
727

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Introducing a Scalable Encryption Layer to Address Privacy and Security Issues in
Hybrid Cloud Environments

Paul Reinhold and Wolfgang Benn
Chemnitz University of Technology

Chemnitz, Germany
Email: {paul.reinhold@s2012,
wolfgang.benn@informatik}

.tu-chemnitz.de

Benjamin Krause and Frank Goetz
Qualitype GmbH

Quality Management Systems
Dresden, Germany

Email: {b.krause,f.goetz}@qualitype.de

Dirk Labudde
Hochschule Mittweida

University of Applied Sciences
Mittweida, Germany

Email: dirk.labudde@hs-mittweida.de

Abstract—Besides security and privacy concerns, high efforts,
necessary for developing and maintaining cloud services in the
modern IT landscapes, are new major issues in small and medium
enterprises. Software service development and operations face
new challenges in dynamic cloud environments. To establish the
cloud service and to address privacy and security issues, our
suggested scalable Encryption Layer can be used. With our
approach, small and medium enterprises, can securely outsource
their data to public cloud storages preventing the public cloud
provider from data insight, even with full access to the physical
machines. This paper introduces an in-depth description for
setting up our Encryption Layer, and also provides solutions for
problems which may arise during the implementation and setup
process of cloud environments. The presented test results of our
implemented prototype demonstrate, with an overall overhead of
50% to 75%, the practical applicability.

Keywords-Hybrid Cloud; Cloud Security; Architecture Layer;
Industry Research; Small Medium Enterprises.

I. INTRODUCTION

The increasing knowledge about cloud computing technol-
ogy and its publicity leads to a growing number of service
offerings over the Internet. Even small and medium sized en-
terprises (SME) are able to offer services for a large number of
consumers through cloud computing concepts. Like previous
work [1] shows, with the usage of an appropriate hybrid cloud
concept, SME can develop practical cloud service solutions
with respect to privacy and security.
The high acceptance of services, like Instagram [2] or Dropbox
[3] for private usage, suggests that private consumers have a
lower privacy demand than business users. Studies of Gens,
like [4], [5], support this hypotheses. A recent study of BIT-
COM [6] indicated that in Europe, and especially in Germany,
the acceptance of public cloud services for business purposes
is low. Typical reasons are security and privacy concerns. The
most recent study of Crisp Research [7] has led to the same
results. This study is most interesting for our work, since
it mainly focused on SMEs. The study showed that around
40% of the respondents hesitate with cloud solutions, because
their customers have concerns about security and privacy.
Interestingly, with a percentage of around 60%, the main
arguments against cloud computing solutions are the following:
First, the high effort to run a cloud service and second,

the high costs for developing a new cloud application. This
shows, despite the security and privacy issues, SME hesitate
because of deficient resources, like hardware, men power or
know-how. Therefore, we aim to lower these concerns by
introducing a convenient additional architecture layer, called
Encryption Layer (EL). In a previous work [1] we demonstrate
the practicability and low migration effort of this EL into
existing software systems. In this paper we focus on a detailed
insight of the implementation process and the effort to set
up the appropriate environments. Our suggested EL is located
between business logic and persistence layer. For evaluation
purposes, we implement a prototype using the suggested
architecture to outsource unstructured (files) and structured
(databases) data into a public cloud in an encrypted and
secured manner. For that purpose, our work focuses on SME
providers that already run services or web applications and take
new cloud offerings into account in an effort to become more
cost-efficient, or to establish new business models, as discussed
in [7]. In addition, SME providers probably use own hardware
to run their services and plan to develop a new version or
new service, which would exceed the current limit of their
hardware. Another scenario is that the provider needs to invest
in new hardware to keep its services running and is looking
for lower cost alternatives.
The outline for the rest of the paper is as follows: In Section
II, a comparison of common cloud delivery models with
respect to privacy, costs and performance is discussed. Based
on this comparison we elucidate the possible solutions with
a reasonable effort for SME. In Section III, an abstract
overview of our solution, as well as some differences to other
hybrid cloud approaches is given. In addition, we discuss the
applicability of a key management system inside of hybrid
cloud environments. As the main part of the paper, Section
IV summarizes the EL prototype implementation, and gives
in-depth technical insights, as well as an evaluation of tests
scenarios and results. Especially, we describe some pitfalls
and typical problems, which may arise during the development
process and appropriate solutions to avoid them. In Section V,
a critical discussion of the test results is provided, as well as
pros and cons of an additional layer, like EL, in general. In
Section VII, we elucidate related and future works. Finally,
Section VIII concludes the paper.



728

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. COMPARISON OF DIFFERENT CLOUD MODELS FROM CONSUMERS AND PROVIDERS POINT OF VIEW

View Criteria Private Cloud Public Cloud Hybrid Cloud

consumer cost high low medium
privacy medium low high
data-at-rest encryption yes yes yes
key owner provider provider consumer (and provider)
key management by provider by provider by provider (and consumer)

provider cost very high low medium
availability medium very high high
backup medium very high very high
hardware needs high very low medium
effort to run service very high low medium - high
flexibility high, but limited very high higher, but limited
scaling yes, but limited yes yes, but limited

II. CLOUD DEPLOYMENT MODEL COMPARISON

In the following sections, the end-user of a cloud service
shall be named cloud consumer or simply consumer [8].
From the consumers view, the provider offers services over
the Internet. Whether the service is offered by provider’s
hardware or by third party resources is irrelevant for the
customer, as long as service supply is ensured. However, the
method of providing can be essential for the acceptance of
the service on consumers side.
According to literature [9], [10], [11], [12] most common
cloud deployment models are private, public and hybrid
cloud models. In the private cloud, the provider runs its own
cloud. As Rhoton and Haukioja [13] mentioned some would
argue that anything less than a full cloud model is not cloud
computing. Actually, private cloud computing contradicts the
idea of cloud computing through limitations in basic cloud
characteristics defined by the National Institute of Standards
and Technology (NIST) in [9] like rapid elasticity, on-demand
self-service and resource pooling. Nevertheless, the term
is widely accepted in academia and industry. Private cloud
providers own the hardware and have exclusive access to
it. To leverage cloud effects the provider runs its hardware
in form of a cloud, allowing flexibility and scaling. Public
clouds are offered by public cloud service providers (CSP).
In contrast to private clouds, this form uses all advantages
of cloud computing. Therefore, public clouds are the most
flexible and cost-efficient services, since resources are
obtained by need and payed by usage. As Fernandes et al.
[14] mentioned, this model is less secure and more risky than
other deployment models. Actually, this statement is trivial
to confirm. Since public cloud computing is an extensive
form of IT outsourcing, there is a much higher potential
for malicious attacks compared to private cloud solutions.
Including not only external attacks but internal attacks, e.g.,
through malicious administrators as well.
Hybrid clouds are the third common approach where services
run both in a private and public clouds. We think this is
the most interesting approach, having a high potential for
balancing cloud computing advantages versus security and
privacy issues. In addition, this approach seem the most likely
one for using cloud computing in SME, van Hoeck et al. [15]
supports this hypothesis. In our opinion the main aspect is
to use private (expensive) resources as little as needed and
public (cheap) resources as much as possible. However, this
optimization is a highly complex task, especially for existing
enterprise IT infrastructures or software systems.

Table I shows a comparison between the three cloud
deployment models from both consumer’s and provider’s
point of view. An actual survey on cloud security carried out
by Fernandes et al. [14] has shown similar results. The costs
factor for both consumer and provider is comprehensible,
since hardware expenses are usually passed to consumers.
Privacy is low for public and medium for private cloud
architecture. Authors, like Wang and Jia [16], argued that the
private cloud could provide the the highest degree of security
for users data. We do not fully agree with that, because this
depends on who is the owner of the cloud and whose data
is processed or stored in this private cloud. If data and cloud
owner are the same, Wang and Jias [16] argument might be
right. However, in our scenario, as well as in most cloud
service offerings, the private cloud owner differs form the
data owner. Private clouds often have strong authorization and
access control concepts, but no special requirement to secure
data with encryption against the provider (SME) itself [17].
Thus, the private cloud provider often has access to customer
data and their customers data, respectively. Therefore, the
argument of Wang and Jia [16] is not true in our scenario. In a
public cloud it is very costly or impractical to secure data and
to keep them available for processing at the same time, which,
for instance, fully homomorphic encryption [18] can provide.
However, approaches like Mylar [19] can pose an alternative,
by the use of encryption in client software. Nevertheless,
this cause additional tasks, like key management, suggesting
a hybrid cloud approach offers a more attractive solution
with respect to the customer demands. Another important
aspect for consumers is data-at-rest encryption. This form of
encryption is possible in all of the models, but implies tasks
for key ownership and key management. If the same instance
encrypts data and stores the referring key, no trustable security
can be guaranteed, because providers can decrypt data without
consumers knowledge or permission. This has been recently
documented for economically rational cloud providers [20].
Because of this circumstance hybrid clouds suggest a solution
where consumers get more control over their data and the
possibility for public cloud providers to access unencrypted
files is eliminated. Even if a consumer trusts its provider (with
a private cloud) and consequently encryption is not needed,
the hybrid solution is more economical. From the providers
point of view, a private cloud can not provide the availability
as it is guaranteed by a public cloud. The hybrid model
benefits from this fact by outsourcing parts of the software



729

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

private cloud environment

Consumer SME provider

public cloud environment

Cloud Provider

Application
 Client

Encryption 

(1) (2) (3)

Application Server Secure Data Storage
Key Management

+

Figure 1. The hybrid cloud environment with Application Client, Application Server and outsourced Data Storage. The green dashed box is our additional
Encryption Layer, located between the application server in the private cloud and data storage in the public cloud.

solution in a public cloud. Backup security underlays the
same principle, in fact the backup process in the hybrid model
can be outsourced completely. The hardware needs and the
effort to run the service are coherent. Lots of own hardware
means not only to manage, but also to maintain and have
environment settings (buildings, redundant broadband internet
access) to run a private cloud. As mentioned above, the great
advantages of cloud computing like flexibility and scaling are
limited in private and hybrid cloud solutions. As a result of
this comparison and questions, our aim in [1] was to combine
the security of a private cloud with the flexibility, reliability
and availability of a public cloud, creating a balanced solution.

III. HYBRID CLOUD ENVIRONMENTS

The constellation of a hybrid cloud computing environment
is illustrated in Figure 1. It consists typically of a client (1),
a private (2) and a public cloud component (3). The most
common usage of a hybrid cloud environment in literature
[21], [22], [16], [23], [24] is a separation of sensitive and non-
sensitive data, stored in private and public cloud, respectively.
Lot of research has been done for developing efficient classi-
fication algorithms to separate or sanitize sensitive data from
non-sensitive data. The aim is to outsource as much data as
possible in public cloud. Our approach differs from this kind of
hybrid cloud computing. By the use of encryption methods we
outsource all kind of data, regardless their sensitivity. Resulting
advantages are: no need for data labeling/classification, less
effort to integrate in existing systems, and a less complex and
therefore less error-prone overall system architecture.

A. Private cloud environment

As shown in Figure 1 the private cloud environment
consists of application server and is managed by the SME
provider. That means all business logic remains inside the
private cloud, resulting in the main disadvantage of our hybrid
cloud solution. Actually, there is no alternative if neither
consumer nor SME provider trust a public cloud provider
anyway. Since efficient data-in-use encryption is still an open
issue; even with great improvements like fully homomorphic
encryption [18]. Consequently, our approach uses the existing
system of the SME provider, adding an additional architecture
layer (green dashed box) for protecting data in the public cloud
with encryption methods.

B. Public cloud environemt

The public cloud component is used for data storage in
form of virtual servers provided by an public IaaS provider.

As Rhoton [13] mentioned, this is the most basic form of
using cloud computing resources. We do not consider storage
solutions like S3 [25] or Azure SQL Database [26] to avoid
vendor lock-in effects and be more flexible. However, as we
address SME with this work the establishment of a basic, yet
efficient cloud solution (as a first step) is our focus. As the
cloud provider selection shows, there is no reason to use one
public cloud provider exclusively. This is an extended form
of hybrid cloud computing, called multi-cloud or multi-source
solutions, also described by Bohli et al. [27] and Li et al. [28].
Actually, the classification if its a hybrid or a public cloud
solution depends mainly on the point of view. As mentioned,
most cloud solutions in practice are hybrid (multi-) cloud ones.

C. Hybrid key management system

Similar to the identity management system classification
described by Hussain [29], we can separate key management
systems in user centric and federated systems. While a user
centric key management results in a high overhead for the
consumer, by keeping the keys in a secure way, this is
outsourced in federated case to a third party or the provider
of the service. Just like the hybrid deployment model, we
can use a hybrid key management model. The user keeps a
master key as the root of an encrypted key tree, like described
by Zarandioon et al. [30], while the tree is managed by the
SME. As a result the SME can not read out plaintext data
without the consumer’s permission. Figure 2 illustrates the
basic idea. In fact, a similar concept is used by Apple’s instant
messenger service iMessage [31]. Despite some privacy issues
described by QuarkLabs [32], in their opinion this cloud based
instant messenger service could be considered as the most
practical and secure real-time messaging system available. As
a result, we think a hybrid key management system, combined
with state-of-the-art cryptography can be considered as highly
realistic for practical use in future work for our approach.

private cloud environment

Consumer SME Provider

public cloud environment

Cloud Provider

Application
 Client

master key data key

encrypted files
 with data key

encrypted data 
keys
with master key *

Figure 2. The hybrid key management system consists of a master key stored
by the consumer and data keys stored by the SME provider. The data keys
are encrypted by the consumer’s master key.



730

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. SCALABLE ENCRYPTION LAYER

The scalable encryption layer is an additional tier between
the application servers and the data storage server in the
public cloud. Its location is illustrated by the green dashed
box in Figure 1. As the figure shows the EL consists of two
components, the encryption and the key management service.
These services extend the proxy-like behavior of the CryptDB
MySQL proxy developed by Popa et al. [33]. The basic idea
of our EL is the encryption and decryption of data while
transferring the data to the outsourced data storage (on-the-fly
encryption). Therefore, less trust to the party to which the data
has been outsourced is needed. To prevent the EL becomes
kind of a bottle neck, it is located in a private cloud. This
private cloud is controlled and managed by the SME provider
and offers an efficient possibility for scaling.
Nevertheless, this approach is accompanied with some issues.
First of all, virtual cloud instances should be as stateless and
independent as possible. So, how and where to persist the keys
need for encryption and decryption? Second, because of scal-
ing and load balancing the following scenario is very common:
Instance A encrypts some file, but the decryption request is
forwarded to instance B. How to exchange encryption keys,
if the instances should be independent? Third, the encryption
layer should support the encryption of both structured and
unstructured data. Which instance should decide which type
of data is send to the EL and how it should be forwarded (in
sense of load balancing). Fourth, despite the highly dynamic
cloud environment there has to be some kind of a cloud access
point, the application server can address their requests to. In
this scenario this access point needs to know what instances
exist, to be able to forward requests to them. Last but not
least, all these problems and requirements should be solved in
a way so that the existing system has to be adjusted as little
as possible (low migration effort). Summing up, there are the
following problems to solve:

1) Persistence and distribution of encryption keys.
2) Load Balancing, request forwarding with respect to

the type of data.
3) Cloud instance controlling and addressing.
4) Low migration effort.

A. Technical setup and implementation of the protoype

The very first point to clarify is, which cloud management
system is used for the private cloud. Important to mention
is, this cloud management system only provides the cloud
environment. That means, especially in the field of scaling,
there are tools to easily start and stop virtual instances.
However, in which way the implemented system reacts to
upscaling (include for load balancing) or downscaling (exclude
from load balancing) events, has to be managed by the system
itself. Giving some thoughts, this fact is very clear, in an IaaS
cloud environment the management system usually does not
know what is inside these virtual instances and can therefore
not react in any specific behavior. This is the main difference
to PaaS solutions, where the management gets much more
context information from source code, deployment rules and
configuration files. In consideration of these facts a PaaS
solution would be the favorable solution, but the effort to
setup this solution is much too high for this prototype. So,
we decided to use OpenNebula 4.4 [34] for our private cloud

environment. Reasons for this decision are the open source
environment, good possibility for own integrations and, last but
not least, the fact of existing knowledge about OpenNebula.
Our private cloud is powered by four physical hosts with 3
GHz Dual-Cores and 8 GB RAM. These machines consist of
standard components and are connected via a common 100
MBit/s ethernet network to keep the hardware costs low.
After installation and setup the environment we had to cope
with a very basic problem, to which we refer to as image
persistence dilemma. Basically, there are two possibilities
to setup an image in OpenNebula, from which the virtual
instances are created: First kind are persistent images. As the
name implies, these images save the adjustments the user is
doing during runtime of the virtual machine. Besides this,
another advantage of this stateful image is the rapid boot time.
However, there are some crucial disadvantages. First of all, the
access is exclusive, which means there is no possibility for
scaling, based on persistent images. This makes perfect sense
in consideration of constancy. Secondly, because of the direct
usage of the image in the cloud-internal image repository (e.g.,
SAN/NAS as possibilities to provide access to a data storage
in networks), which results in fast boot times, but the runtime
performance is lower than in non-persistent images. This is
because of the higher access time for the network storage, in
contrast to the local disk, resulting in a higher CPU wait time.
Especially, we observe this behavior by execution of write
heavy disc access tasks, e.g., compiling the CryptDB MySQL
proxy.
The second kind are non-persistent images. Again, as the name
implies, all changes done while runtime inside this VM, are
lost when shutting down this VM. In addition, the boot time
for this kind of images are much longer, because the host needs
a local copy on its physical hard drive. Trivially, a significant
amount of time is necessary to transfer an image of 10-20
GB over the network. The advantages of non-persistent images
are the better runtime performance and, even more important,
the possibility to have more than one virtual instance of this
image. One can argue, that long boot time only happens once,
because the second instance of the host could copy the local
image. However, there are two important points. First of all the
possibility of a local copy depends on the image format. Some
formats, like qcow [35], support copy on write. That means the
local changes were stored in a different place, which opens up
the possibility for other virtual instances to use the same local
image. However, the hypervisor installed in the physical host,
must be aware of this. Although we used the qcow format,
the images were copied again from the image repository. At
this point we see potential for future work. The second point
is in consideration of the performance and reliability it would
be better to run the other instances of the image on as many
different (physical) hosts as possible.
How to solve this image persistence dilemma? Actually, the
public IaaS cloud provider we use for data storage server
provides a simple solution. There are only persistent images.
So, if you want to scale up, you have to clone your images
as often you want to scale up. This is inefficient in a lot of
ways. First, it takes a lot of storage, resulting in high costs
and inefficiency, because most of the time the images are not
used. Second, there is an up-scaling limit in short-term by
the number of cloned image. Third, because of the different
images there are a lot of different states within the same virtual
instances, making potential failure analysis extremely difficult.



731

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Key Management KM

Test Client TC

SME Provider Cloud Provider

Gateway G

File Worker FW1

data key?

files

*

encrypted
files

Simulated Consumer

encrypted
queries

SQL

queries
*

OpenNebula private cloud environment

File Worker FW2

SQL Worker SW1

public cloud 
environment

Secure Data Storage
*

Figure 3. The implemented encryption server prototype with the Test Client TC to simulate consumer requests (files and SQL queries), our Encryption Layer
(green dashed box) to encrypt/decrypt consumer requests and the data storage to persist the encrypted files/databases. The data flow is illustrated as well, showing
only encrypted data leaves the private cloud environment.

However, in this prototype we have no need for scaling in
the public cloud, but for productive systems this should be a
crucial point while choosing a public cloud provider.
All in all, there is no perfect solution of the image persistence
dilemma. The most common solution is the usage of a cluster
file system, distributed over the hosts with high speed and
high bandwidth internal network. This is open for future
work. It has to be mentioned, that this optimizations toward
a highly performant cloud environment is not suitable for
most SME. As we can see, even public cloud providers
lack in providing efficient and practical solutions. Therefore,
the practical suitability of setting up a highly efficient and
performant private cloud environment is not included in the
practicability discussion of the EL.

1) Setup of the cloud system - virtual machines: Figure 3
shows an overview of the architecture of the implemented pro-
totype, with the Test Client TC, the EL and the cloud storage.
As mentioned, the EL consists of a key management and an
encryption component. The focus of our work is setting up
and implementing the encryption part as the core component
and as crucial point for practicability discussions for SME
SaaS provider. Therefore, the key management server KM
is a basic MySQL database server for storing the encryption
keys for file encryption and a basic NFS server for the SQL
query encryption. Despite the fact this is not suitable for
productive systems, it fulfills the persistence problem in a very
efficient way and is therefore a good solution for our prototype
implementation. Because the keys must be stored persistently
and KM will not scale, it runs as a VM based on a persistent
image.
As Figure 3 shows, besides KM the EL consists of a Gateway
G, File Workers FWi and a SQL Worker SW1. With the
decision of gateway solution, we address the problems of
load balancing, forwarding, cloud instance controlling and
addressing, and the low migration effort, by the risk of a single
point of failure. In addition, the workers become more stateless
and independent from application servers. We think for the
prototype implementation this tradeoff is suitable. The gateway
acts as a load balancer based on a JBoss AS 7 cluster, which
also solves possible problems with internal communication
between highly dynamic VMs. It also acts as a MySQL proxy,
forwarding all database requests to the SQL Worker SW1. As
a result, the gateway behave for the application server (Figure
1) as a file server and database. This fact reduces migration

effort significantly. Because the gateway does not need to store
any data permanently, the image is non-persistent. Actually,
there is the possibility to scale up the gateway. However, our
hardware setup was not suitable to test such large scenario.
Another non-persistent image is used by the File Worker FW1.
These workers perform the encryption and decryption task and
act as stateless and scalable nodes in a JBoss Cluster. As Figure
3 shows these workers request encryption keys from the key
management server and upload files into the public cloud.
We ran in the problem how to deploy an application archive
in the JBoss nodes. Because it is very inefficient to shut down
FW1, set the image to persistent state, start it again, deploy the
archive, shut down, and switch back to non-persistent state to
make it scalable again. After that we can start up the service
again. Our solution will instead of pushing the new archive
version into the virtual machine, pull it while starting up the
VM. This is possible by the script shown in listing 1, which
is processed while booting up the VM.

Listing 1. Application archive update/retrieval script

c u r l −Lkv −o / tmp / s e r v l e t . war −u <name>:<pw> ’<URL>’
rm <JBOSS DEPLOY DIR>/ s e r v e l e t ∗
mv / tmp / s e r v l e t . war <JBOSS DEPLOY DIR>s e r v l e t . war

The first command fetches the servlet archive from the given
< URL >. In our case, we get the latest version of the appli-
cation archive stored on our internal repository management
system for software artifacts (Sonartype Nexus [36]). Second
and third command remove a possible old version and move
the new application archive into the deployment directory of
the JBoss application server. Actually, this naturally enables
us to update an application while runtime, just by restarting
a VM (or by triggering the script manually at VM runtime,
therefore, the JBoss hot-deploy mechanism has to be active).
The SQL Worker SW1 as the fourth image is also non-
persistent. Initially, we plan to scale the SQL worker as well.
However, it was not possible to outsource the key management
of the CryptDB-enabled MySQL proxy deployed in SW1

to KM with reasonable effort. Therefore, we outsource the
database files of the internal database of the CrytptDB via
NFS to KM . Trivially, if more than one SQL worker would
(over)write these database files the consistency could not be
ensured. As result we could not scale the SQL Worker.
All VMs are part of an autoscaling service of the OpenNebula
cloud environment called OneFlow[37]. This service allows to



732

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

bundle some VMs and to set up a set of rules for scaling the
virtual machines. OneFlow enables to adjust the number of
VMs at the startup and how much load a VM has to have to
scale up or down. Starting up our service with these five VMs
takes around 10 min.

2) Setup of the JBoss Cluster: Figure 4 shows the structure
of the internal JBoss Cluster, as described by Marchioni
[38]. This cluster is used for load balancing in a dynamic
environment. The cluster consists of a controller, which is
basically an extended HTTP server located in the Gateway VM
G. Another part of the cluster are nodes, that are configured
JBoss AS 7 application server. The JBoss cluster addresses
problems 2) Load Balancing and 3) Cloud instance control
mentioned at the beginning of Section IV. So, this cluster
is perfectly suited for the management of dynamically added
and removed virtual machines. However, there is a limitation.
As the HTTP server based controller suggests, the cluster
only supports HTTP request. Therefore, it can not be used
to load balance SQL query requests for the SQL Worker
SW1 and works only for the File Workers FWi. Though, in
consideration of the fact that only FWi are scalable, this is
perfectly fine.
The JBoss cluster is based on mod cluster 1.2.6 [39]. The
setup of the JBoss cluster consists of two main aspects: setting
up the controller and setting up the nodes. As mentioned, the
controller is located in G. To make the standard apache 2
HTTP server work as a JBoss cluster controller, an extension
by the mod cluster module is necessary. For configuration
details please see [40]. To setup a standard JBoss AS7 as a
cluster node, it is necessary to enable the mod cluster module
and configure it appropriately. Especially the multicast ports
have to be the same as configured in the controller in G. The
cluster communication is illustrated in Figure 4 and works
like following. The controller in G sends out a multicast,
containing the controller address information. As the nodes
receive this multicasts they answer to the appropriate controller
address, containing node information like deployed application
archives and node load-metrics. Finally, the controller receives
these node answers and can take them into account for load
balancing. This principle is perfectly suited for dynamic cloud
environments, as nodes can start and stop at any time.
For load balancing, mod cluster provides a lot of load metrics.
Our metrics are shown in the listing 2. For detailed meaning
of the parameters please see [41].

Listing 2. Load balancing configuration

<dynamic−load−p r o v i d e r h i s t o r y =”10” decay =”2”>
<load−m e t r i c t y p e =” cpu ” w e i gh t =”2” c a p a c i t y =”1”/>
<load−m e t r i c t y p e =”mem” w e i gh t =”4” c a p a c i t y =”512”/>
<load−m e t r i c t y p e =”ST” w e i gh t =”1” c a p a c i t y =”512”/>
<load−m e t r i c t y p e =”RT” w e i gh t =”1” c a p a c i t y =”512”/>
</dynamic−load−p r o v i d e r>

G uses this metrics to calculate the busyness b of the node
(weighted average), after the equation,

b =
2 ∗ cpu + 4 ∗mem + ST ∗RT

8
(1)

in which ST stands for send-traffic and RT stands for received-
traffic. It has to be pointed out that the cpu metric in our virtual
environment does not behave in the intended manner. We cloud
not evaluate the exact reason, but numerous tests show that the

configuration above leads to better results than one without the
cpu metric.
In order to establish a high data security, we chose an at
least 256 bit standard encryption method. Therefore, we have
to use another Java security provider, because the standard
security provider of Java only supports up to 128 bit encryption
key length. So, we decided to use the security provider of
Bouncycastle [42]. To use it in the server components in
the nodes, we have to extend the JBoss AS7 nodes. First
of all we replace the standard Java policy files with those
from Bouncycastle. By default it is located under a path like
JAVA HOME DIR\jdk1.7.x xx\jre\lib\security. Secondly,
a new module has to be added in the JBoss AS7 nodes.
Therefore, the creation of a folder like JBOSS HOME DIR/
modules/org/bouncycastle/main is necessary. The Bouncycas-
tle library files have to be moved in this folder. The next step
is the creation of the module.xml as shown in listing 3.

Listing 3. Bouncycastle module

<module xmlns =” urn : j b o s s : module : 1 . 1 ”
name=” org . b o u n c y c a s t l e ”>
<r e s o u r c e s>
<r e s o u r c e−r o o t p a t h =” bcprov−jdk15on −150. j a r ”/>
</ r e s o u r c e s>
<d e p e n d e n c i e s>
<module name=” j a v a x . a p i ” s l o t =” main ” e x p o r t =” t r u e ”/>
</ d e p e n d e n c i e s>

</module>

The last step is to integrate this module, as listing 4 shows,
in the JBoss AS7 server configuration file. One example could
be JBOSS HOME DIR/standalone/configuration/standalone.
xml .

Listing 4. JBoss AS7 server configuration

<g l o b a l−modules>
<module name=” org . b o u n c y c a s t l e ” s l o t =” main ”/>

</ g l o b a l−modules>

Summing up, to set up the JBoss Cluster as appropriate
environment for the EL consists of three steps. The basic setup
with controller in the gateway G and nodes in FWi. Second,
the configuration of the load balancing metrics and third, the
extensions of the nodes to support 265 bit encryption standard
methods.

private cloud environment

Consumer SME Provider

public cloud 
environment

Cloud Provider

httpd

JBoss AS 7

JBoss AS 7

...

JBoss Cluster

multicast

lifecycle
notation

*
TC

Figure 4. The internal JBoss Cluster inside the EL (green dashed box) for
load balancing purposes. The figure shows the mod cluster enabled HTTP
daemon (httpd) and the JBoss 7 application server nodes (JBoss AS 7), as
well as the internal cluster communication to manage these JBoss Cluster
nodes.



733

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

private cloud environment

Gateway G

Key Mgmt KM

JBoss AS 7

Java Servlet

(1) (3)

(2)

(4)

*

(a) file encryption

private cloud environment

JBoss AS 7

Java Servlet
*

(4) (3)

(2)

(1)
Gateway G

Key Mgmt KM

(b) file decryption

Figure 5. Work and data flow inside the File Worker in the EL (green
dashed box). Figures show encryption and decryption, respectively. The star
symbolizes an encrypted file.

3) Details of the Server Components: The server compo-
nents of the encryption layer consist of a Java Servlet for file
encryption and a MySQL proxy, based on the work of Popa
et al. [33]. Figure 5(a) and Figure 5(b) show the procedure of
file encryption and decryption, inside the JBoss AS7 Cluster
nodes.
File encryption consists of four steps. First, receiving the
HTTP request from the HTTP server (httpd) in gateway G (1).
Second, checking if the file exists or creating a new key by
sending a request to the key management system (Key Mgmt)
(2), via a JDBC connection. Third, encrypting the file with a
256 bit encryption method (3). Fourth, upload the encrypted
file to a file server in public cloud (4), using sardine, a WebDav
client for Java [43].
File decryption is roughly the same, vice versa. First, down-
loading the encrypted file from the public cloud (1). Second,
getting the encryption key from key management (2). Third,
decrypting the file (3). Fourth, sending the file to the gateway
or client, respectively (4).
Since the file up and downloads work in a synchronous way,
a node would not be able to process another request, while
uploading or downloading a file. This problem is naturally
solved by JBoss AS 7 servers, by allowing many instances
of the servlet in parallel, using threads. Actually, this is the
second stage of scaling in the Encryption Layer. The two stages
are shown in Figure 6(a). First a coarse-grained scaling in G,
based on load balancing and virtual machines and cluster nodes
(1) and second a fine-grained, based on parallel threads inside
the nodes Ni (2). As mentioned above, there is of course the
possibility of scaling the whole system, by having a redundant
gateway, cluster and so on. This scenario is not considered,
because of limitations of the available hardware for testing the
prototype.
The servlet was developed in consideration of logging re-
sults and benchmarking different encryption methods. Table II
shows test results of different encryption methods. The results
show that AES (256Bit) works most efficient, considering en-
cryption and decryption times. As a result of this and because

TABLE II. UPLOAD, DOWNLOAD, ENCRYPTION, AND DECRYPTION
AVERAGE TIMES t̄ IN MILLISECONDS (FILE SIZE 1MB)

encryption method t̄up[ms] t̄enc[ms] t̄down[ms] t̄dec[ms]

AES (265 bit) 1040.9 39.9 1116.4 51.5
DESede (168 bit) 1165.9 167.2 1239.4 135.8
Serpent (256 bit) 1180.9 57.2 1138.2 57.9
Twofish (256 bit) 1195.9 50.6 1160.4 50.5
CAST6 (256 bit) 1300.9 53.3 1037.6 40.1

private cloud environment

G

cluster node servletrequest

upload/
download

Ni (2)

(1)

Ni (2)

(a) Two Stage Scaling

private cloud environment

MySQL proxy

CryptDB
*

(1) (2)

sync

(3)
Gateway G

Key Mgmt KM

(b) CryptDB proxy

Figure 6. Two stage scaling while file processing inside the EL (green dashed
box) and the work/data flow of the SQL query encryption.

of the fact AES is widely accepted as a secure encryption
method, all following tests use AES (256Bit) for encryption.
As mentioned, for detailed performance tests different times
were logged. Because the File Workers FWi nodes were
not persistent, the logged times had to be sent to a logging
service or fetched by one. Actually, we did not implement
a separated logging service. We decided, to add the logged
times in the HTTP header of the resulting HTTP response.
Despite the small overhead this was very efficient for the
prototype. Because of this approach all relevant performance
measurement time bunched in the Test Client TC, the analysis
become more easier. Logged data is:

1) start and communication times with key management
2) encryption method, and times spent for encryption

and decryption
3) start and communication times with public cloud

(upload, download, delete)

The second part of the server components is the integration
of the MySQL proxy based CryptDB approach. The setup
is described in doc folder in sources of the git repository
of CryptDB [44] and consists basically of setting up some
environment parameter and compiling an extended MySQL
proxy. Our problem was to outsource the internal key man-
agement system of the CryptDB out of the SQL worker. Since
the CryptDB approach uses an InnoDB database for internal
consistency and backups, our attempt to forward these internal
request to a remote database did not succeed. Therefore, we
outsourced the database files in a very pragmatic way via NFS,
leaving an improved solution open for future work. Another
problem is scaling with databases. As far as our search results
showed up, there is no comparable open source load balancer
like mod cluster available for databases. Actually, there are
solutions like pgpool [45] and plproxy [46]. However, these
tools are limited to a fixed pool of instances. Therefore, it
is not possible to dynamically add some additional virtual
machine or stop one VM. It is questionable if it really make
sense to add additional database instances on demand, because
principle like master-slave and database sharding are not suited
for highly dynamic or short timed setups, which makes perfect
sense for a persistence layer. Hence, existing solutions like
Relational Cloud [47] go another way.

4) Details of the Test Client Implementation: The imple-
mentation of the Test Client TC is completely done in Java.
TC has to fulfill three main tasks. First of all, the possibility to
send HTTP file and SQL query requests to the EL. Second, the
setup of different flexible test scenarios. And third, to measure
and log the performance of the EL to analyze the test results.
The first task is easily done by basic HTTP GET, POST and



734

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DELETE requests and a JDBC connection. These protocols are
also used by the application server. For a direct communication
with the WebDav file server in the public cloud again the
sardine client is used. Actually, the CryptDB approach supports
JDBC only in a very limited way. Nevertheless, it is enough for
our EL prototype, to enable basic SQL statements for our tests.
For the second task, we implement a highly configurable and
effective possibility to create different load scenarios. There-
fore, we can simulate autonomous clients with an individual
behavior in parallel.
Figure 7 shows the basic parameters for configuration of
the simulated clients. The figure illustrates a blue load line
separated in slack and spike sectors. A slack sector repre-
sents a normal, average number of requests which cause a
basic load to the EL. A spike sector represents a load peak,
with a lot of requests in a short time span to cause some
heavy load. In addition, Figure 7 shows a spike sector is
always surrounded by two slack sectors. There can be an
arbitrary number s of spikes, normally we set 1 ≤ s ≤ 3
to finish the test scenarios in a reasonable time. As shown,
there are a number of upload/download/delete blocks, called
UDD. These blocks symbolize the procedure per file, which
is at first uploaded to public cloud (through EL), after that
download the file and check for identity. If successful the file
is deleted in the cloud and UDD has processed successfully.
This order is fixed, as one can not download or delete the
file, until it is fully uploaded. The number n of UDDn

is configurable to 1 ≤ n ≤ 12. In addition, the figure
shows delays Dslack(Cj , nslack) = ∆T (UDDn, UDDn+1)
and Dspike(Cj , nspike) = ∆T (UDDn, UDDn+1). Were
∆T (x, y) represents the timespan between the starting points
of x and y, Cj is the client number j, and nslack, nspike are
the numbers of UDD blocks in slack and spike, respectively.
Normally, Dslack � Dspike, to simulate longer basic load
periods and short peak load periods. The UDD blocks are
independent, which means that up to n blocks can be pro-
cessed in parallel. Last but not least, there is an option to
choose the file size F (Cj) between 1MB(F1), 10MB(F10)
and 100MB(F100). This file size is than fixed for this client
Cj . Summing up, the configuration protocol for Cj works like
processing the following protocol:

1) How many spikes s do you want?
2) How many UUD blocks should be sent in slack

sector? (set nslack)
3) What is the (expected) delay? (Dslack)
4) Choose a file size between F1, F10 and F100...
5) // Repeat step 2 - 4 for spike configuration, then go to

step 6
6) Do you want to add another client Cj+1?

slack spike slack

x x x

x

x

xx

delay Dslack

delay Dspike

x x x

upload/download/
delete block UDD

load

Figure 7. Client basic configuration for test scenarios with basic UDD blocks.
One block consists of upload (↑), download(↓) and delete (x) of a file.

As question 6 suggests, there is the possibility to add another
client. Basically, there is no limitation of the number of client
we can set up. In case of adding another client, there will
be a question how long the delay ∆TCj between the start
of client simulation and start of Cj should be (simplification
of ∆T (0, Cj)). Slightly different is the setup of the SQL
query client. In this case, we decided to implement a basic
loop, consisting of a chosen number NDML(Cj) of data
manipulations with INSERT, and DELETE statements, and a
different number NDQL(Cj) ≤ NDML(Cj) of data queries
with SELECT statements.
The third task, is done by logging the client configuration, the
track of the configured protocol and by reading out the node-
logs from the HTTP response headers. In addition, TC logs the
status of the virtual machines of the private cloud environment.
Therefore, the API of OpenNebula is used to log CPU and
memory usage and in/outgoing network traffic for each VM.
Because the OpenNebula System updates these values once
every 20 seconds, the client fetches these VM performance
measurements in the same period of time. Consequently, the
logged data is:

1) start time of UDD blocks (+ details) and clients
2) VM CPU and memory usage, and in/outgoing net-

work traffic
3) conglomeration of cluster node logs

The last important function TC provides is to run a comparison
test. In this test setup the configured, simulated clients not only
send their requests to G, but send them directly to the public
cloud as well. This offers a good possibility to measure the
overhead of the Encryption Layer.

5) Setup of the Public Cloud Servers: An Apache 2 HTTP
server [48] and WebDav [49] is used to provide a file server in
the public cloud. The file server is hosted by an European IaaS
provider. For storing this data a common MySQL database
extended by CryptDB user defined functions is also hosted
by the IaaS provider. The extension is done by adding the
CryptDB library edb.so to the plugins of the MySQL database
and installing the NTL Library [50]. Both, virtual server use
minimal resources of 1 GHz and 1 GB RAM.
Table III shows the summary of the setup of the Encryption
Layer. We can see that the VMs have a decent usage of re-
sources. Even if our hardware consists of standard components,
this setup works very well for our EL prototype. The work of
Toraldo [51] confirms that our setup in the private cloud is
realistic.

B. Testing the prototype

The tests of the EL prototype are separated into load
balancing and overhead test. A third scenario, testing dynamic
scaling is not possible out of two reasons. Number one is
discussed above, we called it image persistence dilemma. In
our prototype setup it takes up to 5 min for a new VM to be
ready to answer requests, including the time to transfer the 10
GB image and to boot up the VM. The second, more important
point is that our available network bandwidth limits the load
we can create in the Encryption Layer, making it unnecessary
to improve our local image repository storage solution. This
point is argued in the discussion section.



735

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. OVERVIEW OVER ENCRYPTION LAYER SETUP

Domain VM name vCPU [GHz] RAM [GByte] installed software

private Cloud key management 0.50 0.25 MySQL database
gateway 0.40 0.50 Apache 2, mod cluster, MySQL proxy
file worker 0.50 2.00 JBoss, Bouncycastle, Java servlet
SQL worker 1.50 1.00 MySQL proxy, CryptDB

public cloud file server 1.00 1.00 Apache 2, WebDAV
SQL server 1.00 1.00 MySQL database, CryptDB MySQL module

1) Load balancing test scenario: Our aim is to show that
client requests are equally distributed over two or more VMs
in a dynamic way. Therefore, the JBoss cluster is configured
in the above mentioned way and 2 File Worker VMs run in the
private cloud. Figure 8 illustrates the protocol of the simulated
clients by TC, sticking to the introduced symbolics above in
Figure 7.

time

C1

C2

C3

C4

client Cj

x

SQL SQL SQL SQLSQL SQL SQL SQL SQL SQL SQL

x

12x

12x

x12x

x12x

x12x

x

x

12x

12x

x12x

x12x

x12x

5x

3x

5x

x

x x

Figure 8. The illustration of the test protocol of the load balancing scenario.
Four client are simulated to create load to the EL.

As shown, four clients are simulated, with the following
parameters.

• sC1,2 = 2, sC3 = 1

• ∆TC1,4
= 0, ∆TC2

= 20 s, ∆TC3
= 40 s

• Dslack(C1,2, 12) = 2000 ms

• Dspike(C1,2, 12) = 10 ms

• Dslack(C3, 5) = 5000 ms

• Dspike(C1,2, 3) = 10 ms

• F (C1,2) = F1, F (C3) = F10

• NDML(C4) = 15, NDQL(C4) = 10

To complete the test protocol, the simulated clients take 10
min and 23 s.

2) Overhead test scenario: Our aim is to estimate the
overhead of the EL. Therefore, a long running test has been
set up. Figure 9 illustrates the protocol of the simulated client
by TC.

time

C1

client Cj

x
x

5x
5x

Figure 9. The test protocol for the long running overhead test scenario.

As shown, one clients is simulated, with the following param-
eters.

• ∆TC1 = 0,

• Dslack(C1, 5) = 20 s, Dspike(C1, 5) = 20 s

• F (C1) = F1

As Figure 9 and parameters show, this is a special setup with
no peak load. In this scenario the spike symbolize the usage
of our EL and the slack stands for a direct public cloud
communication, without any encryption. Therefore, we can
compare the results to get an estimation of the overhead. The
test protocol is repeated until the user cancels it, in this case
the test runs over 17 h.

Apart from these tests scenarios, we perform a lot of other
tests to optimize parameters, like those of JBoss load balancing
metrics, encryption methods and internal HTTP requests. We
also run tests for SQL query processing comparison, by
communicating directly with the database server in the public
cloud. Despite of the given overhead values of CryptDB from
Popa et al. [33], this enables us to estimate the overhead
for SQL query encryption in our EL. This also allows to
compare file encryption overheads with those from SQL query
encryption.

C. Test results from the prototype

Like the test scenarios, the test results are separated in
load balancing and overhead test results. The shown results
are based on the data logged by TC, received from the JBoss
cluster and the OpenNebula Management System. Figure 3
shows an abstract overview of the test setup. The detailed test
scenarios are described in the section above.

1) Load Balancing Test Results: With the load balancing
tests, we want to show how good the EL prototype can
handle different load situations. The configured load balancing
metric for the JBoss Cluster works very well. As mentioned,
the metrics configured in mod cluster config in JBoss nodes,
combine CPU load, system memory usage and amount of
outgoing/incoming requests traffic. Figure 10 shows the logged
VM workloads of G and F1, F2 in 20 s intervals. The figure
also show the number of client requests sent by TC in the
specific interval. Please note that some client requests, like
DELETE, do not cause much load. This is the reason, why the
interval at 540 s has a low CPU load compared to the number
of client requests. However, the timespan between 340 and 420
s is remarkable. A lot of upload and download requests were
sent in this timespan. The gateway recognizes the high load of
FW2 sending client requests to FW1. At time intervals of 380
s, it is inverse. In Figure 8 this is illustrated at the point when



736

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. CPU load of G,FW1, FW2 VMs depending on the number of
client requests.

all clients C1,2,3 have their spike loads at the same time. It has
to be pointed out that Figure 8 is only a sketch, since clients
Ci are completely independent and influenced by network
latency and bandwidth. Figure 11 shows the response times
for processing the SQL queries sent by TC though simulated
client C4 as illustrated in Figure 8.

2) Overhead Test Results: For the overhead test our aim is
to get an estimation of a lower boundary of additional effort
we have to accept, if we want to use on-the-fly encryption
methods like an EL. Therefore, we ran some long term tests,
to compare direct cloud communication with that through our
EL. We uploaded, downloaded and deleted files in this test over
17 h. Figure 12(a) and 12(b) show the result box plots without
and with the EL, respectively. Please note that the x-axis has a
logarithmic scale. In Figure 12(a) we can see a very compact
box plot for deleting files. This means the median of 168 ms
for the deletion a file in the cloud storage is, except of very
view outliers, nearly constant. Similar results can be seen in
cases of upload and download the files. However, since these
processes take much longer time, they are more influenced by
a fluctuating network latency and bandwidth. Interestingly, the
download is influenced much more. Figure 12(b) illustrates the
box plots while using our EL. We can see the expected higher
communication times. In addition, we can see that the data

INSERT

SELECT

DELETE

200 500 1000 2000 5000 10000 20000
Time [ms]

Figure 11. Logarithmic scaled response times for processing 234 INSERT,
180 SELECT and 234 DELETE queries through the Encryption Layer.
Whiskers maximums are 1.5 IQR.

upload

download

delete

150 250 500 1000 2500 5000 8000
Time [ms]

(a) Direct cloud communication. Median times: Upload 1121 ms, Download
916 ms, Delete 162 ms

upload

download

delete

150 250 500 1000 2500 5000 8000
Time [ms]

(b) Communication through Encryption Layer. Medians times: Upload 1717
ms, Download 1234 ms, Delete 391 ms

Figure 12. Logarithmic scaled response times for processing 515 uploads,
515 downloads and 515 delete file requests with and without the Encryption
Layer. Whiskers maximums are 1.5 IQR

distribution in the box plot looks analogue to those in Figure
12(a). As we expected the delete time increases most. This
is explainable because of the additional roundtrip to the key
management system to delete the encryption key.
In another test we measured the response times of the database
in cloud storage without our EL communication. Figure 13
illustrates the results. Please note that Figure 11 and Figure
13 have a different scale. Otherwise, the data is no longer
readable, because of the high difference. Figure 11 shows
results of the 18 rounds the SQL client C4 executed its
protocol. Remarkable in Figure 13 is that response times
do have very few outliers. This is explainable in the short
communication time and the short overall test time of around
6 min. In this short timespans the network latency fluctuations
do not influence the results. Hence, the many outliers in Figure
11 do not result of a fluctuating network latency, since the
duration of the test was only around 10 min. With regard to the
logarithmic scale, a response times of ten to twenty seconds for
a very basic query are unacceptable for practical use. Our best
guess is the CryptDB proxy doing some internal recovery and
key management operations. However, as mentioned we bind
the relevant folder via NFS to our key management KM , some
file operations via the internal network should not last that
long. Figure 14 shows the percentage of times for processing
a request through the EL. The figure splits up again in upload,

INSERT

SELECT

DELETE

150 175 200 225 250 275 300
Time [ms]

Figure 13. Response times for processing 310 INSERT, 340 SELECT and
310 DELETE queries direct to cloud. Whiskers maximums are 1.5 IQR.



737

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Percentage of times to encrypt and upload, decrypt and download,
and delete a file, respectively.

download and delete parts. In cases of up- and download
the communication time includes times spend for up- and
download the file from TC to EL, therefore, the percentage is
much higher than in case of deletion. More important is the fact
that only two/three percent is used for encryption/decryption,
the rest of time the File Workers are, roughly speaking, waiting
to complete communications. Especially the communication
overhead while deleting a file is significantly high, taking more
than 50% of overall time.
The overheads for file encryption and query encryption can
be seen in Figures 15 and 16. In fact, the figures illustrate
the results of Figure 12, and Figures 11 and 13, respectively.
In numbers, the overhead to upload and download a file,
displayed in Figure 15 is around 53% and 34%, respectively.
The overhead to delete a file is with around 132% very high.
The difference can be explained by the required effort to
store/fetch/delete the encryption keys and is also illustrated in
Figure 14. As displayed in Figure 16 the overheads for query
encryption are not as divers as the file encryption overheads.
Nevertheless, their absolute values are higher, 81% for IN-
SERT, 74% for SELECT and 62% for DELETE statements. It
has to be pointed out, both Figures 15 and 16 display median,
not average, times.

V. DISCUSSION

We lead the discussion under the aspects of performance
and overhead of the EL, and development and operation effort
for SME provider. As mentioned, we used median times in
our statistics. The reason is to estimate the lower boundary of
additional effort for a scalable on-the-fly encryption system.

Figure 15. Diagram of median times to upload, download, and delete files
with and without encryption

Therefore, median times give a much better statement, because
network or computation fluctuations do not influence that
much. This is especially interesting to compare the SQL query
encryption. As we figured out in our previous work [1], the
current development status is highly prototypic and not usable
for productive systems. Nevertheless, for an estimation we do
need comparable values. If we assume a weighted average of
30% uploads/INSERTs, 60% downloads/SELECTs and 10%
deletes, we get the following lower boundaries of average
overhead Ω.

ΩfileEnc =
30 ∗ 53 + 60 ∗ 34 + 10 ∗ 132

100
= 49.5 (2)

ΩqueryEnc =
30 ∗ 81 + 60 ∗ 74 + 10 ∗ 62

100
= 74.9 (3)

So, we got ΩfileEnc of around 50% and ΩqueryEnc of around
75% for overall processing. We can see, that database en-
cryption is more complicated than file encryption. This can
be concluded from the fact that database encryption is not
only a matter of data-at-rest encryption, but computation under
encryption as well. However, the support of databases is
limited in a way not all queries can be supported; details can
be seen in Tu et al. [52].
As we can see in Figure 14 the main overheads results
from communication with KM and EL. The time used for
encryption and decryption is with two/tree percent very low.
So, on the one hand, we agree with Huang and Xiaojiang
[53], that protecting data with cryptography methods cause un-
avoidable overheads. However, on the other hand, we disagree
with the statement, that it introduces heavy computational
overhead. As we can see from Figure 14 the computational
overhead is nearly negligible, most overhead results from
network communication. So, network communication is the
most influencing factor for the performance in our approach.
Because the limiting network bandwidth of the internet access
was the main reason we could not run scalability tests, since
the computational effort for encryption/decryption was so low.

VI. RELATED WORK

Our approach applies typical security concepts in the field
of cloud computing using tier, logic and data partitioning
described by Bohli et al. [27]. In contrast to this study, we
do not spread our tiers to various, non-collaborating cloud
providers. We spread our solution over a private and public

Figure 16. Diagram of median times to INSERT, SELECT, and DELETE
queries with and without encryption



738

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cloud, performing all critical tasks in the private cloud, like
encryption and key management and outsource only the data
tier in public cloud. This makes it unnecessary to label tasks
or data as critical in a manual or semi-automatic manner,
like described by Zhang et al. [21] and Oktay et al. [23].
Equally, Ray and Ganguly [22] present a data privacy model
for cloud computing, in which sensitive and non-sensitive
data is maintained separately. Zhou et al. [54] describe an
evolved approach, using privacy-aware data retrieval, address-
ing problems of anonymization like quasi identifiers. Wang
et al. [16] give a short overview over hybrid cloud security.
Their Single Encryption scenario is in that way similar to ours
that data is encrypted in private cloud before transferring in
public cloud. However, their focus lay on authentication model
for inter (multi-) cloud communication. A data management
method, via a data portfolio, for company data in a hybrid
cloud configuration, is discussed by Tanimoto et al. [24].
Li et al. [28] describe a framework for SME to orchestrate
cloud services in multi-cloud environments. Their work tries
to integrate applications of the internal information system of
SME with a public e-business platform.

VII. FUTURE WORK

An appropriate prototype of the discussed hybrid key man-
agement system is one of the very next steps in future work,
in order to have a fully functional hybrid cloud environment.
In addition, we could not run scaling tests because of limited
hardware resources, we leave this open for future work. Our
test results confirm the mentioned fact by Popa et al. [33]
that the implementation of CryptDB is highly prototypical.
As the own implementations of Google and SAP show (for
details see [55]) more development effort, e.g., towards full
support of JDBC - is necessary. Figure 14 points out that the
encryption workload of file worker is not high. This leaves
space for additional functionalities like file compressing, for
faster up- and downloads, or file indexing for possible searches
over the encrypted files. The latter is mentioned in [56].
Also, the integration of a secure identity and key management
system, e.g., Kerberos [57], is required to provide a SaaS
solution with focus on the customers privacy. Moreover, the
tests show that implementations of failure and backup routines
are absolutely necessary. Despite the different focus in this first
implementation, we want to point out that security is not only
about protecting data from unauthorized access or viewing, but
also issues of auditing, data-integrity, and reliability should be
concerned too.

VIII. CONCLUSION

In this this paper the introduction of an additional ar-
chitecture layer, called Encryption Layer (EL) is described.
With this layer SME can address privacy and security issues
through the usage of encryption methods. SME have the option
to basically employ three cloud models (private, public and
hybrid) as their solution, which were discussed and compared
in Section II. The private cloud model is the most inflexible
and cost intensive option. Probably being an option for large
companies owning much hardware resources, it is not suitable
for SME. The public cloud model is the preferred choice
for SME if the application has no particular high privacy
or security requirements. Our work, which is focused on a

hybrid cloud concept, offers a compromise between securi-
ty/privacy, efficiency and costs. Therefore, we describe our
developed prototype of the EL in detail. The prototype includes
scalable encryption server for files and queries, and a basic
key management system inside a private cloud environment
based on OpenNebula 4.4. In addition, we set up file and
database server in a public cloud environment. Problems as
the so called image persistence dilemma were discussed and
appropriate solutions are suggested. Moreover, we proposed
a hybrid key management system, which can be used to
distribute key management task between consumer and SME
in order to achieve a higher privacy for service customers.
Our test results showed that load balancing inside the private
cloud, using a JBoss Cluster works well. Besides, we showed
the main percentage of the overheads of 50% - 75% is a matter
of communication, and not of heavy computation because of
encryption and decryption. Therefore, network communication
is the most influencing factor for performance. To be applicable
in productive systems, improvements of performance and more
research are necessary. Nevertheless, we show that SME can
establish solutions like our EL to solve security and privacy
issues with a reasonable amount of effort. Our work provides
a good basic solution for SME to get their first experiences in
the cloud computing business.

ACKNOWLEDGMENT

The published work has been financially supported by the
European Social Fund (ESF) and the EU. We would like to
thank the anonymous reviewers for helpful comments.

REFERENCES

[1] P. Reinhold, W. Benn, B. Krause, F. Goetz, and D. Labudde, “Hybrid
cloud architecture for software-as-a-service provider to achieve higher
privacy and decrease security concerns about cloud computing,” in
CLOUD COMPUTING 2014, The Fifth International Conference on
Cloud Computing, GRIDs, and Virtualization, 2014, pp. 94–99.

[2] Instagram. Website. [Online]. Available: http://instagram.com
[retrieved: November, 2014]

[3] Dropbox. Website. [Online]. Available: https://www.dropbox.com
[retrieved: November, 2014]

[4] F. Gens, “It cloud services user survey, pt. 2: Top benefits & challenges,”
IDC eXchange, 2008.

[5] ——, “New idc it cloud services survey: top benefits and challenges,”
IDC exchange, 2009.

[6] BITOM and KMPG, “Cloud-monitor 2013 cloud-computing in deutsch-
land – status quo und perspektiven,” KMPG Study, February 2013.

[7] CrispResearch. Study platform-as-a-service: German sme mar-
ket survey. [Online]. Available: http://www.business-cloud.de/
wp-content/uploads/2014/07/STUDIE-Platform-as-a-Service01.pdf [re-
trieved: November, 2014]

[8] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf,
“Nist cloud computing reference architecture,” Tech. Rep., 2011.

[9] P. Mell and T. Grance, “The nist defintion of cloud computing,” National
Institute of Standards and Technology, Tech. Rep., 2011.

[10] E. Aguiar, Y. Zhang, and M. Blanton, “An overview of issues and
recent developments in cloud computing and storage security,” in High
Performance Cloud Auditing and Applications. Springer, 2014, pp.
3–33.

[11] S. Jie, J. Yao, and C. Wu, “Cloud computing and its key techniques,”
in Electronic and Mechanical Engineering and Information Technology
(EMEIT), 2011 International Conference on, vol. 1. IEEE, 2011, pp.
320–324.



739

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” Journal of Network and Computer
Applications, vol. 34, no. 1, 2011, pp. 1–11.

[13] J. Rhoton and R. Haukioja, Cloud Computing Architected: Solution
Design Handbook, 2013th ed. Recursive Press, 2013.

[14] D. A. Fernandes, L. F. Soares, J. V. Gomes, M. M. Freire, and P. R.
Inácio, “Security issues in cloud environments: a survey,” International
Journal of Information Security, vol. 13, no. 2, 2014, pp. 113–170.

[15] S. Van Hoecke, T. Waterbley, J. Devos, T. Deneut, and J. De Gelas,
“Efficient management of hybrid clouds,” in CLOUD COMPUTING
2011, The Second International Conference on Cloud Computing,
GRIDs, and Virtualization, 2011, pp. 167–172.

[16] J. K. Wang and X. Jia, “Data security and authentication in hybrid
cloud computing model,” in Global High Tech Congress on Electronics
(GHTCE). IEEE, 2012, pp. 117–120.

[17] M. A. Rahaman. How secure is sap business bydesign for your business.
[Online]. Available: http://scn.sap.com/docs/DOC-26472 [retrieved:
November, 2014]

[18] C. Gentry, “A Fully Homomorphic Encryotion Scheme,” Ph.D. disser-
tation, Stanford University, 2009.

[19] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich, M. F. Kaashoek,
and H. Balakrishnan, “Building web applications on top of encrypted
data using mylar,” in USENIX Symposium of Networked Systems
Design and Implementation, 2014.

[20] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and
N. Triandopoulos, “Hourglass schemes: how to prove that cloud files are
encrypted,” in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM, 2012, pp. 265–280.

[21] K. Zhang, X. Zhou, Y. Chen, and X. Wang, “Sedic : Privacy-Aware
Data Intensive Computing on Hybrid Clouds Categories and Subject
Descriptors,” 2011, pp. 515–525.

[22] C. Ray and U. Ganguly, “An approach for data privacy in hybrid cloud
environment,” in Computer and Communication Technology (ICCCT),
2011 2nd International Conference on. IEEE, 2011, pp. 316–320.

[23] K. Y. Oktay, V. Khadilkar, B. Hore, M. Kantarcioglu, S. Mehrotra,
and B. Thuraisingham, “Risk-aware workload distribution in hybrid
clouds,” in Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on. IEEE, 2012, pp. 229–236.

[24] S. Tanimoto, Y. Sakurada, Y. Seki, M. Iwashita, S. Matsui, H. Sato,
and A. Kanai, “A study of data management in hybrid cloud configura-
tion,” in Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), 2013 14th ACIS International
Conference on. IEEE, 2013, pp. 381–386.

[25] Amazon. Aws s3. [Online]. Available: http://aws.amazon.com/s3/
[retrieved: November, 2014]

[26] Microsoft. Azure sql database. [Online]. Available: http://azure.
microsoft.com/en-us/services/sql-database/ [retrieved: November, 2014]

[27] J.-M. Bohli, N. Gruschka, M. Jensen, L. L. Iacono, and N. Marnau,
“Security and privacy-enhancing multicloud architectures,” Dependable
and Secure Computing, IEEE Transactions on, vol. 10, no. 4, 2013, pp.
212–224.

[28] Q. Li, Z.-y. Wang, W.-h. Li, J. Li, C. Wang, and R.-y. Du, “Applications
integration in a hybrid cloud computing environment: modelling and
platform,” Enterprise Information Systems, vol. 7, no. 3, 2013, pp. 237–
271.

[29] M. Hussain, “The Design and Applications of a Privacy-Preserving
Identity and Trust-Management System,” Ph.D. dissertation, Queen’s
University (Kingston, Ont.), 2010.

[30] S. Zarandioon, D. D. Yao, and V. Ganapathy, “K2c: Cryptographic cloud
storage with lazy revocation and anonymous access,” in Security and
Privacy in Communication Networks. Springer, 2012, pp. 59–76.

[31] Apple. ios security. [Online]. Available: http://images.apple.com/
iphone/business/docs/iOS Security Feb14.pdf [retrieved: November,
2014]

[32] Quarkslab. imessage privacy. [Online]. Available: http:
//blog.quarkslab.com/static/resources/2013-10-17 imessage-privacy/
slides/iMessage privacy.pdf [retrieved: November, 2014]

[33] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 85–100.

[34] OpenNebula. Website. [Online]. Available: http://docs.opennebula.org/
4.4/release notes/ [retrieved: November, 2014]

[35] QEMU. Qcow3. [Online]. Available: http://wiki.qemu.org/Features/
Qcow3 [retrieved: November, 2014]

[36] Sonartype. Nexus. [Online]. Available: http://www.sonatype.org/nexus/
[retrieved: November, 2014]

[37] ONEFlow. Documentation. [Online]. Available:
http://docs.opennebula.org/4.4/advanced administration/application
flow and auto-scaling/appflow configure.html [retrieved: November,
2014]

[38] F. Marchioni, JBoss AS 7 Configuration, Deployment and Administra-
tion. Packt Publishing Ltd, 2011.

[39] ModCluster. mod-cluster website. [Online]. Available: http://www.
jboss.org/mod cluster [retrieved: November, 2014]

[40] ——. Documentation. [Online]. Available: http://docs.jboss.org/mod
cluster/1.2.0/html/ [retrieved: November, 2014]

[41] Redhat. Mod cluster subsystem. [Online]. Available:
https://access.redhat.com/documentation/en-US/JBoss Enterprise
Application Platform/6.1/html/Administration and Configuration
Guide/Configure the mod cluster Subsystem.html [retrieved:
November, 2014]

[42] Bouncycastle. Website. [Online]. Available: http://www.bouncycastle.
org/java.html [retrieved: November, 2014]

[43] G. R. Sardine. Sardine - an easy to use webdav client for
java. [Online]. Available: https://github.com/lookfirst/sardine [retrieved:
November, 2014]

[44] Git-Repository. cryptdb. [Online]. Available: git://g.csail.mit.edu/
cryptdb [retrieved: November, 2014]

[45] Pgpool. Website. [Online]. Available: http://www.pgpool.net/mediawiki/
index.php/Main Page [retrieved: November, 2014]

[46] Plproxy. Website. [Online]. Available: http://plproxy.projects.pgfoundry.
org/doc/tutorial.html [retrieved: November, 2014]

[47] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich, “Relational cloud: A database-as-
a-service for the cloud,” in 5th Biennial Conference on Innovative Data
Systems Research, CIDR, 2011.

[48] Apache. Apache 2.2 website. [Online]. Available: http://httpd.apache.
org/docs/2.2/en/ [retrieved: November, 2014]

[49] WebDAV. Website. [Online]. Available: http://www.webdav.org
[retrieved: November, 2014]

[50] NTL-Library. Ntl: A library for doing number theory. [Online].
Available: http://www.shoup.net/ntl/ [retrieved: November, 2014]

[51] G. Toraldo, OpenNebula 3 Cloud Computing. Packt Publishing Ltd,
2012.

[52] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proceedings of the 39th in-
ternational conference on Very Large Data Bases. VLDB Endowment,
2013, pp. 289–300.

[53] X. Huang and X. Du, “Efficiently secure data privacy on hybrid cloud,”
in Communications (ICC), 2013 IEEE International Conference on.
IEEE, 2013, pp. 1936–1940.

[54] Z. Zhou, H. Zhang, X. Du, P. Li, and X. Yu, “Prometheus: Privacy-
aware data retrieval on hybrid cloud,” in INFOCOM, 2013 Proceedings
IEEE, 2013, pp. 2643–2651.

[55] CryptDB. Website impact section. [Online]. Available: http://css.csail.
mit.edu/cryptdb/#Impact [retrieved: November, 2014]

[56] S. Kamara, C. Papamanthou, and T. Roeder, “Cs2: A searchable
cryptographic cloud storage system,” Microsoft Research, TechReport
MSR-TR-2011-58, 2011.

[57] Kerberos. Keberos documentation. [Online]. Available: http://tools.ietf.
org/html/rfc4120 [retrieved: November, 2014]


