International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

601

A Novel Distributed Database Synchronization Approach

with an Application to 3D Simulation

Martin Hoppen and Juergen Rossmann

Institute for Man-Machine Interaction
RWTH Aachen University
Ahornstrasse 55
52074 Aachen, Germany
Email: {hoppen, rossmann}@mmi.rwth-aachen.de

Abstract—3D (three-dimensional) simulation applications from
various fields benefit from the usage of database technology. In
contrast to the prevailing naive file-based approach, simulation
models can be managed more efficiently, temporal databases can
be used to log simulation runs, and active databases provide a
means for communication. Thus, we use a central database to
manage shared simulation models. To enable real-time access,
each simulation client caches the model to its local runtime
(in-memory) simulation database. For that purpose, a pairwise
synchronization is needed between each runtime database and
the central database. After a synchronization on schema level,
each client replicates data on-demand. In this publication, we
give a detailed description of our notification-based approach
to keep master copies in sync with their replicate copies. The
state of synchronization in between a pair of copies as well as
allowed state transitions are comprehensively modeled using state
machines. Moreover, we present three representative applications
already using the approach, proving its practicability: City
simulations, a Virtual Testbed for space robotics, and a forest
inventory, management and simulation system.

Keywords—Database Synchronization; 3D Simulation; Dis-
tributed Database; Applications.

I. INTRODUCTION

In this publication, we extend our previous work from [1].
In particular, we describe more aspects of our novel distributed
database synchronization technique and give a more detailed
insight into three application scenarios using the presented
approach.

Simulation applications in general and 3D simulation appli-
cations in particular all follow the basic principle of applying
simulation techniques to a corresponding model. Hence, the
discipline is called modeling and simulation. A simulation
model however needs some kind of data management. Up
to now, files are still common for this task. In [2], we
present a database-driven approach to overcome the associated
disadvantages. Here, a central database is used to manage the
shared simulation model, while simulation clients perform an
on-demand replication of the model to their respective runtime
database. The latter is an in-memory database providing the
necessary real-time access. A revised version of this system
was shown in [3], where the central database is even used
as a communication hub to drive and log distributed 3D
simulations.

In this paper, we add a detailed description of the

notification-based synchronization approach used in this sce-
nario. However, its specification should be preferably universal
to allow for its adoption with different database systems. For
that purpose, general requirements towards the two involved
database systems — generically referred to as ExtDB (the
central database) and SimDB (the runtime simulation database)
— were compiled [4]. They incorporate methods adopted from
Model-Driven Engineering (MDE) [5] and allow to use the
concepts of the Unified Modeling Language (UML) [6] to give
generalized method specifications for the different components
of the overall approach [7]. Thus, in this publication, the
synchronization approach will also be presented using UML
metaclasses.

The synchronization approach relies on change notifica-
tions. Hence, ExtDB and SimDB need an according service.
Using the notifications, the state of synchronization between
both databases is monitored and modeled in a state machine for
each pair of master and replicate copy. For resynchronization,
transactions are scheduled and either executed or canceled
out. Furthermore, notifications are used to confirm transactions
and to detect change conflicts. A particular challenge in this
scenario is to keep the state machine models “stable”, i.e., not
to miss or misinterpret notifications.

The approach is already used in different fields of applica-
tions, three of which are presented in detail in this paper: In
various city and urban (distributed) 3D simulation scenarios,
huge city models are stored in databases. Simulation clients
use the presented approach to access the data and distribute
changes like the movement of a car or a helicopter. In a
Virtual Testbed for space robotics, planetary surveying, landing
and exploration missions are developed and simulated using
a shared world model. Different clients use the approach
to access the model stored in a central database to deposit
sensor data, extract maps, and utilize them for navigation
and localization. Finally, in a large area forest inventory,
management and simulation system, remote sensing data is
used to extract semantic forest models managed in databases.
Different stakeholders in the forestry sector can access these
shared models to update, refine, simulate with, and analyze the
data.

The rest of this paper is organized as follows: Section II
presents work related to our own. In Section III, the founda-
tions of the database-driven approach for 3D simulation are
recapitulated. Section IV summarizes the system requirements

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and the applied approach for method specifications using the
UML metamodel. Both sections pave the way for the main
Section V, where we present the notification-based synchro-
nization approach. In Section VI, exemplary applications are
shown. Finally, in Section VII, we conclude our work and
present some future work.

II. RELATED WORK

Regarding database synchronization for 3D simulation sys-
tems and similar software only few approaches can be found.
In [8], a combination of scene-graph-based 3D clients with
a federation of databases connected by the Common Object
Request Broker Architecture (CORBA) is proposed. On client-
side, a local object-oriented DBMS (OODBMS) provides an
in-memory scene object cache connected to the federation
using an Object Request Broker (ORB). Cached objects are
bidirectionally replicated to the scene graph. Concurrency
control among the federated databases and the local object
caches allows multi user interaction between the clients.

A mobile Augmented Reality (AR) system combining
distributed object management with object instantiation from
databases is described in [9]. Objects are distributed shallowly
by creating “ghost” copies retaining a master copy only at
one site. Such a ghost is a non-fully replicated copy of its
master allowing simplified object versions to be transmitted
(e.g., with sufficient parameters for rendering). Changes to the
master copy are pushed to all its ghosts. Remote systems can
change a master copy by sending it a change request.

In [10], [11], a Virtual Reality (VR) system is combined
with an OODBMS to provide VR as a multi-modal database
interface. In [12], a revised version adds collaborative work
support. For update propagation, VR clients issue changes to
the shared virtual environment as transactions to the back-end
they are connected to. After an interference check they are
commited to the database and distributed by a separate notifi-
cation service. The system uses transactions with regular ACID
properties (e.g., for ”Create box B”) committed as a whole as
well as special continuous transactions for object movements.
For the latter, atomicity does not apply as movements are
committed incrementally to frequently propagate updates.

The ”Collaborative Urban Planner” described in [13] is
based on the multi-user Virtual Environment system DeepMa-
trix [14], extended by a relational DBMS back-end providing
persistency. Clients allow for so-called shared operations like
“rotate object” that are send to the server for distribution and
persistency. A server application provides concurrency control,
message distribution and data management. It represents the
single point of access to the database ensuring consistency
among the clients’ shared operations. The database primarily
contains meta information on shared objects (position, texture).

In [15], a Virtual Office Environment” contains 3D data
and semantics managed by a DBMS to allow semantic-based
queries and collaboration. Clients’ actions are issued as queries
to the shared database. Changes are distributed to all other
clients, which adopt them locally.

A ”’shared mode” for database-driven collaboration is pre-
sented in [16]. In a chess application example with two players
a shared database with the game’s setting is alternately updated
by the one client while being polled for changes by the other,
which subsequently reflects the changes in his own virtual
scene instance.

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

602

Compared to our approach, [8] comes close but lacks
details and is only a proposal without known implementations.
The ghosts in [9] may suffice for rendering but are to restricted
for sophisticated simulation applications. Furthermore, not all
objects are managed by the database. In [10], [11], [12], [15],
only VR-specific data and operations are supported. [13] does
not manage the model data itself using the database. Finally,
the approach in [16] is similar to our own but only demon-
strates a very limited type of change distribution. Altogether,
no other approach offers a comparably tight integration of
database technology into 3D software or simulation systems.

Similarities to our MDE-based approach for the general
assessment of database compatibility can be found in generic
model management. [17] introduces different generic schema
operations like match, merge, translate, diff, and mapping
composition. The work gives an overview but concentrates on
tool support for semi-automatic mappings. Our own approach
can be seen as an implementation of the “ModelGen” operator
that automatically translates a schema from one metamodel
into another, including mapping creation. However, in contrast,
we provide an automatic mapping of schemata and a runtime
approach instead of a static mapping.

Another implementation is provided in [18]. A pivotal
supermodel is used to transform schema as well as data.
In [19], the same system is extended to provide runtime
transformations with read-only access. A similar approach is
taken in [20] using a proprietary pivotal graph-based repre-
sentation. [21] presents an approach for transforming schema
and data between the Extensible Markup Language (XML)
and the Structured Query Language (SQL). However, none of
these approaches use standardized metamodeling and model
transformation languages as used in our approach.

Besides these database-centric approaches, related work
can also be found in the field of parallel and distributed sim-
ulation. Overviews can be found in [22] or [23]. In this field,
approaches focus on the synchronization of events and time
in simulation — somehow similar to our synchronization using
change notifications. However, they cannot be directly applied
to the presented problem of distributed data management.
Here, events (change notifications) can only be monitored —
they cannot be affected as in discrete event simulation.

III. DATABASE-DRIVEN 3D SIMULATION

Using a central database (ExtDB) to manage a shared sim-
ulation model has several advantages. In contrast to a classical
file based approach, databases provide a very efficient data
management, well-defined access points, e.g., using a query
language or an Application Programming Interface (API), a
consistent data schema for structured data, and concurrent
access for multiple users. This allows to persist the current state
of a 3D simulation model comprising its static (e.g., building,
tree, work cell) as well as dynamic (e.g., vehicle, robot) parts.
During a simulation run, the state of its model’s dynamic parts
changes. This is an inherent property of simulation. To capture
this process over time, a temporal database [24] can be used.
Here, any change to the simulation model causes the previous
state’s conservation as a version. Altogether, this also allows to
persist the course of the simulation itself. Besides these more
or less passive activities, a database can also be used as an
active part of the simulation. One approach is to use it as an
active communication hub. An active database [24] is needed

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that can provide the necessary change notifications to inform
clients of changes to the shared simulation model.

However, a steady, direct data exchange with ExtDB is
not advisable for 3D simulation. This would lack real-time
capabilities and impose a strong coupling on each and every
component of the simulation system with the utilized database
system. Instead, we use an approach that combines ExtDB with
a local runtime database (SimDB) for each simulation client.
The lower part of Figure 1 shows the principle structure of
this approach for a single pair of ExtDB and SimDB instance.
By replicating required contents from ExtDB to SimDB, the
simulation system can use the cached copies and the nature of
ExtDB can be hidden away.

general
Classifier (CL) Property (Pr)

name : String [~ name : String
isAbstract : Bool. isComposite : Bool.

UML

classifier

definingFeature

[Class (Cl) | [Association (A§)_|
|][

InstanceSpec. (IS)l I Slot (SI) I value[ValueSpec. (VS)

o0
£
=
a
©
=
o0
£
=
a
©
=

Instance

Figure 1. Principle structure of the approach for database-driven 3D
simulation.

The two databases are synchronized on schema and data
level. During the former, the schema description is transfered
from ExtDB to SimDB so both systems “speak the same
language”. This builds up a schema mapping between the
databases and is done once during system startup. Note how-
ever that this does not imply a semantic mapping like mapping
an address represented by a single string to a fielded address
representation (name, street, etc.). Instead, only the different
modeling concepts (i.e., the utilized metaclasses) are mapped.

During runtime, data is loaded, i.e., replicated, from ExtDB
to SimDB. Here, based on the schema mapping, the appro-
priate schema components are instantiated, values are copied,
and an instance mapping (compare Figure 8) is stored to keep
the relationship between master and replicate copy. Copies
no longer required can also be unloaded, i.e., removed from
SimDB provided they have not been changed. Changes are
tracked and resynchronized to keep both master and replicate
in sync. This is realized using notification services of ExtDB
and SimDB. The approach is presented in detail in Section V.
Besides for schema and instance data, synchronization can also
be required on a semantic level. In functional data synchro-
nization, the meaning of a modeled item is made available
to the simulation system by translating it to a representation
it can interpret. An example could be an engine modeled in
the SEDRIS schema [25]. To allow a simulation of such a
component it must be translated to the appropriate primitives

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

603
of the simulation system.

IV. SYSTEM REQUIREMENTS

To generalize the approach system requirements were iden-
tified [4]. The aim is to make it universally available for
different implementations of ExtDB and SimDB. First of all, a
general compatibility of the two databases’ modeling concepts
is stipulated. For that purpose, both their metamodels are taken
into account. A database’s metamodel represents its abstract
syntax, thus its modeling concepts. Metamodels shall not
only comprise metaclasses for describing schema components
like tables, classes, or attributes. They must also contain
the corresponding instantiation concepts (e.g., metaclasses for
rows, objects, or values). This is needed to also enable data
synchronization. The two metamodels’ compatibility can then
be expressed with a model transformation, e.g., using the ATL
Transformation Language (ATL) [26].

To provide a common basis for arbitrary database meta-
models, a pivotal metamodel with transformations from and to
both databases’ metamodels is stipulated as well. The pivot’s
metaclasses can be used to indirectly refer to SimDB’s or
ExtDB’s metaclasses using the demanded mapping. In the
context of 3D simulation, Geographic Information Systems
(GIS), Computer-Aided Design (CAD), or other 3D software,
an object-oriented modeling is advisable, as such data usually
consists of a huge number of hierarchically structured parts
with interdependencies [24]. Thus, the UML (language unit
classes) is a reasonable choice for a pivot. Figure 1 gives
an overview. It also comprises the mainly utilized UML
metaclasses. Altogether, this allows to generically refer to
the structure of SimDB and ExtDB using UML concepts.
Therefore, the method specification in the next section uses
concepts like object, link, class, or property although including
any database metamodel that can be mapped to the UML
metamodel.

Note, however, that this mapping to UML structures is
conceptually needed to show the databases’ compatibility and
to obtain a means for generalized method specifications. The
actual implementation of the synchronization approach is done
on API or query language level — in particular to ensure real-
time capabilities.

The two databases are also required to provide a notifi-
cation service. In terms of the UML metamodel, notifications
shall provide information on object insertions and removals, on
property updates, and on link insertions as well as removals.
Furthermore, they must provide a reflection interface to ac-
cess schema components and instantiate corresponding data.
Finally, objects must be uniquely identifiable.

V. NOTIFICATION-BASED DATABASE SYNCHRONIZATION

This section represents the main contribution of this article:
A detailed description of the notification-based synchroniza-
tion approach.

A. Comparison with Distributed Databases

Following the definition in [24], the presented scenario, i.e.,
the combination of SimDB and ExtDB, would be a distributed
database (DDB). Figure 2 depicts a classical DDB structure.
Several databases build a virtual database that is transparently
accessed via the DDBMS. In the example, a set of Door
objects is horizontally fragmented, allocated to the different

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

databases and thus partially replicated. Similarly, our approach
aims at transparency of the distribution. In Figure 3, it is
depicted correspondingly. However, it is a special case, in
which SimDB is a cache for ExtDB. Simulation clients access
the shared simulation model only via SimDB. The nature and
(for the most part) the existence of ExtDB are hidden away.
The master copy of the simulation model is stored in ExtDB.
An exception are local changes in a SimDB instance that are
not yet synchronized to ExtDB, thus residing only at that client.
In contrast, a classical DDB is accessed as a whole from the
outside and the DDBMS hides away its distributive nature.

TBig

DB2 DB3

a:Door a:Door

b : Door a: Door | b : Door

DDB

c: Door

Figure 2. Classical distributed database with a centralized DDBMS.

Figure 3. The presented approach can also be interpreted as a distributed
database consisting of the central ExtDB and several SimDB instances.

Important DDB concepts are fragmentation, allocation and
replication, as well as autonomy and heterogeneity. We use
horizontal fragmentation splitting up object sets (but not ob-
jects themselves) between the central ExtDB and the connected
SimDBs. All fragments are allocated to ExtDB. Further allo-
cation, i.e., replication, to the different SimDBs is realized
on-demand as shown in [7]. Thus, in the example in Figure 3,
all Door objects are allocated to ExtDB and some of them
are also allocated (i.e., replicated) to the connected SimDBs.
While ExtDB is fully autonomous, SimDB is limited to the
schema adopted from ExtDB. As both databases usually are
different systems — e.g., SimDB is a runtime database — the
assumed DDB is heterogeneous.

One or more instances of SimDB have a star-shaped con-
nection to one instance of ExtDB. Changes are synchronized
independently between each pair of SimDB and ExtDB. In
the example in Figure 3, there are four SimDBs connected

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

604

with their respective synchronization component to the central
ExtDB. Differences in between such a pair are resynchro-
nized periodically but not synchronously. Thus, we have a
similar scenario as described in [27] for replication servers
with asynchronous replication. However, in contrast to mobile
databases, the connection is always kept alive and resynchro-
nization is typically short-term. Furthermore, there is no global
transaction or recovery manager. Changes to ExtDB by any
client or to SimDB by any client component are committed
without control of the synchronization component, which can
merely monitor such changes. Thus, following durability (as
in Atomicity, Consistency, Isolation, Durability (ACID)) they
cannot be undone. Durability is important as an online (i.e.,
live) 3D simulation cannot be reset in the middle of a run.

B. Lock-free Approach for Simulation

One way to treat concurrent changes is an active concur-
rency control using locks. For distributed concurrency control,
one approach is to choose a so called distinguished copy, which
holds a representative lock for all its replicate copies [24]. In
our case, the master copies in ExtDB could be adopted for
this purpose as they are shared among all clients. However,
locking is not recommendable here as acquiring locks would
be time-consuming (as an ExtDB access would be necessary
each time) and possible deadlocks may interrupt a running
simulation.

Therefore, we developed a lock-free approach using no-
tifications. For each pair of SimDB and ExtDB, the mecha-
nism monitors changes by listening to the notifications. For
resynchronization, it schedules transactions of the respective
database. Due to the monitoring approach, they can only
comprise a single data operation. The approach is similar to
optimistic concurrency control (OCC) [27]. However, trans-
actions cannot be rolled back when changes are conflicting.
Instead, conflicts are only implicitly resolved: The last client
changing a value is given precedence. Altogether, it is crucial
that the synchronization component always knows about the
state of synchronization for each copy. However, besides resyn-
chronization and passive monitoring, the mechanism cannot
and must not intervene, e.g., by rejecting changes as mentioned
above.

C. Notifications and Transactions

For each pair of SimDB and ExtDB, a change tracking
component connects to the notification services of SimDB
for so-called internal notifications and of ExtDB for so-
called external notifications. Notifications include insertions
and removals of objects and links, as well as updates of object
properties. A link between objects can only be removed or
inserted but not updated, as its identity is only derived from
the connected objects (and the corresponding association on
schema level).

For the sake of simplicity, external notifications from
ExtDB are abbreviated as extlnsert, extUpdate, and ex-
tRemove, internal notifications from SimDB as simlnsert,
simUpdate, and simRemove, accordingly (Table I).

During runtime, these notifications are evaluated. Depend-
ing on the current state of the corresponding pair of master
and replicate copy represented by an instance mapping en-
try, a transaction may be scheduled that can later be used
to resynchronize the detected change from the one to the

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. TYPES AND ABBREVIATIONS OF NOTIFICATIONS FROM SIMDB

AND EXTDB.

internal (SimDB) external (ExtDB)
property update simUpdate extUpdate
instance insertion | simlnsert extInsert
instance removal simRemove extRemove

other database. A scheduled transaction comprises one data
operation with its kind (insert, remove, or update), the af-
fected instance (object or link) or its id, and for updates
the affected property. Table II gives an overview over the
utilized transactions and their abbreviations. A transaction for
transferring a change from SimDB to ExtDB is called an
out-bound transaction and will be abbreviated with the prefix
sim2ext.

For example, when detecting an object insertion within
SimDB by a simlnsert notification, a new sim2extInsert out-
bound transaction may be scheduled. Its (future) execution
will insert an equivalent object of the corresponding ExtDB-
Classifier (using the schema mapping) into ExtDB. Here, the
current property values are retrieved from the SimDB object’s
slots and are replicated for the new ExtDB object. Finally, the
new object complements the corresponding instance mapping
entry with its identifier. This can be seen as the comple-
menting operation to the loading of objects. Links are treated
accordingly but without the need for property value replication.
An instance’s removal (object or link) from SimDB, notified
by a simRemove notification, may lead to a sim2extRemove
transaction whose (future) execution will remove the asso-
ciated ExtDB instance. A simUpdate notification signals the
change of a SimDB object’s property and may be scheduled
as a sim2extUpdate transaction to transmit the value change
from SimDB to ExtDB. Similar to sim2extInsert transactions,
a sim2extUpdate transaction’s execution retrieves the current

value of its corresponding property from SimDB and replicates
it to ExtDB.

TABLE II. TYPES AND ABBREVIATIONS OF TRANSACTIONS BETWEEN
SiMDB AND EXTDB.

out-bound: SimDB—ExtDB

in-bound: ExtDB—SimDB

property update

sim2extUpdate

ext2simUpdate

instance insertion

sim2extInsert

ext2simInsert

instance removal

sim2extRemove

ext2simRemove

Accordingly, external notifications may lead to the schedul-
ing of in-bound transactions for resynchronizing global
changes from ExtDB to SimDB. They are prefixed by ext2sim:
ext2simlInsert, ext2simRemove, and ext2simUpdate. Responses
to external notifications are mostly identical to their internal
counterparts. However, due to the nature of SimDB being a
cache for ExtDB, a variation applies when treating external
insertions. New objects or links within ExtDB may be handled
by different strategies. They may be ignored or subsequently
taken into account by a loading transaction (ext2simlInsert).
In this paper, the latter approach is chosen. Alternatively, one
could consider to reevaluate previously executed queries to
determine the “interest” in the new instance.

D. Change Propagation — The Basic Idea

Figures 4-7 show the basic idea of the notification-based
distributed synchronization using an example with a central

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

605

ExtDB and two SimDB clients. A door object is replicated
to two simulation databases. One client changes the door’s
state indicated by a notification. The change is synchronized
to the central database where another notification is issued.
The latter causes another synchronization of the change to the
second client.

T EvtDR
ExtDB
(SimDB #1) SimDB #2
— o
a: Door * a:Door *® a:Door
open=false [~~~ 8 ==="Plopen =false [~~~ '&, ~"""|_open = false
> >
(%] (%]
-
sim client #1 sim client #2
v E

Figure 4. 1st step: Initial situation of a distributed synchronization example:
all databases in sync.

wr, mupda® T EviDR Y
/ﬁ:}él@sm ? ExtDB
wv‘ SimDB #2
— o~
a: Door =+ a: Door * a: Door
open=true " 8 ==="Plopen=false [~~~ 8 ~""|_open = false
> >
(%] (%]
.
sim client #1 sim client #2
j v
J

Figure 5. 2nd step: Client #1 changes the door’s state; its SimDB issues a
simUpdate notification.

RN oxtUpda®
ExtDB 35
e SimDB 2
— (o]
a: Door * a: Door ** a:Door
f£----1 O F---=b N R
open = true c open = true c open = false
> % >
w3 (%]
Y
<
sim client #1 2 sim client #2
:| %
E v
J

Figure 6. 3rd step: Sync component #1 responds using an out-bound
sim2extUpdate transaction to synchronize the change to ExtDB, which in
turn issues an extUpdate notification.

E. Modeling Synchronization With State Machines

Altogether, instance mapping entries (i.e., pairs of master
and replicate copy) can be seen as to reside in a certain state
of synchronization. Some examples are given in Figure 8: An
object a:Door may exist in the central ExtDB without being
loaded (i.e., replicated) to SimDB (i.e., no mapping exists),
a replicated object b:Door may be unchanged (in sync), an
object c:Door may only exist in SimDB (a transaction for
its insertion in ExtDB is pending), a previously replicated
object d:Door may be deleted in SimDB (a transaction

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

606
o leading to a transition guarded by simlnsert from the initial
DR ExtDB T state NonManaged to state sim2extlnsertPending shown in
I [P N Figure 10.
a:Door ** a:Door ** a: Door
open=true [F -7 8 ====Pl open =true _[<h Lc) == 73 open = true
> > (e 4 1t
@ D wrr, extins®
— 3 1nse t & .
im client #1 5 im client #2 7, sim =
sim client % sim client R ‘: Ext D B - \\\
I i
.
o .
Y, _le a: Door
Figure 7. 4th step: Sync component #2 uses an in-bound ext2simUpdate g% ”
transaction to adopt the change from ExtDB to SimDB #2. 3
~ '§;
sim client 2
()
=Y
for its deletion within ExtDB is pending), or a replicated
object e:Door’s property may be changed within SimDB (a %
transaction for synchronization to ExtDB is pending). ~—
/
/Sirnl)? Sync ExtDB Figure 9. Exemplary insertion of a door object into SimDB and subsequent
v synchronization to ExtDB using a sim2extInsert transaction.
sim2ext-
: [E:Bour] NonManaged
b : Door Mapping Lr b : Door g simlnsert |nsertPendIng
@8 DO['@ Mapping
Synced €
m"‘ Mapping d: Door extinsert
Figure 10. Excerpt from Figure 11 for the state transitions accompanying the
e : Door — e : Door exemplary insertion depicted in Figure 9.
open = frue m open = false
In this example, a sim2extlnsert transaction is scheduled
Figure 8. Exemplary mapping states between pairs of master and replicate

copy.

This can be modeled as a state machine in statechart
notation [28] for each object’s or link’s instance mapping entry.
For objects, this state machine is given in Figure 11, for links
in Figure 13. It may be in a synchronous state (Synced), a
Loading or Unloading state, a state representing its absence or
non-management (NonManaged), or a state of pending transac-
tion (ext2siminsertPending, ext2simRemovePending, etc.). For
update transactions, the synchronization states of an object’s
properties are concurrently modeled in the sub states of state
UpdatesPending shown in Figure 12.

In these state machines, events comprise internal and exter-
nal notifications, as well as some management events for object
loading and unloading, failure thereof, and update completion.
To simplify the state machine diagrams, any event undefined
for a state shall trigger a transition to an omitted error state.
Notification events are also implicitly filtered based on the
related instance to match the considered instance mapping.
Id est, the state machine for a certain instance mapping will
only receive notifications for the corresponding instances from
ExtDB or SimDB. Note that transitions depicted with italic text
are special conditions dealt with in the Subsection V-G.

F. Event Handling Within the State Machines

An exemplary chain of events — depicted in Figure 9 —
would be the insertion of a new door object into SimDB

for the new object. When the transaction is executed (see
Subsection V-J), an equivalent object is inserted into ExtDB
eventually causing the database to issue an extlnsert noti-
fication. In turn, this event triggers a transition from the
sim2extInsertPending to the Synced state. Thus, the extInsert
event confirms the insertion into ExtDB and is used as a
receipt to acknowledge a transaction’s successful execution.
This is especially useful for handling concurrent changes

within SimDB and ExtDB occurring during other transaction’s
execution.

The receipt handling mechanism is also used to handle mu-
tual changes that cancel each other out. An example are mutual
removals: An instance is, e.g., first removed from ExtDB and
subsequently from SimDB by independent processes. Thus, a
previously scheduled ext2simRemove transaction with pending
execution (in state ext2simRemovePending) is canceled out by
the incoming simRemove notification for the same instance.
The event causes a transition to the NonManaged state.

The same effect can be observed for the insertion of links.
As before, links identify only by their member objects. In
contrast to objects, they can be inserted identically but indepen-
dently into both databases. In the state machine for links, this is
represented by a transition from, e.g., sim2extInsertPending to
Synced triggered by an extInsert for the identical link without
having executed the scheduled transaction.

The state machines for objects and links differ only
in some aspects. The latter allows an additional transition
from the pending remove states back to the Synced state.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

607
ObjectSynchronization extRemove, extUpdate
simRemove (extRemove
S &
> €
extUpdate, startLoad simUpdate
NonManaged ,
i _ extlnsert ‘S|mRemove N
ext2sim- < < sim2ext-
InsertPending > >| InsertPending
extRemove - < siminsert
N A
extRemove [inExec] startLoad loadFailed simRemove simRemove [inExec]
extUpdate,) . extUpdate,
extRemove Loading Unloading extRemove,
simUpdate
siminsert unloadFailed startUnload
simInsert p v v extinsert
S &
> €
simUpdate extUpdate
Synced
ext2sim- . sim2ext-
RemovePending | extRemove simRemove | RemovePending
/ . J \
A A A
:i):ﬂ;%z:z allUpdatesSynced
A 4
extRemove UpdatesPendlng simRemove

simUpdate, extUpdate

Figure 11. Synchronization states of an object’s instance mapping.

| UpdatesPending

UpdatesPr

(")
Q| UpdatesPr;
%epeat incoming event >
extUpdate [Pr==Pr, && inExecl I _simUpdate [Pr==Pr; && inExec]
simUpdate [Pr==Pr] Synced Pri N extUpdate [Pr==Pr]

sim2ext- N ext2sim-
UpdatePendingPr, UpdatePendingPr,

‘ __simUpdate [Pr==Pr}]

extUpdate [Pr==Pr]

simUpdate [Pr==Pr}] extUpdate [Pr==Pr]
___________________________________ > Done
entry/raise allUpdatesSynced
UpdatesPr; >
i >
e |
‘ SyncedPr;
& J
- J

Figure 12. Sub structure of state UpdatesPending from Figure 11 for property updates.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In contrast to objects, an identical link can be reinserted
after its removal. The former includes an additional update
management for objects. The UpdatesPending state encap-
sulates a sub state structure for managing property updates
(Figure 12). Primarily, it contains a super state UpdatesPr
with concurrent regions for each of the object’s properties,
e.g., region UpdatesPr; for the object’s i*” property. A region
for Property Pr; has three states representing an unchanged
property value (SyncedPr;), a property value changed within
SimDB (sim2extUpdatePendingPr;), and a property value
changed within ExtDB (ext2simUpdatePendingPr;). Internal
transitions are triggered by update notifications (simUpdate
and extUpdate) filtered for the corresponding property. To
simplify modeling, the update event that caused the transition
to UpdatesPending shall be repeated to initially activate the
appropriate sub state, e.g., activate sim2extUpdatePendingPr;
by repeating a simUpdate event. Further updates to the ob-
ject’s value for Pr; can be ignored when they stem from
the same database (i.e., both SimDB or both ExtDB). For
example, in state ext2simUpdatePendingPr;, further extUpdate
notifications for Pr; can be ignored as the new value has
to be transferred to SimDB, anyway. However, a subsequent
update to the same property from within SimDB causes a
change conflict (see Subsection V-G). The modeled strategy is
to give precedence to the more recently notified change. Thus,
a transition to sim2extUpdatePendingPr; is triggered. When
the transaction implicitly scheduled on entering one of the
update states is executed, a notification is needed as a receipt.
However, in contrast to insert or remove transactions, there is
no “natural” counterpart for update transactions. An executed
ext2simUpdate transaction causes a simUpdate notification that
is indistinguishable from any other third party change. Thus,
before execution, an “inExec” flag is set. For ext2simUpdate,
the next simUpdate notification for Pr; will trigger a transition
back to the synced state of this property (the inExec flag will
be reset). When all concurrent regions are in their respective
synced state, a synchronized (in terms of concurrency) transi-
tion to the Done state is triggered (modeled by the vertical bar).
On entering this state, the allUpdatesSynced event is raised
triggering a transition from the super state UpdatesPending to
the Synced state (see Figure 11).

In some situations, events may also be ignored. Within the
state machines, this may be modeled as self-transitions. For
example, in sim2extRemovePending, further extUpdate events
from ExtDB can be ignored as the corresponding object will be
removed from ExtDB, anyway. The same applies to pending
insertions as property values will be replicated on execution
time. For a pending ext2simlnsert, the startLoad event has to
be ignored, which will be emitted by the loading process used
by the transaction. For non-managed instances within ExtDB,
remove and update notifications can be ignored as they are of
no interest to SimDB. Note that the sub regions in Figure 12
do not explicitly model ignored update events for properties
Pr # Pr;. Nevertheless, they shall be ignored and not cause
a default transition to the omitted error state.

Besides change tracking, both state machines also contain
states for the loading and unloading of objects or links. To
announce a currently non-managed instance’s loading, the
methods presented in [7] shall raise an additional startL.oading
event. The instance remains in the Loading state either until
its insertion into SimDB is acknowledged by an appropriate

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

608

simUpdate receipt event or until the load process fails. Accord-
ingly, before unloading a synchronized instance, a startUnload
event shall be raised and the Unloading state is activated.
Reaching this state, subsequent changes to the instance are
ignored and consequently get lost. A simRemove notification
serves as a receipt to acknowledge the unloading process and
triggers a transition to the NonManaged state. Failing this, an
unloadFailed event is raised to return to the Synced state.

G. Change Conflict Handling Using State Machines

As mentioned above, changes (insertions, removals, and
updates) from ExtDB and SimDB may conflict when they
occur to the same instance (and property) before executing
the corresponding transaction. For example, in a city scenario,
a building’s street number is locally changed within SimDB
causing a sim2extUpdate transaction. Before this change is
made persistent and globally available within ExtDB by exe-
cuting the transaction in a resynchronization run, the very same
number is changed within ExtDB (e.g., by another simulation
client). Following the strategy modeled above, the previous
change is omitted and instead a new ext2simUpdate transaction
is stored.

In general, different strategies to handle such situations
could be thought of. First of all, conflicts can be avoided
beforehand by giving only mutual exclusive write access to
instances. This approach could be used in distributed simula-
tion scenarios where separate objects are simulated by different
clients without interaction. This can be managed by a superor-
dinate simulation control. Avoiding the occurrence of conflicts
could also be realized by explicitly locking changed instances
or their property value in the respective other database. How-
ever, this may stall or even reset a simulation run as mentioned
above.

Thus, a monitoring, i.e., reactive handling of change con-
flicts as mentioned above is inevitable. The presented methods’
strategy is embedded in the given state machines. For change
conflicts, two scenarios can be distinguished: A conflict may
either occur before or during a transaction’s execution. Before
executing a transaction, conflict handling can be realized
straightforward. It is modeled with simple transitions within
the state machines. One example is the precedence for more
recently notified updates as shown above. Another strategy is
that object removals are final and thus “always win”. Id est, a
pending remove transaction for an object precedes all update
events for the object. For pending object insertions, conflicts
cannot occur as the corresponding object does not exist in the
respective other database. In the context of links, the behavior
slightly differs. Again, as a link identifies only by the objects it
connects, one and the same link can be independently inserted
and removed from both databases. Here, the same strategy as
for the update of an object’s property value applies: the more
recently notified change precedes previous changes.

As long as a transaction is still pending, incoming events
can always be processed by state transitions to reflect the
relation between SimDB and ExtDB. In a resynchronization
run, the current state of each state machine is evaluated
(compare Subsection V-J). If a state with pending transaction
T1 is determined 7’1 is executed. However, this decision
is made independently at each client. A notification from a
previously committed, conflicting transaction 72 may arrive
just after T'1’s execution is started. In some cases, 7'1 may

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

still be abortable. But the notification may just as well arrive
when 7T'1 commits. So, while native transactions of the utilized
DBMSs themselves are usually isolated the decision to start
a pending transaction is not. This limits transaction isolation
(i.e., ACID properties) in the distributed system.

The same applies to the reading of property values. Objects
can be removed, and links can be removed and inserted based
only on the information from the corresponding notification.
For object insertions and property updates however, the current
state of the respective source database has to be retrieved
as notifications themselves do not contain the corresponding
values. Thus, when such a transaction is executed the source
values may have already been changed by subsequent trans-
actions whose notifications may either have not yet arrived or
transaction execution may already have started as described
above. This also limits transaction isolation.

Thus, a strategy had to be found for dealing with such sit-
uations. Otherwise, scenarios where a change in one database
is neither reflected within the other database nor within the
instance mapping’s state machine may occur. For example, a
property value is changed in ExtDB, but its instance mapping’s
state machine is in state Synced although SimDB still holds
the previous value.

The primary instrument to handle such interfering changes
is the aforementioned usage of notifications as receipts. For
that purpose they must have the following features:

1) A notification’s arrival guarantees the corresponding
operation to be executed.

2) The order of arrival of a single database’s notifi-
cations is identical to the execution order of the
corresponding operations.

3) Between one running instance of SimDB and ExtDB
there is at most one transaction being executed at a
time (see Subsection V-J).

Based only on these assumptions, a conflict management
can be stable. However, one should keep in mind:

1) A notification not yet received does not imply that
the corresponding operation is not yet executed (no-
tifications may be delayed).

2) On arrival of a notification, the current state within
the database must not be consulted for further state
transitions. By time of arrival it may already have
been changed several times.

3) The order of arrival between notifications from
ExtDB and notifications from SimDB is arbitrary.

Based on these considerations, a special event handling
can be implemented to process the queued events after a
transaction’s execution. As stated above, the main problem are
notifications arriving between the start of a transaction’s exe-
cution and the arrival of the corresponding receipt notification.
For a proper event handling, these events must sometimes be
reordered. To be precise, they are captured and reinserted into
the event queue just after the receipt event. This ensures their
correct processing in terms of state transitions. The procedure
is necessary for object or link insertions, link removals, object
updates, and object or link loading. In the state machines,
transitions with italic text particularly model this case. In the
sub states of UpdatesPending, this highlighting is omitted as
the same transitions are needed for standard and for this special
event handling.

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

609

H. Exemplary Change Conflict Handling

One example for change conflict handling are updates
(Figure 12). A property’s update transaction can be examined
separately as updates of different properties are independent
from each other. Table III lists an exemplary sequence of
events for some integer property and the associated actions,
state machine states, values in SimDB and ExtDB, and emitted
notifications. In the example, the local property’s slot value
in SimDB is updated several times even while changes are
replicated to ExtDB. Notifications are used to ensure that all
updates are reflected within the state machine’s current state.

Initially (step #1), SimDB and ExtDB are in sync at value
10. The value in SimDB is changed to 20 (#2) and the cor-
responding simUpdate notification (a) triggers a state machine
transition (#3). At some point in time, the client starts the
resynchronization process (#4). Then, a first interfering update
(#5) changes the value to 30. As property update notifications
do not contain a value it must be retrieved from the respective
database at transaction execution time (#6). Afterwards, a
second interfering update (#7) changes the value to 40. In #8,
the read value 30 is replicated to ExtDB. As mentioned above,
the order, in which notifications from SimDB and ExtDB are
received, is arbitrary. Thus, notifications simUpdate (a) and
(b) may be processed first (#9, #10). As the “inExec” flag
is set, all notifications are stored (instead of ignored without
the “inExec” flag being set) until the corresponding receipt
notification extUpdate is processed in #11. Subsequently, the
flag is reset and both stored notifications are reinserted into
the event queue. While the receipt notification eventually
yields a transition back to the Synced state (#12), notification
reinsertion causes the necessary transition back to the state
of pending updates (#13) to replicate the value of 40 from
SimDB to ExtDB. The additional simUpdate notification (c)
only yields a self-transition (#14) as an update is already
pending. Another resynchronization run would replicate the
value to ExtDB starting at #15.

This approach to capture and reinsert notifications is
needed as it is unknown whether an interfering update was
done before (#5) or after (#7) reading the current value from
SimDB in #6 to execute the sim2extUpdate transaction in #8.
Note that when only interfering updates of the first type occur,
the additional simUpdate notifications are in fact redundant.
However, this is acceptable to guarantee that no updates are
lost between SimDB and ExtDB. In case of interfering updates
from other clients to ExtDB, additional extUpdate (instead of
simUpdate) notifications are emitted. Here, notifications need
not be stored as the first extUpdate notification is simply
interpreted as the expected receipt and subsequent extUpdates
yield normal state transitions. Finally, the same store-and-
reinsert strategy is used similarly in the other use cases
mentioned above (object insertions, link removals, and object
or link loading).

Another example is a pending link insertion from SimDB to
ExtDB (sim2extInsertPending) in Figure 13. After starting the
transaction’s execution, the link may concurrently be removed
and reinserted into SimDB several times by different compo-
nents of the simulation system. It may also be inserted into
ExtDB from a third party client. In this case, sim2extInsert’s
execution will have no further effect. Subsequently, the link
may even be removed and reinserted again within ExtDB.
However, after the execution process, all corresponding (pos-

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

610

TABLE III. EXAMPLE OF A LOCAL INTERFERING UPDATE OF SOME INTEGER PROPERTY WITHIN A SINGLE SIMDB.

process event simUpdate (b)

action state machine SimDB val. | ExtDB val. | notification

1 (initial state) Synced 10 10

2 update 10 — 20 in SimDB 20 simUpdate (a)
3 process event simUpdate (a) — UpdatesPending / sim2extUpdatePendingPr;

4 start resync inExec := true

5 update 20 — 30 in SimDB (Ist interference) 30 simUpdate (b)
6 read current value from SimDB

7 update 30 — 40 in SimDB (2nd interference) 40 simUpdate (c)
8 execute transaction sim2extUpdate 30 extUpdate

9

[inExec=true] = store simUpdate (b)

—_
(=]

process event simUpdate (c)

[inExec=true] = store simUpdate (c)

process event extUpdate
inExec := false

— UpdatesPending / SyncedPr; — Done

reinsert simUpdate (b) in event queue
reinsert simUpdate (c¢) in event queue

allUpdatesSynced

12 | process event allUpdatesSynced — Synced

13 process event simUpdate (b)

— UpdatesPending / ext2simUpdatePendingPr;

14 process event simUpdate (c) (self-transition)

15 start resync ...

sibly queued) events are processed until the receipt arrives. As
the first extInsert notification is the receipt, no other extInsert
and thus no extRemove notification can precede it. Hence, only
simRemove and simInsert events have to be captured. They
represent the current state of the link within SimDB. When
the extInsert event arrives, these captured SimDB notifications
are reinserted into the state machine’s event queue just after the
extInsert receipt. After the extInsert triggers a transition to the
Synced state, the reinserted notification events are processed
regularly. Note that it is irrelevant whether the link insertion in
ExtDB actually originates from the successful execution of the
sim2extlnsert transaction or from a third party’s operation. In
both cases, the link is established and an extInsert notification
is produced.

1. An Interim Conclusion

Regarding change tracking and conflicts, dependencies
between different operations could also be a problem. Inserting
an object usually also causes a parent link’s insertion and
removing an object cause a removal of all corresponding
links and all (hierarchically) descendant objects. However, all
these operations — dependent or not — cause the same kind
of notifications and all interdependencies are resolved by the
respective database itself. Thus, such dependent changes can
be treated by the standard mechanisms and need no special
handling.

Altogether, as mentioned above, this approach cannot avoid
or fix conflicts but only detect them and react on them.
However, the utilized SimDB and ExtDB themselves are
not corrupted as they provide safe standard database access
methods. Thus, only the distributed synchronization state must
be kept free of corruptions. This is ensured by the presented
approach.

J. Resynchronization

In resynchronization, all scheduled transactions are exe-
cuted to bring the two databases back in sync. This process
can be triggered in several ways. When the approach is applied
in a collaborative scenario, it can be initiated manually. For

immediate response from and to other users, it can also be
automatically triggered after each transition to a state with
pending transaction. In distributed simulation, typical access
patterns include constantly repeated changes of the same few
property values, e.g., a moving car and a moving helicopter.
In such scenarios, transactions can be aggregated within short
but arbitrary periods to lower the impact on traffic. However,
this includes a trade-off between traffic and update rate.

Transactions are processed in groups of the same type
to gain advantage from dependencies and optimize execution
performance. An overview is given in the list below. At first, all
ext2simRemove and sim2extRemove transactions for objects
are executed to remove deprecated objects. As an optimization
measure, this is done in reversed order of occurrence of
the corresponding notifications. System requirements for the
notification services specify the removal of object subtrees to
be notified in bottom-up order. Additionally, subtrees may be
removed manually in terms of further subtrees piece by piece.
Thus, the transaction for a removal of the ExtDB root object
of a completely removed subtree will always be preceded by
all its descendant objects. Processing transactions in reversed
order, the corresponding root object within SimDB will be
deleted first and its instance mapping entry is removed. Due
to the semantics of composite aggregation, this deletion will
recursively delete all SimDB descendant objects in one opera-
tion (typically optimized by SimDB). Pending ext2simRemove
transactions for descendant objects receive a notification for
the removal of their target object, which serves as a receipt
triggering a transition to the NonManaged state.

1) ext2simRemove and sim2extRemove for objects (in
reverse order of occurrence)

2) ext2simlnsert and sim2extInsert for objects

3) ext2simChange and sim2extChange (for objects)

4) ext2simRemove and sim2extRemove for links

5) ext2simlnsert and sim2extInsert for links

Next, all ext2simInsert and sim2extInsert transactions for
object insertions are processed. For each ext2simlnsert the
standard loading mechanism is used, including replicating

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

611
LinkSynchronization extRemove
simRemove () extRemove
> <€
startLoad
NonManaged
. extinsert ” simRemove)
ext2sim- < <€ sim2ext-
InsertPending > > InsertPending
extRemove - < siminsert
A A
extRemove, extinsert [inExec] startLoad loadFailed simRemove simRemove, siminsert [inExec]
extRemove, . . extRemove,
extinsert Loadmg Unloadlng extlnsert
siminsert unloadFailed startUnload
\ 4 \ 4
'd ~\
simlnsert extinsert
> €
0 extlnsert - Synced __siminsert (
ext2sim- > « sim2ext-
RemovePending [€ . > RemovePending
extRemove simRemove
J \ J (N
extinsert, extRemove [inExec] siminsert, simRemove [inExec]

Figure 13. Synchronization states of a link’s instance mapping.

current property values from the corresponding slots. Loading
an object also includes loading all the object’s ancestors to
provide parent-child-relations within SimDB. Upon their load-
ing, a startLoad event will be emitted to provoke a transition
into the Loading state (for objects and parent links). Only for
the object to be inserted itself and its parent link this event
will be ignored. sim2extInsert transactions for objects make
new objects globally available within ExtDB. The necessary
operations can be seen as the counterpart to the loading
operations.

Performing all object removals and insertions first assures
further link operations are executed optimally. Beforehand, all
ext2simUpdate and sim2extUpdate transactions are executed
applying the current property values from ExtDB to SimDB
and vice versa. In the next step, links are removed from SimDB
and ExtDB by executing all corresponding ext2simRemove
and sim2extRemove transactions. As with dependent object
removals, each link already removed receives a receipt no-
tification causing a transition to the NonManaged state. All
remaining pending link removals are executed normally.

Finally, all ext2simInsert and sim2extInsert transactions are
executed. The former are treated like their counterparts for
objects by loading the corresponding link into SimDB using
standard mechanisms. For parent links previously inserted in
conjunction with an object insertion, receipt notifications may
already have triggered a transition to the Synced state. As with
link removals, all other link insertions are executed normally.
When a designated link lacks a member object within the target

database, the transaction will (detectably) fail to execute, reset
the inExec flag, and stay in pending state. This may occur
although object insertions are executed before link insertions.
For example, an object and a link may be inserted while the
resynchronization process has already executed all other object
insertions. Likewise, a member object may be removed in the
target database. However, the next resynchronization cycle will
take care of this.

VI. APPLICATIONS

Using the presented approach, different kinds of applica-
tions have already been realized.

A. City and Urban (Distributed) 3D Simulation

An application from the field of geo information systems
are city simulations. Nowadays, a 3D city model exists for
many cities in Germany like Dusseldorf or Stuttgart. Typically,
these are often maintained by urban authorities, e.g., by
land-registry. A widespread data model is the CityGML [29]
standard, which is based on the Geography Markup Language
(GML). A problem is to access, display, and use these huge
data sets efficiently. Most tools can either access data in
the original, highly semantic CityGML format but cannot
efficiently display its 3D content or even do 3D simulation.
Others can only efficiently use derived and optimized geomet-
ric representations, e.g., in VRML (Virtual Reality Modeling
Language), which lack the semantic richness and need to be
created by offline conversion. Using the presented approach

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

however, city data can be accessed in its original highly
semantic schema making it available to a real-time capable
3D simulation system at the same time.

Prototypical 3D simulation scenarios include driving cars
(with realistic physical correct behavior) or flying a helicopter
through different city models (Figure 14). At the same time, the
associated descriptive data can be accessed as the connection
between geometry and object is never broken. As the proposed
approach has read and write support (compare Section V), city
data can even be updated from within the simulation system.
In the context of CityGML, functional data synchronization
has been used to supplement so-called implicit geometry rep-
resentations with the corresponding referenced detail model.
This was used for street furniture like street lights or benches
or vegetation like trees. The implicit representation therefore
contains references to external model files (e.g., in VRML
format), which are subsequently loaded into the simulation
system. For vegetation it may also just denote a tree type.
Additionally, pose and size information are given, which are
applied to the supplement.

| oy
1] iy 5

LT

N I

Figure 14. Bringing large city models to life by combining database and
simulation technology (data: Dusseldorf).

In another urban scenario, the presented methods have
been used as the basis for a new approach to distributed 3D
simulation using a central database. An important precondition
is that the shared simulation model within ExtDB not only
contains static model data like buildings, street furniture or
vegetation. It also has to contain dynamic objects like a
car or helicopter. A locally running simulation changes these
dynamic objects (e.g., the cars position) within SimDB. Using
the mechanisms described in Section V, these changes are
synchronized to ExtDB, hence communicating the new state
of the simulation model to the shared model. The database’s
notification service actively notifies any subscribed simulation
client. Each client adopts the changes by synchronizing their
own local replicate copies accordingly. All in all, this realizes
a database-driven distributed 3D simulation.

In training scenarios using 3D simulation techniques — like
driving or flying a virtual vessel or operating a virtual model
of a machine — there is an interest in recording a simulation
run. Recorded data can be used for replay, analysis, debriefing,

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

612

and archival. This may be realized using external tools that
log all interactions between the participants of the distributed
simulation. Here, additional tools are needed to replay these
logs. In the presented database-driven approach however, all
changes are centrally routed through the shared model within
ExtDB. Thus, as all intermediate states of the simulation
are made persistent in the shared model, a simulation run
can easily be captured by using a temporal database for
ExtDB. The recorded time-stamped values not only represent a
queryable 4D archive of the scenario. A simulation client can
also be used in an off-line viewing mode to replay a simulation
run step by step, allowing analysis and debriefing.

Using these two core concepts, a database-driven dis-
tributed 3D simulation application has been prototypically real-
ized (Figures 15-16). The scenario consists of a heterogeneous
shared model with a generic village in CityGML format as
static model data and SEDRIS-based [25] car and helicopter
models as dynamic model data. Data is loaded from a central
database into two attached VEROSIM simulation clients. Here,
simulation specific data is reconstructed using functional data
synchronization. In particular, this includes relative transfor-
mations, which are synchronized bidirectionally to distribute
movements of the dynamic objects. Dynamic parameters of
the simulation model like physical characteristics of a car’s
drive were also encoded within the SEDRIS schema and
reconstructed as supplementing structures in SimDB. However,
these active components of the simulation are specially treated
to configure responsibilities. L.e., the car shall only be actively
simulated by one simulation client and only passively retraced
within the other. The same applies to the helicopter vice versa.
An id-based approach is used to configure these active and
passive components per client. After replicating the data, the
simulation is started in each client. Movements in one client
are resynchronized to the central database and distributed to
the respective other client. At the end of the simulation, the
aforementioned usage of a temporal database allows an off-line
replay of the simulation run.

Y
N

Village
Static Model Data
(CityGML)

Simulation
Client #1

Car & Helicopter i
Dynamic Model Data
(SEDRIS)

~

Simulation
Client #2

Offline-Replay

Client

Figure 15. Architecture of the database-driven distributed 3D simulation
application.

A performance evaluation yielded 0.7 — 1.3ms for single
reading and 2.3 — 4.6ms for single writing operations (note
that writing includes the versioning mechanism), which is
acceptable for the given task. The central database uses a
polling-based notification approach. It worked well but reached

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. The presented approach is used to actively drive a distributed
simulation scenario.

its limits under heavy load making a push-based approach
more advisable. For more details see [3].

Usually, such applications use amounts of files for data
management combined with a decentralized communication
infrastructure, e.g., based on the High Level Architecture
(HLA) [30], and separate logging components are needed to
archive a simulation. In contrast, we provide a more integrated
approach. This avoids divergence between data management
and the corresponding change distribution mechanism, no
separate mechanism is needed to access logged data, and a
consistent data schema provided by the central database is used
throughout the distributed system.

B. Virtual Space Robotics Testbed

So-called Virtual Testbeds follow a holistic approach to
3D simulation. In contrast, conventional 3D simulation appli-
cations typically use very specialized techniques and focus
on certain details. Virtual Testbeds however incorporate a
diversity of problem aspects and their interactions into a
single application, which integrates all relevant objects and
parameters, their environment, and documentation. Similar to
concepts for Product Data Management (PDM) systems [31],
[32], they are also used in a much broader scope from design
to testing, production and training. The Virtual Space Robotics
Testbed (Figure 17) integrates the combined efforts of the
research projects FastMap [33], [34], SELOK [35], [36], and
Virtual Crater [37]. It provides means for the development,
testing, and evaluation of robotic systems for space missions.

This Virtual Testbed’s purpose is to support the develop-
ment of future space missions. The three research projects
pursue different aspects of this very same goal. The major goal
of the research project FastMap is the automatic generation
of navigation maps from images taken during the descent
phase of a planetary landing mission. To calibrate the Virtual
Testbed — in particular for camera and lighting — a physical
planetary landing mockup is used. It consists of scaled realistic
surface models and two robot arms carrying a light source and
a camera. The flexibility of the Virtual Testbed even allows
for its usage as a control system of this facility. The Virtual
Testbed contains a model of a planetary descent scenario
and additionally a virtual model of the physical mockup. All
three scenarios (virtual mission, virtual mockup and physical
mockup) are driven by the very same software components.

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

Planetary Landing 5 Virtual Testbed c Existing Descent
Mockup Images
>
Sensor Data
. Digital Elevation .
le——| -

Landmark Detection Model (DEM) € DEM Generation

Map Generation [T Navigation Map

1
SELOK Virtual Crater

Figure 17. Structure of the projects FastMap, SELOK, and Virtual Crater in
the Virtual Space Robotics Testbed.

A central database is used to manage a shared data model
with a GML-based application schema. The central active
database is used to make the shared model persistent and to
communicate changes between the clients while deriving the
navigation map. Hence, in this scenario, the approach is used
for distributed data processing. The state of this distributed
process is reflected by a central mission object holding a phase
indicator. In each phase, a different client is responsible for
finishing the phase (by incrementing it). Phase changes and all
other data modifications including the insertion of new objects
are actively communicated to all clients to drive the distributed
approach.

In the first phase, a client (using the approach presented
in this paper) processes sensor data, which can either stem
from the physical mockup’s camera or from one of the virtual
scenarios (Figure 18). For each of these captured images, an
object with the image’s data is stored in the central database.
When all images are captured, the phase is incremented.
However, following a pipelining approach, as soon as the first
image objects are stored in the database, the second client
is notified and fetches these objects. A digital elevation model
(DEM), i.e., a 3D model of the planet’s ground, is constructed.
Subsequently, DEM fragment objects holding the rasterized
elevation data are also stored in the central database. When
all captured images are processed, the phase is once again
incremented. This phase change triggers the third client. Based
on the images and the DEM, it applies different detection
algorithms to create a map of landmarks like craters, rocks, or
mountain tops. These landmarks are also stored in objects of
the corresponding classes of the FastMap application schema.
To end the distributed data processing, the detector client
increments the phase of the mission for a last time.

Subsequently, the completed map is used as a basis for
self-localization and navigation of mobile robots during the
exploration of the planetary surface (Figure 19). This is the
subject of the research project SELOK. Here, mobile robots
use sensors like stereo cameras or laser scanners to capture

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

View: Camera mounted on Robot

Figure 18. A simulation of a physical mockup for a planetary landing
mission (project FastMap). The presented approach provides access to the
shared world model.

their surroundings. The Virtual Testbed allows to flexibly com-
bine and interchangeably use simulated and physical sensors.
Within the data, landmarks like the aforementioned rocks or
craters are detected. These so-called local landmarks are then
matched against the global landmarks from the navigation map
yielding a self-localization of the robot.

Figure 19. Planetary localization and navigation using the maps extracted
after the landing phase. The presented approach is used to access the shared
world model.

Finally, the third research project Virtual Crater is con-
cerned with the development of a Virtual Testbed for mobile
robots with planetary exploration missions. The testbed allows
for a cost-efficient and realistic simulation of mobile robots
in a virtual lunar environment. Here, they can be developed,
programmed, tested, and optimized. Furthermore, the project
comprises a physical testbed to compare and verify simulation
results with reality. The results of Virtual Crater can be
complemented by the navigation map and DEM from FastMap
the self-localization methods from SELOK.

As this scenario provides similar conditions for the in-
tegration of the presented approach, evaluation results from
Subsection VI-A are accordingly applicable.

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

614

C. Forest Inventory, Management and Simulation

In the field of forestry, the approach has successfully been
employed for forest inventory, management and simulation.
Most of the works where realized in the context of the research
project Virtual Forest [38], [33], [39]. One of the core ideas of
this project is a consistent, shared data model and data man-
agement in the Virtual Forest database (Figure 20). Provided
to all stakeholders in this field, it facilitates the exploitation of
know-how and synergies. Furthermore, it supports the transfer
of industrial automation techniques to the forest industry.

Harvesting Measures

Forest Machine
Simulation
Harvesting Cost
Simulation
Tree Growth
Simulation

Remote Sensing Data
Processing

Forest Inventory

Virtual Forest Model
(ForestGML)

Figure 20. Architecture of the Virtual Forest scenario.

Integrating the database and all applications, the Virtual
Forest constitutes a 4D geo-information system (GIS). It
combines an object-oriented, semantic world modeling with
3D geo data with the fourth dimension of time in terms of a
temporal database and simulation techniques. While the tem-
poral database is used to preserve and access previous states,
different simulation techniques are provided for prediction of
future scenarios.

Forest inventory is the acquisition and management of envi-
ronmental data in forestry. In the Virtual Forest, this is realized
using a semi-automatic approach. Based on remote sensing and
other data, algorithms for tree species classification, single tree
delineation and attribution, and forest stand delineation and
attribution are used to automatically process huge amounts of
data. The results of these semantic world modeling processes
are stored in the common Virtual Forest model. Expert users
can then use them for quality inspection and data refinement.
To improve their work, another important aspect are convenient
user interfaces to algorithms and supportive tools (Figure 21).

Based on inventory data, other applications in the forestry
context can be driven. There are simulation applications for
decision support to predict harvesting costs or forest growth.
Driver assistance or 3D simulations can be used to support and
to train the usage of harvesters (see Figure 22) and forwarders
in real world environments. Techniques for the automated feed-
back from harvesting allows for a permanent inventory. Here,
results from felling measures are transferred back into the cen-
tral model to keep it up-to-date. User-friendly query interfaces
and reporting tools can help to evaluate and interpret the shared
forest model. All in all, several applications for processing
remote sensing data, semi-automatic inventory, simple forest
information, forest planning, and wood production planning,
and a Virtual Testbed have been developed. Furthermore, web
technologies like portals and services provide the model to
even more users.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

HwANdme]r s B

Figure 21. A forest inventory tool accessing a database with a detailed forest
stand model.

In particular, the inventory tools have been used and tested
in actual measures. In this context, they were evaluated for
their real-world applicability — implicitly evaluating the pre-
sented approach utilized by these tools as well. Users attested
the tools a very good performance and stability.

Figure 22. The presented approach is used for a harvester simulator to
access the database managing the highly detailed forest model.

The 4D-GIS is realized using the simulation system
VEROSIM and a geo database. The systems are combined by
the presented prototype. Typically, inventory data is structured
hierarchically to reflect, e.g., administrative units and contains
spatial data. The presented approach allows multiple users to
collaboratively work with a central database.

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

615

The data models employed for the Virtual Forest are all
based on GML. A specialized base schema called ForestGML
was developed to provide core data constructs to facilitate
the Virtual Forest’s usage in different areas, states, or ad-
ministrations. Furthermore, GML as a base schema allows a
standardized exchange of data using the corresponding stan-
dard web services like WFS (Web Feature Service) or WMS
(Web Map Service). This guarantees interoperability between
different clients connected to the Virtual Forest database.

VII. CONCLUSION AND FUTURE WORK

We detailedly presented an approach for synchronizing a
central database (ExtDB) with simulation databases (SimDB)
as a basis for database-driven 3D simulation. After recapitu-
lating our previously published background of the approach,
the main contribution of this work is presented: A detailed
description of the core method for distributed database syn-
chronization. For each pair of master and replicate copy it
manages the state of synchronization — modeled as a state ma-
chine. It is based on notifications provided by both databases.
On the one hand, they are used to track the changes and
schedule transactions for subsequent resynchronization. On
the other hand, they are used as receipts to acknowledge
transaction execution and to detect change conflicts. Compared
to other methods for collaboration in 3D software systems,
this approach provides a tight integration of advantages from
the database field into simulation technology. To prove its
practicability, examples of use from three different fields of
application are presented in detail.

In future, we will examine further applications, e.g., from
the field of industrial automation. Moreover, a porting of the
approach to other database systems than the current prototypes
will be reviewed. Finally, the integration of temporal databases
will be examined in further detail, especially for valid time,
bitemporal, or multi-temporal databases.

ACKNOWLEDGMENT

Virtual Forest: B s project is co-financed by the Eu-
ropean Union and the federal state of North Rhine-Westphalia,
European Regional Development Fund (ERDF). Europe -
Investing in our future.

REFERENCES

[1] M. Hoppen and J. Rossmann, “A Database Synchronization Approach
for 3D Simulation Systems,” in DBKDA 2014,The 6th International
Conference on Advances in Databases, Knowledge, and Data Applica-
tions, A. Schmidt, K. Nitta, and J. S. Iztok Savnik, Eds., Chamonix,
France, 2014, pp. 84-91.

[2] J. Rossmann, M. Schluse, R. Waspe, and M. Hoppen, ‘“Real-Time
Capable Data Management Architecture for Database-Driven 3D Sim-
ulation Systems,” in Database and Expert Systems Applications - 22nd
International Conference, DEXA 2011, A. Hameurlain, S. W. Liddle,
K.-D. Schewe, and X. Zhou, Eds. Toulouse, France: Springer, 2011,
pp- 262-269.

[3] M. Hoppen, M. Schluse, J. Rossmann, and B. Weitzig, “Database-
Driven Distributed 3D Simulation,” in Proceedings of the 2012 Winter
Simulation Conference, 2012, pp. 1-12.

[4] M. Hoppen, M. Schluse, and J. Rossmann, “A metamodel-based ap-
proach for generalizing requirements in database-driven 3D simulation
(WIP),” in Proceedings of the Symposium on Theory of Modeling &
Simulation - DEVS Integrative M&S Symposium, ser. DEVS 13. San
Diego, CA, USA: Society for Computer Simulation International, 2013,
pp. 3:1-3:6.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http.//www.iariajournals.org/software/

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software En-
gineering in Practice, ser. Synthesis Lectures on Software Engineering.
Morgan & Claypool Publishers, 2012.

OMG, “Unified Modeling Language (UML).” [Online]. Available:
http://www.uml.org 2014.12.01

M. Hoppen, M. Schluse, and J. Rossmann, “Database-Driven 3D Sim-
ulation - A Method Specification Using The UML Metamodel,” in 11th
International Industrial Simulation Conference ISC 2013, V. Limere and
E.-H. Aghezzaf, Eds., Ghent, Belgium, 2013, pp. 147-154.

E. V. Schweber, “SQL3D - Escape from VRML Island,” 1998. [Online].
Available: http://www.infomaniacs.com/SQL3D/SQL3D-Escape-From-
VRML-Island.htm 2014.12.01

S. Julier, Y. Baillot, M. Lanzagorta, D. Brown, and L. Rosenblum,
“Bars: Battlefield augmented reality system,” in NATO Symposium on
Information Processing Techniques for Military Systems, 2000, pp. 9-
11.

Y. Masunaga and C. Watanabe, “Design and implementation of a multi-
modal user interface of the Virtual World Database system (VWDB),”
in Proceedings Seventh International Conference on Database Systems
for Advanced Applications. DASFAA 2001. IEEE Comput. Soc, 2001,
pp. 294-301.

Y. Masunaga, C. Watanabe, A. Osugi, and K. Satoh, “A New Database
Technology for Cyberspace Applications,” in Nontraditional Database
Systems, Y. Kambayashi, M. Kitsuregawa, A. Makinouchi, S. Uemura,
K. Tanaka, and Y. Masunaga, Eds. London: Taylor & Francis, 2002,
ch. 1, pp. 1-14.

C. Watanabe and Y. Masunaga, “VWDB2: A Network Virtual Reality
System with a Database Function for a Shared Work Environment,”
in Information Systems and Databases, K. Tanaka, Ed., Tokyo, Japan,
2002, pp. 190-196.

T. Manoharan, H. Taylor, and P. Gardiner, “A collaborative analysis
tool for visualisation and interaction with spatial data,” in Proceedings
of the seventh international conference on 3D Web technology. ACM,
2002, pp. 75-83.

G. Reitmayr, S. Carroll, A. Reitemeyer, and M. G. Wagner, “Deep-
Matrix - An open technology based virtual environment system,” The
Visual Computer, vol. 15, no. 7-8, Nov. 1999, pp. 395-412.

K. Kaku, H. Minami, T. Tomii, and H. Nasu, “Proposal of Virtual Space
Browser Enables Retrieval and Action with Semantics which is Shared
by Multi Users,” in 21st International Conference on Data Engineering
Workshops (ICDEW’05). IEEE, Apr. 2005, pp. 1259-1259.

K. Walczak and W. Cellary, “Building database applications of virtual
reality with X-VRML,” in Proceeding of the seventh international
conference on 3D Web technology - Web3D *02. New York, New
York, USA: ACM Press, Feb. 2002, pp. 111-120.

P. A. Bernstein and S. Melnik, “Model management 2.0: manipulating
richer mappings,” in Proceedings of the 2007 ACM SIGMOD Interna-
tional Conference on Management of data - SIGMOD ’07. New York,
New York, USA: ACM Press, Jun. 2007, pp. 1-12.

P. Atzeni, P. Cappellari, and P. Bernstein, “Model-Independent Schema
and Data Translation,” in Advances in Database Technology - EDBT
2006, ser. Lecture Notes in Computer Science, Y. Ioannidis, M. Scholl,
J. Schmidt, F. Matthes, M. Hatzopoulos, K. Boehm, A. Kemper,
T. Grust, and C. Boehm, Eds. Springer Berlin / Heidelberg, 2006,
vol. 3896, pp. 368-385.

P. Atzeni, L. Bellomarini, F. Bugiotti, and G. Gianforme, “A runtime
approach to model-independent schema and data translation,” in Pro-
ceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, ser. EDBT ’09. New
York, NY, USA: ACM, 2009, pp. 275-286.

A. Smith and P. McBrien, “A Generic Data Level Implementation of
ModelGen,” in Sharing Data, Information and Knowledge, ser. Lecture
Notes in Computer Science, A. Gray, K. Jeffery, and J. Shao, Eds.
Springer Berlin / Heidelberg, 2008, vol. 5071, pp. 63-74.

P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser, “Coupled Schema
Transformation and Data Conversion for XML and SQL,” in Practical
Aspects of Declarative Languages, ser. Lecture Notes in Computer
Science, M. Hanus, Ed. Springer Berlin / Heidelberg, 2007, vol. 4354,
pp- 290-304.

R. M. Fujimoto, “Parallel and distributed simulation,” in Proceedings of

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

616

the 31st conference on Winter simulation Simulation—a bridge to the
future - WSC ’99, vol. 1. New York, New York, USA: ACM Press,
Dec. 1999, pp. 122-131.

K. S. Perumalla, “Parallel and distributed simulation: traditional tech-
niques and recent advances,” Dec. 2006, pp. 84-95.

R. Elmasri and S. B. Navathe, Database Systems: Models, Languages,
Design, And Application Programming, 6th ed. Prentice Hall Interna-
tional, 2010.

SEDRIS, “SEDRIS.”
2014.12.01

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of Computer Programming, vol. 72, no.
1-2, Jun. 2008, pp. 31-39.

T. Connolly and C. Begg, Database systems: a practical approach to
design, implementation, and management, 5th ed. Pearson Education
(US), 2009.

D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, Jun. 1987, pp. 231—
274,

CityGML, “CityGML.” [Online]. Available: http://www.citygml.org
2014.12.01

Simulation Interoperability Standards Committee (SISC), “Standard for
Modeling and Simulation High Level Architecture (HLA) IEEE 1516,”
2000.

Verein Deutscher Ingenieure (VDI), “VDI 2219 - Information technol-
ogy in product development Introduction and economics of EDM/PDM
Systems (Issue German/English),” Diisseldorf, 2002.

U. Sendler, Das PLM-Kompendium: Referenzbuch des Produkt-
Lebenszyklus-Managements (PLM compendium: reference book of
product lifecycle management). Berlin: Springer, 2009.

J. Rossmann, M. Schluse, R. Waspe, and R. Moshammer, “Simulation
in the Woods: From Remote Sensing based Data Acquisition and Pro-
cessing to Various Simulation Applications,” in Proceedings of the 2011
Winter Simulation Conference, S. Jain, R. R. Creasey, J. Himmelspach,
K. P. White, and M. Fu, Eds., 2011, pp. 984 — 996.

J. Rossmann, T. Steil, and M. Springer, “Validating the Camera and
Light Simulation of a Virtual Space Robotics Testbed by Means of
Physical Mockup Data,” in 11th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (i-SAIRAS), 2012, pp.
1-6.

J. Rossmann, C. Schlette, M. Emde, and B. Sondermann, “Discussion
of a Self-Localization and Navigation Unit for Mobile Robots in
Extraterrestrial Environments,” Artificial Intelligence, 2010, pp. 46-53.

[Online]. Available: http://www.sedris.org

J. Rossmann, B. Sondermann, and M. Emde, “Virtual Testbeds for
Planetary Exploration: The Self-Localization Aspect,” in 11th Sympo-
sium on Advanced Space Technologies in Robotics and Automation
(ASTRA), 2011, pp. 1-8.

Y.-H. Yoo, T. Jung, M. Langosz, M. Rast, J. Rossmann, and F. Kirchner,
“Developing a Virtual Environment for Extraterrestrial Legged Robots
with Focus on Lunar Crater Exploration,” in The 10th International
Symposium on Artificial Intelligence,Robotics and Automation in Space
(i-SAIRAS), 2010, pp. 206-213.

J. Rossmann, M. Schluse, and A. Biicken, “The virtual forest - Space-
and Robotics technology for the efficient and environmentally compati-
ble growth-planing and mobilization of wood resources,” FORMEC 08
- 41. International Symposium, 2008, pp. 3 — 12.

J. Rossmann, M. Hoppen, and A. Biicken, “Semantic World Modelling
and Data Management in a 4D Forest Simulation and Information Sys-
tem,” ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. XL-2/W2, 2013, pp.
65-72.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

