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Abstract— WordNet® is one of the most important resources 

in computation linguistics. The semantically related database 

of English terms is widely used in text analysis and retrieval 

domains, which constitute typical features, employed by social 

networks and other modern Web 2.0 applications. Under the 

hood, WordNet® can be seen as a sort of read-only social 

network relating its language terms. In our work, we 

implement a new storage technique for WordNet® based on 

graph databases. Graph databases are a major pillar of the 

NoSQL movement with lots of emerging products, such as 

Neo4j. In this extended paper, we present two new graph data 

models for the WordNet® dictionary. We use the emerging 

graph database management system Neo4j and deploy the 

models on-disk as well as in-memory. We analyze their 

performance and compare them to other traditional storage 

models based on native file systems and relational database 

management systems. With this contribution, we also validate 

the applicability of modern graph databases in new areas 

beside the typical large-scale social networks with several 

hundreds of millions of nodes. 
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I. INTRODUCTION 

This paper is an extension of the work done in [1], whose 
aim is to provide new data representation models for 
WordNet® based on modern NoSQL graph databases. In this 
paper, we implement various data storage models for these 
representations varying from in-disk models, creating in-
memory virtual disk representations and using pure in-
memory models. It is worth mentioning that the size of the 
WordNet® dictionary enables the efficient employment of 
these variations and offers the best benchmarking platform 
for applications of this moderate size. 

WordNet® [2] is a large lexical database of English 
terms and is currently one of the most important resources in 
computation linguistics. Several computer disciplines, such 
as information retrieval, text analysis and text mining, are 
used to enrich modern Web 2.0 applications; typically, social 
networks, search engines, and global online marketplaces. 
These disciplines usually rely on the semantic relationships 
among linguistic terms. This is where WordNet® comes to 
action. 

A parallel development over the last decade is the 
emergence of NoSQL databases. Certainly, they are no 

replacement for the relational database paradigm. However, 
Web 2.0 builds a rich application field for managing billions 
of objects that do not have the regular and repetitive pattern 
suitable for the relational model. One major type of NoSQL 
databases is the graph database model. Since social 
networks can be easily modeled as one large graph of 
interconnected users, they can be the killer application for 
graph databases with their strength in traversing and 
navigating through huge graphs. 

However, little to no work has been done to investigate 
the use of graph database management systems in moderate 
sized databases. Of course, the database has to be 
relationship-rich for the implementation to make sense. In 
our work, we implement a new storage technique for 
WordNet® based on graph databases. For this purpose, we 
present two data models and implement them on an 
emerging graph database management system: Neo4j [3]. 
Currently, Neo4j is the leading graph database management 
system in terms of installations and user base. WordNet® 
dictionary has several characteristics that promote our 
proposition: it is used in several modern Web 2.0 
applications, such as social networks; it has a moderate size 
of datasets; and traversing the semantic relationship graph is 
a common use case. 

Since the modeling and benchmarking experiences of 
these new graph databases are not as established as in the 
relational database model, we implement two variations and 
conduct several performance experiments to analyze their 
behavior and compare them to the relational model. 

The rest of the paper is organized as follows. Section II 
provides a background on WordNet® and its applications as 
well as a brief survey on graph database technology. Our 
proposed system and data models are presented in Section 
III. In Section IV, we describe the storage models. Section V 
contains the results of our performance evaluation and 
Section VI concludes the paper and presents a brief insight in 
our future work. 

II. BACKGROUND 

A. WordNet® 

The WordNet® project began in the Princeton University 
Department of Psychology and is currently housed in the 
Department of Computer Science. WordNet® is a large 
lexical database of English [2]. Nouns, verbs, adjectives and 
adverbs are grouped into sets of cognitive synonyms 
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(synsets), each expressing a distinct concept. A synset 
contains a brief definition (gloss). Synsets are interlinked by 
means of conceptual-semantic and lexical relations. 
WordNet® labels the semantic relations. The most 
frequently encoded relation among synsets is the super-
subordinate relation (also called hyperonym, hyponym or IS-
A relation). Other semantic relations include meronym (a 
term which denotes part of something but which is used to 
refer to the whole of it), antonym (a word opposite in 
meaning to another), and holonym (a word that names the 
whole of which a given word is a part). The majority of the 
WordNet®’s relations connect words from the same part-of-
speech (POS). Valid WordNet parts-of-speech include 
(noun="n", verb="v", adj="a", and adverb="r"). Currently, 
WordNet® comprises 117,000 synsets and 147,000 words. 
Today, WordNet® is considered the most important resource 
available to researchers in computational linguistics, text 
analysis, text retrieval and many related areas [4]. Several 
projects and associations are built around WordNet®. 

The Global WordNet Association [5] is a free, public and 
non-commercial organization that provides a platform for 
discussing, sharing and connecting wordnets for all 
languages in the world. The Mimida project [6], developed 
by Maurice Gittens, is a WordNet-based mechanically 
generated multilingual semantic network for more than 20 
languages based on dictionaries found on the Web. 
EuroWordNet [7] is a multilingual database with wordnets 
for several European languages (Dutch, Italian, Spanish, 
German, French, Czech and Estonian). It is constructed 
according to the main principles of Princeton’s WordNet®. 
One of the main results of the European project that started 
in 1996 and lasted for 3 years is to link these wordnets to 
English WordNet® and to provide an Inter-Lingual-Index to 
connect the different wordnets and other ontologies [8]. 
MultiWordNet [9], developed by Luisa Bentivogli and others 
at ITC-irst, is a multilingual lexical database. In 
MuliWordNet, the Italian WordNet is strictly aligned with 
the Princeton WordNet®. Unfortunately, it comprises a 
small subset of the Italian language with 44,000 words and 
35,400 synsets. Later on, several projects, such as ArchiWN 
[10], attempt to integrate WordNet with domain-specific 
knowledge. 

RitaWN [11], developed by Daniel Howe, is an 
interesting library built on WordNet®. It provides simple 
access to the WordNet ontology for language-oriented artists. 
RitaWN provides semantically related alternatives for a 
given word and parts-of-speech (POS) such as returning all 
synonyms, antonyms, hyponyms for the noun “cat”. The 
library also provides distance metrics between ontology 
terms, and assigns unique IDs for each word sense/pos. 

Several projects aim at providing access to the 
WordNet® native dictionary. For example, JWNL [12] 
provides a low-level API to the data provided by the standard 
WordNet® distribution. In its core, RitaWN uses JWNL to 
access the native file-based WordNet® dictionary. Other 
projects, such as WordNetScope [13], WNSQL [14], and 
wordnet2sql® [15], provide a relational database storage for 
WordNet®. 

B. Graph Databases 

NoSQL databases are older than relational databases. 
Nevertheless, their renaissance came first with the 
emergence of Web 2.0 during the last decade. Their main 
strengths come from the need to manage extremely large 
volumes of data that are collected by modern social 
networks, search engines, global online marketplaces, etc. 
For this type of applications, ACID (Atomicity, Consistency, 
Isolation, Durability) transaction properties [16] are simply 
too restrictive. More relaxed models emerged such as the 
CAP (Consistency, Availability and Partition Tolerance) 
theory or eventually consistent [17], which in general means 
that any large scale distributed DBMS can guarantee for two 
of three aspects: Consistency, Availability, and Partition 
tolerance. In order to solve the conflicts of the CAP theory, 
the BASE consistency model (Basically, soft state, 
eventually consistent) was defined for modern applications 
[17]. In contrast to ACID, BASE concentrates on availability 
at the cost of consistency. BASE adopts an optimistic 
approach, in which consistency is seen as a transitional 
process that will be eventually reached. Together with the 
publication of Google’s BigTable and Map/Reduce 
frameworks [18], dozens of NoSQL databases emerged. A 
good overview of existing NoSQL database management 
systems can be found in [19]. 

Mainly, NoSQL database systems fall into four 
categories:  

 Key-value systems, 

 Column-family systems, 

 Document stores, and 

 Graph databases. 
Graph databases have a long academic tradition. 

Traditionally, research concentrated on providing new 
algorithms for storing and processing very large and 
distributed graphs. These research efforts helped a lot in 
forming object-oriented database management systems and 
later XML databases. 

Since social networks can be easily viewed as one large 
graph of interconnected users, they offer graph databases the 
chance for a great comeback. Since then, the whole stack of 
database science was redefined for graph databases. At the 
heart of any graph database lies an efficient representation of 
entities and relationships between them. All graph database 
models have, as their formal foundation, variations on the 
basic mathematical definition of a graph, for example, 
directed or undirected graphs, labeled or unlabeled edges and 
nodes, hypergraphs, and hypernodes [20]. For querying and 
manipulating the data in the graph, a substantial work 
focused on the problem of querying graphs, the visual 
presentation of results, and graphical query languages. Old 
languages such as G, G++ in the 80s [21], the object-oriented 
Pattern Matching Language (PaMaL) in the 90s [22], 
through Glide [23] in 2002 appeared. G is based on regular 
expressions that allow simple formulation of recursive 
queries. PaMaL is a graphical data manipulation language 
that uses patterns. Glide is a graph query language where 
queries are expressed using a linear notation formed by 
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labels and wildcards. Glide uses a method called GraphGrep 
[23] based on sub-graph matching to answer the queries. 

However, modern graph databases prefer providing 
traversal methods instead of declarative languages due to its 
simplicity and ease of use within modern languages such as 

Java. Taking Neo4j as example, when a Traverser is 
created, it is parameterized with two evaluators and the 
relationship types to traverse, with the direction to traverse 
each type. The evaluators are used for determining for each 
node in the set of candidate nodes if it should be returned or 
not, and if the traversal should be pruned (stopped) at this 

point. The nodes that are traversed by a Traverser are 
each visited exactly once, meaning that the returned iterator 
of nodes will never contain duplicate nodes [3]. 

Several systems such as Neo4j [3], InfoGrid [24], and 
many other products are available for research and 
commercial use today. Typical uses of these new graph 
database management systems include social networks, GIS, 
and XML applications. However, they did not find 
application in moderate sized text analysis applications or 
relationship mining. 

III. PROPOSED SYSTEM AND DATA MODEL 

Fig. 1 provides an overview of the proposed 
implementation. RitaWN [11] provides synonyms, 
antonyms, hypernyms, hyponyms, holonyms, meronyms, 
coordinates, similars, nominalizations, verb-groups, derived-
terms glossaries, descriptions, support for pattern matching, 
soundex, anagrams, etc. In Fig. 1, RitaWN is represented by 
an arbitrary client in this domain, which sends semantic 
inquiries and receives the results as a list of related terms. In 
the actual RitaWN, the library wraps Jawbone/JWNL [12] 
functionality for Java processing; which, in turn, accesses the 
native WordNet® dictionary. 

 

 
Figure 1.  Architecture of the proposed system. 

In order to separate the data representation model from 

the logic, we extract a RiWordNetIF Java interface. The 
interface defines methods to return semantically related 
words. The methods are categorized into 4 groups in 
ascending complexity with respect to reaching the returned 
values: 

 Attribute inquiries: these methods return single 

attribute values for a given word, such as String 

getBestPos(String w) and boolean 

isNoun(String w). 

 Semantic relationships inquiries: in this set, methods 
return all semantically related words for a given 

word and POS, such as String[] 

getHolonyms(String w, String pos) 

and String[] getHypernyms(String w, 

String pos). In our system, we define eight such 
methods. 

 Relationship tree inquiries: in this set of methods, 
the library returns the whole path from the first 
synset for a given word and POS to the root word. 
Typical root words in WordNet® are “Entity” or 
“Object”. In our implementation, we have 
String[] getHyponymTree(String w, 

String pos) and String[] 

getHypernymTree(String w, String 

pos); which basically trace back 

getHyponym(String w, String pos) and 
getHypernym(String w, String pos) 
respectively to the root word. 

 Common parent inquiries: methods of this group 
find a common semantic path between two words in 
a POS subnet by traversing the WordNet® synset 

graph. For example, the method String[] 

getCommonParent(String w1, String 

pos, String w2) finds the following path 
illustrated in Fig. 2 for the nouns “dog” and 
“animal”. Traversal is done based on a Depth First 
Search algorithm with a slight adaptation to stop 
traversing whenever one of the synsets of the sink 

term w2 is reached. 
 

Figure 2.  Semantic path from ‘dog’ to ‘animal’ . 

A. Data Model 

In the storage layer, illustrated in the lower part of Fig. 1, 
we provide four different representations for the WordNet® 
dictionary as described in the following subsections. 

1) File-based Model 
In its original implementation, RiTa.WordNet uses the 

JWNL [12] library to directly browse the native dictionary 
provided by a standard WordNet® installation. As will be 
shown later, this implementation has the worst performance. 
We use it for validation purposes for the other three 
implementations. 

2) Relational Database Model 
We use a database model similar to the one used in [15]. 

Fig. 3 illustrates a UML class diagram for the relevant 
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classes. The words entity has a wordid as a primary key, 

the lemma definition and the different POSs are coded as 
string with the best POS as the first character of the string. 

Similarly, the synsets entity holds all WordNet® synsets, 

their POS, and definition. The primary key is synsetid. 
The many-to-many relationship between words and synsets 

is modeled by the senses entity. It contains the foreign 

keys wordid and synsetid. Synsets are related to 

each other via the semlinks entity. Synset1id points to 

the from direction and Synset2id to the to direction. 

The types of semantic links are defined by linkid which is 

a foreign key to the linktype entity. All types of links are 

listed in the linktype entity. 
 

 
Figure 3.  UML class diagram for the relational database. 

3) Graph Database Model 
In our proposed work, we model the WordNet® as a 

graph database. An object diagram is illustrated in Fig. 4. We 

have two types of nodes: words (illustrated as ellipses) and 

synsets (illustrated as hexagons). The attributes of a word 

are a lemma and the different POSs, which are coded as a 
string with the best POS as the first character of the string. 

The synset has a property definition. There exists a 

bi-directional relation Rel_sense between words and 

synsets. The attribute pos of the relation indicates the 

POS associated with the sense. Synsets are interconnected 
by directed relations. These relationships 

Rel_SemanticLink carry the type of the link in the 

attribute type. For example, in Fig. 4, word w1 has one sense 

as a noun with link to sysnset sa and two senses as verbs 

for synsets sc and sd. Synset sa has two hyponyms 

sb and se by following the relationships 

Rel_SemanticLink with type “hyponym”. w4 has one 

sense sb as a noun. w2 and w3 – as nouns - share the same 

synset se. w5 has only one sense as a verb which is sc. 

So, if getHoponyms(“w1”, “n”) is called, the result 

will be w2, w3, and w4. 

 
Figure 4.  Object diagram for the proposed WordNet® graph database 

model. 

4) Graph Database Storage with Additional Directly 

Derived Relationships 
In the RiTa.WordNet application scenario, we expect 

many inquiries about semantically related words (e.g., 
hyponyms, synonyms, meronyms, etc.). Synsets are mainly 
the means to return the semantically related words. At the 
same time, the application is typically read-only and 
represents a good example for a wide range of read-only (or 
low-update/high-read) applications. The graph database is 
only updated with the release of a new WordNet® 
dictionary. This motivates us to augment the design 
mentioned in the previous section with the derived semantic 
relationships between words and not only synsets. The idea 
is similar to materialized views known in relational 
databases. The result of semantic relationship inquiries (e.g., 

getHyponyms(), getSynonyms(), 

getMeronyms(), etc.) is generated by traversing only one 
relationship for each result word. We intuitively expect a 
quicker response time at the cost of a high storage volume 
since the connectivity of the graph is highly increased. In the 
case of the limitation of the client application to inquiries 
within the above-mentioned four categories, the original 
relationships can be even dropped. 

In terms of implementation, these relationships are 
identified through the relationship type. Fig. 5 illustrates the 
derived relationships for the example in Fig. 4. Only the 

relationship of type Rel_Hyponym for noun POS of word 

w1; namely, w2, w3, and w4 is drawn. For more complex 
inquiries outside the categories “relationship tree” and 
“common parent”, a combination of original and derived 
relationships are used in the traversal. 
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Figure 5.  Object diagram with the extra derived relationships. 

IV. STORAGE MODEL 

We implement the graph data models using the currently 
leading graph database management system: Neo4j [3]. For 
all implementation models, we attempt to store the data on-
disk. In addition to our work done and presented in [1], we 
also provide implementations stored in-memory. 

A. On-Disk implementations 

Using on-disk implementations is the traditional way for 
storing data. It preserves the content after system shutdown 
but suffers from the latency of hard disks.  

In the file-based data model, WordNet® data is stored 
within the WordNet installation directory on disk. Native 
access is done through JWNL [12] library.  

As for the relational database model, we choose Apache 
Derby [25] as the database management system to hold this 
data model. Apache Derby is part of the Apache Group. It 
gained a good reputation and a high spread for applications 
requiring embedded relational DBMS. We explicitly rule out 
the usage of larger relational database management systems 
running in server mode, such as Oracle or DB2, since we are 
concerned with the use case of relatively small-sized read-
only interrelated data sets. Apache Derby is distributed as a 
Java jar file to be added to the classpath of the application. It 
also comes as a stand-alone version. In this case, the data 
resides in the database container on disk. We follow the 
common practices for standard relational database by 
building indices on the primary and foreign keys. 

For the two data models we introduce in our research, we 
provide implementations for the emerging graph database 
management system Neo4j [3].  

From its background and growing customer base, it is 
clear that Neo4j enjoys an increasing wide spread especially 
in the industry. Another advantage over InfoGrid [24] is its 
ease of use as it does not require the explicit definition of the 
model of the schema in XML as in the case of InfoGrid, 
which renders the addition of more entity types to the graph 
more simple. The basic setup for Neo4j is that the data is 

stored in a proprietary format on-disk. Neo4j then provides 
various data caching strategies in memory for so-called hot-
spot data access. 

B. In-Memory implementations 

For the in-memory implementations, the whole 
WordNet® content is loaded in memory from the permanent 
storage during system startup. Having the content cached in 
memory avoids any access to the hard disk. The moderate 
size of the WordNet® data enables this setting. 

We create a virtual disk out of RAM using RamDisk Plus 
[26], which uses a patented memory management component 
that makes a predefined portion of the RAM appear as a 
physical hard disk to the operating system and programs. 
The file-based data model of WordNet® is simply deployed 
on this virtual hard disk and the same JWNL [12] library is 
used to access the content. 

In the case of the relational model, we experiment using 
two options: 

 Similar to the file-based implementation, the Apache 
Derby database is stored in the virtual RAM Disk. 

 We migrate the implementation to HSQL [27], 
which provides an in-memory transient storage 
mechanism for its tables. During startup, the content 
is loaded from the permanent storage into the in-

memory tables created by the CREATE MEMORY 

TABLE SQL command. 
Finally, for the two Neo4j data models, we also try the 

following two settings: 

 Similar to the file-based and the relational 
implementations, we store both graph data models 
on the virtual RAM Disk. 

 We set the cache management policy in Neo4j to 

strong. This cache setting holds on to all data that 
gets loaded to never release it. Additionally, Neo4j 
store can use memory mapped I/O for 
reading/writing. For optimized I/O access, Neo4j 

uses the java.nio package. Native I/O results in 
memory being allocated outside the normal Java 
heap so that memory usage needs to be taken into 
consideration. In order to get the best out of this 
setting, we increase the size of the cache used and 
the size of the memory mapped I/O to hold all the 
WordNet® data content. 

V. PERFORMANCE EVALUATION 

In order to evaluate the performance of our proposed 
system, we provide four implementations for the Java 

interface RiWordNetIF mentioned in Section III. The 
implementations are file-based storage, relational DBMS 
using Apache Derby and HSQL, the graph database using 
Neo4j, and a second implementation using the materialized 
directly derived relationships also using Neo4j. For each one 
of the settings, we deploy the implementation twice: on-disk 
and in-memory. 

It is important to notice that the purpose of this 
evaluation is to give a general impression on the 
performance impact and not to give concrete benchmarking 
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figures. For sure, the optimization of all DBMS 
implementations; such as using indices or even exchanging 
the DBMS itself versus using future versions of Neo4j might 
lead to different results. We would be satisfied if our 
proposed solution provides slightly better results than 
relational DBMS. It is interesting to observe the effect of 
using in-memory and large caching settings for the different 
data model strategies on a moderately sized content like 
WordNet® as well. 

We develop a simple performance evaluation toolkit 
around our implementations. A workload generator sends 
inquiries to all back-ends. The inquiries are grouped into four 
categories, as mentioned in Section III. The workload 
generator submits the inquiries in parallel to the application 
with each inquiry executing in a separate thread. 

The input for the inquiry is chosen at random from an 
input file containing WordNet® words and their associated 

best POS. In case of getCommonParent(), another input 
file is used, which contains tuples of somehow related words, 
together with their common POS (e.g., “tiger”, “cat”, and 
“noun”). The tuples are chosen carefully to yield paths of 
different lengths. 

The performance of the system is monitored using a 
performance monitor unit that records the response time of 
each inquiry and the number of inquiries performed by each 
thread in a regular time interval. 

A. Input Parameters and Performance Metrics 

The number of concurrent inquiry threads is increased 
from 1 to 50. Each experiment executes on each back-end for 
5 minutes in order to eliminate any transient effects and 
measure the system performance after the ‘warm-up’ phase. 
The experiments are conducted for each type of inquiries 
separately. 

In all our experiments, we monitor the system response 
time in terms of microseconds per operation from the 
moment of submitting the inquiry until receiving the result. 

We also monitor the system throughput in terms of 
inquires per hour for each thread. 

B. System Configuration 

In our experiments, we use an Intel CORE™ i7 vPro 
2.7GHz processor, 8 GB RAM and a Solid State Drive 
(SSD). The operating system is Windows 7 64-bits. In order 
to build in-memory storage, we use RamDisk Plus [26].  

We use JDK 1.6.0, Neo4j version 1.6 for the graph 
database engine, embedded Derby™ version 10.7.1.1 and 
HSQL version 2.3.0 for the SQL back-ends, JWNL library 
version 1.4 [12] for file system based storage. 

C. Experiment Results 

The performance evaluation considers all four types of 
inquiries: 

 Attribute, 

 Semantic relationships, 

 Relationship trees, and 

 Common parent 
 

for the four back-end implementations for both on-disk and 
in-memory settings. 

We drop plotting the results of the native file system-
based implementation from our graphs, although it is the 
only available implementation previous to this research. The 
reason behind this is that the results are far worse than the 
other implementations. The difference in most cases is more 
than one order of magnitude as can be seen on the exemplary 
plot of Fig. 6 of the response time of one the experiments. 
We also drop plotting the results of HSQL implementation 
in-memory, since the deployment using the combination of 
Apache Derby and RamDisk Plus always supersedes the 
relational implementation of HSQL using its in-memory 
feature. In all legends of the subsequent figures, NEO DD 
means using Neo4j with the additional Directly Derived 
Relationships, NEO noDD means using Neo4j with the 
original relationships, and SQL Derby denotes the 
implementation using the SQL Apache Derby embedded 
relational database management system. 

 

 

Figure 6.  Average response time across increasing the number of threads 

with the File System (FS) included in the grpah. 

1) Attribute inquiries 

a) On-disk experiments 

In this set of experiments, the inquiries sent by the 
workload generator comprise attribute inquiries only. Both 
response time, illustrated in Fig. 7, and throughput, 
illustrated in Fig. 8, degrade gracefully with the increase in 
number of threads while having good absolute values. 
Remarkably, the simple Neo4j implementation (without the 
extra directly derived relationships) has a 20% better 
response time than the other two implementations, while the 
full blown Neo4j implementation has a 40% decrease in 
system throughput. The reason for that is the attribute 
inquiries are mainly affected by the node (or tuple in case of 
relational databases) retrieval and caching. No relationship 
traversal is done and hence the Neo4j only suffers from its 
large database size especially with the augmented directly 
derived relationships (see Section V.E). 

In summary, this set of experiments demonstrates that the 
caching mechanisms of graph databases are in general as 
good as the relational databases and that simple operations 
without graph traversals are not underprivileged in this 
environment. 
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Figure 7.  Response time for attribute inquiries (on-disk). 

 
Figure 8.  Throughput for attribute inquiries (on-disk). 

b) In-Memory experiments 

We repeat the same set of experiments using the 
RamDisk Plus settings explained in Section IV.B. The 
response time is plotted in Fig. 9 and the throughput for 
attribute inquiries in Fig. 10.  

These figures indicate exactly the same behavior as their 
corresponding experiments in the on-disk Section. The 
relative decrease in response time and the relative increase in 
system throughput is explained separately and more 
elaborately in Section V.D.  

From Fig. 9, it is clear that the response time of the 
simple Neo4j implementation is still the best by approx. 
20%, while the throughput of the full-blown Neo4j has the 
worst values among the three implementations. 

 

 
Figure 9.  Response time for attribute inquiries (in-memory). 

 
Figure 10.  Throughput for attribute inquiries (in-memory). 

2) Semantic relationship inquiries 

a) On-disk experiments 

In this set of experiments, the explicit storage of semantic 
relationships shows its benefit. The results are retrieved by 
traversing one relationship only, in contrast to 3 for the 
simple implementation and several joins in the relational 
database implementation. The response time, as illustrated in 
Fig. 11, is enhanced by approx. 50% for all number of 
threads when compared to Apache Derby and 30% by adding 
these directly derived relationships to a simple Neo4j 
implementation. However, all three back-ends behave 
identically when it comes to throughput as illustrated in Fig. 
12. The absolute values are far below those of the simple 
attribute inquiries described in the previous section, which is 
expected due to the complexity of these inquiries as 
compared to attribute inquiries. In case of response time, it is 
almost 10 times higher than the previous set of experiments. 
The same applies to the throughput, which is lower by a 
factor of 10 as well. 

 

 
Figure 11.  Response time for semantic relationship inquiries (on-disk). 

 
Figure 12.  Throughput for semantic relationship inquiries (on-disk). 
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b) In-Memory experiments 

The semantic relationship inquiries are repeated for the 
virtual disk settings. Here again, the same system behavior in 
terms of response time and througput is identical as the on-
disk experiments. Fig. 13 illustrates the same response time 
pattern as in Fig. 11 and Fig. 14 illustrates that all three back-
ends behave identically when it comes to throughput; which 
is the same scalability behavior as in the on-disk setting. The 
absolute values, as illustrated in Section V.D are almost the 
same as compared to Fig. 11 and Fig. 12. 

 
Figure 13.  Response time for semantic relationship inquiries (in-memory). 

 
Figure 14.  Throughput for semantic relationship inquiries (in-memory). 

3) Relationship tree inquiries 

a) On-disk experiments 

The operations of this set of experiments are more 
complex than the previous ones. This explains the drop in 
absolute values of the response time and throughput, 
illustrated in Fig. 15 and Fig. 16, respectively when 
compared to the previous experiment. This time the 
degradation factor is only 4. Yet, the system behavior 
remains the same. The response time of Neo4j with the 
directly derived relationships is half that’s of the SQL 
implementation. Even without the extra relationships, the 
response time of Neo4j is 25-30% better than the relational 
model. Here, again, the throughput, illustrated in Fig. 16, for 
all three implementations is the same. The equality of the 
throughput performance index of Apache Derby and the 
Neo4j implementations, despite the short response time of 
the later, is an indication that the internal pipeline 
capabilities of Neo4j is not as good as that of the relational 
model. 

 

 
Figure 15.  Response time for relationship tree inquiries (on-disk). 

 
Figure 16.  Throughput for relationship tree inquiries (on-disk). 

b) In-Memory experiments 

The same trend as the semantic relationship inquiries 

continues with the relationship tree inquiries when running 

in-memory.  
The same drop in absolute values by a factor of 4 when 

compared to the semantic relationship inquiries is also 
reported here. As illustrated in Fig. 17, the response time of 
Neo4j with the directly derived relationships is half that’s of 
the SQL implementation using Apache Derby.  

The response time of Neo4j without the extra relationship 
remains in the middle of both curves. The Throughput 
illustrated in Fig. 18 for all implementations remains 
identical. 
 

 

Figure 17.  Response time for relationship tree inquiries (in-memory). 
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Figure 18.  Throughput for relationship tree inquiries (in-memory). 

4) Common parent inquiries 

a) On-disk experiments 

The inquiries for this set of experiments are the most 
complicated among all experiments. Yet, this is a very 
common use case in social networks. For example, in XING 
[28], the user can always see all paths of relationships 
leading from the user to any arbitrary user in the network. No 
wonder here that Neo4j implementations outperform the 
Apache Derby implementation (and the file system 
implementation which seems to be not able to handle all the 
running threads) in requesting depth first searches of the 
semantic network of WordNet®.  

Again, Fig. 19 illustrates the extreme superiority of graph 
database, especially with the addition of the extra 
relationships. The response time is also enhanced by 45% 
and 30% with and without directly derived relationships, 
respectively.  

The throughput, illustrated in Fig. 20, holds its trend 
across all experiments of being almost the same for the three 
implementations (and omitting the file system 
implementation of course, whose values cannot be plotted 
with the same scale next to their counterparts). 

 

 
Figure 19.  Response time for common parent inquiries (on-disk). 

 
Figure 20.  Throughput for common parent inquiries (on-disk). 

b) In-Memory experiments 

Similar to all previous in-memory experiments, the 
common parent inquiries yield the exact same curves as their 
on-disk counterparts illustrated in Fig. 21 and Fig. 22. 

 

 
Figure 21.  Response time for relationship tree inquiries (in-memory). 

 
Figure 22.  Throughput for relationship tree inquiries (in-memory). 
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D. Comparison Between On-Disk and In-Memory 

Performance 

In this section, we compare the performance of the on-
disk implementations versus their counterpart experiments 
done in-memory. The target is to evaluate the performance 
gain – if any- when keeping the whole content of 
WordNet® in memory. In Table I, we list the relative 
change in response time for each inquiry type. We define 
the average relative change in response time over all 
experiments to be: 

 

TABLE I. CHANGES IN RESPONSE TIME HD VS. MEM 

Inquiry type FS SQL 

Derby 

NEO 

DD 

NEO 

NoDD 

Attribute -11% 8% 11% 8% 

Semantic relationships 7% 7% 7% 7% 

Relationship trees 4% 5% 4% 5% 

Common parent 4% 5% 4% 5% 

Similarly, we list the relative change in throughput for each 
inquiry type in Table II. Analogously, we define the average 
relative change in throughput over all experiments to be: 

 

TABLE II. CHANGES IN THROUGHPUT HD VS. MEM 

Inquiry type FS SQL 

Derby 

NEO 

DD 

NEO 

NoDD 

Attribute 13% -8% -10% -8% 

Semantic relationships -6% -6% -6% -6% 

Relationship trees -4% 5% -5% 5% 

Common parent -4% -4% -4% -4% 

Remarkably, the performance does not increase 
substantially. In several experiments, the performance 
indices even slightly degrade. In all cases, the 
increase/decrease in performance remains within the ±10% 
range. This is attributed to the relatively small size of the 
WordNet® content as will be seen in the coming Section. 
The normal caching mechanisms provided by Apache 
Derby and Neo4j result in loading the whole content in-
memory and renders the usage of the virtual RAM disk and 
all further memory optimization settings needless. 

E. Storage Requirements 

Performance in terms of good response time comes with 
its price. Fig. 23 illustrates the storage requirements for all 
four implementations. The Apache Derby and the normal 
Neo4j implementation occupy slightly more than double the 
original size of the WordNet® file-based dictionary. The 
redundant relationships account for more than 350 MB, 
making the size of the graph database 12 times larger than 
the file-based dictionary taken as a reference point. The 

good side of this particular application scenario is the 
absolute size of the back-ends is affordable by any desktop 
application. As the in-memory experiments also show, there 
is no need to implement extra virtual disks or extravagant 
caching settings, since the size of the largest implementation 
fits easily in the heap of any Java virtual machine of 
moderate size. 

 

 
Figure 23.  Storage for each back-end implementation. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we present two Neo4j graph data models 
for the WordNet® dictionary. We use Ri.WordNet as a 
typical client application that submits semantic inquiries 
discovering the relationships between English terms. We 
divide the inquiries into 4 categories depending on the 
complexity of their operations. Our performance analysis 
demonstrates that graph databases yield much better results 
than traditional relational databases in terms of response time 
even under extreme workloads thus speaking for their 
promised scalability. We also show that storing materialized 
directly derived relationships can improve the performance 
by factors of 2. This redundancy has its price in terms of 
storage requirements, which is acceptable due to the 
moderate size of the database with 117,000 synsets and 
147,000 terms and the read-only nature of this small-scale 
social network. We also prove that there is no need for extra 
measures to hold the moderate size WordNet® content in 
memory by using in-memory databases, creating virtual 
RAM disks, or substantially increasing the caching 
mechanisms. In all our experiments, the on-disk deployments 
yield almost the same performance as the in-memory 
settings. On the long run, i.e., after having the Neo4j warm-
started, almost all of the dataset is cached in memory by the 
underlying graph database management system. The reason 
is that the WordNet® database fits in the heap of the normal 
Java virtual machine even with the materialization on the 
redundant relationships. This adds to the advantages of 
using the graph databases in such moderate-sized scenarios, 
since the benchmarks demonstrate that there is no real need 
to spend extra effort in tweaking the memory usage. 

One important contribution of this work is that it opens 
the door for new application areas for NoSQL databases (in 
this case the Neo4j graph database), namely smaller read-
intensive database applications, in contrast to typical 
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applications of the NoSQL in large scale Web 2.0 such as 
social networks. 

Yet, this is only the beginning. In the future, we plan to 
benchmark other graph database providers, such as InfoGrid 
[24]. We also plan to migrate several research done on 
relationship mining to work on graph database back-ends. If 
the benchmarking experiments show promising results, this 
will open the door for the application of graph databases in 
OLAP applications. Another extension area is the 
comparison against other types of NoSQL such as XML 
databases, document stores or column-family systems. 
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