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Abstract—New storage technologies, such as Flash and Non-
Volatile Memories, with fundamentally different properties are
appearing. Leveraging their performance and endurance requires
a redesign of existing architecture and algorithms in modern
high performance databases. Multi-Version Concurrency Control
(MVCC) approaches in database systems, maintain multiple
timestamped versions of a tuple. Once a transaction reads a tuple
the database system tracks and returns the respective version
eliminating lock-requests. Hence, under MVCC reads are never
blocked, which leverages well the excellent read performance
(high throughput, low latency) of new storage technologies. The
read performance is also utilised by the read-intensive visibility
and validity rules (MVCC, Snapshot Isolation) that filter the
latest committed version of a tuple that a transaction can see out
of the set of all tuple versions. Much more critical is the update
behaviour of MVCC and Snapshot Isolation (SI) approaches, even
though conceptually new versions are separate physical entities,
which can be stored out-of-place thus avoiding in-place updates.
Upon tuple updates, established implementations lead to multiple
random writes – caused by (i) creation of the new and (ii) in-
place invalidation of the old version – thus generating suboptimal
access patterns for the new storage media. The combination of an
append based storage manager operating with tuple granularity
and snapshot isolation addresses asymmetry and in-place updates.
In this paper, we highlight novel aspects of log-based storage, in
multi-version database systems on new storage media. We claim
that multi-versioning and append-based storage can be used to
effectively address asymmetry and endurance. We identify multi-
versioning as the approach to address data-placement in complex
memory hierarchies. We focus on: version handling, (physical)
version placement, compression and collocation of tuple versions
on Flash storage and in complex memory hierarchies. We identify
possible read- and cache-related optimizations.

Keywords—Multi Version Concurrency Control, Snapshot Iso-
lation, Versioning, Append Storage, Flash, Data Placement, Index.

I. INTRODUCTION

This paper is a follow-up, extended paper to our short
paper published at the DBKDA 2013 [1]. We describe our
Snapshot Isolation Append Storage algorithm (SIAS – [2]) in
more detail, show more results of the comparison to other
storage mechanisms and deliver more detailed analysis.

New storage technologies such as flash and non-volatile
memories have fundamentally different characteristics com-
pared to traditional storage such as magnetic discs. Perfor-
mance and endurance of these new storage technologies highly
depend on the I/O access patterns.
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Fig. 1. Invalidation in SI and SIAS

Multi-Version approaches maintaining versions of tuples,
effectively leverage some of their properties such as fast reads
and low latency. Yet, asymmetry and slow in-place updates
need to be addressed on architectural and algorithmic levels
of the DBMS. Snapshot Isolation (SI) has been implemented
in many commercial and open-source systems: Oracle, IBM
DB2, PostgreSQL, Microsoft SQL Server 2005, Berkeley DB,
Ingres, etc. In some systems, SI is a separate isolation level,
in others used to handle serializable isolation.

Under the concept of Append-based storage management
any newly written data is appended at the logical head of a
circular append log. This way, random writes are eliminated
as they get transformed into sequential writes. In-place update
operations are reduced to a controlled append of the data,
which is an effective mechanism to address the assymmetric
performance of new storage technologies (see Section III).

In SIAS [2], we combine the multi-versioning algorithm
of snapshot isolation and append storage management (with
tuple granularity) on Flash. Under TPC-C workload SIAS
achieves up to 4x performance improvement on Flash SSDs,
a significant write overhead reduction (up to 52x), better
space utilization due to denser version packing per page,
better I/O parallelism and up to 4x lower disk I/O execution
times, compared to traditional approaches. SIAS aids better
endurance, due to the use of out-of-place writes as appends
and write overhead reduction.

SIAS implicitly invalidates tuple versions by creating a
successor version; thus, avoiding in-place updates. SIAS man-
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ages tuple versions of a single data item as simply linked
lists (chains), addressed by a virtual tuple ID (VID). Figure 1
illustrates the invalidation process in SI and SIAS. Transactions
T1, T2, T3 update data item X in serial order. Thereafter, the
relation contains three different tuple versions of data item X .
The initial version X0 of X is created by T1 and updated
by T2. The traditional approach (SI) invalidates X0 in-place
by physically setting the invalidation timestamp and creating
X1. Analogously, T3 updates X1 with the physical in-place
invalidation of X1. SIAS connects tuple versions using the
V ID where the newest tuple version is always known. Each
tuple maintains a backward reference to its predecessor, which
does not need to be updated in place. Hence, updating X0 leads
to the creation of X1.

We report our work in progress on data placement and
summarize key findings and the preliminary results of SIAS
(published in a previous work). In this paper, we focus on
novel aspects of version handling, (physical) placement and
collocation on append-based database storage manager using
flash memory as primary storage.

In Section II we present the related work. Section III
provides a brief summary of the properties of flash technology.
Section IV introduces the SIAS approach, aspects of version
handling, (physical) placement and collocation. Section VI
concludes the paper.

II. RELATED WORK

SIAS organizes data item versions in simple chronolog-
ically ordered chains, which has been proposed by Chan et
al. in [3] and explored by Petrov et al. in [4] and Bober et
al. in [5] in combination with MVCC algorithms and special
locking approaches. Petrov et al. [4], Bober et al. [5], Chan
et al. [3] explore a log/append-based storage manager. The
applicability of append-based database storage management
approaches for novel asymmetric storage technologies has been
partially addressed by Stoica et al. in [6] and Bernstein et al.
in [7] using page-granularity, whereas SIAS employs tuple-
granularity much like the approach proposed by Bober et al.
in [5], which, however, invalidates tuples in-place. Given a
page granularity the whole invalidated page is remapped and
persisted at the head of the log, hence no write-overhead
reduction. In tuple-granularity, multiple new tuple-versions can
be packed on a new page and written together. Log storage
approaches at file system level for hard disk drives have been
proposed by Rosenblum in [8]. A performance comparison
between different MVCC algorithms is presented by Carey
et al. in [9]. Insights to the implementation details of SI in
Oracle and PostgreSQL are offered by Majumdar in [10]. An
alternative approach utilizing transaction-based tuple colloca-
tion has been proposed by Gottstein et al. in [11]. Similar
chronological-chain version organization has been proposed
in the context of update intensive analytics by Gottstein et
al. in [12]. In such systems data-item versions are never
deleted, instead they are propagated to other levels of the
memory hierarchy such as HDDs or Flash SSDs and archived.
Any logical modification operation is physically realized as
an append. SIAS on the other hand provides mechanisms
to couple version visibility to (logical and physical) space
management. SIAS uses transactional time (all timestamps are
based on a transactional counter) in contrast to timestamps

that correlate to logical time (dimension). Stonebraker et al.
realized the concept of TimeTravel in PostgreSQL [13]. A
detailed analysis of append storage in multi-version databases
on Flash is reported by Gottstein et al. in [2].

III. FLASH MEMORIES

The performance exhibited by Flash SSDs is significantly
better than that of HDDs, yet Flash SSDs, are not merely a
faster alternative to HDDs and just replacing them does not
yield optimal performance. This section gives an extended
discussion of their characteristics, as reported in [11].

(i) asymmetric read/write performance the read perfor-
mance is significantly better than the write performance up
to an order of magnitude. This is a result of the internal
organization of the NAND memory, which comprises two
types of structures: pages and blocks. A page (typically 4 KB)
is a read and write unit. Pages are grouped into blocks of
32/128 pages (128/512KB). NAND memories support three
operations: read, write, erase. Reads and writes are performed
on a page-level, while erases are performed on a block
level. A write is only possible to be performed on a clean
(erased) block. Hence, before performing an overwrite, the
whole block containing the page has to be erased, which is a
time-consuming operation. Direct overwrites, as on traditional
magnetic HDDs, are not possible. The respective flash memory
raw latencies are: read-55s; write 500s; erase 900s. In addition,
writes should be evenly spread across the whole volume.
Hence, in-place updates as on HDDs are not possible, instead
copy-and-write is applied.

(ii) excellent random read throughput (I/O Operations per
second – IOPS) especially for small block sizes (as reported
in [4]). Small random reads are up to hundred times faster than
on an HDD. The good small block performance (4KB, 8KB)
affects the present assumptions of generally larger database
page sizes.

(iii) low random write throughput; small random writes
are five to ten times slower than reads. Nonetheless, the
random write throughput is an order of magnitude better than
that of an HDD. Random writes are an issue not only in
terms of performance but also yield long-term performance
degradation due to Flash-internal fragmentation effects. Recent
Flash device manufacteurs report faster random write than
random read IOPS, but these figures can only be achieved by
large on-device caches and do not consider sustained workload.
As soon as their cache is filled, the performance of the Flash
device is bound by the characteristic performance of the Flash
memory.

(iv) good sequential read/write transfer. Sequential opera-
tions are also asymmetric. However, due to read ahead, write
back and good caching the asymmetry is below 25%.

(v) endurance issues and wear; Flash memories are prone
to wear. They only support a limited amount of erase cycles
– avoiding in-place updates and reducing overwrites therefore
aids longevity.

(vi) suboptimal mixed load performance: mixing
reads/writes or random/sequential patterns leads to
performance degradation.
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TABLE I. SIAS AND SI RESULTS ON INTEL X25-E SSD [14]
Queue Depth 1

Trace read IOPS write IOPS read MB write MB time (sec)
SIAS-O(I) 4476 20 19713 89.96 563.675
SIAS-P (I) 4499 19 20666 89.96 587.873
SI (I) 3771 322 19901 1624 721.843
SIAS-O(II) 3947 13 11542 39.76 374.204
SIAS-P (II) 3953 13 11562 39.76 374.341
SI (II) 3656 432 11852 1395 414.869

Queue Depth 32
Trace read I/O write I/O read MB write MB time (sec)
SIAS-O(I) 14500 66 19713 89.96 174.01
SIAS-P (I) 14642 63 20666 89.96 180.658
SI (I) 3360 264 19901 1624.9 805.193
SIAS-O(II) 15981 55 11542 39.76 92.44
SIAS-P (II) 15722 54 11562 39.76 94.128
SI (II) 11365 1338 11852 1395 133.478

1 2 4 8 16 32

SIAS-P 3952 7051 9756 12223 14257 15992

SIAS-O 3944 7041 9742 12147 14463 15178

SI 3226 5002 5916 6520 5405 6619

SI-PL 3655 5926 8019 9037 10441 11487

SI-PG 3719 5992 8108 9151 10699 11701
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Fig. 2. I/O Parallelism on Intel X25-E SSD - 60 Minute TPC-C

IV. SIAS - SNAPSHOT ISOLATION APPEND STORAGE

In this section we provide a summary of the SIAS approach
[2]. SIAS manages versions as simply linked lists (chains) that
are addressed by using a virtual tuple ID (VID), displayed in
Figure 2. On creation of a new version it implicitly invalidates
the old one resulting in an out-of-place write – implemented
as a logical append – and avoiding the in-place update of
the predecessor. The most recent version in the chain is
known as the entrypoint of the chain. Without going into
further details of the algorithm, the visibility is determined
by accessing the entrypoint first and if it is not visible yet
(long running transaction) the predecessor version is fetched
using a pointer stored on the tuple version itself. In order to
keep the entrypoint of each VID, SIAS employs a lightweight
datastructure, where only an entry is created if the data item is
comprised of more than one tuple version. SIAS is coupled to
an append-based storage manager, appending in units of tuple
versions and writing in granularities of pages. Only completely
filled pages are appended in order to keep the packing dense,
which is one of the reasons for the lower write amplification.

The example in Figure 2 shows the history of three
transactions creating/updating data item X . The initial version
is created by transaction T1. Up to this point the traditional
approach and SIAS create tuple version X0. Transaction T2

updates data item X . The traditional approach invalidates X0

by stamping it with its own timestamp (in-place update) and
creates a new version X1 that points to X0, analogously X0

receives a pointer to X1. SIAS creates the new version X1 and
stores it as the entrypoint. X1 receives a pointer to X0 and X0

is left unchanged. X1 is appended to the head of the log storage

and written to the storage as soon as the page is completely
filled or a arbitrary, pre-defined threshold is reached (WAL and
recovery-mechanisms are left untouched). Subsequent updates
proceed analogously.

Table I shows our test results with SIAS. Two traces
containing all accessed and inserted tuples were recorded
under PostgreSQL running TPC-C instrumented with different
parameters. Trace I was instrumented using 5 warehouses with
four hours runtime and Trace II using 200 warehouses and
90 minutes runtime. Both traces were fed into our database
storage simulator, which generated SIAS-O/P and SI traces,
containing read and written DB-pages to be used as input for
the FIO benchmark, which executed them on an Intel X25-
E SSD. SIAS-O is a simulation with and SIAS-P without
caching of the SIAS data structures, where SI is the classic
Snapshot Isolation using in-place updates on the invalidation.
The conclusions of our results are:

(i) SI reads more than SIAS-O but less than SIAS-P

(ii) SI writes more gross-data than SIAS-O/P

(iii) SIAS-O/P reads with more IOPS than SI

(iv) SIAS needs less runtime than SI

(v) SIAS-O/P scales better than SI with higher parallelism.

We also conducted tests using SI and page-wise append,
performing a remapping of all pages, which either appends
pages local at each relation (SI-PL) or at a global append
area (SI-PG) with the results displayed in Figure 2. Figure
3 illustrates the resulting write patterns using the blocktrace
tool in Linux (QD = 1). They both achieve comparable
performance in write throughput, nevertheless on subsequent
read accesses the local approach has the advantage over the
global approach - since the local approach makes better use
of locality. This means that in the local approach pages
of different relations are not interleaved as in the global
approach. We found that in general both of the SI page append
approaches outperform the original in-place SI by 15 to 76%,
both themselfes are outperformed by SIAS-O/P by 6 to 36%.
Our results empirically confirm our hypothesis that (a) appends
are more suitable for Flash, (b) append granularity is crucial to
performance and (c) appending in tuples and writing in pages
is superior to remapping of pages. In the following sections
we describe our approaches to merging of pages and physical
tuple version placement as well as compression and indexing.

A. Write Amplification

One of our key benefits of the tuple based append log
storage in SIAS is the significant reduction in write overhead.
In our TPC-C benchmarks we observed a write reduction of
up 52x compared to a traditional in-place update approach.
The in-place update approach yields the same amount of write
amplification as an append log storage manager that appends
in the granularity of pages (page LbSM) – where the contents
of each page are unknown.

Review the example in Figure 2, the traditional approach
invalidates an old tuple version of data item X in place. This
in-place update, even if it only updates a timestamp and a
pointer, leads to the re-write of the page that contains the tuple
version. In the example X0 gets invalidated by transaction
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Fig. 3. Blocktrace: Left Local Append Regions (SI-PL) - Right Global Append Region (SI-PG)

Fig. 4. Blocktrace: Write Overhead - Left In Place Update - Right SIAS

T2, which leads to the re-write of the page that contains X0.
If the new version X1 is stored in a different page, it also
has to be written to stable storage. The update on X0 only
updates the visibility meta-information, which is necessary to
determine the visible version of X , since older transactions
are still able to read X0. The traditional in-place update
approach to multi-versioning, therefore, physically updates
the predecessor version although the content did not change.
Hence, a whole page may be re-written, which leads to a
significant write amplification. One tuple version has to be
inserted and in the worst case two pages have to be written. The
page append storage manager transforms such in-place updates
into appends, but still has to write the additional page. In SIAS
this effect is alleviated by leaving the old version ’untouched’.

Since the new tuple version is inserted into a new page, which
is only written when it is filled (or an arbitrary threshold is
reached) – this leads to the reported write reduction. The effect
on the write pattern is displayed in a blocktrace diagram in
Figure 4. The diagram shows the blocktrace of the default
in-place update multi-versioning including its default in-place
storage management and the SIAS algorithm. The workload
was the resulting IO-Pattern of TPC-C trace configured with 10
clients, 200 warehouses and had a runtime of 90 minutes. The
trace showed a 52 times write reduction when using SIAS (as
reported in [2]). We found that the longer the trace, the higher
the write reduction, which is a logical consequence since the
amount of updates directly correlates with the reduction. It
is also visible that the in-place approach needs more time
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to complete the workload, while the append storage finishes
earlier. The reason for the lower throughput in SIAS is the low
amount of writes that have to be issued.

B. Merge

One key assumption of append based storage is that once
data was appended it is never updated in-place. In a multi-
version database old and updated versions inevitably become
invisible, which leads to different tuple versions of the same
data item, most likely located at different physical pages.
Hence, pages age during runtime and contain visible and
invisible tuple versions. In a production database running 24x7
it is realistic to assume that net amount of visible tuples on
such pages is low and that an ample amount of outdated dead
tuple versions is transferred, causing cache pollution. Once
a certain threshold of dead tuples per page is reached it is
beneficial to re-insert still visible tuples and mark the page
as invalid. Dead tuples may be pruned or archived. Since a
physical invalidation of the old page would lead to an in-place
update, we suggest using a bitmap index providing a boolean
value per page indicating its invalidation. The page address
correlates to the position in the bitmap index, therefore, the
size is reasonably small. A merge therefore includes the re-
insertion of still visible tuples into a new page and the update
of the bitmap index. On the re-insertion the placement of the
tuples may be reconsidered (Sect. IV-C).

Space reclamation of invalidated pages is also known
as garbage collection in most MVCC approaches. On flash
memories, a physical erase can only be executed in erase unit
granularities, hence it makes sense to apply reclamation in
such granules and to make use of the Trim command. Pruning
a single DB-page with the size smaller than an erase unit will
most likely cause the FTL to create a remapping within the it’s
logical/physical block address table and postpones the physical
erasure. This may result in unpredictable latency outliers
due to fragmentation and postponed erasures [4]. Using the
bitmap index, indicating deleted/merged pages (prunable), a
consecutive sequence of pruned pages within an erase unit can
be selected as a victim altogether. If the sequence still contains
pages, which have not been merged yet, they can be merged
before the reclamation.

SIAS uses data structures to guarantee the access to the
most recent committed version Xv of a data item X , the
entrypoint. If only the most recent committed version has to
be re-inserted (i.e., no successor version exists), nothing but
the SIAS data structure has to be updated. It is theoretically
possible that the tuple version is still visible and invalidated. In
this case a valid successor version to that tuple exists, which
has to be re-inserted as well: Let Pm be the victim page, Xi

an invalidated tuple version of data item X , where Xi ∈ Pm

and Xv ∈ Pk, Pm 6= Pk. Xv is the direct successor to Xi

physically pointing to Xi. The merge of Pm leads to a re-
insertion of Xi as Xi*, which leads to a re-insertion of Xv as
Xv*, pointing to Xi*. The SIAS data structures are updated
such that the most recent committed version of X know is
Xi*. It is not necessary to merge Pk as well, since Xv simply
becomes an orphan tuple version, which is not reachable by the
SIAS data structures. Phantoms cannot occur since Xv* and
Xv yield the same VID and version count. Nevertheless, it is
most likely that Xi will become invisible during the merge

since OLTP transactions are usually short and fast running.
Further the structure is self contained on the tuples. On a
crash it can be re-created by, e.g., a full sequential scan of
the relation. The mapping of virtual ID, that identifies the
data item, to tuple version id, which identifies the data item
in a defined state in time can easily be created since each
tuple version stores the VID. The existing methods of a write
ahead log approach can be utilized to log changes in the SIAS
datastructure.

C. Tuple Version Placement

In SIAS, each relation maintains a private append region
and tuples are appended in the order they arrive at the
append storage manager. Tuples of different relations are not
stored into the same page and pages of different relations are
not stored into the same relation regions. Appending tuple
versions in the order they arrive may be suboptimal, since
merged, updated and inserted tuples usually have different
access frequencies. Collocation of tuples according to their
access frequency can be benefitial since the net amount of
actually used tuples per transferred page is higher [11]. Using
temperature as a metric, often accessed tuples are hot and
seldom accessed tuples are cold. The goal of tuple placement
is to transfer as much hot tuples as possible with one I/O to
reduce latency and to group cold tuples such that archiving
and merging is efficiently backed. Visibility meta-information
also contributes to access frequency, since tuples need to be
checked for visibility. This creates yet another dimension upon
which tuples can be related apart from the attribute values.
Even if the content is not related the visibility of the tuples
may be comparable.

Under the working set assumption and according to the
80/20 rule - both are the key drivers of data placement - (80%
of all accesses refers to 20% of the data – as in OLTP enterprise
workloads [15]) statistics can be used during an update to
inherit access frequencies to the new tuple version.

In SIAS, the length of the chain describes the amount of
updates to a data item (amount of tuple versions). Hence, a
long chain is correlated to a frequently updated data item. A
page containing frequently updated tuple versions will likely
contain mostly invisible tuples after some runtime, hence
simplifying the merge/reclamation process.

Version Meta Data Placement: Version metadata embody-
ing a tuple’s visibility/validity is stored on the tuple itself in
existing MVCC implementations. An update creates a new
version and version information of the predecessor has to be
updated accordingly. SIAS benefits largely from the avoidance
of the in-place invalidation. Further decoupling visibility in-
formation and raw data would be even more benefitial. Raw
data becomes stale and redundancies caused by, e.g., tuples
that share the same content but different visibility information
are reduced or vanish completely. A structure that separately
maintains all visibility information, enables accessing only
needed data (payload) on Flash memory. This principle in-
herently deduplicates tuple data and creates a dictionary of
tuple values. Visibility meta-information can be stored in a
column-store oriented method, where visibility information
and raw tuple data form a n:1 relation. This facilitates usage of
compression and compactation techniques. A page containing
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solely visibility meta-information can be used to pre-filter
visible tuple versions, which subsequently can be fetched in
parallel utilizing the inherent SSD parallelism, asynchronous
I/O and prefetching.

Choosing the appropriate storage medium for this data is
critical for performance, especially since new storage tech-
nologies change the traditional memory hierarchy augmenting
it with new levels [16]. Non Volatile Memories such as
Phase Change Memories seem to be a good match as they
support: (i) in-place updates; (ii) fast random access (read
and write); (iii) byte adressability; (iv) higher capacity than
RAM. Byte addressability is important for small updates of,
e.g., timestamps and to support differential updates. They still
yield an inherent read/write asymmetry and are exposed to
wear. A data structure within such a NVM can store pointers
to raw data on flash. Our current work includes separation and
placement of version information.

The SIAS data structure that stores a mapping of the virtual
ID to the most recent tuple version of a single data item can
be stored on such memories. In our current SIAS approach
this lightweight datastructure is stored in main memory. In
this way the properties of Flash memories are optimally
addressed, since writes are only executed as appends and reads
can be executed in parallel and smaller blocksizes. In SIAS
tuple version only store stale version information, such as the
creation timestamp and a pointer to the predecessor version (if
the version is not the first of the data item). This also enables
the usage of a multi versioned index structure that is capable
of delivering the visibility decision by only accessing the index
structure described in Section V.

D. Optimizations

A number of optimization techniques can be derived from
observation that in append based storage a page is never
updated, yet: compression, optimization for cache and scan
efficiency, page layout transformation etc. Generally these
facilitate analytical operations (large scans and selections) on
OLTP systems supporting archival of older versions.

Compression. Most DBMS store tuples of a relation ex-
clusively on pages allocated for that very relation. In a multi
version environment, versions of tuples of that relation are
stored on a page. Since all these have the same schema (record
format) and differ on few attribute values at most, the tradi-
tional light-weight compression techniques (e.g., dictionary-
and run-length encoding) can be applied.

Page-Layout and Read Optimizations. Since the content
of a written page is immutable and only read operations can
access the page, a number of optimizations can be considered.
If large scans (e.g., log analysis) are frequent, cache efficiency
becomes an issue, hence the respective page-layouts can be
selected. Furthermore it is possible to use analytical-style page
layout (e.g., PAX) for the version data and traditional slotted
pages for the temporary or update intensive data such as
indices. In [17] we analyse the effect of sorted runs in MV-
DBMS’ with ordered append log storage and multi-version
index structures on Flash storage. It is benefitial to append in
sorted runs rather than unsorted single pages and even more
benefitial when it is implemented within the MV-DBMS, since
the MV-DBMS is capable to use the inherent knowledge about

the data. The parallelism of the Flash memories is leveraged
by multiple write streams, created by the separation of append
regions – each relation has its own (local) append region
instead of one single (global) append region for alle relations.

V. MULTI VERSION INDEX

Index structures are vital component of modern databases.
Hence, their importance, especially as performance critical
components, they are still a widely ignored aspect in MV-
DBMS on asymmetric storage. Index structures are mostly not
aware of versioned data and therefore, incapable to leverage
their properties. Maintaining them on asymmetric storage
becomes a critical issue.
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Fig. 5. Indexing: Traditional and SIAS
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Fig. 6. Multi Version Indexing: Traditional and SIAS

Although data items exist in different tuple versions, the
index addresses each version as a unique data item. This leaves
the task of filtering visible versions to the rest of the MV-
DBMS (e.g., executor, transaction manager). In the MV-DBMS
updates of a data item lead to the out-of-place creation of a
new tuple version. The index structure has to be updated (in-
place) in order to index the correct tuple version that represents
the data item.

The previous tuple version of a data can still be visible
to some old running transactions, therefore, the index has to
wait with the deletion of the pointer to the outdated version.
If the index update is delayed there might be more than one
tuple version of a single data item that matches the (indexed)
search criteria. Hence, the index can return a data item in two
different states (versions). Hence, the DBMS implementation
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has to filter correct tuple versions of the data items after the
access to the index. Since the visibility meta-data is stored on
the tuple versions themselfes, this causes additional accesses
to the I/O subsystem - even if none of the tuple versions is
visible.

A. Index Structures in SIAS

SIAS identifies tuple versions of a single data item with
a VID that is unique for all tuple versions belonging to that
data item. Hence, the indexing problem can be fixed by storing
the VID in the index, rather than the direct pointer to the tuple
version. This gives us the benefit that indices do not have to be
updated immediately when a new tuple version of a data item
is created. The old entry points to the VID of the data item,
which subsequently points to the most recent tuple version.

Figure 5 shows the index in the traditional approach and the
SIAS algorithm. The traditional approach stores a pointer to
the tuple version, treating it as a unique data item. Fetching a
tuple version using such an index is comprised of 3 steps: first
the index is searched using a search key. Second, assuming that
a match has been found a pointer is followed. Third the tuple
version is fetched and has to be checked against the visibilty
criteria.

SIAS stores a pointer to the VID of the data item, which
is redirected to the most recent tuple version of the data
item. Fetching a tuple version is also comprised of three steps
including one indirection. First, as in the traditional approach,
the index structure is search using a search key. Second,
assuming that a match is found, the SIAS datastructure is
accessed and the pointer is followed to the most recent version.
Third the tuple version is fetched and the SIAS algorithm
determines the visibility.

In Figure 6, we assume that a data item exists in two tuple
versions, which are both still visible. The first version of the
data item is located on page P0 and the successor version is
located on page P5. This case is most likely since under an
LbSM approach new versions tend to be located at a position
further in the log storage. In the traditional approach the index
has two entries pointing to different positions on the disk.
In SIAS both pointers will point to V ID1, which stores the
pointer to only the most recent version. In SIAS the index is
capable of delaying updates, if now the version stored in P0
becomes invisible, the backwards pointer on the tuple version
stored in P5 won’t be followed and the version stored in P5
becomes the stable version of the data item. This means that
the stable version is the tuple version of a data item that is
committed and no running transaction is capable to read a
previous version. In the traditional approach there is a tradeoff
to pay, the visibility can be determined by accessing the version
individually, which means that theoretically the deletion of the
index entry for the old version can also be delayed but the cost
of accessing the I/O storage always has to be payed.

1) Improvements on the Multi Version Index: Our current
research is on the improvement of the index structure in order
to be capable to answer all visibility related checks by only
accessing the index structure. Hence, avoiding the access to a
tuple alltogether. We have introduced an improvement that is
capable of answering most of the visibility related checks by
accessing the index only in [17].

VI. CONCLUSION AND FUTURE WORK

We propose the combination of multi-version databases
and append-based storage as most beneficial to exploit the
distinguishing characteristics new storage technologies (Flash,
NVM). When integrated they help: (i) utilise the excellent
read performance low read latencies of such technologies for
validity and visibility checks as well as due to the fact that
readers are never blocked by writes; (ii) in addition, several
types of read optimisation can be performed on LbSM level;
(iii) the out-of-place update semantics resulting from the fact
that upon a tuple update a new physical version is produced can
be successfully utilised to reduce the expensive random writes
resulting from in-place updates; (iv) existing algorithms have
been revised to enable these changes.

We have prototypically implemented SIAS in PostgreSQL
and validated the reported simulation results. The highest
performance benefit can be achieved by the integration of the
append storage principle directly into a multi-version DBMS,
reducing the update granularity to a tuple-version, implement-
ing all writes out-of-place as appends, and coupling space
management to version visibility. In contrast page remapping
append storage manager does not fully benefit of the new
storage technology. SIAS is a Flash-friendly approach to multi-
version DBMS: (i) it sequentialises the typical DBMS write
patterns, and (ii) reduces the net amount of pages written. The
former has direct performance implications the latter has long-
term longevity implications.

In addition, SIAS introduces new aspects to data placement
making it an important research area. We especially identify
version archiving, selection of hot/cold tuple versions, separa-
tion of version data and version meta-data, compression and
indexing as relevant research areas.

In our next steps, we focus on optimizations such as
compression of tuple versions to further reduce write overhead
by ’compacting’ appended pages, placement of correlated tuple
versions to increase cache efficiency as a ’per page clustering’
approach and an efficient indexing of multi-version data using
visibility meta-data separation.
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