
CREATE: A Co-Modeling Approach for Scenario-based Requirements and
Component-based Architectures - A Detailed View

Björn Schindler, Marcel Ibe, Martin Vogel, and Andreas Rausch
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
{bjoern.schindler, marcel.ibe, m.vogel, andreas.rausch}@tu-clausthal.de

Abstract—Requirements engineering and architectural design are
key activities for successful development of software-intensive
systems and are strongly interrelated. Particularly, in early
development stages requirements and architecture decisions are
frequently changing. The fundamental problem addressed in
this paper is the development of inconsistencies at the itera-
tive evolution of requirements and architectures. Inconsistencies
between requirements and architectures lead to an incorrect
consideration of requirements by the system under development
and consequently to unfulfilled requirements. Thus, advanced
systematic approaches are needed, which could minimize the
risks of wrong early decisions during the iterative evolution of
requirements and architectures. Our model-based approach sup-
ports the iterative evolution of requirements and architectures by
defining a concrete description technique. It provides simplified
scenario-based models for a precise description of requirements,
which are suitable for validation by stakeholders. Furthermore,
the approach provides a component-based model for a precise
and entire description of architectures. Strict interrelations be-
tween scenario-based and component-based models support the
consistence maintenance. These interrelations enable even an
automation of this task. In this paper, the model-based approach
CREATE is described in all details. For example, all interrelations
are introduced completely.

Keywords-requirements; architecture; evolution; consistency.

I. INTRODUCTION

Requirements Engineering (RE) and Architectural Design
(AD) are essential for successfully developing high-quality
software-intensive systems [1]. RE and AD activities are
intertwined and iteratively performed [2]. The architecture of
a software system must satisfy its requirements. In practice,
architectural constraints frequently prohibit an entire realiza-
tion of all requirements. This might imply a change to the
initial requirements or the selection of a different appropriate
architecture. Further, additional requirements might be dis-
covered during the development process, leading to changes
in the architecture. Design decisions that are made early in
this iterative process are the most crucial ones, because they
are very hard and costly to change later in the development
process.

In classical development processes (e.g., the waterfall model
[3]), artifacts like, for instance, the requirements specification
or the architecture are developed sequentially. This is also
the case at iterative process models like the spiral life cycle
model of Böhm [4]. The iterative, concurrent evolution of
requirements and architectures demands that the development

Level

of

detail

Technology Dependence

low

high

highlow

architecturerequirements

Intermediate

CBSP model

Figure 1. Intermediate model within the twin peaks [5]

of an architecture is based on incomplete requirements. Also,
certain requirements can only be understood after modeling or
even partially implementing the system architecture. Nuseibeh
[2] describes an advanced approach, which adapts the spiral
life cycle model and aims at overcoming the often artificial
separation of requirements specification and design by inter-
twining these activities in an iterative evolutionary software
development process. This approach is called the twin peaks
model. To map requirements onto architectures and maintain
the consistency and traceability between the two Grünbacher
et al. [5] introduces an intermediate model called Component
Bus System Property (CBSP) (see Fig. 1). This model maps
requirements to architecture elements by the CBSP model,
which allows a systematic way to reconcile requirements with
stakeholders.

Nevertheless, the advanced twin peaks model is kept very
general. For instance, it does not specify the level of detail of
requirements in relation to the architecture [6]. Due to the fact
that there is no concrete advanced approach supporting the
iterative evolution of requirements and architecture we were
commissioned by the german armed forces and the german
government to undertake a research project [1]. In order to
be able to consider all required aspects, we made an expert
survey. Therefore, we interviewed staff and leaders of three
medium to big sized development projects with up to 30
project participants on customers and contractors side about
their problems in the field of RE and AD.

224

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A general mentioned problem was that the developed sys-
tems did not fulfill all requirements of the customers. The
result of the survey was a list of the following reasons and
derived guidelines:

• For the contractor the requirements were too informal,
imprecise and incomplete. Requirements had to be re-
peatedly elicited and specified during architecture de-
sign. Hence, requirements on a software system should
be complete and precise.

• At the elicitation process, the reconcilement of more
precise and formal descriptions was too costly. The
reason was the need of a detailed explanation by the
contractor. For an improved reconcilement requirements
descriptions should be precise as well as comprehensi-
ble. These guidelines are also mentioned by Nuseibeh
[7]. Furthermore, the complexity of the models have to
be manageable for validation by stakeholders.

• The most serious problem was caused by frequently
changing requirements during architecture design. These
changes cause inconsistencies between requirements and
architectures. Thus, many requirements were not fulfilled
by the developed systems. In consequence, an architec-
ture should not only describe the system by a definition
of its structure and behavior. It should also describe
precisely how the system under development fulfills
the given requirements. Consistency constraints between
requirements and architectures should be defined, which
support the consistency maintenance.

Starting from this initial situation the target of the project
was the development of a domain specific model-based ap-
proach, which fulfills the mentioned guidelines. The result of
the project was the model-based approach CREATE [1]. The
main goal of CREATE is to provide a concrete description
technique for requirements and architectures, which supports
the iterative evolution in the sense of twin peaks. Requirements
descriptions have to be precise and comprehensible. This
necessitates a well-balanced trade-off between expressiveness
and manageability of models for the description of require-
ments. This trade-off is achieved by providing simplified
scenario-based requirements models. Furthermore, CREATE
provides a component-based architecture model for a precise
desciption of how the system under development fulfills the
given requirements. A definition of strict interrelations sup-
port the iterative evolution of requirements and architectures.
Complex interrelations between requirements and architectures
cause a high complexity for consistence maintenance. Thus,
CREATE proposes interrelations between requirements and
architecture models, which concretize a well-balanced trade-
off between expressiveness and manageability.

In this paper, the CREATE approach is described in all
details. Furthermore, the experiences at the application in
practice are described. The presented approach is domain-
specific, since it is developed for information systems like web-
based systems and modern communication systems. In Section
II, existing model-based approaches for the iterative evolution
of requirements and architectures are considered. In Section
III, the overall approach is introduced and in Section IV the
description technique is described in detail at an example. The

support of the consistency maintenance is described in Section
V. Section VI contains a description of our experiences at
the development and application of the approach in practice.
Section VII includes a discussion of the results and pending
points for future work.

II. RELATED WORK

Existing model-based development approaches for require-
ments and architectures can be categorized into model-based
approaches for requirements engineering, model-based ap-
proaches for architecture design and combined approaches.

Representative model-based approaches for requirements
engineering are described in [8]–[10]. In [8], requirements
are described by Unified Modeling Language (UML) [11]
activity diagrams. A formal operational semantics enables
execution of activity diagram specifications. The executed
activity diagram specification serves as prototype for visu-
alization of requirements. In the approach illustrated in [9],
UML collaboration diagrams are enriched by user interface
information in order to specify elicited requirements. These
diagrams are transformed into complete dynamic specifica-
tions of user interface objects represented by state diagrams.
These state diagrams are used for generation of prototypes. In
[10], use case and user interface information are recorded at
stakeholder interviews. Therefore, use case steps are enriched
by scribbled dialog mockups. Prototypes are created, which
visualize dialog mockups of use case steps in sequence for fast
feedback of stakeholders. In general, these approaches have a
well elaborated model structure for requirements engineering
and improve the validation of requirements by stakeholders.
On the other side, the mapping to the architecture is not
precisely enough defined at these approaches to support a
iterative evolution of requirements and architectures.

Representative approaches defining models for architectural
design are described in [12] and [13]. Model-Driven Archi-
tecture (MDA) [12] is a framework for software development.
In MDA, the Computation Independent Model (CIM) can be
used to describe business processes. The Platform Independent
Model (PIM) may describe the structure and behavior of
the software system. Component models like KobrA [13] are
concrete model-based approaches based on MDA. In general,
these approaches have a well elaborated model structure for
architecture design and enable a detailed description of the
structure and behavior of the software system. On the other
side, these approaches do not support an iterative evolution
of requirements and architectures. The mapping between re-
quirements and architectures is not precisely enough defined
for this field of application.

Representative combined modeling approaches for require-
ments and architectures are described in [14], [5], and [15].
In [14], a Requirements Definition Language (RDL) is used,
which allows a structured definition of requirements. Meta
model elements of the RDL are mapped to corresponding
meta model elements of the Architecture Description Language
(ADL). The approach described in [5] uses the intermediate
model CBSP to map requirements to architecture elements.
Different subtypes of CBSP elements allow classification of

225

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

requirements. Requirements exhibit overlapping CBSP prop-
erties can be split and refined until no stakeholder conflicts
exist. The Software Architecture Analysis Method (SAAM)
[15] describes a method for a scenario-based analysis of
software architectures. SAAM defines also the activities of the
scenario-based analysis. In SAAM, scenarios and architecture
descriptions are developed iteratively [15]. For each scenario
it is determined whether a change of the architecture is
required for execution. Based on the importance and conflicts
of required changes an overall ranking of the developed sce-
narios is determined. An advantage of these approaches is the
combination of techniques for the description of requirements
and architectures. On the other side, these approaches are very
abstract and do not specify concrete models and mappings,
which fulfill the conditions defined in the introduction for an
adequate description of requirements and architectures.

Besides the stated existing approaches further approaches
are conceivable, which are based on synthesis approaches [16]
of complete state-based models from scenario-based models.
Scenario-based and state-based models can potentially be
used for the description of requirements and architectures.
Consistency is, for instance, a subject of the approaches
described in [17] and [18]. Unfortunately, these approaches
are generally maintaining a complete consistency by means of
a bijection. Architectures need to describe more details about
the software system. These details have to be well separated
from the requirements. Hence, an alternating correction of
inconsistencies and not a bijection is required for the support
of a iterative evolution of requirements and architectures.

Other approaches are focusing on the consistence mainte-
nance of models. Representative approaches of this kind are
described in [21], [22]. In [22] an approach for the automatic
consistence check of behavioral requirements and design mod-
els is described. The approach introduced in [21] allows an
automatic consistence check of general UML models. These
approaches focus on the consistence maintenance and not on
the provision of a concrete description technique for require-
ments and architectures. In consequence, these approaches do
not provide a complete set of concrete models and mappings,
which fulfill the conditions defined in the introduction for an
adequate description of requirements and architectures.

The main goal of CREATE is to provide a concrete de-
scription technique for requirements and architectures, which
supports the iterative evolution by fulfilling all guidelines
mentioned in the introduction. It defines a complete set of
concrete models for the description of requirements and ar-
chitectures. Further, it defines concrete interrelations between
these models, which support the consistence maintenance.

III. OVERALL APPROACH

Our domain specific model-based approach supports con-
current development of requirements and architectures. An
appropriate process for concurrent development is described
by the twin peaks model [2]. In this model, requirements and
architectures have an equal status and are evolved iteratively.
This is illustrated by twin peaks (see Fig. 2).

Our domain specific model-based approach concretizes twin
peaks by defining a concrete description technique. Diagrams

Level

of

detail

Technology Dependence

low

high

highlow

requirements

architecture

structure
be

ha
vi
or

inter-

relations

structure be
ha

vi
or

DSD

SD

ID

HRL

DD

ASD

ABD

OD

Figure 2. CREATE approach within twin peaks

are used for a precise description of requirements and ar-
chitectures. These diagrams are illustrated within diamonds
in the twin peaks model (see Fig. 2). The process flow
of our approach begins with a formal description of inital
requirements. Afterwards, the architecture is developed and
consistency to the requirements is maintained continuously.
Inconsistencies are resolved by changing requirements or the
architecture.

The main contribution of CREATE is the concrete descrip-
tion technique with defined interrelations between require-
ments and architecture descriptions. It is well known that
scenarios help to elicit and validate requirements [16]. A
precise description of elicited requirements can be achieved
by scenario-based models [16]. The co-modeling approach
provides simplified scenario-based models for the description
of requirements. Furthermore, the description is reduced to rep-
resentative and concrete scenarios. Hence, the complexity of
these models is manageable for the validation by stakeholders.
The validation is improved by combining these models with
models enabling visualization of requirements by user interface
mockups [10]. An architecture specified by CREATE describes
the behavior and the resulting structure of the software system
precisely. This description is supported by a component-
model. Component-Based Software Engineering (CBSE) [19]
has been continuously improved and successfully applied over
the past years. Systems are composed by existing software
’parts’ called software components. Component models enable
a precise description of component-based architectures [20].

In our domain specific model-based approach, diagrams are
used to model structural or behavioral aspects of require-
ments and architectures. The domain structure (e.g., business
structure) defines important requirements on the system. In
CREATE, it can be described by a Domain Structure Dia-
gram (DSD), which is assigned to the structure part of the
requirements diamond (see Fig. 2). Elicitation and specification
of processes at the domain (e.g., business processes) is an
important aspect at requirements engineering. In our approach,
these processes can be described by a Scenario Diagram (SD)

226

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in combination with an Interaction Mockup Diagram (ID). The
SD and ID are assigned to the behavior part of the requirements
diamond. Additional text-based requirements can be captured
in the Hierarchical Requirements List (HRL). These texts can
describe structural as well as behavioral aspects. CREATE
diagrams have not to be developed in a strict order. Typically,
rough text-based requirements are captured first. The DSD
as well as the SD and ID are, in general, evolved iterativly
beginning with a rough first scenario. At the architecture
design, the definition of the system boundary and the provided
functions is crucial. These aspects of the architecture can be
described precisely by the System Overview Diagram (OD)
of the CREATE architecture (see Fig. 2). The process of a
function is described by the Architectural Behavior Diagram
(ABD). Data objects used in these processes are defined in
the Data Diagram (DD). A suitable structure of the system
can be derived from the process descriptions. This structure is
described by the Architectural Structure Diagram (ASD). The
diagrams of the CREATE architecture are iteratively developed
as well. Typically, a small set of system functions are described
by the OD, ABD and DD first. Afterwards, the ASD is
derived, and finally, additional system functions are described.
During the development of the architecture, consistency to the
requirements is maintained continuously. In Section IV, the
description technique is described in all details.

Existing languages, such as UML [11], include among
others structural and behavioral diagrams for the modeling of
systems. In this paper, CREATE uses exemplarily a subset
of UML diagrams and their available model elements to
formally describe requirements and architectures. Additional
diagrams are used to enable a visualization of requirements by
user interface mockups. Interrelations between these diagrams
are precisely defined. Consistency maintenance during the
development of requirements and architectures is supported
by defined interrelations between scenario-based requirements
models and component-based architecture models (see Fig.
2). Interrelations are also defined within these models. One
interrelation between requirements and architectures is, for
instance, that the system boundary of the OD represents a part
of the domain structure in the DSD. An examplary interrelation
within the requirements description is that every object used in
a scenario has to be a part in the domain structure. In Section
V, all interrelations are described in detail. Interrelations are
defined by constraints. The definition of these constraints
support the consistency maintenance, because they can easily
be checked. Furthermore, they enable an automatization of the
consistency maintenance [24].

IV. DESCRIPTION TECHNIQUE

In this section, details of the description technique are
described by a case study. The subject of this study is the devel-
opment of a library system. Requirements on the library system
are described by the scenario-based model of CREATE, which
is suitable for the validation by stakeholders. The architecture
of the library system is described by the CREATE component
model. This component model allows the description of the
behavior of the system under development and the resulting

internal structure. In the following, initial requirements on
the library system are described by the provided diagrams.
Afterwards, the architecture of the system is described. Based
on the requirements and the architecture of the library system
the description technique of CREATE is explained in detail.

A. Requirements Description
In CREATE, requirements on a system are precisely de-

scribed by a scenario-based model. The scenario-based model
of CREATE consists of the provided SD, ID and DSD, which
are the core diagrams of the requirements description. The
domain structure like the business structure defines important
requirements on the system. In CREATE, it can be described
by the DSD. Processes on this domain like business processes
are described by the SD in combination with ID. Since require-
ments are frequently mentioned text-based (e.g., in protocols or
meetings) the HRL is provided. The HRL allows the capturing
of text-based requirements. A strict order for the development
of the CREATE diagrams is not prescribed. In practice, rough
text-based requirements are elicited initially. Afterwards, the
scenario-based model is developed. A rough first scenario is
refined by an iterative development of the DSD, the SD and
the ID. In the following, the HRL is explained by exemplary
text-based requirements on the library system. Afterwards,
the scenario-based model is explained in all details. For this
detailed explanation the DSD, the SD and the ID are used for
the definition of precise requirements on the library system.

1) HRL: Requirements are frequently mentioned text-based
(e.g., in protocols or meetings). The HRL allows the capturing
of text-based requirements. In a requriements specification,
several HRLs can be introduced in ordner to distinguish
between different classes of requirements. In our case study,
we introduce two HRLs for the capturing of functional and
non-functional requirements (see Fig. 3). Contents of the HRL
can be structured hierarchical. In this way, it is possible
to refine one requirement by several other requirements. In
our example, the HRL functional requirements contains, for
instance, the requirement 2. This requirement demands that
the system must be able to process requests for book orders
of users. This is refined by requirement 2.1, which demands
that a user should be able to send a book order request to the
manager by the library system.

2) DSD: In general, the system under development has to
be integrated in a domain structure (e.g., a business structure).
The domain structure defines important requirements on the
system. The DSD allows a precise description of the domain
structure and is based on the UML Composition Structure
Diagram [11]. The most important modelling elements of the
DSD are parts and connectors [11]. Parts are used to describe
the system under development, external systems, persons and
entities of the domain. Every part must have a type. In return,
one type can be used for several parts. In our example, the
parts LibrarySystem and Printer represent systems (see Fig. 4).
The multiplicity defines the minimal and maximal number of
objects in this part. According to the DSD, the library domain
contains, for instance, exactly one library system. The box that
represents the part LibrarySystem is filled gray to mark it as

227

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

HRL Functional Requirements on the Library System

1) The library system must provide the option to show

 statistics about books to the manger.

2) The libary system must be able to handle requests for

 book orders by a user.

2.1) Users must be able to send a request to the

 manager.

2.2) ...

4) The Manager must be able to accept or deny a request

 for book orders.

5) ...

HRL Non-Functional Requirements on the Library System

1) A training concept for using the system has to be

 provided

2) At least 95% of all requests have to be delivered to

 the manager in less than 1 seconds.

3) All functions of the system has to be reachable in at

 maximum 3 steps.

4) ...

Figure 3. Hierarchical Requirements List of the Library System

manager: Staff [1] employee: Staff [1..*]

:User [1..*]

GUI

GUI

:Book [1..*]

DSD Library System

:Printer[1]

Speech
Paper

TCP/IP
:LibrarySystem [1]

:Shelf [1..*]

Figure 4. Domain Structure Diagram of the Library System

the system under development. Three parts in the domain are
representing persons: User, Manager and Employee. Manager
and Employee are both of the type Staff. The parts Book and
Shelf describe typical domain entities. Connectors describe
the ability of two connected parts to interact with each other.
A connection between two parts means that every object of
one part can interact with all objects of the other part. It is
also possible, to define the type of the connector. This type
describes the kind of the interaction in more detail. The domain
structure of the library system describes several connectors
between parts, which specify the kind of interaction. For
example, users can interact with the library system by the
graphical user interface (GUI). The printer interacts via TCP/IP
with the library system. Interaction between external systems
and persons can also be modelled, e.g., the manager and an
employee can communicate via speech.

3) SD and ID: Elicitation and specification of processes at
the domain (e.g., business processes) is an important aspect at
requirements engineering. In our approach, these processes can

ID Request Order

Request Book OrderRequest Book Order

Title Authors Year

Moby Dick H. Melville 1851

Ok

Step 1:

Step 2:

Confirm RequestConfirm Request

Book Order

Request forwarded Ok

Show RequestShow Request

Title

Moby Dick

Ok

Step 3:

...

...

Show RequestShow Request

Title

Moby Dick

Ok

...

...

SD Request Order

u / : User

/ : LibrarySystem

{1} Request
{2} Confirm

m / manager : Staff

{2, 3} Show request

Figure 5. Scenario - Request Book Order

be described by a SD in combination with an ID. SD is based
on scenario-based UML Communication Diagrams [11] and
describes representative scenarios at the domain, which have
to be supported by the system under development. The most
important elements of an SD are lifelines and interactions.
Lifelines represent instances of systems, persons and entities
of the domain structure. The interactions are described by
messages of the UML communication diagram and represent
the interaction between the instances during a specific scenario.
They are visualized by an arrow between two lifelines. The SD
Request Order and SD Process Request describe scenarios in
the library domain (see Fig. 5 and Fig. 6).

The SD Request Order describes the interactions between
a user, the library system and the manager in the case of a
request for a book order. An ID visualizes and describes one
SD in more detail. The ID describes a set of scenario steps.
The scenario Request Order has, for instance, the scenario
steps 1, 2 and 3. Every interaction of an SD can be active
at a set of scenario steps. The interaction request of the SD
Request Order of the user with the system is, for instance,
active at scenario step 1 and is labeled with this number.
An active interaction is described by an interaction mockup
in the corresponding ID, which is visualized by a dialog.
The interaction request is, for instance, visualized by the
interaction mockup Request Book Order in scenario step 1. The
visualization of the ID is suitable for the validation of scenarios
by stakeholders, since the used interaction mockups give a
representative view on the exchanged data. In a transition
to a next scenario step, interactions can be activated and
deactivated. The begin of a scenario, the end of a scenario, and
a completion of an interaction can be the trigger of a transition.
The completion of the interaction Request visualized by the

228

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interaction mockup Request Book Order is, for instance, the
trigger of the transition to scenario step 2.

Several interactions can be active concurrently in one sce-
nario step [25]. In this case, one scenario step of the ID con-
tains two interaction mockups. The scenario step 2 contains,
for instance, the interaction mockups Confirm Request and
Show Request. These mockups are visualizing the interactions
Confirm and Show Request of the system to the user resp. the
manager. Both interactions are labeled with the number 2 of
the corresponding scenario step. In the case of concurrency,
an interaction might be active at several scenario steps. Con-
sequently, several sequenced scenario steps can contain the
same interaction mockup [25]. The interaction Show Request
is active in the scenario steps 2 and 3. Hence, the visualizing
interaction mockup is contained in these steps. The interaction
is labeled with the numbers 2 and 3.

An SD and ID can also be used to describe alternative
scenario sequences [25]. The SD and ID Process Request
describes, for instance, a scenario with two alternative scenario
sequences for the processing of a request for a book order
(see Fig. 6). In the first alternative, the book is not ordered.
In the second, alternative the book is ordered by forwarding
the request to the employee and printing the book data. These
alternatives are described by the scenario steps 3a and 3b,
which can follow scenario step 2. If the book is not ordered,
the manager returns to the overview of all books after showing
the books statistic and exits the overview. The interaction of
exiting the overview is, for instance, described by the message
Exit in the SD. Since this interaction is active in scenario
step 3a, it is labeled by this number. If the book is ordered,
the request is forwarded to an employee and the book data
is printed in parallel. The printing of the book data is, for
instance, described by the interaction Print Book, which is
active in the scenario steps 3b and 4.

B. Architecture Description
The architecture of the library system is described by the

CREATE component model. This component model allows the
description of the behavior of the system under development
and the resulting internal structure. The component model
consists of the provided OD, ABD, DD and ASD. At the
architecture design, the definition of the system boundary and
the provided functions is crucial. The system boundary and the
provided functions can be described by the OD of CREATE.
The process of a function is described by the ABD. Data
objects used in these processes are defined in the DD. A
suitable structure of the system can be derived from the process
descriptions. This structure is described by the ASD. The
diagrams of the CREATE architecture have not to be developed
in a fixed order. Typically, a small set of system functions
are described by the OD, ABD and DD first. Afterwards,
the ASD is derived, and finally, additional system functions
are described. During the development of the architecture,
consistency to the requirements is maintained continuously.
In the following, all diagrams of the CREATE architecture are
explained in detail by an exemplary architecture design of the
library system.

ID Process Request

Step 1:

Step 2:

SD Process Request

m / manager: Staff

/ : LibrarySystem

{1} Statistic
{2} Overview

e / employee : Staff

{3b} Ordered

 / : Printer

{3a} Exit

{3b, 4} Printed

Book Overall ViewBook Overall View

Title Authors Year

Moby Dick H. Melville 1851

It S. King 1986

Statistic Exit

Book StatisticBook Statistic

Overview

Title Status

It borrowed

count

56

...

...

Exit

Print

Order RequestOrder Request

Title

It

Ordered

...

...

...

Step 3b:

Print Book Print Book

Title

It

Printed

...

...

Print Book Print Book

Title

It

Printed

...

...

Step 4:

Step 3a:

...

...

Book Overall ...

Figure 6. Scenario - Process Request

1) OD: A crucial step in the architecture design is the
definition of the system boundary and the privided functions
of the system under development. The system boundary and
the provided functions can be described precisely by the
OD, which is based on the UML Use Case Diagram [11].
It describes the most abstract structure and behavior of the
system and its context by the system boundary and the
associated use cases, which are called functions. The OD of the
library system describes the system with the provided functions
ShowBooksStatistic and PrintBookStatistic (see Fig. 7).

The OD describes additionally all actors, which are directly
involved in functions of the system under development. An
actor can be a person, an external system or a hardware
device. The OD of the library system describes, for instance,
the actors User, Staff and Printer. These actors are involved
in at least one function of the library system. The actor
Staff is, for instance, using the function ShowBooksStatic and
PrintBooksStatistic. The printer is used by the system at the
function PrintBooksStatistic. The process for each function is
described by an Architectural Behavior Diagram.

229

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

LibrarySystem

OD

Staff

User

Printer

<<Function>>

ShowBooksStatistic

<<Function>>

PrintBooksStatistic

Figure 7. OD of the library system

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

books
books

: PrintBooksStatistic

<<Variable>>

selectedBook: Book

selectedBook

selectedBook

ABD PrintBooksStatistic

<<InterfaceAction>>

PrintBook

<<InputVariable>>

book: Book

Overview

book

<<Variable>>

selectedShelf: Shelf

selectedShelf

selectedShelf

<<InputVariable>>

shelf: Shelf

shelf

print

Figure 8. ABDs of the functions ShowBookStatistic and PrintBookStatistic

2) ABD: The ABD defines the behavior of the software
system by describing the processes of the functions defined
in OD completely. It is based on the UML Activity Diagram
[11] including data flow. An activity of an ABD describes
a process. In this process actions can be perfomed. The
process can be described by control nodes. Control nodes
allow, among others, a description of parallel and alternative
execution sequences [11]. The function ShowBooksStatistic is,
for instance, described by the ABD ShowBookStatistic (see
Fig. 8).

DD

title: String

Book

id : String

Shelf
<<Sequence>>

Figure 9. DD of the library system

Within the ABD, different action types like InterfaceAction
and ServiceAction are used. An InterfaceAction describes an
interaction of the system with its environment. The action
ShowBookWindow describes, for instance, an interaction with
the user by showing a dialog (see Fig. 8). A ServiceAction is
performed by the system (e.g., a database call). The action
GetAllBooks reads all books from the data base. An ABD
supports the usage of call behavior actions [11], which describe
the execution of a called activity within the execution of
another activity. The action :PrintBooksStatistic describes the
call of the ABD PrintBooksStatistic.

The ABD uses variables for the description of the data flow
of processes [25]. In the description of the function ShowBook-
Statistic, the variables books, selectedBook and selectedShelf
are used. Variables can have different data types and can hold
a set of objects. The variable books holds, for instance, a set of
objects of the type Book (see Fig. 8). Reading and writing of
variables by actions can be described by input pins and output
pins. The action GetAllBooks writes, for instance, all selected
book objects into the variable books. This variable is read by
the action ShowBookWindow, which shows, among others, an
overview about the selected books.

At a call of another ABD parameters can be passed. For the
passing of parameters a copy semantics is used. The action
:PrintBooksStatistic of the ABD ShowBooksStatistic describes,
for instance, a call of the ABD PrintBooksStatistic. The ABD
PrintBooksStatistic has the input variables book of the type
Book and shelf of the Type Shelf (see Fig. 8). The action
:PrintBooksStatistic has two input pins, which are referring
to the variables selectedBook and selectedShelf. At a call,
the objects in the referred variables are copied to the input
variables of the called ABD. At a return, the objects of the
output variables are copied to the referred variables of the
output pins of the call behavior action.

3) DD: At a function, described by ABD, data objects can
be used by the system. The DD is based on UML Class Dia-
grams [11] and describes the data types of each data object. For
example, the DD of the library system describes a type Book
and Shelf, which are types of the ABD ShowBooksStatistic
variables (see Fig. 9).

Data types described in the DD can have attributes similar to
classes in the UML class diagramm. Due to the copy semantics
of the ABD and the complexity of copying object networks,
attributes can only have a primitive type in the DD. Relations
to other data types are only described by sequences and
generalisations. A sequence is a special composite aggregation
[11], which allows no cylces and no membership of one object
to more than one other object. In the DD of the library system

230

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ASD

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

Figure 10. ASD of the library system

the data type Shelf has a sequence of objects of the type Book.
The meaning of a generalization of data types is equal to the
generalization of classes in the UML class diagram [11].

4) ASD: The ASD is based on UML Component Diagrams
[11] and describes the internal components of the system under
development and their offered interface as a black-box view.
Subsequently, the components are further decomposed to refine
their internal structure. The ASD LibrarySystem describes, for
instance, the internal structure of LibrarySystem of the OD (see
Fig. 10). The internal structure is derived from the actions of
the ABD. Hence, each component must be associated with at
least one action of an ABD. The component LibrarySystem is,
for example, refined by a component BookManager, which is
associated with the action GetAllBooks of the ABD.

V. CONSISTENCY CONSTRAINTS

In CREATE, consistency between requirements and archi-
tectures is maintained continuously during the architecture
design. Consistency maintenance is supported by defined in-
terrelations between scenario-based requirements models and
component-based architecture models. Interrelations are de-
fined by constraints. The definition of these constraints sup-
port the consistency maintenance, because they can easily be
checked. Furthermore, they enable an automation of the con-
sistency maintenance [24]. In this section, these interrelations
are explained in detail based on the library system example
described in Section IV. A summary of these interrelations is
given in Fig 11. We distinguish three kinds of interrelations:

1) Interrelations within requirements (see gray dotted lines
between the requirements diagrams in Fig. 11, e.g.,
between HRL and SD).

2) Interrelations within architecture (see gray dotted lines
between the architecture diagrams in Fig. 11, e.g.,
between OD and ASD).

3) Interrelations between requirements and architecture
(see red dotted lines between diagrams of the require-
ments and diagrams of the architecture in Fig. 11, e.g.,
between the DSD and the OD).

One interrelation between requirements and architectures is,
for instance, that the system boundary of the OD represents
a part of the domain structure in the DSD. In the following,
the interrelations within requirements, the interrelations within
architectures and the interrelations between requirements and
architectures are explained completely and in detail. The
interrelations are explained by the example of the requirements
model and architecture model of the library system.

A. Constraints within requirements

CREATE defines strict interrelations between the require-
ments models. These interrelations are defined by consis-
tency constraints. An inconsistency means a violation of these
constraints. Within requirements the following consistency
constraints are defined:

1) Every lifeline in a SD must have a corresponding part
with the same type in the DSD.

2) If an interaction in a SD takes place between two
lifelines, a connector has to exist between the corre-
sponding parts in the DSD.

3) In a scenario described by an SD the number of
instances have to comply with the multiplicity of the
corresponding parts in the DSD.

4) Every interaction of the SD is described by exactly
one interaction mockup of the ID and every interaction
mockup describes exactly one interaction.

5) Every text-based requirement on the system of the HRL
is described by at least one SD.

6) Marked subjects in the HRL are described in the DSD.
7) Every marked subject in the HRL must be used in the

SD, which describes this text-based requirement.
The requirements model of the library system example

comply with all of these constraints. For instance, the lifeline
manager of the SD Process Request has a corresponding
part with the same type Staff in the DSD (see Fig. 11).
A connection exists between the part manager and the part
of the library system. In this way, the interaction Statistic
between the manager and the library system complies to the
constraint 2. Further, exactly one library system is used in the
SD ProcessRequest. This complies with the constraint 3. The
constraint 3 is fulfilled for every scenario of the library system
described by an SD.

In the following, typical changes of requirements are intro-
duced in order to show the inconsistency detection and solving
of the CREATE approach. A typical change during the devel-
opment of a software system is the addition of a new scenario.
In a new scenario of the library system example, the employee
has a look at the book statistics. This scenario is described by
a new ID ShowBookStatistic and a new SD ShowBookStatistic
(see Fig. 12). Furthermore, the text-based requirement 1 in the
HRL is changed, which states that employees and managers
need to have a look at book statistics. During the development
of this scenario, it is discovered that employees should not
be able to see all book information like the manager. Hence,
the lifeline of the employee in the SD is not of the type
Staff, but of the type Employee (see Fig. 12). Employee is
not defined in the initial DSD (see Fig. 4). In consequence, the
consistency constraint 1 is violated. This inconsistency is fixed
by introducing the types Employee and Manager in the DSD
and assigning these types to the parts employee resp. manager.
This leads to another inconsistency with the SD Process
Request. The lifeline manager and employee are of the type
Staff in the initial version of the SD. But this type is not defined
in the DSD anymore. This inconsistency is fixed by changing
the type of the part employee from Staff to Employee and
the type of the manager from Staff to Manager. Furthermore,

231

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ArchitectureRequirements
Legend

RE-AD interrelations

other interrelations

all other lines UML conform

transition to next
scenario step

manager: Staff [1] employee: Staff [1..*]

:User [1..*]

GUI

GUI

DSD Library System

:Printer[1]

Speech
Paper

TCP/IP
:LibrarySystem [1]

DD

title: String

Book

id : String

Shelf
<<Sequence>>

LibrarySystem

OD

Staff

User

Printer

<<Function>>
ShowBooksStatistic

<<Function>>
PrintBooksStatistic

ASD

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

SD Process Request

m / manager: Staff

/ : LibrarySystem

e / employee : Staff

{3b} Ordered

 / : Printer

ID Process Request

Step 1:
Book Overall View

Title Authors Year

Moby Dick H. Melville 1851

It S. King 1986

Statistic Exit

Book Statistic

Overview

Title Status

It borrowed

count

56

...

...

Print...

...

... ...

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

books
books

selectedBookselectedShelf

...

...

:Book [1..*] :Shelf [1..*]

Step 2:

HRL Functional Requirements on the Library System

1) The library system must provide the option to show statistics about books to the

 manger.

2) The libary system must be able to handle requests for book orders by a user.

...

Figure 11. Requirements models, architecture models and interrelations

the consistency constraint 2 is initially violated by introducing
the SD ShowBookStatistic. The employee interacts with the
library system, but a connector is not existing between the
corresponding parts of the DSD. To solve this inconsistency
a new connector has to be added between the parts for the
employees and the library system.

B. Constraints within architectures

In CREATE, strict interrelations between architectures di-
agrams are defined. These interrelations are also defined by
consistency constraints. A violation of a consistency constraint
points out an inconsistency. Within architectures the following
consistency constraints are defined:

1) Every system function has to be described by one ABD.
2) Every type of a variable in an ABD has to be primitive

or must be defined in the DD.
3) Every input pin and output pin of a call behavior action

must have a corresponding input variable resp. output
variable of the called ABD and vice versa.

4) The types of the pins of a call behavior action must
match the types of the corresponding variables of the
called ABD.

5) The system boundary of the OD has to be decomposed
by the ASD.

6) Every action described in one ABD has to be realized
by exactly one component of the ASD.

7) Every component of the ASD has to realize at least one
action of one ABD.

8) An actor has to be involved in a system function.

The architecture model of the library system example
comply with all of these constraints. For instance, the func-
tion ShowBookStatistic of the OD is described by the ABD
ShowBookStatistic (see Fig. 11). The type Book is defined
in the DD and the input pin of the call behavior action
:PrintBookStatistic referring to the variable selectedBook is,
for instance, corresponding to the input variable book of the
called ABD PrintBookStatistic. Further, the library system is
decomposed in the ASD. The action ShowBookStatistic is, for
instance, realized by the component Client in the DSD.

232

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID ShowBookStatistic

Step 1:

Step 2:

SD ShowBookStatistic

e / employee:

Employee

/ : LibrarySystem

{1} Statistic

{2} Overview

{3} Exit

Book Overall ViewBook Overall View

Title Authors Year

Moby Dick H. Melville 1851

It S. King 1986

Statistic Exit

Book StatisticBook Statistic

Overview

Title Status

It borrowed

...

...

Book Overall ViewBook Overall View

Title Authors Year

Moby Dick H. Melville 1851

It S. King 1986

Statistic Exit

Step 3:

...

manager: Manager [1] employee: Employee [1..*]

:User [1..*]

GUI GUI

GUI

DSD Library System

:Printer[1]

Speech

Paper

TCP/IP
:LibrarySystem [1]

Date

14.04.2013

SD Process Request

m / manager:

Manager

/ : LibrarySystem

{1} Statistic
{2} Overview

e / employee :

Employee

{3b} Ordered

 / : Printer

{3a} Exit

{3b, 4} Printed

:Book [1..*] :Shelf [1..*]

HRL Functional Requirements on the Library System

1) The library system must provide the option to show

 statistics about books to the manger and the employees.

2) The libary system must be able to handle requests for

 book orders by a user.

2.1) Users must be able to send a request to the manager.

2.2) ...

4) The Manager must be able to accept or deny a request

 for book orders.

5) ...

Figure 12. Change within requirements

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

books
books

: PrintMediaStatistic

print

<<Variable>>

selectedBook: Media

selectedBook

selectedBook

<<Variable>>

selectedShelf: Shelf

selectedShelf

selectedShelf

DD

title: String

Media

id : String

Shelf
<<Sequence>>

ABD PrintMediaStatistic

<<InterfaceAction>>

PrintMedia

<<InputVariable>>

media: Media

Overview

media

<<InputVariable>>

shelf: Shelf

shelf

LibrarySystem

OD

Staff

User

Printer

<<Function>>

ShowBooksStatistic

<<Function>>

PrintMediaStatistic

Book Magazine

ASD

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

<<component>>

PrintServer

Figure 13. Change within architecture

233

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the following, typical changes of architectures are in-
troduced in order to show the inconsistency detection and
solving of the CREATE approach. A typical change during
the development of an architecture is that the function can
be reused in another context. In the library system example,
the function PrintBookStatistic can only print the statistics of
books. This function is changed to be able to print all data
about media in general. Especially the library system should
be able to handle also magazines. The ABD PrintBookStatistic
is changed to PrintMediaStatistic (see Fig. 13). Due to this
change, the type of the input variable is changed from Book
to Media. The type Media is not defined in the initial DD
(see Fig. 9). In consequence, the consistency constraint 2 is
violated. This inconsistency is fixed by introducing this type
in the DD. Further, the condition 4 is violated. The input
pin of the call behavior action :PrintBookStatistic is, initially,
referring to the variable selectedBook of the type Book (see
Fig. 10) and the corresponding input variable of the called
ABD PrintBookStatistic is of the type Media (see Fig. 13).
One way to fix this inconsistency is to change the type of
the passed variable selectedBook to Media. In order to allow
the printing of book data by the function PrintMediaStatistic,
the generalization between the type Book and the new type
Media in the DD is introduced. Further, a new type Magazin
is added, which is also generalized by the type Media. The
action PrintMedia of the ABD PrintMedaStatistic is realized
by a new component PrintServer of the ASD.

C. Constraints between requirements and architectures
Finally, CREATE defines strict interrelations between re-

quirements and architectures. These interrelations are again
defined by consistency constraints. An inconsistency means
a violation of these constraints. Within architectures the fol-
lowing consistency constraints are defined:

1) The system boundary of the OD has to represent one
type of the parts in the DSD.

2) Every actor of the OD has to represent one type of the
parts in the DSD.

3) The existence of a type in DSD whose part is directly
connected with the part of the system to build implies
the existence of a corresponding actor in the OD.

4) The existence of an entity in the DD implies the
existence of a corresponding type in the DSD.

5) The existence of a relation between two entities in the
DD implies the existence of a connection between parts
of the corresponding types in the DSD.

6) Every interaction mockup in the ID visualizing an
interaction with the system must be realized by exactly
one InterfaceAction in an ABD.

7) A system function of the OD realizes a set of interac-
tions described in at least one SD.

8) A type in the DSD can either be represented by an actor
of the OD or by an entity of the DD.

The initial requirements model and the initial architecture
model of the library system example comply with all of these
constraints. For instance, the system boundary of the library
system in OD represents the type LibrarySystem of the DSD

(see Fig. 11). The actor Manager represents, for instance, the
type Staff. In this way, the connection between the parts of
the library system and the part manager is valid. Between
the entities Book and Shelf exists, for instance, a sequence
relation and between the parts of the corresponding types in the
DSD exists a connection. Every interaction mockup described
in the IDs is realized by one interface action. For instance,
the interaction mockup Book Overall View is realized by the
interface action ShowBookWindow (see Fig. 11).

In the following, the changes of the requirements and the
architecture of the library system in the previous sections are
considered in order to show the inconsistency detection and
solving of the CREATE approach. Due to the changes in the
requirements specification the type Employee is introduced in
the DSD. The part employee of this type is connected with the
system in the DSD. Since no corresponding actor is described
in the OD, the consistency constraint 2 is violated (see Fig.
14). The new data types Media and Magazin are added to the
architecture during the further development of the architecture
design according to the previous sections. In the DSD no part
of these types is defined (see Fig. 14). As a result of this, the
consistency constraint 4 is violated. Further, in our example
the new interaction mockup Book Statistic is introduced in
the new scenario described in the ID ShowBookStatistic. This
interaction mockup is not realized by an interface action of an
ABD in the architecture (see Fig. 14). Hence, the consistency
constraint 6 is violated.

To correct these inconsistencies, a few further changes have
to be made. It is necessary to add the entities Media and
Magazine to the DSD. After this consistency condition 4 holds
again (see Fig. 15). To comply with the consistency constraint
2, a new actor for the employee has to be introduced into
the OD (see Fig. 15). Finally, a mapping from the added
interaction mockup to an interface action is missing. One could
map the new interaction mockup to an existing interface action
or extend the ABD by a new interface action. By extending
the ABD by the interface action EmployeeStats the interaction
mockup can be mapped on it (see Fig. 15). In this way, every
interaction mockup is realized by one interface action and the
model complies with the constraint 6.

As shown above, the defined consistency conditions help
at the consistency maintenance. The conditions can easily
be checked. In this way, inconsistencies can be detected
and solved. Furthermore, these consistency conditions enable
an automatic support of the consistency maintenance [24].
An automatic consistency maintenance can, for instance, be
realized by permitting changes to a next version not until all
inconsistencies are solved.

VI. EVALUATION

The development of CREATE took place at research projects
in cooperation with a public institution over a period of four
years. At these research projects, we gave advice and supported
to system development projects in order to test our results
in practice. The goal of the overall approach is to support
consistency maintenance of requirements and architectures in
early development phases. In these early phases, requirements

234

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ArchitectureRequirements

ID ShowBookStatistic

Step 1:

Step 2:

Book Overall View

Statistic Exit

Book Statistic

Overview

Title Status

It borrowed

...

...

Date

14.04.2013

manager: Manager [1] employee: Employee [1..*]

:User [1..*]

GUI GUI

GUI

DSD Library System

:Printer[1]

Speech

Paper

TCP/IP
:LibrarySystem [1]

:Book [1..*] :Shelf [1..*]

LibrarySystem

OD

Staff

User

Printer

<<Function>>
ShowBooksStatistic

<<Function>>
PrintMediaStatistic

DD

title: String

Media

id : String

Shelf
<<Sequence>>

title: String

Book

title: String

Magazine

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

...

...

Legend
RE-AD interrelations
check

all other lines UML conform

(..)

transition to next
scenario step

...

Figure 14. Changes at the requirements and architecture model

Architecture LegendRequirements

all other lines UML conform

(..)

transition to next
scenario step

ID ShowBookStatistic

Step 1:

Step 2:

Book Overall View

Statistic Exit

Book Statistic

Overview

Title Status

It borrowed

...

...

Date

14.04.2013

manager: Manager [1]

:User [1..*]

GUI GUI

GUI

DSD Library System

Speech

Paper

TCP/IP
:LibrarySystem [1]

:Media [1..*] :Shelf [1..*]

LibrarySystem

OD

Manager

User

Printer

<<Function>>
ShowBooksStatistic

<<Function>>
PrintMediaStatistic

DD

title: String

Media

id : String

Shelf
<<Sequence>>

title: String

Book

title: String

Magazine

:Magazin [1..*]:Book [1..*]

Employee

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

Statistic

Exit

...

...

<<InterfaceAction>>

ShowBooksStatistics

<<InterfaceAction>>

EmployeeStats

Overview Overview

RE-AD interrelations
check

...

employee: Employee [1..*]

:Printer[1]

Figure 15. Changes to solve the inconsistencies

235

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and architecture decisions are frequently changing. Further,
feedback of stakeholders is crucial since the requirements on
the system have still to be understood more clearly. The goal
of the evaluation was to test the usability and the inconsistency
prevention of our approach.

In a first step, we developed the component-based archi-
tecture model for a precise description of the architecture.
For reconcilement with stakeholders we developed a prototype
generator, which is able to interpret the developed models.
The stakeholders should validate the architecture and the
consistency to their requirements with the aid of the pro-
totypes. This approach was tested at a system development
project over a period of one year. The subject of this project
was a communication system. At this project, a model of
the complete system was developed comprising 20 system
functions, 253 activity nodes and 35 data types. The models
were developed in the sparx enterprise architect tool [26].
Conclusive, it revealed that the usability of the approach has to
be improved. The number of possible states described by the
component-based architecture leads to less comprehensibility
to stakeholders. They were not able to agree to the developed
specifications. Furthermore, the impact of changes was not
readily understandable to stakeholders. Consequently, the con-
sistency maintenance of requirements and architectures could
not be supported by this approach.

Based on the results of this practice test we extended
the approach by scenario-based models. This extended co-
modeling approach was the model-based approach CREATE,
which is described in detail in this paper. It was tested in
practice at a further system development project with a similar
subject over a period of one year. Besides the sparx enterprise
architect we used balsamiq mockups tool for the description
of the interaction mockups. In this period, the usability was
significantly better. The required resource demand for creating
and maintaining the models was still high with round about
4 person month. But stakeholders were able to agree to the
visualized and scenario-based requirements. Furthermore, they
were able to give helpful feedback, which leads to a big
number of changes. We measured at three milestones the num-
ber of changes, the detected errors and especially remaining
inconsistencies. Between these milestones we documented 500
changes and 67 errors. 8 of these errors were inconsistencies.
The rate of inconsistencies to changes is low. For an indication,
at a study described in [23], change data of requirements
documents are analyzed. In this study, 88 changes, 79 er-
rors, and 16 inconsistencies were detected. Furthermore, the
resource demand for consistence maintenance was low. Only 8
inconsistencies had to be resolved. Parts of the the consistence
checks could even be checked automatically.

VII. CONCLUSION AND FUTURE WORK

The fundamental problem addressed in this paper was
the development of inconsistencies between requirements and
architectures at the advanced approaches for the iterative
evolution. In this paper, the model-based approach CREATE
[1] was described in all details, which supports the iterative
evolution of requirements and architectures. The approach uses

a scenario-based model for a precise description of require-
ments and a component-based model for the description of
architectures. The architecture of CREATE describes precisely
how requirements are fulfilled by the system under develop-
ment. Requirements and architectural decisions lead frequently
to inconsistencies between requirements and architectures.
CREATE supports the consistency maintenance during the
development of requirements and architectures by defined
interrelations between scenario-based requirements models and
component-based architecture models. The definition of these
constraints support the consistency maintenance, because they
can easily be checked. Furthermore, they enable an automation
of the consistency maintenance [24]. This addresses the impor-
tant concern of the scalability of the method when it is applied
in complex industrial systems. During the development of such
a system a large variety of requirements and architectural
decisions have to be made. Since the consistence maintenance
can be automated the approaches scales well with the size of
the project.

A frequently stated argument is the entailment of high costs
for the development of precise requirements and architecture
models at a software project. This can be countered by the
fact that an incorrect consideration of requirements not uncom-
monly leads to complete project failures. Thus, maintaining
the consistency at the iterative evolution of requirements and
architectures is important. Supporting this task by models
enabling an automatic consistency maintenance reduces the
risk of a project failure and costs for consistency maintenance.
Furthermore, the developed models can be reused for auto-
matic generation of code, test cases and documents like, for
instance, requirements specifications. Nevertheless, the usage
of formal models at a development project should, among
others, be made conditional on the size of the project. At
the beginning of a development project, the advantages and
disadvantages of using formal models have to be weighed.

As future work, a further evaluation is planned to compare
the effectivity of CREATE to other model-based approaches
for requirements and architectures. Furthermore, it is planned
to develop a tool for the automatic consistency maintenance.

REFERENCES

[1] M. Ibe, M. Vogel, B. Schindler, and A. Rausch, ”CREATE: A co-
modeling approach for scenario-based requierements and component-
based architectures,” in Proceedings of the International Conference on
Software Engineering Advances (ICSEA), IARIA XPS Press, 2013, pp.
220-227.

[2] B. Nuseibeh, ”Weaving together requirements and architectures,” IEEE
Computer Society Press, vol. 34, March 2001, pp. 115–117.

[3] W. W. Royce, ”Managing the development of large software systems:
concepts and techniques,” in Proceedings of the 9th International Con-
ference on Software Engineering, IEEE Computer Society Press, 1970,
pp. 1–9.

[4] B.W. Böhm, ”A spiral model of software development and enhancement,”
IEEE Computer Society Press, vol. 21, May 1988, pp. 61–72.

[5] P. Grünbacher, A. Egyed, E. Egyed, and N. Medvidovic, ”Reconciling
software requirements and architectures with intermediate models,” in
Software and Systems Modeling. Springer, 2003, pp. 202–211.

[6] R. Ferrari and N. H. Madhavji, ”The impact of requirements knowledge
and experience on software architecting: an empirical study,” in Working
IEEE/IFIP Conference on Software Architecture, 2007, pp. 44–54.

236

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] B. Nuseibeh and S. Easterbrook, ”Requirements engineering: a roadmap,”
in Proceedings of the Conference on The Future of Software Engineering,
ACM Press, 2000, pp. 35–46.

[8] C. Knieke and U. Goltz, ”An executable semantics for UML 2 activity
diagrams,” in Proceedings of the International Workshop on Formaliza-
tion of Modeling Languages, ACM Press, 2010, pp. 3:1–3:5.

[9] M. Elkoutbi, ”Automated prototyping of user interfaces based on UML
scenarios,” in Journal of Automated Software Engineering, vol. 13,
Kluwer Academic Publishers, 2006, pp. 5–40.

[10] K. Schneider, ”Generating fast feedback in requirements elicitation,”
in Proceedings of the 13th international working conference on Re-
quirements engineering: foundation for software quality, Springer-Verlag,
2007, pp. 160–174.

[11] OMG, ”UML, version 2.2. OMG specification superstructure and in-
frastructure,” 2009.

[12] A. G. Kleppe, J. Warmer, and W. Bast, ”MDA explained: the model
driven architecture: practice and promise,” Addison-Wesley Longman
Publishing Co. Inc., 2007

[13] C. Atkinson, J. Bayer, and D. Muthig, ”Component-based product
line development: the KobrA approach,” in Software Product Line
Conference, Denver, Kluwer Academic Publishers, 2000, pp. 289-309.

[14] R. Chitchyan, M. Pinto, A. Rashid, and L. Fuentes, ”COMPASS:
composition-centric mapping of aspectual requirements to architecture,”
in Transactions on AspectOriented Software Development, 2007, pp. 3–
53.

[15] R. Kazman, G. Abowd, L. Bass, and P. Clements, ”Scenario-based
analysis of software architecture,” in IEEE Software, vol. 13, IEEE
Computer Society Press, Nov. 1996, pp. 47–55.

[16] H. Liang, J. Dingel, and Z. Diskin, ”A comparative survey of scenario-
based to state-based model synthesis approaches,” in Proceedings of the
2006 international workshop on Scenarios and state machines: models,
algorithms, and tools, ACM Press, 2006, pp. 5–12.

[17] Y. Bontemps, P. Schobbens, and C. Löding, ”Synthesis of open reactive
systems from scenario-based specifications,” in Proceedings of Applica-
tion of Concurrency to System Design, 2003, pp. 41–50.

[18] V. Garousi, L. Briand, C. Lionel, and Y. Labiche, ”Control flow
analysis of UML 2.0 sequence diagrams,” in Model Driven Architecture
Foundations and Applications, 2005, pp. 160–174.

[19] C. Szyperski, ”Component software: beyond object-oriented program-
ming,” Addison-Wesley Longman Publishing Co. Inc., 2002.

[20] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, ”The common
component modeling example: comparing software component models,”
ser. Springer Lecture Notes in Computer Science, vol. 5153, 2008.

[21] A. Egyed, E. Letier, and A. Finkelstein, ”Fixing inconsistencies in UML
design models,” in Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, 2008, pp. 99–108.

[22] Y. Aoki, H. Okuda, S. Matsuura, and S. Ogata, ”Data lifecycle veri-
fication method for requirements specifications using a model checking
technique,” in Proceedings of the International Conference on Software
Engineering Advances (ICSEA), IARIA XPS Press, 2013, pp. 194–200.

[23] V. R. Basili and D. M. Weiss, ”Evaluation of a software requirements
document by analysis of change data,” in Proceedings of the 5th
International Conference on Software Engineering, IEEE Press, 1981,
pp. 314–323.

[24] B. Schindler, and A. Rausch, ”Automatic consistence maintenance
of requirements and architectures,” in Proceedings of the IASTED
International Conference on Software Engineering, ACTA Press, 2014,
pp. 15–22.

[25] B. Schindler, ”Konsistenzsicherung von Anforderungen und Architek-
turen,” Technische Universität Clausthal, 2014.

[26] D. Steinpichler, ”Project management with UML and Enterprise Archi-
tect,” SparxSystems Eigenverlag, 2011

237

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

