
642

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Virtual-BFQ: A Coordinated Scheduler to Minimize
Storage Latency and Improve Application

Responsiveness in Virtualized Systems

Alexander Spyridakis, Daniel Raho, and Jérémy Fanguède
Virtual Open Systems

Grenoble - France
Email: {a.spyridakis, s.raho, j.fanguede}@virtualopensystems.com

Abstract—Preserving responsiveness is an enabling condition for
running interactive applications effectively in virtual machines.
For this condition to be met, low latency usually needs to be
guaranteed to storage-Input/Output operations. In contrast, in
this paper we show that in virtualized environments, there is
a missing link exactly in the chain of actions performed to
guarantee low storage-I/O latency. After describing this problem
theoretically, we show its practical consequences through a large
set of experiments with real world-applications. After detailing
the possible solutions to replace this missing connection, we
detail our chosen solution based on the I/O scheduler BFQ
(Budget Fair Queueing) named Virtual-BFQ. Which it designed to
preserve a high application responsiveness in KVM (Kernel-based
Virtual Machine) virtual machines on ARM architectures. For
the experiments, we used two Linux schedulers, both designed to
guarantee a low latency, and a publicly available I/O benchmark
suite, extended to be used also in a virtualized environment. As
for the experimental testbed, we ran our experiments on the
following three devices connected to an ARM embedded system:
an ultra-portable rotational disk, a microSDHC (Secure Digital
High Capacity) Card and an eMMC (embedded Multimedia card)
device. This is an ideal testbed for highlighting latency issues, as
it can execute applications with about the same I/O demand as a
general-purpose system, but for power-consumption and mobility
issues. According to the experimental results reported in this
paper, even in the presence of a heavy background workload
on the guest virtual disk, plus a heavy additional background
workload on the physical storage device corresponding to that
virtual disk, Virtual-BFQ does preserve in the guest a high
application responsiveness.

Keywords–KVM/ARM; virtualization; responsiveness and soft-
real time guarantees; coordinated scheduling; embedded systems;
Virtual-BFQ.

I. INTRODUCTION

Virtualization is an increasingly successful solution to
achieve both flexibility and efficiency in general-purpose and
embedded systems. However, for virtualization to be effective
also with interactive applications, the latter must be guaranteed
a high, or at least acceptable responsiveness. In other words,
it is necessary to guarantee that these applications take a
reasonably short time to start, and that the tasks requested by
these applications, such as, e.g., opening a file, are completed
in a reasonable time.

To guarantee responsiveness to an application, it is nec-
essary to guarantee that both the code of the application and
the I/O requests issued by the applications get executed with

a low latency. In virtualized systems the responsiveness is not
always guarantees [1], and expectedly, there is interest and
active research in preserving a low latency in virtualized envi-
ronments [2][3][4][5][6][7][8], especially in soft and hard real-
time contexts [9][10][11]. In particular, some virtualization
solutions provide more or less sophisticated Quality of Service
mechanisms also for storage I/O [2][3][12][13]. However, even
just a thorough investigation on application responsiveness,
as related to storage-I/O latency, seems to be missing. In
this paper, we address this issue by providing the following
contributions.

A. Contributions of this paper

First, we show, through a concrete example, that in a
virtualized environment there is apparently a missing link in
the chain of actions performed to guarantee a sufficiently
low I/O latency when an application is to be loaded, or, in
general, when any interactive task is to be performed. To this
purpose, we use as a reference two effective schedulers in
guaranteeing a high responsiveness: Budget Fair Queuing [14]
and Completely Fair Queuing [15]. They are two production-
quality storage-I/O schedulers for Linux.

Then, we report experimental results with real-world ap-
plications. These results confirm that, if some applications
are competing for the storage device in a host, then the
applications running in a virtual machine executed in the same
host may become from not much responsive to completely
unresponsive. To carry out these experiments, we extended a
publicly available I/O benchmark suite for Linux [16], to let
it comply also with a virtualized environment.

The solution described in this paper solves the problem
highlighted previously, it is an extension of the BFQ storage
I/O scheduler [17]. Such an extension can be implemented in
several ways. So first, we provide an analysis of the solution
space. From this analysis, we highlight the solution that seems
to provide most benefits. We did implement such a solution
and named Virtual-BFQ (V-BFQ) [18] the resulting extended
version of BFQ. We describe its implementation in detail.
And we report our experimental results with this scheduler.
The results obtained confirm that V-BFQ does preserve a high
application responsiveness in a virtualized environment even
with the presence of heavy background workloads.

As an experimental testbed, we opted for an ARM embed-
ded system, based on the following considerations. On one



643

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hand, modern embedded systems and consumer-electronics
devices can execute applications with about the same I/O
demand as general-purpose systems. On the other hand, for
mobility and energy-consumption issues, the preferred storage
devices in the former systems are (ultra) portable and low-
power ones. These devices are necessarily slower than their
typical counterparts for general-purpose systems. Being the
amount of I/O the same, the lower the speed of a storage
device is, the more I/O-latency issues are amplified. Finally,
as a virtualization solution we used the pair QEMU (Quick
EMUlator) and KVM, one of the most popular and efficient
solutions in ARM embedded systems.

B. Organization of this paper

In Section II, we describe the schedulers that we use as
a reference in this paper. Then, in Section III we show the
important I/O-latency problem on which this paper is focused.
After that, in Section IV, we describe how we modified the
benchmark suite to execute our experiments. And in Section V,
we report our experimental results that highlight the latency
problem. Then, in Section VI we provide an analysis of
the possible solution space, and highlight the solution that
apparently provides the best trade-off between pros and cons.
After that, we describe V-BFQ in detail in Section VII. And
then in Section VIII, we report our results with V-BFQ for the
same experiments that we executed for BFQ and CFQ. Finally,
in Section IX we compared the results obtained with V-BFQ
with two other standard I/O schedulers for Linux : Deadline
and NOOP.

II. REFERENCE SCHEDULERS

To show the application-responsiveness problem that is
the focus of this paper, we use the following two storage-
I/O schedulers as a reference: BFQ [17] and CFQ [15]. We
opted for these two schedulers because, they, both guarantee a
high throughput and low latency. In particular, BFQ achieves
even up to 30% higher throughput than CFQ on hard disks
with parallel workloads. Strictly speaking, only the second
feature is related to the focus of this paper, but the first feature
is however important, because a scheduler achieving only a
small fraction of the maximum possible throughput may be,
in general, of little practical interest, even if it guarantees
a high responsiveness. The second reason why we opted
for these schedulers is that up-to-date and production-quality
Linux implementations are available for both. In particular,
CFQ is the default Linux I/O scheduler, whereas BFQ is
being maintained separately [16]. In addition to the extended
tests for BFQ and CFQ, we also identified similar behaviour
with the Noop and Deadline schedulers. In the next two
sections, we briefly describe the main differences between
the two schedulers, focusing especially on I/O latency and
responsiveness. For brevity, when not otherwise specified, in
the rest of this paper we use the generic term disk to refer to
both a hard disk and a solid-state disk.

A. BFQ

BFQ achieves a high responsiveness basically by providing
a high fraction of the disk throughput to an application that
is being loaded, or whose tasks must be executed quickly. In
this respect, BFQ benefits from the strong fairness guarantees

it provides: BFQ distributes the disk throughput (and not just
the disk time) as desired to disk-bound applications, with any
workload, independently of the disk parameters and even if
the disk throughput fluctuates. Thanks to this strong fairness
property, BFQ does succeed in providing an application re-
quiring a high responsiveness with the needed fraction of the
disk throughput in any condition. The ultimate consequence of
this fact is that, regardless of the disk background workload,
BFQ guarantees to applications about the same responsiveness
as if the disk was idle [17].

B. CFQ

CFQ grants disk access to each application for a fixed
time slice, and schedules slices in a round-robin fashion.
Unfortunately, as shown by Valente and Andreolini [17], this
service scheme may suffer from both unfairness in throughput
distribution and high worst-case delay in request completion
time with respect to an ideal, perfectly fair system. In par-
ticular, because of these issues and of how the low-latency
heuristics work in CFQ, the latter happens to guarantee a worse
responsiveness than BFQ [17]. This fact is highlighted also by
the results reported in this paper.

III. MISSING LINK FOR PRESERVING RESPONSIVENESS

We highlight the problem through a simple example. Con-
sider a system running a guest operating system, say guest G,
in a virtual machine, and suppose that either BFQ or CFQ
is the default I/O scheduler both in the host and in guest G.
Suppose now that a new application, say application A, is being
started (loaded) in guest G while other applications are already
performing I/O without interruption in the same guest. In these
conditions, the cumulative I/O request pattern of guest G, as
seen from the host side, may exhibit no special property that
allows the BFQ or CFQ scheduler in the host to realize that
an application is being loaded in the guest.

Hence, the scheduler in the host may have no reason for
privileging the I/O requests coming from guest G. In the end,
if also other guests or applications of any other kind are
performing I/O in the host—and for the same storage device
as guest G—then guest G may receive no help to get a high-
enough fraction of the disk throughput to start application A
quickly. As a conclusion, the start-up time of the application
may be high. This is exactly the scenario that we investigate in
our experiments. Finally, it is also important to note that our
focus has been in local disk/storage, as scheduling of network-
based storage systems is not always under the direct control
of the Linux scheduling policies.

IV. EXTENSION OF THE BENCHMARK SUITE

To implement our experiments we used a publicly available
benchmark suite [16] for the Linux operating system. This
suite is designed to measure the performance of a disk sched-
uler with real-world applications. Among the figures of merit
measured by the suite, the following two performance indexes
are of interest for our experiments:

Aggregate disk throughput. To be of practical interest,
a scheduler must guarantee, whenever possible, a high
(aggregate) disk throughput. The suite contains a bench-
mark that allows the disk throughput to be measured



644

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Storage devices used in the experiments

Type Name Size Read peak rate
1.8-inch Hard Disk Toshiba MK6006GAH 60 GB 10.0 MB/s
microSDHC Card Transcend SDHC Class 6 8 GB 16 MB/s

eMMC SanDisk SEM16G 16 GB 70 MB/s

while executing workloads made of the reading and/or
the writing of multiple files at the same time.

Responsiveness. Another benchmark of the suite measures
the start-up time of an application—i.e., how long it
takes from when an application is launched to when the
application is ready for input—with cold caches and in
presence of additional heavy workloads. This time is,
in general, a measure of the responsiveness that can be
guaranteed to applications in the worst conditions.

Being this benchmark suite designed only for non-
virtualized environments, we enabled the above two bench-
marks to work correctly also inside a virtual machine, by
providing them with the following extensions:

Choice of the disk scheduler in the host. Not only the active
disk scheduler in a guest operating system, hereafter
abbreviated as just guest OS, is relevant for the I/O
performance in the guest itself, but, of course, also the
active disk scheduler in the host OS. We extended the
benchmarks so as to choose also the latter scheduler.

Host-cache flushing. As a further subtlety, even if the disk
cache of the guest OS is empty, the throughput may be
however extremely high, and latencies may be extremely
low, in the guest OS, if the zone of the guest virtual
disk interested by the I/O corresponds to a zone of the
host disk already cached in the host OS. To address this
issue, and avoid deceptive measurements, we extended
both benchmarks to flush caches at the beginning of their
execution and, for the responsiveness benchmark, also
(just before) each time the application at hand is started.
In fact the application is started for a configurable number
of times, see Section V.

Workload start and stop in the host. Of course, re-
sponsiveness results now depend also on the workload
in execution in the host. Actually, the scenario where
the responsiveness in a Virtual Machine (VM) is to be
carefully evaluated, is exactly the one where the host disk
is serving not only the I/O requests arriving from the
VM, but also other requests (in fact this is the case that
differs most from executing an OS in a non-virtualized
environment). We extended the benchmarks to start the
desired number of file reads and/or writes also in the
host OS. Of course, the benchmarks also automatically
shut down the host workload when they finish.

V. EXPERIMENTAL RESULTS

We executed our experiments on a Samsung Chromebook,
equipped with an ARMv7-A Cortex-A15 (dual-core, 1.7 GHz),
2 GB of RAM and the devices reported in Table I. There
was only one VM in execution, hereafter denoted as just the
VM, emulated using QEMU/KVM. Both the host and the guest
OSes were Linux 3.12.

A. Scenarios and measured quantities

We measured, first, the aggregate throughput in the VM
while one of the following combinations of workloads was
being served.

In the guest. One of the following six workloads, where
the tag type can be either seq or rand, with seq/rand meaning
that files are read or written sequentially/at random positions:

1r-type one reader (i.e., one file being read);
5r-type five parallel readers;
2r2w-type two parallel readers, plus two parallel writers.

In the host. One of the following three workloads (in addition
to that generated, in the host, by the VM):

no-host workload no additional workload in the host;
1r-on host one sequential file reader in the host;
5r-on host five sequential parallel readers in the host.

We considered only sequential readers as additional workload
in the host, because it was enough to cause the important
responsiveness problems shown in our results. In addition, for
each workload combination, we repeated the experiments with
each of the four possible combinations of active schedulers,
choosing between BFQ and CFQ, in the host and in the guest.

The main purpose of the throughput experiments was
to verify that in a virtualized environment both schedulers
achieved a high-enough throughput to be of practical interest.
Both schedulers did achieve, in the guest, about the same
(good) performance as in the host. For space limitations, we do
not report these results, and focus instead on the main quantity
of interest for this paper. In this regard, we measured the start-
up time of three popular interactive applications of different
sizes, inside the VM and while one of the above combinations
of workloads was being served.

The applications were, in increasing-size order: bash, the
Bourne Again shell, xterm, the standard terminal emulator for
the X Window System, and konsole, the terminal emulator
for the K Desktop Environment. As shown by Valente and
Andreolini [17], these applications allow their start-up time
to be easily computed. In particular, to get worst-case start-
up times, we dropped caches both in the guest and in the
host before each invocation (Section IV). Finally, just before
each invocation a timer was started: if more than 60 seconds
elapsed before the application start-up was completed, then
the experiment was aborted (as 60 seconds is evidently an
unbearable waiting time for an interactive application).

We found that the problem that we want to show, i.e.,
that responsiveness guarantees are violated in a VM, occurs
regardless of which scheduler is used in the host. Besides, in
presence of file writers, results are dominated by fluctuations
and anomalies caused by the Linux write-back mechanism.
These anomalies are almost completely out of the control of
the disk schedulers, and not related with the problem that we
want to highlight. In the end, we report our detailed results
only with file readers, only with BFQ as the active disk
scheduler in the host, and for xterm.

B. Statistics details

For each workload combination, we started the application
at hand five times, and computed the following statistics over



645

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the measured start-up times: minimum, maximum, average,
standard deviation and 95% confidence interval (actually we
measured also several other interesting quantities, but in this
paper we focus only on application responsiveness). We denote
as a single run any of these sequences of five invocations. We
repeated each single run ten times, and computed the same
five statistics as above also across the average start-up times
computed for each repetition. We did not find any relevant
outlier, hence, for brevity and ease of presentation, in the next
plots we show only averages across runs (i.e., averages of the
averages computed in each run).

C. Results

Figure 1 shows our results with the hard disk (Table I).
The reference line represents the time needed to start xterm
if the disk is idle, i.e., the minimum possible time that it
takes to start xterm (a little less than 2 seconds). Comparing
this value with the start-up time guaranteed by BFQ with no
host workload, and with any of the first three workloads in
the guest (first bar for any of the 1r-seq, 5r-seq and 1r-rand
guest workloads), we see that, with all these workloads, BFQ
guarantees about the same responsiveness as if the disk was
idle. The start-up time guaranteed by BFQ is slightly higher
with 5r-rand, for issues related, mainly, to the slightly coarse
time granularity guaranteed to scheduled events in the kernel
in an ARM embedded system, and to the fact that the reference
time itself may advance haltingly in a QEMU VM.

In contrast, again with no host workload, the start-up time
guaranteed by CFQ with 1r-seq or 1r-rand on the guest is 3
times as high than on an idle disk, whereas with 5r-seq the
start-up time becomes about 17 times as high. With 5r-seq the
figure reports instead an X for the start-up time of CFQ: we
use this symbolism to indicate that the experiment failed, i.e.,
that the application did not succeed at all in starting before the
60-second timeout.

In view of the problem highlighted in Section III, the
critical scenarios are however the ones with some additional
workload in the host; in particular, 1r on host and 5r on host
in our experiments. In these scenarios, both schedulers un-
avoidably fail to preserve a low start-up time. Even with just
1r on host, the start-up time, with BFQ, ranges from 3 to 5.5
times as high than on an idle disk. The start-up time with CFQ
is much higher than with BFQ with 1r on host and 1r-seq on
the guest, and, still with 1r on host (and CFQ), is even higher
than 60 seconds with 5r-seq or 5r-rand on the guest. With
5r on host the start-up time is instead basically unbearable,
or even higher than 60 seconds, with both schedulers. Finally,
with 1r-rand all start-up times are lower and more even than
with the other guest workloads, because both schedulers do not
privilege much random readers, and the background workload
is generated by only one reader.

Figures 2 and 3 show our results with the two flash-based
devices. At different scales, the patterns are still about the
same as with the hard disk. The most notable differences are
related to CFQ: on one side, with no additional host workload,
CFQ achieves a slightly better performance than on the hard
disk, whereas, on the opposite side, CFQ suffers from a much
higher degradation of the performance, again with respect to
the hard-disk case, in presence of additional host workloads.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1r-seq 5r-seq 1r-rand 5r-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

bfq-no_host_workload

cfq-no_host_workload

bfq-1r_on_host

cfq-1r_on_host

bfq-5r_on_host

cfq-5r_on_host

2.2 2.6 2.3

4

5.6

30

5.5

X

5.8 5.7

7.5

10

14

X

8.5

X

8.5

11

8.7

15

26

X

11

X

Figure 1. Results with the hard disk (lower is better).

 0

 5

 10

 15

 20

 25

 30

1r-seq 5r-seq 1r-rand 5r-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

bfq-no_host_workload

cfq-no_host_workload

bfq-1r_on_host

cfq-1r_on_host

bfq-5r_on_host

cfq-5r_on_host

1.2
1.6

1.2
1.6

3.5

12

2.6

X

5.4 5.5

4.4

5.4

13

X

5.1

X

8.3 8.4

7.5

9.6

21

X

8

X

Figure 2. Results with the microSDHC CARD (lower is better).

 0

 5

 10

 15

 20

1r-seq 5r-seq 1r-rand 5r-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

bfq-no_host_workload

cfq-no_host_workload

bfq-1r_on_host

cfq-1r_on_host

bfq-5r_on_host

cfq-5r_on_host

0.85 0.91 0.81
1.2

1.9

6.9

1.7

X

3.7

2.9
2.5

2.3

9.5

X

3.5

X

4.5

4
3.5

3.7

16

X

3.5

X

Figure 3. Results with the eMMC (lower is better).

To sum up, our results confirm that, with any of the devices
considered, responsiveness guarantees are lost when there is
some additional I/O workload in the host.



646

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. POSSIBLE SOLUTIONS

The key idea to recover responsiveness is the coordina-
tion between schedulers, in order to create the missing link
described in Section III. That is why, to deal with the above
problem, the guest disk scheduler should somehow inform the
host disk scheduler that the I/O requests of the guest should be
privileged to preserve a low latency. On the opposite side, the
host disk scheduler should properly privilege a guest asking
for an urgent and high-throughput access to the disk. In other
words, the guest and the host disk schedulers should somehow
coordinate with each other to achieve the desired latency goals.
As shown in the preceding section, BFQ guarantees a much
higher responsiveness than CFQ. For this reason we choose it
as the candidate scheduler to extend. The idea is then to realize
a coordinated version of BFQ, which we named Virtual-BFQ
(V-BFQ). We can describe this idea as follows:

Guest side: when the guest V-BFQ scheduler detects,
through its internal heuristics, that some application needs
urgent service from the virtual disk, it communicates this
need to the V-BFQ scheduler in the host. On the other
hand, the V-BFQ guest scheduler also communicates to
the host when there are no more applications needing a
quick service.

Host side: when the host V-BFQ scheduler receives the
above help request from one VM, it privileges that VM
until the same VM tells the host V-BFQ scheduler that
no help is needed anymore.

From this scheme we can easily deduce that the communi-
cation between the guest and host V-BFQ schedulers is a crit-
ical issue. Actually, the possible solution space stems mainly
from the choices we can make in terms of communication
between the schedulers.

We can consider two main alternative approaches to let
the guest scheduler communicate to the host scheduler when
it needs to be privileged:

A. Augment metadata in guest storage-I/O requests.

We could add some additional boolean field the description
of an I/O request, in both the host and the guest kernels. This
flag could be set by the guest scheduler for each request com-
ing from an application to be served quickly. The information
that this flag is set for a given guest I/O request should then
somehow flow through the chain of components that translate
I/O requests coming from the guest into corresponding host-
side I/O requests. Then the same flag should be set also in the
latter requests. Finally, when the host scheduler would see this
flag set for an I/O request, it could privilege the host process
that generated that requests.

The main benefit of this solution is that it is very simple
and little invasive in terms of in-kernel modifications: just the
declaration of a data structure should be modified.

There are however two main disadvantages:

Higher latency: host I/O threads would not be privileged im-
mediately (i.e., right after a guest starts to need help), but
only when the flagged I/O requests would be eventually
issued by these threads. This may be a serious problem
with synchronous I/O threads, which issue their next
request or batch of requests only after the last pending

one has been completed. Until the pending requests of a
non-yet-privileged I/O thread are completed, that thread
may not issue the flagged one. And, exactly because the
thread is not yet privileged, its pending requests may wait
for a long time before being served.

User-space modifications would be needed, to let the flag
percolate from the I/O requests in the guest kernel to
the I/O requests in the host kernel. In this regard, it is
worth highlighting an additional important issue: guest
I/O requests are currently turned into just simple read-
/write operations on the image file of the virtual disk,
and not directly into I/O requests. Hence, the chain of
components involved in carrying information about this
flag, and eventually flagging I/O requests on the host side
may be rather long.

B. Immediately signal the need for help to the host with some
form of direct communication

For this approach, we can consider two alternative solu-
tions:

B.1 User-space solution: host-side I/O threads serving
guest I/O requests of (in-guest) applications needing urgent
service may directly ask for their weight to be increased. The
main benefit of this solution is that the interaction scheme
would be very simple: no modification would be needed in
the host scheduler to guess what processes/threads need to be
privileged. But there is a significant drawback : it is user-space
invasive, QEMU code would need to be modified.

B.2 In-kernel solution: the guest disk scheduler could just
tell directly to the host disk scheduler that it needs help to
guarantee a high responsiveness to some application. So, no
user-space modification needed. But a non-trivial logic would
be needed in the host disk scheduler to retrieve the IDs of
all the I/O threads to privilege after receiving the help request
from the guest. In fact, in QEMU, the threads handling virtual
CPUs in a VM differ from the I/O threads that take care of
serving I/O requests for that VM. Even worse, I/O threads
are dynamically created and destroyed as needed during the
lifetime of a VM.

Analyzing the above solution space, we concluded that
solution B.2 is the one with the better trade-offs between
advantages and disadvantages, and hence decided to extend
BFQ accordingly. We provide full details on the resulting
implementation, named V-BFQ, in the following section.

VII. THE VIRTUAL-BFQ SOLUTION

In this section we describe V-BFQ in detail, using pseudo-
code. In particular, we focus mostly on the logical aspects.

The first issue to address was how to let the guest V-
BFQ communicate directly with the host V-BFQ. As a simple
solution, we opted for the Hypervisor-Call instruction available
on ARM architectures, hereafter abbreviated as just hvc. The
execution of an hvc generates a Hypervisor Call exception. In
particular, if the hvc is executed by a KVM/QEMU guest, then
a dedicated KVM handler gets called.

Finally, hvc has an integer number as an immediate argu-
ment. We used two possible values for the immediate argument
to let the guest scheduler tell the host scheduler whether it



647

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

// just after any point in the code where
*raised_busy_queues* is increased

if (raised_busy_queues == 1) // transition from
0 to 1

hvc #1 ; // notify the host that this guest
needs to be privileged

// just after any point in the code where
*raised_busy_queues* is decreased

if (raised_busy_queues == 0) // transition from
1 to 0

hvc #0 ; // notify the host that this guest
does not need help anymore

// at the exit from the scheduler
if (raised_busy_queues > 0) // the guest is

still being privileged
hvc #0 ; // notify the host that this guest

does not need help anymore

Figure 4. HVC call in the guest

needs to be prioritized or not. In particular, we decided to use
the following two values:

1 to indicate the guest needs to be privileged.
0 to indicate the guest does not need to be privileged anymore.

We can now describe in detail both the guest and the host
extensions that we integrated in BFQ to implement V-BFQ.

A. Guest extensions

Under Linux, and, in particular, from the BFQ standpoint,
a thread is just a process. BFQ basically associates a queue
to one or more processes/threads, and raises the weight of the
queues associated to processes/threads to be privileged. As a
consequence, a guest needs to be privileged if and only if
the number of weight-raised and backlogged (i.e., non-empty)
queues in the guest BFQ scheduler is higher than 0. In fact,
even if there are weight-raised queues, but they are all empty,
there is no urgent pending I/O request, and hence there is no
need to privilege the guest for the moment.

Fortunately, BFQ maintains a variable that contains exactly
the number of backlogged and weight-raised queues. This
variable is called raised busy queues in the code [16]. Hence,
to decide when it is time to either ask the host V-BFQ
scheduler for a higher fraction of the disk throughput or
inform the V-BFQ scheduler that no special treatment is needed
anymore, it is enough to track the transitions of this variable,
respectively, from 0 to 1 and from 1 to 0. The guest extension
of BFQ does exactly that, by invoking an hvc with the right
argument for each of the two cases. We describe this extension
in more detail in the pseudo-code snippet in Figure 4.

B. Host extensions

The service of the I/O requests generated from a guest
is delegated by QEMU to a pool of I/O threads created on
demand. It follows that:

The V-BFQ scheduler in a host must raise the weights of
the queues associated to the I/O threads of a VM whose guest
is requesting to be privileged. As a consequence, every time the

host V-BFQ scheduler has the opportunity to raise the weight
of some queue, it must know what is the set of I/O threads
to privilege, so as to check whether that queue is actually
associated to one of such threads (and hence must be weight-
raised).

As for knowing, every time this information is needed,
what is the set of I/O threads to privilege, we need to consider
the following important issues.

Although QEMU creates and destroys supporting threads,
such as I/O threads, dynamically, the group leader of these
threads never changes for a given VM. Since QEMU creates
and kills I/O threads dynamically, when an hvc #1 is received
from a guest, the I/O thread that will handle the guest I/O
request that caused the guest to issue that hvc may even not
yet exist. And the I/O thread group for a VM may change over
time, without the V-BFQ scheduler in the host receiving any
notification about changes of in set of I/O threads for any VM.

In view of the above issues related to the dynamic cre-
ation/destruction of I/O threads, and exploiting the fact that
the group leader for a VM is however constant during the
lifetime of the VM, we use the following strategy to allow
the V-BFQ host scheduler to correctly weight-raise the right
queues.

As a basic step, the V-BFQ scheduler maintains a list
of (only) the leaders of the groups of I/O threads to be
privileged. In more detail, V-BFQ maintains the list of the
Process Identifiers (PID) of these leaders. In this respect, it
is worth recalling that a thread basically coincides with a
process under Linux. From the PID of a group leader it is then
extremely simple to scan the list of its current child threads. In
particular, the latter list is trivially kept up-to-date by the kernel
itself. Hence, when V-BFQ has to decide whether a given
queue is to be weight-raised, it consults this list to reconstruct
the list of all the threads to privilege.

We describe the host extension of BFQ by describing in
detail each of the above two points.

1) Manipulating the list of group leaders: This list of group
leaders is updated according to the hvc #1 or hvc #0 received
from active guests (and also automatically pruned when some
group leader is discovered to be non-existing anymore, as
shown in detail in Section VII-B2). To achieve this goal, we
had first to modify the KVM handler of hvc exceptions in
the host kernel. The modification are described, using pseudo-
code, in Figure 5.

The last function invoked by the hvc handler is the V-
BFQ hook that handles the update of the list of the PIDs of
the leaders of the threads to privilege. Of course, we deduce
that, with respect to BFQ, V-BFQ must contain this additional
hook. The exact steps made by this hook are described in the
Figure 6 where the list of the PIDs of the leaders of the groups
of threads to be privileged is named leader pid list.

As shown in the snippet Figure 6, the hook does not
only update the list of group-leader PIDs: if the mode is
add the hook also immediately raises, by calling the function
weight raise queue() described in the next section, the weight
of all the backlogged queues associated either to the group
leader being added or to any of its children. We describe this
part and the rest of the host extensions to BFQ in the next



648

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

// input: data structure describing the qemu
virtual cpu on which the hvc is executed

HVC-handler(in: vcpu) {
// get the descriptor of the host-side qemu

process/thread implementing the vcpu
qemu_task = get_pid_task(vcpu->pid);
leader = qemu_task->group_leader; // pid of

the thread-group leader

// value passed to hvc when invoked in the
guest

arg_value = vcpu->arch.fault.hsr & 0x000000ff;

if (arg_value == 1)
mode = add;

else
mode = remove;

// update the list of the leaders of the
threads to privilege

V-BFQ-VM_threads_update_hook(leader, mode);
}

Figure 5. Pseudo-code of the HVC handler

V-BFQ-VM_threads_update_hook(leader, mode) { //
mode can be either add or remove

if (mode == add) {
if (look_for_pid(leader_pid_list) == NULL)

// pid not present
add_to_list(leader_pid_list, leader->pid);

} else {// mode == remove
pid_entry = look_for_pid(leader_pid_list,

leader->pid);
if (pid_entry != NULL) // pid in list

rm_from_list(leader_pid_list, pid_entry);
}
// additional code to achieve maximum

responsiveness (see below)
for_each_child_thread(leader)
// at each iteration child is set to one of

the child threads
for_each_backlogged_bfq_queue()
// at each iteration, bfqq is one of the

backlogged queue
if (child->pid == bfqq->pid)

// to achieve maximum responsiveness,
immediately raise the weight of

// the queue and reschedule the queue
(see below)

weight_raise_queue(bfqq);
}

Figure 6. Pseudo-code of the V-BFQ hook function

section.

2) Raising the weight of the queues associated with the
threads to privilege: In the V-BFQ hook, the weights of all the
backlogged queues associated either to the group leader being
added or to any of its children are raised immediately, because
this step is crucial for starting to serve as soon as possible the

weight_raise_queue(bfqq) {
list_entry pid_entry =

look_for_pid(leader_pid_list, tmp->pid);
if (pid_entry != NULL) { // pid in list

bool need_reposition = bfqq !=
in_service_queue && !bfqq_is_idle;

if (is_already_raised(bfqq)) {
move_forward_raising_start_time(bfqq) ;

// see below
return; // nothing else to do

}

if (need_reposition)
deactivate(bfqq) ; // remove queue from

schedule
perform_core_weight_raising_operations(bfqq);
if (need_reposition)

activate(bfqq); // reschedule in the right
position for the new weight

}
}

perform_core_weight_raising_operations(bfqq) {
raise_weight_coeff(bfqq); // raise queue

weight
set_raising_start(); // (re)set the start

time of the weight-raising (see below)
set_raising_duration(); // (re)set the

duration of the raising period (see below)
}

Figure 7. Pseudo-code of function weight raise queue()

I/O requests related to a guest asking to be privileged. This step
is however effective only provided that the following issue is
properly addressed.

Unless it is currently in service, a backlogged queue is of
course scheduled for service. In this respect, if the weight of
an already-scheduled queue is raised, but the schedule is not
changed immediately, then the queue will wait to be served
according to its old, low weight. Only after being served, and
if still backlogged, the queue will be rescheduled according
to its new high weight, and hence, only from that moment
on, the queue will get a high fraction of the disk throughput
(until its weight is lowered again). In view of this important
issue, in the hook, the queues whose weights are raised are also
immediately rescheduled according to their new weights. This
guarantees the minimum possible latency for a guest asking to
be privileged. The experimental results in Section VIII clearly
show the benefits of this immediate reschedule.

The exact steps taken by the function weight raise queue()
are described in the Figure 7.

As for the functions move forward raising start time(),
set raising start(), and set raising duration(), these functions
are related to how the weight-raising heuristics work in BFQ,
and hence in V-BFQ: when weight-raising starts for a queue,
BFQ stores the time instant when it happens in a variable that
we call raising start time hereafter. BFQ also sets the duration
for the weight-raising: if the queue is constantly backlogged
for all this time period, then its weight is lowered again.



649

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In particular, if the queue is already being weight-raised,
then V-BFQ just moves forwards its raising start time , as if
the weight-raising period for the queue just (re)started. In fact,
differently from the physiological BFQ behavior, for a queue
associated to a thread to be privileged, weight-raising is never
stopped. To correctly guarantee this special treatment, V-BFQ
also contains the following modification with respect to BFQ:
at any point in the code where raising might finish for a queue,
V-BFQ controls whether that queue is associated to a thread
to be privileged, and, in that case, does not stop weight-raising
for the queue.

To sum up, the part of the host extension of V-BFQ shown
so far guarantees that backlogged queues associated to threads
to be privileged are immediately weight-raised and, if needed,
rescheduled to guarantee minimum latency.

Hence, to cover all possible cases, we are left with handling
the case of the queues that: 1) are still idle or not-yet-existing
when the hook is invoked to add a new group leader, but 2) are
actually associated or, when they become backlogged, will be
associated to one of the threads in the group of the just-added
leader.

Each of these queues then moves from idle, or non-existing,
to backlogged when its first request eventually arrives. At that
time, V-BFQ can easily raise the weight of the queue without
even needing complex rescheduling operations, because the
queue is of course not yet scheduled for service. In this
respect, there is however a last subtlety to consider. I/O threads
naturally tend to perform random I/O. In fact, even if the
original I/O pattern in a guest is sequential, QEMU spawns
several I/O threads and each I/O thread will happen to read or
write only a chunk of the whole I/O to perform. The merge
of these chunks covers a contiguous portion of the virtual
disk, but, served separately by each I/O thread, these chunks
happens to be located at random positions on the virtual disk.

To still achieve a high throughput also in the presence
of this fragmented I/O, BFQ merges queues when it detects
that they are associated to I/O threads whose merged I/O
pattern would be sequential. In particular, this queue merging is
realized by choosing a candidate shared queue and redirecting
requests arriving from all the I/O threads to the same shared
queue. Such a shared queue preserves its original association
with a PID. Hence, it may happen that requests coming from
I/O threads with a different PID than that stored in a shared
queue are however redirected to the queue. In the end, when a
new request arrives, to check whether the destination queue
is to be weight-raised, it is the PID of the thread making
the request to be checked, and not the PID associated to the
destination queue.

The steps needed to perform the above control are reported
in the function described with pseudo-code in Figure 8. Note
that this function also takes care of properly pruning the
leader pid list if needed.

We have now all the elements we need to describe the
proper way to extend the BFQ hook, insert request(), invoked
to add a new request to a queue, so as to weight-raise a queue
associated to an I/O thread to be privileged, when the queue
moves from idle or non-existing to backlogged. This function
is described in Figure 9.

privileged_thread(pid) {
for_each_element(leader_pid_list) {
// at each iteration. leader is set to one of

the elems
if (thread_no_more_existing(leader)) //

thread is dead
rm_from_list(leader_pid_list, leader); //

remove from list

for_each_child_thread(leader)
// at each iteration child is set to one of

the child threads
if (pid == child->pid)

return true ;
}
return false ;

}

Figure 8. Pseudo-code of the function privileged thread

insert_request(request) {
// rest of the code of the function
bfqq = get_destination_queue(request);
if (was_idle_or_nonexisting(bfqq) &&

privileged_thread(current_thread->pid))
if (is_already_raised(bfqq))

move_forward_raising_start_time(bfqq) ;
else

perform_core_weight_raising_operations(bfqq)
;

// rest of the code of the function
}

Figure 9. Pseudo-code of the function insert request()

There is a final, important issue to consider: a re-
quest arrival can be intercepted even before the function
insert request() is invoked. In fact a preliminary BFQ hook
is invoked just after a thread has obtained an I/O request from
the pool of available requests, and has initialized the fields of
the requests. In this hook, BFQ inspects the request, and from
this inspection it may discover that: 1) the request comes from
a thread whose requests are being redirected to a shared queue,
but 2) this redirection is not needed anymore (see the code of
BFQ for details [16]). If this happens, the code-path that will
then be followed in the function insert request() does not pass
through the extension described in the code snippet Figure 9.
A special split portion of the code of the insert request()
function is instead executed, to redirect again the requests
coming from that thread to the original queue. In this code-
path a resume state() function is called to correctly resume the
state of this original queue. Accordingly, to properly handle
weight-raising for privileged threads also in this special case,
we added the code shown in Figure 9 also to the function
resume state().



650

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 5

 10

 15

 20

 25

 30

 35

1r-seq 5r-seq 1r-rand 5r-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

v-bfq-no_host_workload

bfq-no_host_workload

v-bfq-1r_on_host

bfq-1r_on_host

v-bfq-5r_on_host

bfq-5r_on_host

2.2
2.6

2.3

4

2.2
2.6

2.3

4

2.8

3.6
3

7.2

5.8 5.7

7.5

10

2.8

3.6
3

7.6

8.5

11

8.7

15

Figure 10. Results with the hard disk and V-BFQ as disk scheduler in both
the guest and the host, compared against BFQ as disk scheduler in both the

guest and the host (lower is better).

VIII. EXPERIMENTAL RESULTS WITH V-BFQ

We repeated the same experiments as in Section V. In
particular, as for throughput, V-BFQ trivially achieved the
same performance as BFQ, which, in its turn, achieved optimal
performance. Hence, for brevity, in this document we do not
report throughput results for V-BFQ. Along the same line,
we dot not report results for the workloads for which the
actual service received by applications has not much to do with
the decisions made by the disk schedulers, namely workloads
containing greedy writers. And for the scenario where CFQ
is used as disk scheduler in the host, because results do not
vary significantly depending on whether BFQ or CFQ is used
in the host.

A. Results with the hard disk

Figure 10 shows the start-up time recorded in case V-BFQ
is used in both the guest and the host. As a reference, in the
figure these results are compared against the ones achieved in
case BFQ is used in both the guest and the host.

The effectiveness of V-BFQ is evident with 1r-seq, 5r-seq
and 1r-rand: regardless of the host workload, with 1r-seq V-
BFQ guarantees about the same start-up time as if both the
virtual and physical disk were idle. Even with 5r-seq and 1r-
seq, start-up times are comparable to those recorded when both
the virtual and the physical disk are idle.

Start-up times are sensitive to the host workloads with 5r-
rand. In fact, with these workload the issues already high-
lighted in Section V-C interfere with the correct operation of
the heuristics in both the host and the guest V-BFQ schedulers.

To compare the responsiveness achieved by V-BFQ against
the one experienced with a typical Linux disk-scheduling
configuration, in Figure 11 we compare the start-up times
achieved by V-BFQ (i.e., the same values already reported
in Figure 10) against the ones recorded when CFQ, i.e., the
default Linux I/O scheduler, is used as disk scheduler in the
guest. As in Section V, the symbol X is used to indicate that the
experiment failed because the application did not start within
a 60-second timeout. The figure clearly shows the remarkable

 0

 5

 10

 15

 20

 25

 30

 35

 40

1r-seq 5r-seq 1r-rand 5r-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

v-bfq-no_host_workload

cfq-no_host_workload

v-bfq-1r_on_host

cfq-1r_on_host

v-bfq-5r_on_host

cfq-5r_on_host

2.2
2.6 2.3

4

5.6

30

5.5

X

2.8
3.6

3

7.2

14

X

8.5

X

2.8
3.6

3

7.6

26

X

11

X

Figure 11. Results with the hard disk and V-BFQ as disk scheduler in both
the guest and the host, compared against CFQ as disk scheduler in the guest

and BFQ as disk scheduler in the host (lower is better)

 0

 5

 10

 15

 20

1r-seq 5r-seq 1r-rand 5r-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

v-bfq-no_host_workload

bfq-no_host_workload

v-bfq-1r_on_host

bfq-1r_on_host

v-bfq-5r_on_host

bfq-5r_on_host

1.2
1.6

1.2
1.6

1.2
1.6

1.2
1.61.7 1.7

1.9

2.9

5.4 5.5

4.4

5.4

1.8 1.9 2

3.9

8.3 8.4

7.5

9.6

Figure 12. Results with the microSDHC Card and V-BFQ as disk scheduler
in both the guest and the host, compared against BFQ as disk scheduler in

both the guest and the host (lower is better).

benefits provided by V-BFQ.

B. Results with the microSDHC Card

As shown in Figures 12 and 13, with the microSDHC Card,
results are along the same line as with the hard disk.

C. Results with the eMMC

Finally, also with the eMMC, V-BFQ achieved the same
near-optimal performance as with the other two storage de-
vices.

IX. OTHER SCHEDULERS

We also compared V-BFQ with two other schedulers for
Linux: Deadline and NOOP in order to point out that V-BFQ
is more responsive than all standard I/O schedulers for Linux.
The scenario of these experiments is the same in Section VIII
and therefore the results can be compared. Only the results for
sequential readers are reported.



651

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 5

 10

 15

 20

 25

1r-seq 5r-seq 1r-rand 5r-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

v-bfq-no_host_workload

cfq-no_host_workload

v-bfq-1r_on_host

cfq-1r_on_host

v-bfq-5r_on_host

cfq-5r_on_host

1.2
1.6

1.2
1.6

3.5

12

2.6

X

1.7 1.7 1.9

2.9

13

X

5.1

X

1.8 1.9 2

3.9

21

X

8

X

Figure 13. Results with the microSDHC Card and V-BFQ as disk scheduler
in both the guest and the host, compared against CFQ as disk scheduler in

the guest and BFQ as disk scheduler in the host (lower is better)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1r-seq 5r-seq 1r-rand 5r-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

v-bfq-no_host_workload

bfq-no_host_workload

v-bfq-1r_on_host

bfq-1r_on_host

v-bfq-5r_on_host

bfq-5r_on_host

.85 .91
.81

1.2

.85 .91
.81

1.2

.88

1.2

.98

1.9

3.7

2.9

2.5

2.3

1.1
1.2

1.1

1.8

4.5

4

3.5

3.7

Figure 14. Results with the eMMC and V-BFQ as disk scheduler in both the
guest and the host, compared against BFQ as disk scheduler in both the

guest and the host (lower is better)

As it can be seen in Figures 16, 17 and 18 with Deadline
or NOOP scheduler in the guest, the start-up time (of xterm
application) is better than with CFQ as guest scheduler (Fig-
ures 11, 13, and 15). And the start-up time for Deadline and
NOOP scheduler are roughly equivalent whatever the medium
used and the workload. But the latency with V-BFQ as guest
scheduler is always lower.

X. CONCLUSION AND FUTURE WORK

In this paper, we have shown both theoretically and
experimentally that responsiveness guarantees, as related to
storage I/O, may be violated in virtualized environments. Even
with schedulers, which target to achieve low latency through
heuristics, the problem of low responsiveness still persists in
virtual machines. The host receives a mix of interactive and
background workloads from the guest, which can completely
contradict per process heuristics by schedulers such as BFQ.
That is why, we have devised a solution, based on BFQ,
for preserving responsiveness also in virtualized environments,

 0

 5

 10

 15

 20

1r-seq 5r-seq 1r-rand 5r-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

v-bfq-no_host_workload

cfq-no_host_workload

v-bfq-1r_on_host

cfq-1r_on_host

v-bfq-5r_on_host

cfq-5r_on_host

.85 .91 .81
1.2

1.9

6.9

1.7

X

.88
1.2

.98

1.9

9.5

X

3.5

X

1.1 1.2 1.1

1.8

16

X

3.5

X

Figure 15. Results with the eMMC and V-BFQ as disk scheduler in both the
guest and the host, compared against CFQ as disk scheduler in the guest and

BFQ as disk scheduler in the host (lower is better).

 0

 5

 10

 15

 20

 25

 30

 35

 40

1r-seq 5r-seq

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

v-bfq-no_host_workload

deadline-no_host_workload

noop-no_host_workload

v-bfq-1r_on_host

deadline-1r_on_host

noop-1r_on_host

v-bfq-5r_on_host

deadline-5r_on_host

noop-5r_on_host

2.2
2.6

5

13

5

14

2.8
3.6

7.3

17

6.8

16

2.8
3.6

12

24

13

25

Figure 16. Results with the hard disk and V-BFQ as disk scheduler in both
the guest and the host, compared against Deadline and NOOP as disk
scheduler in the guest and BFQ as disk scheduler in the host (lower is

better).

specifically for embedded systems and the KVM on ARM
hypervisor: V-BFQ. This solution introduces the concept of
coordinated scheduling between the host/guest scheduler and
KVM itself. V-BFQ lived up to its expected performance
improvements, guaranteeing high application responsiveness
in a virtualized environment, also in the presence of heavy
background workloads in both the guest and the host virtual
and physical storage devices. Besides, the general scheme
adopted to define V-BFQ from BFQ shall be extended and
applied also to schedulers of other, important resources, such
as CPUs and transmission links. We also plan to extend our
investigation to latency guarantees for soft real-time applica-
tions (such as audio and video players), and to consider more
complex scenarios, such as more than one VM competing for
the storage device.



652

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 5

 10

 15

 20

 25

1r-seq 5r-seq

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

v-bfq-no_host_workload

deadline-no_host_workload

noop-no_host_workload

v-bfq-1r_on_host

deadline-1r_on_host

noop-1r_on_host

v-bfq-5r_on_host

deadline-5r_on_host

noop-5r_on_host

1.2
1.6

2.6

8.2

2.5

7.4

1.7 1.7

4.3

9.5

4.5

9.2

1.8 1.9

8.1

16

8.6

15

Figure 17. Results with the microSDHC and V-BFQ as disk scheduler in
both the guest and the host, compared against Deadline and NOOP as disk

scheduler in the guest and BFQ as disk scheduler in the host (lower is
better).

 0

 2

 4

 6

 8

 10

 12

 14

 16

1r-seq 5r-seq

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Guest workload

Start-up time on idle disk

v-bfq-no_host_workload

deadline-no_host_workload

noop-no_host_workload

v-bfq-1r_on_host

deadline-1r_on_host

noop-1r_on_host

v-bfq-5r_on_host

deadline-5r_on_host

noop-5r_on_host

.85 .91
1.1

2.9

1.1

2.8

.88
1.2

2.1

4.5

2.3

4.7

1.1 1.2

4.8

9.5

4.3

9.6

Figure 18. Results with the eMMC and V-BFQ as disk scheduler in both the
guest and the host, compared against Deadline and NOOP as disk scheduler

in the guest and BFQ as disk scheduler in the host (lower is better).

ACKNOWLEDGMENTS

This research work has been supported by the Seven-
thFramework Programme (FP7/2007-2013) of the European
Community under the grant agreement no. 610640 for the
DREAMS project. The authors would like to thank Paolo
Valente for providing details about BFQ and his support for
the benchmark suite. We also thank the anonymous reviewers
for their precious feedback and comments on the manuscript.

REFERENCES

[1] A. Spyridakis and D. Raho, “On Application Responsiveness and Storage
Latency in Virtualized Environments,” in CLOUD COMPUTING 2014,
The Fifth International Conference on Cloud Computing, GRIDs, and
Virtualization, 2014, pp. 26-30.

[2] Storage I/O Control Technical Overview [retrieved: November, 2014].
http://www.vmware.com/files/pdf/techpaper/VMW-vSphere41-SIOC.pdf

[3] Virtual disk QoS settings in XenEnterprise [retrieved: November, 2014].
http://docs.vmd.citrix.com/XenServer/4.0.1/reference/ch04s02.html

[4] M. Kesavan, A. Gavrilovska, and K. Schwan,“On disk I/O scheduling
in virtual machines,” in Proceedings of the 2nd conference on I/O
virtualization, USENIX Association, 2010, p. 6.

[5] J. Shafer, “I/O virtualization bottlenecks in cloud computing today,”
Proceedings of the 2nd conference on I/O virtualization. USENIX
Association, 2010, p. 5.

[6] D. Boutcher and A. Chandra, “Does virtualization make disk scheduling
passé?,” ACM SIGOPS Operating Systems Review 44.1, 2010, pp. 20-
24.

[7] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understanding
performance interference of i/o workload in virtualized cloud environ-
ments,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, IEEE, 2010, pp. 51-58.

[8] M. Xavier, M. Neves, F. Rossi, T. Ferreto, T. Lange, and C. De Rose,
“Performance evaluation of container-based virtualization for high perfor-
mance computing environments,” in Parallel, Distributed and Network-
Based Processing (PDP), 2013 21st Euromicro International Conference
on, IEEE, 2013, pp. 233-240.

[9] J. Lee et al., “Realizing compositional scheduling through virtualization,”
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS’12), April 2012, pp. 237-246.

[10] K. Sandstrom, A. Vulgarakis, M. Lindgren, and T. Nolte, “Virtualization
technologies in embedded real-time systems,” Emerging Technologies &
Factory Automation (ETFA), 2013 IEEE 18th Conference on, Sept. 2013,
pp. 1-8.

[11] Z. Gu and Q. Zhao, “A state-of-the-art survey on real-time issues in
embedded systems virtualization,” Journal of Software Engineering and
Applications, Vol. 5 No. 4, 2012, pp. 277-290.

[12] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware virtual
machine scheduling for I/O performance,” in Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, ACM, 2009, pp. 101-110.

[13] X. Ling, H. Jin, S. Ibrahim, W. Cao, and S. Wu, “Efficient disk I/O
scheduling with QoS guarantee for xen-based hosting platforms,” in
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, IEEE, 2012, pp. 81-89.

[14] F. Checconi and P. Valente, “High throughput disk scheduling hwith
fair bandwidth distribution,” IEEE Transactions on Computers, vol. 59,
no. 9, May 2010, pp. 1172-1186.

[15] CFQ I/O Scheduler [retrieved: November, 2014]. http://lca2007.linux.
org.au/talk/123.html

[16] BFQ homepage [retrieved: November, 2014]. http://algo.ing.unimo.it/
people/paolo/disk sched/

[17] P. Valente and M. Andreolini, “Improving application responsiveness
with the BFQ disk I/O scheduler,” Proceedings of the 5th Annual
International Systems and Storage Conference (SYSTOR ’12), June
2012, p. 6.

[18] Virtual-BFQ homepage [retrieved: November, 2014]. http://www.
virtualopensystems.com/en/products/virtual-bfq/


