evaluate possible solutions. Whatever
architecture variant will be favored, it definitely needs a
software architecture of high quality with well separated
concerns to accept UIPs as additional and reusable artifacts.
The solution must resolve the identified GUI design issues to
allow the integration of UIPs as artifacts that enable a
reduction of efforts for the adaptation of GUIs. Finally, UIPs
shall not add additional dependencies, otherwise they would
make GUI software systems even more difficult to maintain.

The established GUI software category tree will help us
to integrate UIPs into the existing responsibility relationships
and keep control about their influence. However, the
software category tree needs to be approved in practical
applications and possibly requires a revision.

ACKNOWLEDGMENT

We like to express our gratitude to the companies, close
friends and family members that took part in and contributed
valuable results to the survey mentioned in the introduction.

REFERENCES

[1] S. Wendler and D. Streitferdt, “A Software Category Model
for Graphical User Interface Architectures,” The Ninth
International Conference on Software Engineering Advances
(ICSEA 14) IARIA, Oct. 2014, Xpert Publishing Services, pp.
123-133, ISBN: 978-1-61208-367-4.

[2] M. Haft, B. Humm, and J. Siedersleben, “The architect’s
dilemma – will reference architectures help?,” First
International Conference on the Quality of Software
Architectures (QoSA 2005), Springer LNCS 3712, Sept.
2005, pp. 106-122.

[3] T. Reenskaug, “Thing-Model-View-Editor. An example from
a planningsystem,” Xerox PARC technical note, 1979.05.12.

[4] S. Alpaev, “Applied MVC patterns. A pattern language,”
The Computing Research Repository (CoRR), May 2006,
http://arxiv.org/abs/cs/0605020, 2015.06.01.

[5] J. Cai, R. Kapila, and G. Pal, “HMVC: The layered pattern for
developing strong client tiers,” JavaWorld Magazine,
http://www.javaworld.com/javaworld/jw-07-2000/jw-0721-
hmvc.html (2000), 2015.06.01.

[6] M. Potel, “MVP: Model-View-Presenter. The taligent
programming model for C++ and Java,” Taligent Inc., 1996,
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf,
2015.06.01.

[7] A. Bower and B. McGlashan, “Twisting the triad. The
evolution of the dolphin smalltalk MVP application
framework,” Tutorial Paper for European Smalltalk User
Group (ESUP), 2000, Object Arts Ltd., 2000,
http://www.object-arts.com/downloads/papers/
twistingthetriad.pdf, 2015.06.01.

[8] J. Smith, “WPF Apps With The Model-View-ViewModel
Design Pattern,” Microsoft Developer Magazine, 2009,

Februrary, https://msdn.microsoft.com/en-
us/magazine/dd419663.aspx, 2015.06.01.

[9] A. Ferrara, “Alternatives To MVC,”,
http://blog.ircmaxell.com/2014/11/alternatives-to-mvc.html,
2015.06.01.

[10] A. Karagkasidis, “Developing GUI applications: architectural
patterns revisited,” The Thirteenth Annual European
Conference on Pattern Languages of Programming
(EuroPLoP 2008), CEUR-WS.org, July 2008.

[11] M. Scarpino, SWT/JFace in action. Greenwich: Manning,
2005.

[12] T. Hatton, SWT: a Developer’s Notebook. Beijing: O'Reilly,
2004.

[13] R. Steyer, Google Web Toolkit: Ajax-Applikationen mit Java.
Unterhaching: entwickler.press, 2007.

[14] M. Haft and B. Olleck, “Komponentenbasierte Client-
Architektur [Component-based client architecture],”
Informatik Spektrum, vol. 30, issue 3, June 2007, pp. 143-
158, doi: 10.1007/s00287-007-0153-9.

[15] M. Fowler, “GUI Architecures,” 18.07.2006,
http://martinfowler.com/eaaDev/uiArchs.html, 2015.06.01.

[16] J. Siedersleben, Moderne Softwarearchitektur [Modern
software architecture], 1st ed. 2004, corrected reprint.
Heidelberg: dpunkt, 2006.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software.
Reading: Addison-Wesley, 1995.

[18] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stahl, Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. New York: John Wiley & Sons, 1996.

[19] M. Lindvall and K. Sandahl, “Practical implications of
traceability,” Software - Practice and Experience (SPE), vol.
26, issue 10, Oct. 1996, pp. 1161-1180.

[20] P. Mäder, O. Gotel, and I. Philippow, “Getting back to basics:
promoting the use of a traceability information model in
practice,” The Fifth Workshop on Traceability in Emerging
Forms of Software Engineering, IEEE, May 2009, pp. 21-25.

[21] J. Siedersleben, “An interfaced based architecture for business
information systems,” The Third International Workshop on
Software Architecture (ISAW '98), ACM, Nov. 1998, pp.
125-128.

[22] E. Evans, Domain-Driven Design: Tackling Complexity in
the Heart of Software. Boston, MA: Addison-Wesley, 2004.

[23] J. Engel, C. Herdin, and C. Märtin, “Exploiting HCI pattern
collections for user interface generation,” The Fourth
International Conferences on Pervasive Patterns and
Applications (PATTERNS 12) IARIA, July 2012, Xpert
Publishing Services, pp. 36-44, ISBN: 978-1-61208-221-9.

[24] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
support for an evolutionary design process using patterns,”
Workshop on Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[25] J. Engel and C. Märtin, “PaMGIS: A framework for pattern-
based modeling and generation of interactive systems,” The
Thirteenth International Conference on Human-Computer
Interaction (HCII 09), Part I, Springer LNCS 5610, July 2009,
pp. 826-835.

[26] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient generation of ambient intelligent user
interfaces,” The Fifteenth International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Springer LNCS 6884, Sept.
2011, pp. 136-145.

[27] M. J. Mahemoff and L. J. Johnston, “Pattern languages for
usability: an investigation of alternative approaches,” The
Third Asian Pacific Computer and Human Interaction
Conference (APCHI 98), IEEE Computer Society, July 1998,
pp. 25-31.

212

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[28] J. Borchers, “A pattern approach to interaction design,”
Conference on Designing Interactive Systems (DIS 00),
ACM, August 2000, pp. 369-378.

[29] J. Siedersleben and E. Denert, “Wie baut man
Informationssysteme? Überlegungen zur Standardarchitektur
[How to build information systems? Thoughts on a standard
architecture],” Informatik Spektrum, vol. 23, issue 4, Aug.
2000, pp. 247-257, doi: 10.1007/s002870000110.

[30] S. Wendler, D. Ammon, T. Kikova, I. Philippow, and D.
Streitferdt, “Theoretical and practical implications of user
interface patterns applied for the development of graphical
user interfaces,” International Journal on Advances in
Software, vol. 6, nr. 1 & 2, pp. 25-44, 2013, IARIA, ISSN:
1942-2628, http://www.iariajournals.org/software/.

[31] G. E. Krasner and S. T. Pope, “A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk
80,” Journal of Object Oriented Programming, vol. 1,
August/September, 1988, pp. 26-49.

[32] M. Fowler, Patterns of Enterprise Application Architecture.
New Jersey: Addison-Wesley Professional, 2003.

[33] D. Collins, Designing Object-Oriented User Interfaces.
Redwood City, CA: Benjamin/Cummings Publ., 1995.

[34] E. Horn and T. Reinke, Softwarearchitektur und
Softwarebauelemente [Software architecture and software
construction elements]. München, Wien: Hanser, 2002.

[35] J. Dunkel and A. Holitschke, Softwarearchitektur für die
Praxis [Software architecture for practice]. Berlin: Springer,
2003.

[36] D. Greer, “Interactive Application Architecture Patterns,”
http://aspiringcraftsman.com/2007/08/25/interactive-
application-architecture/, 2015.06.01.

[37] S. Borini, “Understanding Model View Controller,”
http://forthescience.org/books/modelviewcontroller/
00_introduction/00_preface.html, 2015.06.01.

[38] J. Siedersleben (ed.), “Quasar: Die sd&m Standardarchitektur
[Quasar: The standard architecture of sd&m]. Part 2, 2. edn.
sd&m Research: 2003.

[39] Open Qusasar Sourceforge project,
http://sourceforge.net/projects/openquasar/, 2015.06.01.

[40] B. Humm, “Technische Open Source Komponenten
implementieren die Referenzarchitektur Quasar [Technical
Open Source Components implement the Reference
Architecutre of Quasar],” in: ISOS 2004 - Informationsysteme
mit Open Source, H. Eirund, H. Jasper, O. Zukunft, Eds.
Proceedings GI-Workshop, Gesellschaft für Informatik, 2004,
pp. 77-87.

[41] B. Humm , U. Schreier, and J. Siedersleben, “Model-Driven
development – hot spots in business information systems,”
Proceedings of the First European conference on Model
Driven Architecture: foundations and Applications, Springer
LNCS 3748 , pp. 103-114.

[42] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt “A
factor model capturing requirements for generative user
interface patterns,” The Fifth International Conferences on
Pervasive Patterns and Applications (PATTERNS 13) IARIA,
IARIA, May 27 - June 1 2013, Xpert Publishing Services, pp.
34-43, ISSN: 2308-3557.

[43] J. Vanderdonckt, “A MDA-compliant environment for
developing user interfaces of information systems,” The
Seventeenth International Conference on Advanced
Information Systems Engineering (CAiSE 2005), Springer
LNCS 3520, June 2005, pp. 16-31.

[44] R. Stafford, “Service Layer,” in [32].
[45] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees:

A Diagrammatic Notation for Specifying Task Models,”
Proceedings of The Sixth International Conference on
Human-Computer Interaction, INTERACT 1997, IFIP
Advances in Information and Communication Technology,
Springer, 1997, pp.362-369.

[46] K. Sokolova, M. Lemercier, and L. Garcia, “Android passive
MVC: a novel architecture model for the android application
development,” The Fifth International Conference on
Pervasive Patterns and Applications (PATTERNS 2013),
IARIA, May 27 - June 1 2013, pp 7-12.

[47] S. Wendler and D. Streitferdt, “An analysis of the generative
user interface pattern structure,” International Journal On
Advances in Intelligent Systems, vol. 7, nr. 1 & 2, pp. 113-
134, 2014, IARIA, ISSN: 1942-2679,
http://www.iariajournals.org/intelligent_systems/index.html.

[48] F. Radeke and P. Forbrig, “Patterns in task-based modeling of
user interfaces,” The Sixth International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Springer LNCS 4849, Nov. 2007, pp. 184-197.

[49] V. Tran, M. Kolp, J. Vanderdonckt, and Y. Wautelet, “Using
task and data models for user interface declarative
generation,” The Twelfth International Conference on
Enterprise Information Systems (ICEIS 2010), vol. 5, HCI,
SciTePress, June 2010, pp. 155-160.

[50] E. Mbaki, J. Vanderdonckt, J. Guerrero, and M. Winckler ,
“Multi-level Dialog Modeling in Highly Interactive Web
Interfaces,” The Seventh International Workshop on Web-
Oriented Software Technologies (IWWOST 2008), ICWE
2008 Workshops, pp.38-43.

[51] S. Wendler and D. Streitferdt, “The Impact of User Interface
Patterns on Software Architecture Quality,” The Ninth
International Conference on Software Engineering Advances
(ICSEA 14) IARIA, Oct. 2014, Xpert Publishing Services, pp.
134-143, ISBN: 978-1-61208-367-4.

213

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

