

Towards a Classification Schema for Development Technologies: an Empirical
Study in the Avionic Domain

Davide Taibi, Valentina Lenarduzzi
Free University of Bolzano-Bozen

Bolzano-Bozen, Italy
{davide.taibi, valentina.lenarduzzi}@unibz.it

Christiane Plociennik

University of Kaiserslautern
Kaiserslautern, Germany

christiane.plociennik@cs.uni-kl.de

Laurent Dieudonné
Liebherr-Aerospace

Lindenberg, Germany
laurent.dieudonne@liebherr.com

Abstract— Software and hardware development organizations
that consider the adoption of new methods, techniques, or tools
often face several challenges, namely to: guarantee process
quality, reproducibility, and standard compliance. They need
to compare existing solutions on the market, and they need to
select technologies that are most appropriate for each process
phase, taking into account the specific context requirements.
Unfortunately, this kind of information is usually not easily
accessible; it is incomplete, scattered, and hard to compare.
Our goal is to report on an empirical study with high-level
practitioners, to extend our previous work on a classification
schema for development technologies in the avionic domain.
We investigate the acceptance and the possible improvements
on the schema, with the aim to help decision makers to easily
find, compare and combine existing methods, techniques, and
tools based on previous experience. The study has been carried
out with five technical leaders for the development of flight
control systems, from Liebherr-Aerospace Lindenberg GmbH
and the results show that the schema helps to transfer
knowledge between projects, guaranteeing quality,
reproducibility, and standard compliance.

Keywords-component; process improvement; technology
classification; technology selection; tool selection; method
selection; process configuration.

I. INTRODUCTION
The definition of a product development process that

guarantees quality and reproducibility often takes years.
Moreover, in certain domains, such as avionics, the process
must comply with a set of standards.

The introduction of a new technology may break the
consistency and standards compliance of the process. To
limit this risk, two major aspects must be considered. First,
the objectives and prerequisites for each process step must be
fully documented and structured. Second, the contribution of
each method and tool intended to be used, must be limited to
the objectives set by each domain process activity and their
role in each process step must be fully described.

A structuring framework, enabling the classification of
the technologies in process activities would speed up the
integration of new technologies and contribute to
guaranteeing compliance with the company processes.

To facilitate the classification of technologies, the
Reference Technology Platform (RTP) has been developed.
RTP is a set and arrangement of methods, workflows, and
tools that allow interaction and integration on various levels
in order to enable efficient design and development of
(complex) systems [1] [3].

In the context of the ARAMiS project (Automotive,
Railways, Avionics Multicore Systems) [4], a classification
schema based on the RTP has been developed. It classifies
technologies along two dimensions: abstraction levels and
viewpoints. In our previous work, we introduced how RTP
and Process Configuration Framework (PCF) could have
been applied in the avionic domain [1].

The goal of this paper is to conduct an empirical study
with the goal of evaluating the RTP and PCF approaches, for
the purpose of understanding their acceptance and
applicability to the selection process, in the context of new
product development in the avionic domain.

For this purpose, in this paper, we present the results of
the case study proposed in [1] and we conduct an empirical
study so as to validate the approach with high-level
practitioners from Liebherr-Aerospace.

The results of this work suggest that the classification
provides a useful framework for decision makers and allows
them to base their decisions on previous experience instead
of on personal opinions. Moreover, the classification allows
them to guarantee process quality, reproducibility and
standards compliance, facilitating knowledge transfer from
project to project or between employees.

The remainder of this paper is structured as follows:
Section II describes related work; Section III introduces the
classification schema and its implementation in PCF, while
Section IV describes the avionic use case. In Section V, we
describe the Empirical Study while in Section VI we report
results of the study. Finally, we draw conclusions in Section
VII and provide an outlook on future work.

II. RELATED WORK
Here, we present some common technology classification

schemas.
In 1987, Firth et al. published an early classification

schema [5]. In this work, software development methods are

125

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

classified according to two dimensions: the stages of the
development process (specification, design, and
implementation) and the view (functional, structural, and
behavioral). The stages are specification, design, and
implementation; the views are functional, structural, and
behavioral. Our schema, too, is two-dimensional, and our
viewpoints dimension is similar to the views dimension of
Firth et al. However, Firth et al.'s second dimension is
concerned with the process stages, which we map onto the
viewpoints dimension. Instead, the second dimension in our
schema is concerned with abstraction levels.

In the late 1980's, the idea of the Experience Factory was
first published [6]. It was then updated in 1991 [7] and in
1994 [8]. The idea is to describe software development
artifacts in so-called experience packages and to include
empirical evidence on how these artifacts have been used
previously. This way, the Experience Factory provides a
comprehensive framework for the reuse of software. The
goal is to enable software engineers to base their decisions
on company experience.

The Experience Factory is a more general concept than
ours. In the Experience Factory, any software engineering
artifact can be an object for reuse, e.g., products or
requirements documents. Moreover, a specific schema for
storing different technologies for reuse is not provided in the
Experience Factory. Neither does it include any algorithms
to search for or to combine technologies.

The C4 Software Technology Reference Guide (C4 STR)
is a catalog that contains more than 60 technologies. It
constitutes an alternative approach to technology
classification and was developed in parallel to the later
versions of the Experience Factory.

In comparison to our work, the C4 STR schema includes
a large number of technologies. However, the attributes it
uses are not as detailed as those in our schema, and it
includes no reference to context or to impact.

Later, Birk merged the Experience Factory approaches
with the C4 STR [8]. This evolved into the concept of
experience management in the late 1990's. This work served
as the basis for other publications that evolved this schema
and extended the idea of the Experience Factory [9].

A classification schema for software design projects was
developed by Ploskonos [10]. With the help of this schema,
generic process descriptions and methods can be adapted to
individual processes more easily. It classifies design projects
into one of the four groups Usability, Capability, Extension,
and Innovation. Each of these groups is associated with
specific process characteristics in order to help the user in
setting up the actual process. Ploskonos' approach is more
narrow than ours: It classifies processes with respect to the
project type, ignoring other characteristics, e.g., project size
or domain.

III. THE CLASSIFICATION SCHEMA
As a foundation for the case study, which we present in

the next section, we now introduce the classification schema
we applied. The goal of the schema is to provide a complete
engineering tool chain that can be used to collect and

integrate technologies. This way, the schema supports the
activities required for a structured development process.

With our schema, we address the development of
industrial projects that are big and complex. Typically, such
projects run several years and require the joint efforts of
many employees.

In the industry, requirements-based process models are
commonly used to plan the different baselines and to ensure
that these baselines are accomplished on time in different
phases of realization. Usually, every phase and every step of
the processes produces artifacts which then constitute the
inputs for the next phase(s) or step(s). These process models
are based on, or are extensions of, the V-Model [11].

An instance of the V-Model for the avionics domain is
shown in Figure 1. It is an extract of the avionics standard
SAE ARP4754A [12], and it includes the interaction
between both avionics development and safety integral
processes.

Traditionally, the V-Model is used in the iterations that
are carried out in order to accomplish each baseline. In
addition to the iterations, concepts such as the definition of
phases, the definition of objectives, periodical assessments,
the definition of roles, and traceability (forward and
backward) are traditionally included in these development
processes. Current agile methodologies, like SCRUM [11],
have also been inspired by these concepts.

The schema we present in this paper serves as a generic
development model that covers the industrial development
processes. Naturally, the instances of this generic
development model depend both on the development
standards in the industry and on the particular company.

Using the information provided in the schema, decision
makers can find the most appropriate technologies based on
the technologies' interaction and integration on multiple
levels. This helps to efficiently design and develop complex
systems. Moreover, the schema may provide an overview of
the tools and methods used in previous projects. As the
activities inherent to the industrial processes (e.g., planning
phases, assessment meetings and accomplishment
summaries) are performed periodically throughout each
project development, a huge amount of data can be collected
during the development life cycle of every project. This data
includes, for example, the decisions made, or the quality and
special uses of the tools, technologies and methods. This
helps to build a knowledge base that is adapted to the
company's development processes and addresses best
practices as well as pitfalls. Thus, new projects can benefit
from prior experience instead of starting from scratch.

Furthermore, the schema can help new employees to
quickly become familiar with the tools and methods
available in the company for every phase of the development
process fostering knowledge transfer within a company.

Inspired by the work done in SPES2020 [13] and
SPES_XT [14], our schema can be envisaged as a two-
dimensional matrix, where viewpoints form the columns and
abstraction levels form the rows. The viewpoints dimension
consists of “Requirements”, “Functional”, “Logical”, and
“Technical”.

126

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1: Avionics V-Model extract from the ARP4754A [12]

Figure 2: Generic representation of our classification schema

Those four viewpoints can be mapped to the three phases
of the development process: the requirements viewpoint
corresponds to the requirements capture phase, the functional
and logical viewpoints can be mapped onto the design phase,
and the technical viewpoint corresponds to the construction
or implementation phase (see Figure 2). Figure 2 depicts the
generic version of the schema. The abstraction levels
correspond to different decompositions of the system. These
are (from coarse-grained to fine-grained): system, sub-
systems, components, and units. This generic set of
abstraction levels can be substituted by different, domain-
specific abstraction levels according to the specific

application domain (automotive, railways, avionics etc.). For
instance, the avionics domain defines the following
abstraction levels (see Figure 3): “Aircraft”, “System”,
“Equipment”, and “Item”.

Each step of the product development process that must
be carried out is represented as a cell in the schema, to be
traversed from the top left cell to the rightmost. This is
represented by the arrows in Figure 2 and Figure 3.

Each step produces artifacts as outputs. These outputs
may contribute directly to the accomplishment of the process
objectives required by the domain, or indirectly if they serve
as inputs for other cells in later steps. The objectives
specified by the domain process depend on the development
phase and the abstraction level.

Here, we explain how the matrix is traversed, as shown
in Figure 3. We start at a given abstraction level. First, the
requirements related to this abstraction level are recorded in
the requirement viewpoint. The outputs of this viewpoint are
the filtered requirements, applicable for the (sub…)system
under focus. They are needed in order to start the design of
the (sub…)system. The design phase comprises the
functional and the logical viewpoint. In the functional
viewpoint, the network of functions representing the system
workflow is determined. It is then undertaken into the logical
viewpoint, where a structuration (decomposition and/or
composition) of the identified functions is performed. If the
objectives of the logical viewpoints are fulfilled, we move on
to the technical viewpoint. Here, the construction of the
system is started.

127

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3: Example of classification schema for the avionics domain.

Sometimes iterations must be carried out, e.g., to

introduce new requirements or to incorporate realization
constraints that appear a posteriori and that influence the
design of the system.

If not all requirements derived from the design (and
hence from the requirement viewpoint) have been fulfilled at
the end of the abstraction level, the unfulfilled requirements
are used as a basis in the next abstraction level. They are
recorded in the requirement viewpoint of this new current
abstraction level. Now the steps described above for the
previous abstraction level are carried out again for the next
abstraction level.

In order to foster partial and iterative development, a set
of transition criteria is defined. These transition criteria
control the transition from one cell to the next. With the help
of transition criteria, it is possible to evaluate the risks of
commencing the next development step if not all objectives
of the current step are fulfilled. It is then possible to control
the current status of fulfillment of the objectives, which will
be realized after several iterations.

In order to fulfill the objectives of each step, the methods
used by the system and software engineers are usually
supported by tools. Which methods and tools are required
depends on the specific characteristics of the respective
development process: the category of product that is to be
developed, the requirements, the abstraction level, and the
focus of the current development iteration (e.g., the
objectives to be addressed). Furthermore, the integration of
the technology chain used may also differ. The methods
must as well support the transition criteria between the
process steps.

A. The implementation of the classification schema in PCF
The proposed schema has been implemented as a web

application in the PCF tool [15]. PCF is an online platform,
developed by means of the Moonlight SCRUM process
[16][17]. PCF allows users to search for technologies based
on abstraction levels and viewpoints as defined in the
schema. Furthermore, PCF adds two more aspects to provide

information about previous experience using a specific
technology: Context and Impact. Hence, the data schema in
PCF is based on three models as defined in [18] (as shown in
Figure 6):
• Technology: includes a set of attributes for describing

a technology in as much detail as possible.
• Context: includes information on the context, such as

application domain, project characteristics, and
environment in which the respective technology has
been applied.

• Impact: includes previous experience on applying a
specific technology in a specific context.

The PCF tool contains a search feature that allows users
to search for technologies based on the attributes defined in
the models in Figure 6. This enables the user to search for
technologies used in projects with specific characteristics,
e.g., projects fulfilling a certain industrial standard.

Basic use cases for PCF, as shown in Figure 4, are:
• Search for a technology based on context

requirements (not mandatory)
o List view
o Matrix view

• View details for a technology
• View related context
• View details for a context
• View related impacts
• View details for a related impact
Moreover, PCF implements the schema for different

domains (avionics, automotive, and railways).
Figure 5 shows an example of the schema represented in

PCF for the avionics domain. This figure includes the
methods mentioned in the use case or directly the tools
realizing them, as well as several other technologies for the
avionics domain in addition to those mentioned above. In
this version of the tool, we do not consider interoperability
issues. The next version of the tool will address the challenge
of interoperable tool chains.

128

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4: PCF Use Cases

Traditionally, at the aircraft and system abstraction level,

but also partly persistent at the lower levels, mainly few and
text-based tools (IBM Rational DOORS, MS-Excel, MS-
Word, …) are used, completed pointwise with advanced
graphical tools (MS-Visio, etc.) for architecture overview,
and with specific tools simplifying the validation and
verification of the system under development. Model-based
methods and tools appears more and more for parts of the
functional aspects needing to be simulated, or where better
structuration, formalization and automation can be obviously
performed to save time and money (SysML/UML
technologies, MATLAB/Simulink, ESTEREL Scade, etc.).
The model-based development methods facilitate an
overview of the system, but need a strong defined formalism
to be uniquely understandable. Structured text can be more
precise with less formalism, but for big projects, many
additional informative descriptions or pictures are needed to
keep the red line with acceptable workload, in particular for
engineers having to work with these requirements for the
next development step. A mix of the both methods is
probably the most efficient, if interoperability between the
tools is provided. Both are also accurate enough to ensure
exact traceability with a minimum of orderliness.
 Thanks to the structured methodology, to the overview and
to the collection of experience enabled by the PCF,
development tools offering more automatisms but also being
complex to integrate, can be easier incorporated in
development processes. An example of possible enhanced
tool environment is done in Figure 5. Some details about
inputs-outputs are given in section IV, but it is not the goal
of this paper to describe the details of use of each tool – this
is also depending of company processes. Attributes to
evaluate the quality, the adequacy and the added value of the
tool are integrated in the PCF template by filling the
technology, context and impact information like defined in
Figure 6. For example, a tool having a qualification kit for
the automation of a specific process step (e.g., code
generation with ESTEREL Scade) provides a substantial
advantage by avoiding manual work like a review activity,
which saves much development time.

But its integration in the development process has also an
impact on recurring and non-recurring costs, among other
concerning purchase, training or maintenance fee. At the
end, a trade-off decision must be taken to select the adequate
chain of technologies and tools which could support an
optimal project budget.

Figure 5: An example of the schema in the avionic domain implemented in

PCF.

IV. APPLYING THE CLASSIFICATION SCHEMA IN THE
AVIONIC DOMAIN

In this section, we sketch an example of a use case of the
classification schema in the avionics domain.

In the avionic industry, two main processes are defined
and address two different aspects corresponding to the two
branches of the V-Model: the Development Process and the
Integral Process [12] (see Figure 1). The combination of both
main processes defines abstraction levels (Aircraft, System,
Equipment/Item, Software, Hardware, etc.) and specific
processes for each of them. Iterations can be done inside an
abstraction level, or inclosing them.

129

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6: PCF Data Schema.

The overall resulting applicable development process can

be summarized like the following suite of development
phases, where the previous ones are required by the next
ones: Aircraft Requirements Identification, Aircraft Function
Development, Allocation of Aircraft Function to Systems,
System Requirements Identification, Development of System
Architecture, Allocation of System Requirements to Items,
Item Requirements Identification, Item Design (corresponds
to Software and Hardware Development, both having
specific processes), Item Verification, System Verification,
and Aircraft Verification.

These different phases can be well mapped onto the
generic development model, by instancing the abstraction
levels and by specifying the objectives of the viewpoints for
each abstraction level, according to the company and project
needs.

For example, at the system level, the System
Requirements Identification corresponds to the Requirement
Capture Viewpoint, the Development of System Architecture
is realized via the Functional and Logical Viewpoints, the
Allocation of System Requirements to Items belongs to the
Technical Viewpoint, where the decision is taken on which
technology will be involved to realized the Items (Item
Design corresponds to Software and Hardware
development). The Verification phases are realized in the
Technical Viewpoint of corresponding abstraction levels,
where the integration activity is performed. For each phase,
objectives concerning safety assessments, validation,
verification, etc. are defined via the Integral Process and
should be met in order to move to the next phase, or must be
accomplished during a next iteration. The same logic applies
when moving to the next abstraction level.

Identical principles apply for all the other abstraction
levels. This is also true for the Software and Hardware
development, but with different steps inside the phases and
different objectives, because they are defined by specific
processes specified in the avionics standards DO-178C [2]
and the DO-254 [19].

We consider the development of a safety-critical system
– a Flight Control System (FCS). We give an example on
how the regular avionic development process, according to
the civilian aircraft and systems development process
guidelines ARP4754A [12], can be mapped on the
classification schema (see Figure 2). This mapping is shown
in Figure 3, where the different represented process artifacts
originate from the avionics V-Model depicted in Figure 1.

Here, we briefly introduce how to use the classification
schema efficiently by describing the most important
development process steps and their artifacts. The example
summarized below starts at the system abstraction level. It
follows the simplified process instance shown in Figure 3.

Based on the high-level aircraft requirements and design
decisions, the requirements on the FCS must first be
captured, expressed, and validated precisely (requirement
viewpoint). The artifacts for this step are the functional and
non-functional requirements that contain the goals of the
system (e.g., “control the three axes of the aircraft: pitch,
yaw, and roll”), the operational requirements (e.g.,
operational modes), the safety requirements (e.g., which
criticality for which surface/axis), the high-level
performance requirements (e.g., aircraft response time
following cockpit control requests), etc. The requirement
capture can be facilitated with model-based methods, for
example by using context, use-cases and scenarios diagrams
representable with SysML/UML diagrams and elements
among other supported by the tools Enterprise Architect
(Sparx Systems) or Artisan Studio (Atego), or with
requirements tools using structured text, like with DOORS
(IBM Rational) – see Figure 5, cell “System – Requirement”.

Once captured, the requirements must be validated,
which is a transition criterion for proceeding to the next step.
Different activities and requirements types are analyzed
using different technologies, according to the avionics
standards. For this step, manual reviews are performed.

These requirements, expressed as text, model or in-tools-
integrated mix of both, are then considered as valid inputs
for the design phase. Based on them, the behavior of the

130

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system is analyzed and a functional architecture in the form
of a network of the essential functions covering the major
system functionalities must be formulated (functional
viewpoint). An example of a major functionality at the
system abstraction level is the altitude control via the pitch
axis, which is realized by the elevator surfaces. Essential
functions are those realizing the functionality and having an
external interface with other parts of the system, for example
actuator control, acquiring of the surface position,
synchronization with the other surfaces, etc. For example,
block definition diagrams from the SysML (e.g., with
Enterprise Architect, Artisan Studio, …) and signal flow
diagrams (e.g., with MATLAB/Simulink from The
Mathworks) are suitable to model the functions network
(Figure 5, cell “System – Functional”). The resulting
functional architecture shapes a part of the outputs of this
step. First simulations of the system overall behavior can be
realized with MATLAB/Simulink and some SysML/UML
tools supporting model execution (e.g., Artisan Studio). This
contributes to an early system validation.

Once the definition of these functions and their related
requirements is completed, a Functional Hazard Assessment
(FHA) must be performed [12], still in the functional
viewpoint, like shown in Figure 3. The resulting FHA
requirements express a fundamental output required by the
avionics process at the system design phase. The FHA
produces safety requirements and design constraints for the
next design step (inside the logical viewpoint) which are
necessary to make decisions about the decomposition and
structuration of the functions in order to realize a suitable
system design. In the logical viewpoint (Figure 3, cell
“System – Logical Viewpoint”), these essential functions are
structured, completed, and/or decomposed in order to shape
the components to be realized on this abstraction level – here
named “logical components”. The logical architecture
determination is also efficiently supported by the
SysML/UML technologies (block diagrams, activity
diagrams) and tools, and the behavior can be well designed
via control flow diagrams, state machines, etc., among other
supported by MATLAB/Simulink (Figure 5, cell “System –
Logical”). Both categories of artifacts serve the expression of
the required output of the system design phase (system
architecture, interfaces definition, behavior details). At the
end of the logical viewpoint, different validation activities
(part of the transition criteria) must be accomplished, like a
Preliminary System Safety Assessment (PSSA), a
preliminary common cause analysis (CCA), etc. [12] in order
to validate the decisions made in the design phase, that is, in
the functional and logical viewpoints. Simulation
technologies (e.g., MATLAB/Simulink) can also be used to
validate the interactions and behavior between the logical
components, once they are correctly formalized.

Based on these components and their inherited
requirements (the logical components are derived from the
functions of the functional viewpoint, which are themselves
derived from the requirements of the requirement
viewpoint), technical solutions suitable for this abstraction
level are identified or existing technical solutions are chosen
(technical viewpoint, see cell “System – Technical

Viewpoint” in Figure 3). These technical solutions are called
“technical components” in this paper. The requirements
expressed by the logical components drive the selection of
the technical components. At the system (and equipment)
abstraction level(s), the technical viewpoint contains the
allocation activities like defined in the avionic process [12]
and shown in Figure 1. Systematic methods and semi-
automatic deployment tools can support the allocation
activity. Common activity to all abstraction levels, the new
developed, previously integrated or already existing
technical components are integrated in the above abstraction
level. These integrated components represent the major
outputs of the technical viewpoint.

Iterations inside an abstraction level are feasible for
introducing new requirements, or for increasing the
reusability rate by considering already existing technical
components. As a consequence, the structuring
(decomposition and composition) of the logical components
may be performed in a different way. A configuration
management system is mandatory for managing the different
alternatives and versions.

At the end of the technical viewpoint, different
verification activities must be accomplished, depending on
the abstraction level. At the system (and aircraft) one(s), a
System Safety Assessment (SSA), a common cause analysis
(CCA), etc. [12] are performed in order to verify the
decisions made in the functional, logical, and technical
viewpoints. These safety process verification activities are
shown in Figure 3 and Figure 5 (e.g., cell “System –
Technical Viewpoint”). For functional verification, generic
tools and methods supporting these activities are very
specific to the developed system (test bench, etc.). In some
cases an incremental integration can be performed and parts
of the system can be simulated with Model-in-the-Loop
methods (e.g., with MATLAB/Simulink generated
applications) to simplify the integration steps.

If the already existent technical components fulfill
exactly the requirements expressed by the logical
components mapped onto them, the work is completed and
the associated requirements are considered as fulfilled. This
is an ideal case of reusability and will probably not arise very
often at higher abstraction levels such the Aircraft and the
System levels, but may arise at the Equipment or Item level.

The technical components that do not exist yet or that do
not completely fulfill the requirements expressed by the
logical components mapped onto them, and the logical
components that are still too complex to be allocated to a
particular technical solution are both inputs for the next
abstraction level. They express requirements that have not
been fulfilled at the current abstraction level and must be
dealt with at the next one. Thus, the work on the next
abstraction level can start.

The traceability, required by avionics processes at the
different abstraction levels, is performed 1) between the
viewpoints of the same abstraction level and 2) between the
abstraction levels. For this second case, the traceability is
performed between the technical and logical viewpoints of a
given abstraction level and the requirement viewpoint of the
next abstraction level.

131

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For example: For 1), the technical components (technical
viewpoint) are assigned to the logical components (logical
viewpoint) that drove their selection. For 2), on abstraction
level AL, each technical component not already realized and
each logical component that cannot be mapped to a technical
component must be addressed on abstraction level AL-1.
They express requirements to be captured in the requirement
viewpoint of AL-1. The requirements expressed at the
Requirement viewpoint of AL-1 are then linked to the
requirements expressed by the corresponding technical and
logical components from the abstraction level AL.

The other abstraction levels follow the same logic for
each step with methodology objectives, process objectives
and artifacts, and similar activities that need to be carried
out. All of them can be well mapped in the classification
schema.

For example, at the Aircraft abstraction level, similar
process activities as for the system level are realized, like an
FHA, a (Preliminary and final) Aircraft Safety Assessment
((P)ASA), and Common Cause Analyses (CCA). For the
equipment abstraction level, Fault Tree Analyses (FTA) are
required as well as Common Mode Analyses (CMA), etc.
(see Figure 1 and Figure 3). At the item abstraction level,
several different activities are also expected at the technical
viewpoint, like the realization of hardware components or
the implementation the software ones. Specifically to the
software development, the avionics standard DO-178 [2]
defines different phases (called “processes”, such as the
Software Requirements Process and the Software Design
Process) with several objectives requiring numerous
artifacts, such as requirements and detailed design
descriptions, validation and verification artifacts, etc., which
can be performed by using different methods and tools (e.g.,
for verification: Classification Tree, Equivalence
Partitioning, Cause-and-Effect Analysis), each containing
pros and cons, depending on the context of the current
development. The selection of tools is specific to the
company process implementation.

Another issue that belongs to the top-down process
explained here is that the reusability of existing solutions
potentially fulfilling parts of the system also requires suitable
and standardized methods and tools. Existing technical
solutions may also consist of components developed outside
the company, such as microcontrollers, software libraries,
etc. with other degrees of quality and using different
processes. In any case, these existing solutions need to be
completely and suitably characterized and must be integrated
efficiently into the development process.

 However, reusability is not a separate activity that can be
transposed directly as a technology that can be integrated
into the schema. In fact, it influences different activities,
such as the decomposition in the design phase at the logical
viewpoint, the accurate characterization of the existing
solutions and the deployment activity at the technical
viewpoint, etc. All these aspects related to reusability must
also be taken into account in these activities. For example, it
should be possible to integrate a systematic deployment
process and its related techniques as explained by Hilbrich
and Dieudonné [17] into the schema via these activities. As

an example for this case, the software applications that are to
be mapped optimally onto electronic execution units (ECU)
need to be decomposed and structured in a way that makes
them well compatible with the capabilities of the ECUs in
order to allow the use of a minimum number of ECUs.
However, on the other hand, the ECUs must be formalized
completely and their description must be easily accessible by
the system and software architects in order to influence the
system design and to be correctly selected during
deployment. In ARAMiS, we also provide a template for
formalizing multicore processor capabilities in a form and on
an abstraction level that can be used by system and
equipment engineers. The formalization must be performed
by the software and hardware engineers who design the
ECUs. A noticeable advantage is to be able to validate per
analysis or per simulation more aspects of the system, like
the timing reactions, or the resource consumption.

These activities related to reusability are scattered across
different cells of the matrix. At present, they need to be taken
care of by the system designer. It would be helpful if they
could be better integrated into the chain of methods and tools
in the future.

V. THE EMPIRICAL STUDY
In this section, we first specify the goal of the study,

describe the design used for the study and the procedure
followed for its execution. Study design and material are
described in deep so as to enable external replications of this
study.

The main goal of this study is:
G1: to evaluate the RTP and PCF for the purpose of

understanding their applicability to the technology
selection process in the context of new product
development in the avionic domain.

Since we are also interested to understand potential room

for improvements, to adopt the framework in Liebherr-
Aerospace, we also define a second goal as:
G2: to elicit the requirements for the next version of the RTP

and PCF to be adopted in Liebherr-Aerospace.

A. Design and procedure
The focus group is designed as a group discussion to be

executed in a timeframe of 2 hours with a set of participants
(from 4 to 6) that provide their answers as group discussion.

The discussion is designed to gather information from the
participants in regard to the following outcomes:
1. To gather the general feedback on the methodology
2. To understand the difficulties perceived in using the

methodology
3. To understand if the methodology can help to save time
4. To elicit the requirements for the next version of the

methodology

The study is planned as follows:
• 30 minutes introduction to the RTP and PCF

(methodology)
• 40 minutes questions and answers
• 35 minutes: requirements elicitation

132

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• 10 minutes: closing questions
• 5 minutes wrap-up

The discussion is driven by a session moderator, with

experience in conducting empirical studies.

The questions raised by the moderator are:

Q1: Which is your general impression of the methodology?
Q2: Which difficulties do you see in using the

methodology?
Q3: Which are the advantages and disadvantages in using

the methodology?
After this first session of questions, the participants are

asked to elicit the requirements for the next version of the
platform by following these steps:
• Participants receive three post-its in three different

colors (red, yellow and green), for a total of nine post-
its.
They are then requested to write the three most
important features they would like to add (on the
green post-its), remove (on the red post-its) or modify
(on the yellow post its).

• Then, each participant is invited to describe what they
wrote on the post-its.

• Finally, in group, participants are requested to group
similar ideas.

Then, after the requirement elicitation, we conclude the
session with the last 30 minutes of questions where we ask:
Q4: Do you think the methodology developed considering

the requirements elicited, can be useful for your work?
Q5: Are you interested in using the methodology developed

considering the requirements elicited, in the future?

VI. EMPIRICAL STUDY RESULTS AND DISCUSSION
The study has been conducted on November 13 2014

from 8:30 to 10:35, respecting the planned time-frame of 2
hours.

Participants were 5 technical leaders for the development
of flight control systems, from Liebherr-Aerospace. All
participants were male, Germans, and have more than 5
years of experience in their position.

The technology has been introduced by one of the
authors of the technology itself, working at Liebherr-
Aerospace while the session has been moderated by a
research assistant from the University of Kaiserslautern,
expert in conducting and designing empirical studies.

A. General impression of the methodology
All participants had a positive impression but they

requested more details to better understand it.

Q1: Which difficulties do you see in using the

methodology?
One participant reported that they usually adopt a less

structured process, starting from different point of the
previously presented matrix. For this reason, he suggests to
allow users to start in any point of the matrix, instead of in

the first row and column. However, another participant made
the remark, that the avionics development is a requirement
based process, and it cannot be started in any development
phase efficiently and such structure may be positive to avoid
or limit the risks of rework. .

Two participants report that they use several standards
that can influence the structure of the technology. A more
detailed structure of the abstraction levels should be defined.

Q2: Which are the advantages and disadvantages in
using the methodology at Liebherr-Aerospace?

Participants identified several advantages. The platform
would provide a good overview of our process and the tools
used. Moreover, the platform would allow to increase the
quality of the development process, also helping to avoid to
miss some steps.

Finally, the platform would increase the acceptance of
some technologies, by means of the experience learnt from
other groups.

Finally, they see some difficulties in applying this
version of the platform to the current process applied at
Liebherr-Aerospace, or this process has to be adapted.

B. Requirements elicitation for the next version of the
platform
In order to understand if a new customized version of the

platform should be developed, we now executed a task to
elicit the requirements of the next version of the platform.

As introduced in the Study Design Section, participants
received a total of 9 post its in 3 different colors and they
were asked to individually write the 3 most important
features they would like to add (on the green post-its),
modify (on the yellow post its) or remove (on the red post-
its).

We collected a total of 13 green post-its, 6 yellow and 1
red post-its.

After the first step, participants clustered the
requirements in common groups.

The final groups identified are:
New Features (add):
• Definition of more precise viewpoints / more detailed

for each step [4 participants]
• Definition of possible transitions between viewpoints

[4 participants]
• Change Management support [1 participant]
• Problem Reporting [1 participant]
• Established preferred tools / solutions for each cell [1

participant]
• More standards inputs are needed [2 participants]

Changes :
• Separate the requirement column from the other

columns [3 participants]
• Renaming Technical Viewpoint in “implementation”

[1 participant]
• Change the strict separation of viewpoints into a more

general one [2 participants]
Remove:
• Improve the graphical representation [1 participant]

133

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Closing Questions
Before the beginning of this session, one participant had

to left the focus group. We continued the session with the
last two questions with 4 participants.
Q4: Do you think the methodology developed considering

the requirements elicited, can be useful for your work?
All participants consider the methodology useful,

considering the implementation of the requirements elicited.
Q5: Are you interested in using the methodology developed

considering the requirements elicited, in the future?
All participants are willing to adopt the methodology in

the future (considering the previously wished extensions).

D. Benefits
The classification schema provides benefits for different

people working in software-related projects, especially for
project managers, system and software engineers, and
technology providers (software and hardware vendors).

The use case indicates that, from the point of view of
engineers and decision makers, the classification schema
provides an effective platform for searching for existing
technologies. For industry domains strongly based on
process based development, it also provides a toolbox for
accurately specifying the use of each technology for rigorous
process steps.

The main benefit for the ARAMiS project was that
creating the classification schema for the avionics domain
helped us to improve the schema. Several changes to the
schema have been suggested based on issues raised during
the application of the schema concept in practice. Another
major benefit for the ARAMiS project was the identification
and specification of methods and tools for improving the
integration of multicore processors for safety-critical
domains.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a use case reporting on the

usage of a classification schema in the avionics domain and
its implementation in the PCF tool and an empirical study,
with the goal of evaluating the acceptance and elicit
requirements for a future version of the schema and PCF.

The schema is aimed at collecting and integrating
methods and technologies to support the activities of a
structured development process. It allows decision makers to
find the most appropriate technology based on the
technologies interaction and integration on various levels to
enable efficient design and development of complex
systems.

The schema provides a matrix representation of the
development activities classified into viewpoints and
abstraction levels that enables users to easily search for the
most appropriate technologies throughout the whole
development lifecycle.

The empirical study has been conducted with five
technical leaders for the development of flight control
system, from Liebherr-Aerospace Lindenberg GmbH, that
provided their answer so as to understand their acceptance

and the applicability of the schema and its implementation in
PCF in Liebherr-Aerospace.

Results of the empirical study show that the schema
could be very useful in critical domains, such as avionic, and
help process managers to enable knowledge transfer inside
the company and keep track of the technologies used in
previous projects and to maintain traceability throughout the
whole process.

Future work includes the implementation of the
recommendation collected during the focus group and the
collection of existing technologies to create a baseline for the
platform. Moreover, we are planning to run an empirical
study to validate the effectiveness of the schema in different
domains. .

ACKNOWLEDGMENT
This paper is based on research carried out in the ARAMiS
and the SPES_XT projects, funded by the German Ministry
of Education and Research (BMBF O1IS11035Ü,
01|S11035T, and BMBF 01|S12005K)

REFERENCES
[1] D.Taibi, C. Plociennik, and L.Dieudonné, “A Classification Schema

for Development Technologies,” Ninth International Conference on
Software Engineering and Advances, IARIA, Oct. 2014, pp. 577-583,
ISBN: 978-1-61208-367-4

[2] RTCA DO-178C, “Software considerations in airborne systems and
equipment certification,” Dec. 2011.

[3] P. Reinkemeier, H. Hille, and S. Henkler, “Towards creating flexible
tool chains for the design and analysis of multi-core systems,” Vierter
Workshop zur Zukunft der Entwicklung softwareintensiver,
eingebetteter Systeme (ENVISION 2020), colocated with Software
Engineering 2014 conference, Feb. 2014. [Online]. Available from:
http://ceur-ws.org/Vol-1129/paper37.pdf. Last access: 2014.07.21.

[4] ARAMiS project, “Automotive, railway and avionics multicore
systems”. [Online]. Available from: http://www.projekt-aramis.de/.
Last access 2014.07.18.

[5] R. Firth, W. G. Wood, R. D. Pethia, L. Roberts, and V. Mosley, "A
classification scheme for software development methods,” Technical
Report CMU/SEI-87-TR-041, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1987.

[6] V. Basili and D. Rombach, “Towards a comprehensive framework for
reuse: A reuse-enabling software evolution environment,” Technical
Report, University of Maryland, 1988.

[7] V. Basili and D. Rombach, “Support for comprehensive reuse,”
Software Engineering Journal, vol. 6, Sep. 1991, pp. 303-316, ISSN:
0268-6961.

[8] V. Basili, G. Caldiera, and D. Rombach, “Experience factory,” In:
Encyclopedia of Software Engineering, Marciniak, John J., Ed., New
York: Wiley, pp. 469-476, 1994.

[9] A. Jedlitschka, D. Hamann, T. Göhlert, and A. Schröder, “Adapting
PROFES for use in an agile process: An industry experience report,”
Sixth International Conference on Product-Focused Software Process
Improvement (PROFES 2005), Springer, Jun. 2005, pp. 502-516,
ISSN: 0302-9743, ISBN: 3-540-26200-8.

[10] A. Ploskonos and M. Uflacker, “A classification schema for process
and method adaptation in software design projects,” Tenth
International Design Conference (DESIGN 2008), May 2008, pp.
219-228.

[11] K. Schwaber and M. Beedle, “Agile software development with
Scrum,” Prentice Hall, 2002, ISBN: 0-13-067634-9.

134

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] SAE ARP4754 Rev. A, “Guidelines for development of civil aircraft
and systems,” Dec. 2010. Available from:
http://standards.sae.org/arp4754a. Last access 2014.07.21.

[13] K. Pohl, H. Hönninger, R. Achatz, and M. Broy, “Model-based
engineering of embedded systems - The SPES 2020 Methodology,”
Springer, 2012, ISBN: 978-3-642-34614-9.

[14] SPES_XT project, “Software platform embedded systems”. [Online].
Available from: http://spes2020.informatik.tu-muenchen.de/spes_xt-
home.html. Last access 2014.07.18.

[15] P. Diebold, L. Dieudonné, and D. Taibi, “Process configuration
framework tool,” Euromicro Conference on Software Engineering
and Advanced Applications 2014, in press.

[16] P. Diebold, C .Lampasona, and D. Taibi, “Moonlighting Scrum: An
agile method for distributed teams with part-time developers working
during non-overlapping hours,” Eighth International Conference on
Software Engineering and Advances, IARIA, Oct. 2013, pp. 318-323,
ISBN: 978-1-61208-304-9.

[17] V. Lenarduzzi, I. Lunesu, M. Matta, and D. Taibi, “Functional Size
Measures and Effort Estimation in Agile Development: a Replicated
Study,” in XP2015, Helsinky, Finland 2015

[18] P. Diebold, “How to configure SE development processes context-
specifically?,” 14th International Conference on Product-Focused
Software Process Improvement (PROFES 2013), Springer, Jun. 2013,
pp. 355-358, ISSN: 0302-9743.

[19] RTCA DO-254, “Design Assurance Guidance for Airbone Electronic
Hardware,” Apr. 2000.

[20] R. Hilbrich and L. Dieudonné, “Deploying safety-critical applications
on complex avionics hardware architectures,” Journal of Software
Engineering and Applications (JSEA), vol. 6, May 2013, pp. 229-235,
ISSN: 1945-3124.

[21] K. Forsberg and H. Mooz, “The Relationship of System Engineering
to the Project Cycle,” First Annual Symposium of National Council
on System Engineering, Oct. 1991, pp. 57-65.

135

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

