
Quality-Oriented Requirements Engineering of

RESTful Web Service for Systemic Consenting

Michael Gebhart, Pascal Giessler

iteratec GmbH

Stuttgart, Germany

michael.gebhart@iteratec.de,

pascal.giessler@iteratec.de

Pascal Burkhardt, Sebastian Abeck

Cooperation & Management

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

pascal.burkhardt@student.kit.edu,

abeck@kit.edu

Abstract—Making decisions is a typical and recurring

challenge in a society as humans often have different opinions

concerning a certain issue. Consensuses have to be found that

satisfy all participants. To support the finding of consensuses,

at the Karlsruhe Institute of Technology a new software

service is developed, the Participation Service, to support the

systemic consenting. This service is expected to be part of the

already existing service-oriented campus system of the

university that supports students in their daily life. The

Participation Service is expected to be developed in an agile

manner. Furthermore, as the entire architecture is based on

the Representational State Transfer paradigm, also the new

service is expected to be RESTful. One of the key success

factors of such projects is the gathering of requirements as the

software bases on them. In agile projects, scenarios are an

appropriate way to describe a system from the user’s point of

view. However, it is not obvious how to specify the

requirements so that they are of high quality. This article

presents an enhancement of scenario-based requirements

engineering techniques, so that the resulting requirements

fulfill the quality characteristics of the international standard

ISO/IEC/IEEE 29148. The requirements engineering

technique has been created for the development of RESTful

web services. For that reason, this article demonstrates its

application by means of the Participation Service. Functional

and non-functional requirements are elicited and constraints

that emerged from the existing RESTful service-oriented

architecture are considered.

Keywords: requirements engineering; agile; scenario; rest;

service; participation; iso 29148

I. INTRODUCTION

This article is an extended version of [1]. It describes the
requirements engineering approach that has been applied for
the Participation Service, a web service for systemic
consenting more in detail. Furthermore, compared to the
original work, it is shown that the approach is not necessarily
limited to RESTful web services as REST is only a
constraint in the methodology. Nevertheless, the focus is still
on web services in a service-oriented architecture. The
general applicability on all kind of software systems is
possible, but not yet proven. This kind of applicability
should be considered in future research work.

Decision-making is always a typical and recurring
challenge in a society. When having a certain issue,
stakeholders and participants have different opinions. They
defend their points of view and try to convince the others of
their personal opinion. To make a decision, consensuses
have to be found that satisfy all stakeholders and
participants.

At the Karlsruhe Institute of Technology (KIT) a new
software service, the Participation Service, is expected to be
developed that supports the finding of consensus. The
Participation Service is based on the idea of systemic
consenting. This approach describes how to find a
compromise or consensus that is near to an optimal
consensus for the entire group and all stakeholders and
participants. For that purpose, possible solutions are scored
with points. However, compared to usual decision-making
processes, the solutions are not scored with agreement points
but with refusing points. This means, after describing the
issue and collecting possible solutions, the one solution is
selected that has the fewest refusing points. This solution
represents the one with minimum resistance.

The Participation Service is expected to be part of the
already existing service-oriented campus system of the
university. The so-called SmartCampus is a system that
provides functionality for students to support their daily life.
For example, today the SmartCampus offers functionality to
find free workplaces or to determine the route to a certain
destination, such as the library of the university. As the
services of the SmartCampus are expected to be used by
several different devices, such as notebooks, smartphones
and tablets, the software services are developed as web
services based on the Representational State Transfer
(REST) paradigm [2] as lightweight alternative to
technologies, such as SOAP over Hypertext Transfer
Protocol (HTTP), Extensible Markup Language (XML), and
Web Services Description Language (WSDL). The RESTful
web services are invoked by a web application that is
responsive and can be therefore used on all the required
devices. Furthermore, the service is developed in an agile
manner to rapidly receive feedback about its usability.

For successful software projects, one key success factor
is the requirements engineering with its underlying process
and methodology [3][4]. In this phase, the functional and

156

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

non-functional requirements are gathered and described.
They represent the basis for the entire software project. In
agile projects, the usage of scenario has evolved as an
appropriate way to describe the requirements. Scenarios
represent the requirements from a user’s point of view. As
the entire software project bases on the requirements, their
high quality is very important. For that reason, the IEEE has
created a set of quality characteristics for requirements. They
are summarized in the IEEE recommended practice for
software requirements specifications IEEE Std 830-1998 [5]
and its successor, the ISO/IEC/IEEE 29148 [6]. However,
existing scenario-based requirements engineering
methodologies do not consider these quality characteristics
explicitly.

This article enhances existing requirements engineering
methodologies for agile projects in a way that quality
characteristics of the international standard ISO/IEC/IEEE
29148 [6] are considered. For that purpose, in a first step,
existing methodologies are analyzed and described. In a next
step, the most appropriate methodology is reused and
adapted where necessary. In this phase, these parts of other
methodologies that support the achievement of certain
quality characteristics of the international standard are reused
and combined with the chosen methodology. As result, a
methodology is created that combines the best parts of all
analyzed methodologies.

To illustrate the resulting methodology, the Participation
Service for the SmartCampus as a real-world project is
considered. Its requirements are gathered and described
using the elaborated methodology. Based on this approach,
in a first step, the stakeholders are identified. Afterwards, the
goals of the Participation Service are elicited and prioritized.
In the last step, the functional and non-functional
requirements are formalized and it is shown that they fulfill
the quality characteristics of ISO/IEC/IEEE 29148.

The article is structured as follows: Section II examines
existing work in the context of requirements engineering
methodologies and quality characteristics for requirements.
Section III introduces the Participation Service as
exemplarily scenario. In this context, the idea behind the
service is described in detail. Our quality-oriented
requirements engineering methodology is presented in
Section IV. Section V concludes this article and introduces
future research work in the context of a quality-oriented
development of RESTful web services.

II. BACKGROUND

This section analyzes existing approaches in the context
of requirements engineering methodologies that identify the
goals of stakeholders and writes them down in a precise way
so that they can be used in the following development phases
[7].

In IEEE Std 830-1998 [5], the IEEE offers an official
recommended practice for software requirements
specifications, which was replaced by the new international
standard ISO/IEC/IEEE 29148 [6]. Based on them, quality
characteristics for high quality requirements can be derived.
Furthermore, the new standard provides language criteria for
writing textual requirements and requirements attributes to

support requirement analysis. It also provides guidance for
applying requirements-related processes. These concepts will
be used to analyze existing scenario-based requirements
engineering methodologies and to design the one introduced
in this article.

Sharp et al. [8] present a domain-independent approach
for identification of the stakeholders based on four
determined groups of so-called baseline stakeholders. They
can be further refined into three different groups based on
their role. This approach will be used to identify the
stakeholders in this article. However, in large projects the
resulting network of stakeholders can be huge.

For that reason, Ackermann et al. [9] describe a method
with a matrix in which the stakeholders were arranged by
their importance and their influence on the project. This
method can be used to prioritize the discovered stakeholders
for the project.

There are different requirement types, which have to be
taken into account when eliciting requirements for a software
product. Glinz [10] provides a concern-based taxonomy of
requirements, which consists of functional requirements,
non-functional requirements, and constraints. These types
will be reflected in the introduced requirements engineering
methodology, however with one difference: The
performance will not be considered as a separate entity since
it is already an ingredient of ISO/IEC 25010:2011 [11].

For eliciting functional requirements, Rolland et al. [12]
present a goal modeling approach by using scenarios. A goal
represents something that the stakeholders want to achieve in
the future, while a scenario represents the required
interactions between two actors to achieve the corresponding
goal. Once a scenario has been composed, it is investigated
to addict more goals. This approach can be aligned with
ISO/IEC/IEEE 29148 [6], which is why it will be reused in
this article.

However, there are two issues: 1) Goals cannot be
regarded separately because they could be composed of
existing goals and 2) the recursive process is repeated until
no more subgoals can be derived, but this can lead to a big
bunch of subgoals. A solution for 1) is a repository of
already analyzed goals, which can be reused by reference.
The determination of a threshold in 2) is difficult, because it
cannot be set easily by metrics. So the requirements engineer
has to decide on its own when the abstraction meets its
expectations. For this purpose, some conditions had to be
found, which support the decision-making. Furthermore, it is
not obvious how to achieve the initial goals.

At this point, Bruegge and Dutoit [13] introduce some
interview questions that can be used for identification of the
initial goals. Furthermore, elicitation techniques can be
found in [3]. To support agile software engineering, the
discovered goals have to be arranged by importance to select
the goals with the highest rank similar to iteration.

For that reason, the approach by Karlsson and Ryan [14]
will be applied, which uses pairwise comparisons in
consideration of cost and value. But, for many goals, this
approach will rapidly become impracticable as the number of
comparisons increases significantly. For that reason and the
statement “Keep the prioritization as simple as possible to

157

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

help you make the necessary development choices” by
Wiegers [15], a simple classification approach with three
different scales based on IEEE Std 830-1998 [5] is best
suited for the initial prioritization.

When writing scenarios, the quality characteristics by [6]
have to be considered. Glinz [16] presents an approach,
which respects the quality characteristics by the old
recommendation IEEE Std 830-1998 [5]. His findings will
be used to improve the quality of requirements.

Also, Terzakis [17] presents techniques for writing
higher quality requirements by providing an overview of
requirements and pitfalls by using the natural language for
their description. Based on this, the quality of requirements
will be improved even further.

In [11], the ISO provides a quality model comprising
quality characteristics that are further decomposed into sub-
characteristics. This model will be used for determining the
quality aspects of a software product.

For eliciting non-functional requirements, the approach
by Ozkaya et al. [18] will be used. Due to the fact that
statements like “The system shall be maintainable” are
imprecise and not very helpful, this approach is using so-
called quality attribute scenarios. Based on these, the
corresponding quality characteristic of ISO 25010 [11] can
be derived. However, for many quality characteristics it can
be very time-consuming.

To reduce the effort, the decision-making approach by
Saaty [19] will be applied by using pairwise comparison of
the quality characteristics in ISO/IEC 25010:2011 [11] with
regard to their importance for the product strategy.

With the provided constraints of the architectural style
REST in [1], the last requirement type according to the
taxonomy in [10] will be considered.

III. SCENARIO

To illustrate the requirements engineering approach, the
SmartCampus System at KIT is to be enhanced by a new
service, the Participation Service. The SmartCampus system
is a service-oriented system to support professors, students,
and other KIT members in their daily life. For example, the
SmartCampus system already provides services to determine
the route to a certain room or to find free workplaces.

Figure 1. Systemic consenting process.

The services of the SmartCampus can be used by means
of web applications that can be also used on mobile devices,
such as smartphones and tables. For that reason, the web
applications are developed with a responsive layout using
modern and standardized web technologies, such as
Hypertext Markup Language (HTML) 5.

The Participation Service is designed to support the
process of decision-making between professors, students,
and other KIT members according to the principle of
systemic consenting. In the first phase, participants can
create and describe their own subjects of debate and share
them to a group of participants. In the second phase, the
participants rate suggestions by expressing their dislike
instead of their like as usually expected. They are able to do
that in the form of refusing points from zero to ten. Refusing
points indicate how much a participant dislikes a possible
suggestion. Thus, rating a suggestion with zero refusing
points means that the participant totally agrees with the
suggestion. Rating a suggestion with ten refusing points
means that the participant rejects the suggestion. The
suggestion with the fewest amount of refusing points
represents the one with the highest acceptance of all
participants. This suggestion has minimum resistance and is
the consensus of the group. Fig. 1 illustrates the described
process. For example, the Participation Service can be used
for determining new lecture contents in collaboration with
students in the context of the Research Group Cooperation &
Management (C&M).

For illustration of our scenario-based requirements
engineering technique, the simple goal “Rate a suggestion”
of the Participation Service was chosen: A participant
requests the website of the Participation Service and gets to
see a login screen. After he logged in correctly, he gets a list
of subjects of debate. He selects a subject of debate, which
he is interested in. He sees a description of the subject and a
list of suggestions sorted descending by acceptance. Once
reading all suggestions, the participant rates each suggestion
with refusing points from zero to ten to express his dislike
against the suggestion. The Participation Service updates the
acceptance of each suggestion and rearranges them.

IV. QUALITY-ORIENTED REQUIREMENTS ENGINEERING

OF RESTFUL WEB SERVICE FOR SYSTEMTIC CONSENTING

In this section, our requirements engineering
methodology is introduced. This represents our proposed
solution for gathering requirements that verifiably fulfill
quality attributes introduced in ISO/IEC/IEEE 29148 [6].
This can be proven to the customer. First, the quality
characteristics of the standards IEEE Std 830-1998 [5] and
ISO/IEC/IEEE 29148 [6] are presented. Next, the
stakeholders are identified followed by an elicitation of their
goals. With the prioritization of the goals, they are selected
for the iteration. Afterwards, the functional and non-
functional requirements are discovered and documented
according to the derived quality characteristics of [6] and the
provided taxonomy by Glinz [10]. Finally, the elicited
requirements for iteration were verified according to specific
quality characteristics in [6]. The entire requirements
engineering methodology is shown in Fig. 2.

158

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Requirements engineering methodology for agile development of

RESTful web services.

A. Quality Characteristics for Requirements

According to IEEE Std 830-1998 [5], the requirements

quality focuses on correctness, unambiguousness,

completeness, consistence, prioritization, verifiability,

modifiability, and traceability. The IEEE Std 830-1998 [5]

was replaced by the international standard ISO/IEC/IEEE

29148 [6], which introduces feasibility, necessity, free of

implementation, and singularity as new characteristics for

requirements while removing prioritization, correctness and

modifiability. Furthermore, the new standard distinguishes

between individual and a set of requirements. According to

them, a set of requirements shall be complete, consistent,

affordable, and bounded. The full set of quality

characteristics with its definition is shown in Tables I and II

[6].

TABLE I. QUALITY CHARACTERISTICS FOR
 INDIVIDUAL REQUIREMENTS

Quality

Characteristic
Definition

Necessary “The requirement defines an essential capability,

characteristic, constraint, and/or quality factor. If it
is removed or deleted, a deficiency will exist, which

cannot be fulfilled by other capabilities of the

product or process…” [6]

Implementation
free

“The requirement, while addressing what is
necessary and sufficient in the system, avoids

placing unnecessary constraints on the architectural

design…” [6]

Unambiguous “The requirement is stated in such a way so that it

can be interpreted in only one way. The requirement
is stated simply and is easy to understand.” [6]

Consistent “The requirement is free of conflicts with other
requirements.” [6]

Complete “The stated requirement needs no further
amplification because it is measurable and

sufficiently describes the capability and

characteristics to meet the stakeholder's need.” [6]

Singular “The requirement statement includes only one
requirement with no use of conjunctions.” [6]

Feasible “The requirement is technically achievable, does
not require major technology advances, and fits

within system constraints (e.g., cost, schedule,

technical, legal, regulatory) with acceptable risk.”
[6]

Traceable “The requirement is upwards traceable to specific
documented stakeholder statement(s) of need… The

requirement is also downwards traceable to the
specific requirements in the lower tier requirements

specification or…” [6]

Verifiable “The requirement has the means to prove that the

system satisfies the specified requirement. Evidence
may be collected that proves that the system can

satisfy the specified requirement…” [6]

In [1], we took the assumption that the full set of quality

characteristics can be fulfilled by ensuring the individual

ones. But, this is not true for the full set of quality

characteristics since a complete requirement does not

provide information about the completeness of a set of

requirements.

TABLE II. QUALITY CHARACTERISTICS FOR
 A SET OF REQUIREMENTS

Quality

Characteristic
Definition

Complete “The set of requirements needs no further
amplification because it contains everything

pertinent to the definition of the system or system

element being specified.” [6]

Consistent “The set of requirements does not have individual
requirements which are contradictory.

Requirements are not duplicated. The same term is

used for the same item in all requirements.” [6]

Affordable “The complete set of requirements can be satisfied
by a solution that is obtainable/feasible within life

cycle constraints (e.g., cost, schedule, technical,

legal, regulatory).” [6]

Bounded “The set of requirements maintains the identified
scope for the intended solution without increasing

beyond what is needed to satisfy user needs.” [6]

Due to that, we formalized the quality characteristics in

Table II in a way that it can be applied on a set of

requirements for easier quality control at the end of a

requirements engineering phase. The formalization for each

quality characteristic is shown in Equations (1)-(4), while

Table III will give the explanation of the used elements. The

necessary information for the interpretation of the results

will be given in Table IV.

Requirements of

product increment

#2

Identification of

stakeholder

Elicitation

of the goals

Prioritization

Of the goals

Iteration 1 Iteration 2 Iteration n

Functional

requirements

Non-functional

requirements

Requirements of

product increment

#1

Functional

requirements

Non-functional

requirements

Functional

requirements

Non-functional

requirements

Requirements of

product increment

#n

Constraints

Verification Verification Verification

159

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

COM(Rd)=
Rd ∩ Rs

Rs
 if |Rs|> 0 else 1

𝐶𝑂𝑁1(Rd)= 1 -
|𝑅(𝑅𝑑)|

|Rd|
 if |R𝑑|> 0 else 1

𝐶𝑂𝑁2(Rd)= 1 -
|𝐶(𝑅𝑑)|

|Rd|
 if |R𝑑|> 0 else 1

𝐶𝑂𝑁3(Rd)= 1 -
|𝑇(𝑅𝑑)|

|Rd|
 if |R𝑑|> 0 else 1

𝐶𝑂𝑁1(Rd)=
1

3
 * (𝐶𝑂𝑁1(Rd) + 𝐶𝑂𝑁2(Rd) + 𝐶𝑂𝑁3(Rd))

AFF(Rd)=
|𝐴(𝑅𝑑)|

|Rd|
 if |Rd|> 0 else 1

BOU(Rd)=
|𝑅𝑑 \𝑅𝑠|

|Rd|
 if |Rd|> 0 else 1

TABLE III. EXPLANATION OF THE METRICS

Element Explanation

𝑅𝑑 Set of requirements, which should be considered

𝑅𝑠 Not absolutely necessary right now

𝐴(𝑅𝑑) Set of feasible requirements

𝐶(𝑅𝑑) Set of requirements with conflicts

𝑅(𝑅𝑑) Set of duplicated requirements

𝑇(𝑅𝑑) Set of requirements in which introduced terms are not used

consistently

TABLE IV. EXPLANATION OF THE RESULTS

Result Explanation

1 The quality characteristic is completely fulfilled

< 1 The quality characteristic is not completely fulfilled

B. Identification of Stakeholders

In the elicitation phase, all stakeholders of the project
have to be identified. A missing stakeholder can lead to
incomplete requirements, which endanger the project
success. For this purpose, we apply the approach by Sharp et
al. [8]. Based on the four groups a) users, b) developers, c)
legislators, and d) decision-makers, for the Participation
Service, we could identify all stakeholders as listed in Table
V and assign them to the corresponding scrum role.

TABLE V. STAKEHOLDERS OF THE PARTICPATION SERVICE

Group Stakeholders

Users Enrolled students and members of the KIT

Developers Students at C&M and KIT as operator of the
Participation Service

Legislators State of Baden-Wuerttemberg and Federal

Republic of Germany

Decision-Makers C&M leader, C&M members and one expert of

systemic consenting

The user represents people, groups, or organizations,

which interact with the system or make use of the provided
information. The developers are the stakeholders of the
requirement engineering process, such as analysts or
operators. The legislators represent government authorities
that provide guidelines for the development and operation of
the Participation Service. The last group stands for the
development manager and the user manager, who have the
power to make decisions with regard to the characteristics of
the system in development.

Depending on the quantity of the stakeholders, a
prioritization step is sometimes necessary to assess the
importance of the elicited requirements regarding to the
influence of the stakeholder. For this reason, Sharp et al. [8]
provide an outlook how network theories can be used to
determine the influence of a stakeholder. But, such
approaches can be time-consuming. A more pragmatic
method is the usage of power-interest grid by which the
stakeholders are classified in quadrants [22].

In this project, the prioritization of the stakeholders with
regard to their influence on the project was not necessary at
this point. Due to the fact that the complexity of the project
and the amount of involved stakeholders is not as high as in
an industrial project.

C. Elicitation of Goals

After the identification of stakeholders, the elicitation of
goals can be initiated. For this purpose, the interview and
brainstorming technique was chosen and the questions
introduced by Bruegge and Dutoit [13] were used for easier
discovery of the goals according to the definition by [12],
which is shown in Fig. 3. Each goal corresponds exactly to
one requirement in order to fulfill the singularity according
to [6]. An excerpt of the determined goals is shown in Table
VI. Goal G2 will be further refined in the upcoming sections.

In contrast to traditional software methodologies, such as
the waterfall approach, in agile development, more goals can
be added in the course of the software project.

TABLE VI. EXCERPT OF GOALS OF THE PARTICIPATION SERVICE

ID Goal Stakeholder

G1 Logs in at the Participation Service C&M member

G2 Rate a suggestion C&M member

G3 Add a new proposal for solution C&M member

(1)

(2)

(3)

(4)

160

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Meta-model of a goal.

By investigating the quality characteristic of the current
standard [6], we discovered that the meaning was changed
compared to IEEE Std 830-1998 [5]. In [5], requirements
were expected to be complete for the entire system.
According to the current standard, a set of requirements
contains everything to define a system or only a system
element. This allows us to use iterations in which system
elements are described.

D. Prioritization of Goals

The next step is the prioritization of the goals with regard
to their importance for the stakeholders. Due to the
abstraction level of the goals and the statement by Wiegers
[15], we applied a simple classification approach based on a
three-level scale that is shown in Table VII according to
IEEE Std 830-1998 [5]. In order to prevent ambiguousness,
each stakeholder has agreed on the meaning of each level
[15]. After rating of goals, a specific amount of highest
ranked goals, which reflects the necessity [6], form the basis
for the first iteration. The amount depends on the estimated
velocity of the development team and expected effort for the
implementation. In this context, the essential goals are those
presented in Table VI.

TABLE VII. CLASSIFICATION FOR GOAL PRIORITIZATION

Group Meaning

Essential Essential for the next release

Desireable Not absolutely necessary right now

Optional Would be nice to have someday

E. Functional Requirements

For each selected goal, a scenario will be authored or
reused that describes the required interactions to reach the
goal. Based on a scenario, further goals can be derived. The
combination of a goal and the corresponding scenario is
called requirement chunk as described in [12].

Figure 4. Meta-model of a requirement chunk.

Fig. 4 illustrates this by showing a meta-model that
defines the rules and the elements of a requirement chunk.
This recursive process with objective of functional
decomposition can be aligned with the process defined in the
standard [6]. But, this recursive process can be repeated
several times, which results in rising costs.

For that reason, we propose three conditions that serve as
abort criteria for the process. If all of the following
conditions apply, the process can be aborted:

1) no additional benefit in form of new derived goals
2) other scenarios will definitively not reuse atomic

actions of the current scenario
3) the size of the scenario exceeds more than 20 atomic

actions
According to Glinz [16], the decomposition in user functions
and the ease of understanding assure the precondition of
correct specification. Furthermore, the decomposition allows
us to describe the capability and properties of a given
requirement chunk in detail according to the stakeholder’s
need, which represents the completeness of individual
requirements. In the following, authoring and reusing of
scenarios will be presented.

Figure 5. Reusing a requirements chunk from the repository.

Goal

Verb Parameter

Target Direction Way Beneficiary

DestinationResult SourceObject Means Manner

1..* 1..*

Goal

Scenario

Realized by

0..* Subgoal

1

G3

Add a new proposal

for solution

Scenario

G3.1 = G.1

Logs in at the

Participation Service

Scen.

G3.2 = G2.2

Select a subject of

debate

Scen.

G3.3

Create a new proposal

for solution

Scen.

Repository

Realized by

Realized by

Realized byRealized by

Refined inReused by

161

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E.1. Reusing Scenarios
 In the best case, a requirement chunk still exists in
the repository, which contains all analyzed goals and their
scenarios. Therefore, redundant scenarios will be avoided,
which ensures the consistence regarding to a set of
requirements. As a result, we can compose different
requirement chunks to support higher goals. For example,
the goal G1 “Logs in at the Participation Service” represents
a cross-sectional goal, which will be used by G2 and G3.
Fig. 5 shows how the goal G3 is refined in three different sub
goals, while two of them will be reused from the repository.
E.2. Authoring Scenarios
 If no requirement chunk for the given goal can be found
in the repository, a new scenario has to be authored while
considering the quality characteristics by [6].

 The unambiguousness cannot be fulfilled properly as we

use the natural language with inherent equivocality for the

description of the scenario [5]. So a trade-off between ease

of understanding and formalism has to be made. For this, we

used the provided meta-model of a scenario by Rolland et

al. [12] to reduce equivocality, which is shown in Fig. 6

Moreover, we used the introduced structural constructs of

Glinz [16] to further reduce the level of equivocality. To

detect ambiguousness during description or validation of

scenarios, Terzakis [17] offers a detailed checklist. Also, the

current standard [6] provides some terms, such as

superlatives or vague pronouns, which should be prevented

to ensure bound and unambiguousness. For newly

introduced terms and units of measure, we have created a

separate document, which acts as a glossary.

Figure 6. Meta-model of a functional scenario.

According to [6], a scenario should be implementation free.

This means that no architectural design decisions take place

in this phase. This is the nature of a scenario as it describes

what is needed in form of a concrete instance to achieve its

intended goals. The nature of a scenario also allows us to

derive acceptance criteria to verify the requirements in the

form of test cases [16], which fulfills the verifiability [6].

 The feasibility is another quality characteristic of the

standard [6] with focuses on technical realization of the

requirement. At this point, the scenario has to be

investigated with regard to system constraints such as the

existing environment (cf. Section G).
To ensure the traceability [6], each scenario must have a

unique identifier. In the course of modification over time, the
scenarios also need a version number representing the
current state.

State

Action

Action flow Atomic action

Actor Resource

Object

Initial state 1

Final state 1

1..*

1..*

1

2

Scenario

Title: Rate a proposed suggestion ID: G2 Priority: High

Source: C&M member Risk: Middle Difficulty: Nominal

Rationale: Integral ingredient of systemic finding Version: 1.0 Type: Functional

Initial state: User wants to rate a proposed solution

Final state: User rated a proposed solution

Dependable goals: None

No. Normal action flow Ref.

1
User logs in at the Participation service

G1
System verifies the credentials

2
System redirects him to the secured area (Def. 1.1)

-
User gets a list of available subjects of debate

3
User selects a subject from the provided list

-
System receives the selection and redirects him to the subject of debate

4
User rates a proposed solution by selecting the refusing points

G5
System calculates the acceptance of the suggested solution

No. Concurrency / Alternative action flow

2’

IF the list of available subjects is empty

THEN the system displays: There are currently no subjects of debate

TERMINATE

Figure 7. Style for representation of scenarios.

162

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Due to the fact of reusing scenarios, each scenario should
also be aware of dependable requirement chunks to clarify,
which requirement chunks will be affected by modifications
of one scenario.

Based on these findings, the representation in [16], and
the provided requirement attributes in [6], we created a style
for representation of scenarios, which is illustrated in Fig. 7.
Similar to the approach by Glinz [16], the representation can
also be easily transformed into a state chart.

F. Non-Functional Requirements

After all goals have been analyzed, the resulting
requirement chunks represent the functional aspects of the
system. Each scenario can now be investigated with regard
to non-functional aspects. For this purpose, we use quality
attribute scenarios by Ozkaya et al. [18] and link these with
the corresponding requirement chunk. The meta model for
quality attribute scenario is shown in Fig. 8.

Figure 8. Meta-model of quality attribute scenario.

The stimulus represents the condition for the release of
the event, while its source is the entity that triggers it. The
response is the activity of the stimulus. The environment,
such as normal operation of a service, stands for the
constraint under which the stimulus occurred. The functional
scenario represents the stimulated artifact. Finally, the
response measure represents the measure for evaluating the
response of the system.

To align this with the product strategy, the product
quality characteristics of ISO/IEC 25010:2011 [11] have to
be ranked by their importance for the stakeholders. For
example, the security is probably more important than the
user experience for a product in the banking sector. This is
why we used pairwise comparisons of the quality attributes
according to the Analytical Hierarchy Process (AHP) by
Saaty [19].

If quality characteristic A is more important than B, we
assign A the value 2 and B the value 0. If A and B are equally
important, we assign each of them the value 1.

We took the results of each stakeholder and calculated
the average, which is shown in Fig. 9. As Fig. 9 shows,
security, functionality, and usability are more important than
the others. Based on this result, we could focus on the most
important quality attributes. Nevertheless, we still have to
keep the quality attributes with minor importance for the
product strategy in mind. We can thus reduce the effort for
eliciting the non-functional requirements since resources,
such as time, often limit a project.

Figure 9. Results of the Analytical Hierarchical Process (AHP).

Similar to the description of the functional scenarios (c.f.
Section E), we have to respect the same conditions. This is
why we do not describe this in detail at this point.

For the prioritization of non-functional requirements, we
used the ranked result of the AHP. But, it is also possible to
add another prioritization step, such as the ones mentioned in
[15] or [18]. Fig. 10 shows one non-functional requirement
of goal G2.

Figure 10. Style for representation of quality attribute scenarios.

G. Constraints

According to Glinz [10], the constraints restrict the
solution space for the functional and non-functional
requirements. For example, a constraint can be company-
based human interface guidelines, legal issues, or existing
environments [10]. With regard to the Participation Service,
we only had to investigate the constraints emerging from the
existing environment. As described in the introduction, the
Participation Service should be a part of the existing service-
oriented SmartCampus System based on REST.

Artifact

(Functional scenario)

1..*

Source of

stimulus
Stimulus Environment Response

Response

measure

Quality attribute

scenario

1 1 1 1 1

F
u

n
ct

io
n

al
su

it
ab

il
it

y

P
er

fo
rm

an
c
e

ef
fi

ci
en

cy

U
sa

b
il

it
y

C
o

m
p

at
ib

il
it

y

R
el

ia
b

il
it

y

S
ec

u
ri

ty

M
ai

n
ta

in
ab

il
it

y

P
o

rt
ab

il
it

y

S
u

m

W
ei

g
h

t

Functional suitability 11 6 10 7 6 9 11 60 0.18

Performance efficiency 1 0 4 2 0 2 7 16 0.04

Usability 6 12 10 8 3 9 11 59 0.18

Compatibility 2 8 2 4 2 3 8 29 0.09

Reliability 5 10 4 8 3 5 7 42 0.13

Security 6 12 9 10 9 9 12 67 0.20

Maintainability 3 10 3 9 7 3 10 45 0.13

Portability 1 5 1 4 5 0 2 18 0.05

Sum 336 1.0

Type: Usability ID: N2 Priority: 0.18

Source: C&M member, students Risk: Low Difficulty: Easy

Rationale: Better user experience Version: 1.0 Reference: G2

Quality

attribute

scenario

Source of stimulus: User

Stimulus: clicks on the button

Environment: during normal operation,

Response: the system gives a feedback

Response measure: within a period of 200ms

163

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig 11 shows the layered architecture according to Evans
[23] with components of the current SmartCampus System,
which consists of four layers: 1) user layer, 2) application
layer, 3) domain, and 4) infrastructure layer. The latter ones
are combined in the illustration for a better overview.

REST is a hybrid architectural style for distributed
hypermedia systems according to Fielding [2], which he
defines as follows: “REST is a hybrid style derived from
several of the network-based architectural styles ... and
combined with additional constraints that define a uniform
connector interface.“ [1, p. 76]. This definition implies the
consideration of several constraints that can be segmented in
architectural (1 - 5) and interface constraints (6) [1][21]:

1) Client-Server indicates a client and server

component. The client component sends a request to

the server that should be performed. Based on the

request, the server component either rejects or

performs the request.

2) Statelessness avoids the need of maintaining

information about a previous request on server side.

This leads to an improvement of server scalability.

3) Caching avoids a replication of already transmitted

information over the network.

4) Layered architecture facilitates the usage of

mediator components for adding features such as

load-balancing.

5) Code on demand is an optional constraint, which

extends the client functionality at runtime trough

downloading an executable artifact.

6) Uniform interface is an “umbrella term for the four

interface constraints” [21, p. 356]: the identification

of resources, the manipulation of resources through

representation, the self-descriptive messages und the

hypermedia constraint.
These constraints were written down in a separate

constraints document similarly to the glossary so that we are
able to reference this over the whole iteration cycle with
regard to the feasibility [6].

H. Verification

After the elicitation of the requirements in a quality-

oriented way, we have investigated the requirements

according to the formalized characteristics for a set of

requirements in Section IV. These results give us a hint to

what extent the elicited requirements fulfill the quality

characteristics of ISO/IEC/IEEE 29148:2011 [6].

<<mediator>>

Gateway

<<client>>

Client Application

<<controller>>

Info Controller

<<controller>>

Map Controller
<<controller>>

Route Controller

<<controller>>

Workplace Controller

<<controller>>

Discussion Controller

<<capability>>

Info Service

<<capability>>

Discussion

Service

RESTful API RESTful API

<<delegate>> <<delegate>> <<delegate>>

<<Server>>

Domain and infrastructure layer

<<Server>>

Application layer

<<Client>>

User layer

RESTful API

<<delegate>>

RESTful APIRESTful API

<<delegate>>

<<capability>>

Workplace

Service

<<capability>>

SocialNetwork

Service

<<capability>>

Storage

Service

<<capability>>

User

Service

<<capability>>

Sensor

Service

<<capability>>

Route

Service

<<capability>>

Map

Service

<<capability>>

Infrastructure

Service

<<capability>>

CampusEvent

Service

Figure 11. Component diagram of the SmartCampus system at the KIT.

164

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VIII. RESULTS OF THE VERIFIED SET OF REQUIREMENTS
 IN EACH PERFORMED ITERATION

Based on the results in Table VIII, we could prove our

assumption that the full set of quality characteristics can be

fulfilled by ensuring the individual ones. The only exception

is the completeness, which was already mentioned in

Section IV. Because of this, we recommend the

investigation of the completeness before designing and

implementing the specified system or system element to

ascertain the quality of the requirements.

V. EVALUATION

Our results by applying this technique showed us that we

improved the quality of our requirements by using this

technique, which considers the quality characteristic of

ISO/IEC/IEEE 29148:2011 [6]. For example, we have

detected some inconsistencies during the authoring of the

scenarios and reduced the communication effort emerged

from misunderstandings.

Compared to the previous recommendation [5], it is

easier to meet the desired qualities of ISO/IEC/IEEE

29148:2011 [6]. The reason for this is that the new standard

does not give tough specifications for the satisfaction of the

quality characteristics.

Due to the fact that we are using the natural language for

describing requirements, we can only merely reduce the

ambiguousness and not prevent completely. However, this

does not imply bad requirements but rather potential for

improvements. Furthermore, sometimes it is adequate to

achieve 90 percent of the quality criteria, because the cost to

reach 100 percent is too high.

Furthermore, we propose the adjustment of the

completeness so that partial specifications in form of

iterations are allowed. The precondition of the completeness

will be analyzed with regard to the goals of the current

iteration.

VI. CONCLUSION AND OUTLOOK

In this article, we introduced a methodology for
requirements engineering of RESTful web service for
systemic consenting. The methodology ensures that the
requirements fulfill quality characteristics defined by the
international standard ISO/IEC/IEEE 29148. For that
purpose, we analyzed existing methodologies and combined
those parts that consider a certain quality characteristic to a
new methodology. Thus, the methodology presented in this
article is a combination of existing work.

As stakeholders and participants often have different
opinions, it is necessary to find consensuses. For that
purpose, the Participation Service implements functionality
that is based on the concept of systemic consenting. By
applying the requirements engineering methodology
presented in this article, the quality of the requirements for
the Participation Service could be improved. For example,
we detected some inconsistencies during the authoring of the
scenarios and reduced the communication effort and the
costs emerged from misunderstandings.

Compared to the previous IEEE Std 830-1998 [5], it is
easier to meet the desired qualities of ISO/IEC/IEEE 29148
[6]. The reason for this is that the new standard does not give
tough specifications for the satisfaction of the quality
characteristics. Due to the fact that in a scenario-based
approach we are using the natural language for describing
requirements, we can only merely reduce the ambiguousness
and not prevent it completely. However, this does not imply
bad requirements but rather potential for improvements.

Our approach is currently focused on the Participation
Service and its specifics. We assume that the methodology is
also applicable for further services or even software systems
in general. However, this is not proven yet. With this
approach, we expect to support requirements engineers and
business analysts when they have to describe the
requirements for a RESTful web service. In our scenario, the
presented methodology helped with gathering and describing
functional and non-functional requirements in a systematic
way so that they are of high quality. As the quality
characteristics considered in this article are part of an
international standard, they can be seen as valid and of
importance. Furthermore, requirements engineers and
business analysts can apply this methodology to analyze and
improve already described requirements regarding their
quality. As the requirements constitute the basis for the rest
of the development process, it is of high importance that a
certain level of quality is reached. For that reason, when
generalizing this approach, it will contribute to the
development of high-quality software solutions.

For the future, before generalizing the approach, we plan
to focus on further parts of the development of high-quality
RESTful web services. With this article, we considered the
initial phase of the development process, the gathering and
description of requirements. In the next step, we will focus
on the design of RESTful web services that fulfill the
previously gathered requirements. Also in this case, the
quality of the result will be considered. For that purpose, we
will analyze existing best practices for the design of RESTful
web services. We will combine these best practices with
quality characteristics of ISO 25010:2011 as a standard for
the quality for software products. Especially in environments
with limited resources, such as time and money, not all best
practices can be considered. By associating best practices
with quality characteristics, it will be possible to prioritize
best practices for the design of RESTful web services and to
select the for a certain project most valuable ones. Finally,
we aim to enable an automatic measurement of the best
practices to rapidly get an impression of the degree of
fulfillment.

Metric Iteration

#1

Iteration

#2

Iteration

#3

Iteration

#4

COM(Rd) 0,97 0,92 0,93 0,99

CON(Rd) 1,0 1,0 1,0 1,0

AFF(Rd) 1,0 1,0 1,0 1,0

BOU(Rd) 1,0 1,0 1,0 1,0

165

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For that purpose, we will enhance our existing work in
the context of quality assurance of service-oriented
architectures [20]. We are also already working on an open
source tool, the QA82 Analyzer, to automate the
measurement of best practices [24]. After focusing on the
requirements engineering, the future work will help us to
also design and develop the Participation Service and future
web services in a quality-oriented manner.

REFERENCES

[1] M. Gebhart, P. Giessler, P. Burkhardt, and S. Abeck, “Quality-
oriented requirements engineering for agile development of restful
participation service,” Ninth International Conference on Software
Engineering Advances (ICSEA 2014), Nice, France, October 2014,
pp. 69-74.

[2] R. Fielding, “Architectural styles and the design of network-based
software architectures,” University of California, Irvine, 2000.

[3] Standish group, “Chaos report,” http://www.projectsmart.co.uk/
docs/chaos-report.pdf, 1995, Accessed 2014-05-21.

[4] A. F. Hooks and K. A. Farry, “Customer centered products: creating
successful products through smart requirements management,”
American Management Association, 2000, ISBN 978-0814405680.

[5] IEEE, IEEE Std 830-1998 “Recommended practice for software
requirements specifications,” 1998.

[6] ISO/IEC/IEEE, ISO/IEC/IEEE 29148:2011 “Systems and software
engineering – life cycle processes – requirements engineering,” 2011.

[7] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a
roadmap,” The Future of Software Engineering, Special Volume
published in conjunction with ICSE, 2000, pp. 35-46.

[8] H. Sharp, A. Finkelstein, and G. Galal, “Stakeholder identification in
the requirements engineering process,” Database and Expert Systems
Applications, 1999, pp. 387-391.

[9] F. Ackermann and C. Eden, “Strategic management of stakeholders:
theory and practice,” Long Range Planning, Volume 44, No. 3, June
2011, pp. 179-196.

[10] M. Glinz, “On non-functional requirements,” 15th IEEE International
Requirements Engineering Conference (RE 2007), 2007, pp. 21-26.

[11] ISO, ISO/IEC 25010:2011 “Systems and software engineering -
systems and software quality requirements and evaluation (SQuaRE)
- system and software quality models,” 2011.

[12] B. C. Rolland, C. Souveyet, and C. B. Achour, “Guiding goal
modeling using scenarios,” IEEE Transactions on Software
Engineering, Volume 24, No. 12, 1998, pp. 1055-1071.

[13] B. Bruegge and A. H. Dutoit, “Object-oriented software engineering:
using uml, patterns and java,” Pearson Education, 2009, pp. 166-168.

[14] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, Volume 14, No. 5, 1997, pp. 67-74.

[15] K. Wiegers, “First things first: prioritizing requirements,” Software
Development, No. 9, Volume 7, Miller Freeman, Inc, September
1999, pp. 48-53.

[16] M. Glinz, “Improving the quality of requirements with scenarios,”
Proceedings of the Second World Congress on Software Quality,
Yokohama, 2000, pp. 55-60.

[17] J. Terzakis, “Tutorial writing higher quality software requirements,”
ICCGI, http://www.iaria.org/conferences2010/filesICCGI10/ICCGI_
Software_Requirements_Tutorial.pdf, 2010, Accessed 2014-07-16.

[18] I. Ozkaya, L. Bass, R. L. Nord, and R. S. Sangwan, “Making practical
use of quality attribute information,” IEEE Software, April 2008, pp.
25-33.

[19] T. L. Saaty, “How to make a decision: the analytic hierarchy
process,” Informs, Volume 24, No. 6, 1994, pp. 19-43.

[20] M. Gebhart, “Measuring design quality of service-oriented
architectures based on web services,” Eighth International Conference
on Software Engineering Advances (ICSEA 2013), Venice, Italy,
October 2013, pp. 504-509.

[21] L. Richardson, M. Amundsen, S. Ruby “RESTful Web APIs,”
O’Reilly, 2013.

[22] F. Ackermann, C. Eden “Strategic Management of Stakeholders:
Theory and Practice,” Long Range Planning, Volume 44, No. 3,
2011, pp. 179-196.

[23] E. Evans, “Domain-Driven Design: Tacking Complexity In the Heart
of Software,” Addison-Wesley Longman Publishing Co., Inc., 2003.

[24] QA82, QA82 Analyzer, http://www.qa82.org, Accessed 2015-02-12.

166

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

