
298

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A New Representation of WordNet® using Graph Databases

On-Disk and In-Memory

Khaled Nagi

Dept. of Computer and Systems Engineering

Faculty of Engineering, Alexandria University

Alexandria, Egypt

khaled.nagi@alexu.edu.eg

Abstract— WordNet® is one of the most important resources

in computation linguistics. The semantically related database

of English terms is widely used in text analysis and retrieval

domains, which constitute typical features, employed by social

networks and other modern Web 2.0 applications. Under the

hood, WordNet® can be seen as a sort of read-only social

network relating its language terms. In our work, we

implement a new storage technique for WordNet® based on

graph databases. Graph databases are a major pillar of the

NoSQL movement with lots of emerging products, such as

Neo4j. In this extended paper, we present two new graph data

models for the WordNet® dictionary. We use the emerging

graph database management system Neo4j and deploy the

models on-disk as well as in-memory. We analyze their

performance and compare them to other traditional storage

models based on native file systems and relational database

management systems. With this contribution, we also validate

the applicability of modern graph databases in new areas

beside the typical large-scale social networks with several

hundreds of millions of nodes.

Keywords-WordNet®; semantic relationships; graph

databases; storage models; Neo4j; on-disk and in-memory

DBMS; performance analysis.

I. INTRODUCTION

This paper is an extension of the work done in [1], whose
aim is to provide new data representation models for
WordNet® based on modern NoSQL graph databases. In this
paper, we implement various data storage models for these
representations varying from in-disk models, creating in-
memory virtual disk representations and using pure in-
memory models. It is worth mentioning that the size of the
WordNet® dictionary enables the efficient employment of
these variations and offers the best benchmarking platform
for applications of this moderate size.

WordNet® [2] is a large lexical database of English
terms and is currently one of the most important resources in
computation linguistics. Several computer disciplines, such
as information retrieval, text analysis and text mining, are
used to enrich modern Web 2.0 applications; typically, social
networks, search engines, and global online marketplaces.
These disciplines usually rely on the semantic relationships
among linguistic terms. This is where WordNet® comes to
action.

A parallel development over the last decade is the
emergence of NoSQL databases. Certainly, they are no

replacement for the relational database paradigm. However,
Web 2.0 builds a rich application field for managing billions
of objects that do not have the regular and repetitive pattern
suitable for the relational model. One major type of NoSQL
databases is the graph database model. Since social
networks can be easily modeled as one large graph of
interconnected users, they can be the killer application for
graph databases with their strength in traversing and
navigating through huge graphs.

However, little to no work has been done to investigate
the use of graph database management systems in moderate
sized databases. Of course, the database has to be
relationship-rich for the implementation to make sense. In
our work, we implement a new storage technique for
WordNet® based on graph databases. For this purpose, we
present two data models and implement them on an
emerging graph database management system: Neo4j [3].
Currently, Neo4j is the leading graph database management
system in terms of installations and user base. WordNet®
dictionary has several characteristics that promote our
proposition: it is used in several modern Web 2.0
applications, such as social networks; it has a moderate size
of datasets; and traversing the semantic relationship graph is
a common use case.

Since the modeling and benchmarking experiences of
these new graph databases are not as established as in the
relational database model, we implement two variations and
conduct several performance experiments to analyze their
behavior and compare them to the relational model.

The rest of the paper is organized as follows. Section II
provides a background on WordNet® and its applications as
well as a brief survey on graph database technology. Our
proposed system and data models are presented in Section
III. In Section IV, we describe the storage models. Section V
contains the results of our performance evaluation and
Section VI concludes the paper and presents a brief insight in
our future work.

II. BACKGROUND

A. WordNet®

The WordNet® project began in the Princeton University
Department of Psychology and is currently housed in the
Department of Computer Science. WordNet® is a large
lexical database of English [2]. Nouns, verbs, adjectives and
adverbs are grouped into sets of cognitive synonyms

299

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(synsets), each expressing a distinct concept. A synset
contains a brief definition (gloss). Synsets are interlinked by
means of conceptual-semantic and lexical relations.
WordNet® labels the semantic relations. The most
frequently encoded relation among synsets is the super-
subordinate relation (also called hyperonym, hyponym or IS-
A relation). Other semantic relations include meronym (a
term which denotes part of something but which is used to
refer to the whole of it), antonym (a word opposite in
meaning to another), and holonym (a word that names the
whole of which a given word is a part). The majority of the
WordNet®’s relations connect words from the same part-of-
speech (POS). Valid WordNet parts-of-speech include
(noun="n", verb="v", adj="a", and adverb="r"). Currently,
WordNet® comprises 117,000 synsets and 147,000 words.
Today, WordNet® is considered the most important resource
available to researchers in computational linguistics, text
analysis, text retrieval and many related areas [4]. Several
projects and associations are built around WordNet®.

The Global WordNet Association [5] is a free, public and
non-commercial organization that provides a platform for
discussing, sharing and connecting wordnets for all
languages in the world. The Mimida project [6], developed
by Maurice Gittens, is a WordNet-based mechanically
generated multilingual semantic network for more than 20
languages based on dictionaries found on the Web.
EuroWordNet [7] is a multilingual database with wordnets
for several European languages (Dutch, Italian, Spanish,
German, French, Czech and Estonian). It is constructed
according to the main principles of Princeton’s WordNet®.
One of the main results of the European project that started
in 1996 and lasted for 3 years is to link these wordnets to
English WordNet® and to provide an Inter-Lingual-Index to
connect the different wordnets and other ontologies [8].
MultiWordNet [9], developed by Luisa Bentivogli and others
at ITC-irst, is a multilingual lexical database. In
MuliWordNet, the Italian WordNet is strictly aligned with
the Princeton WordNet®. Unfortunately, it comprises a
small subset of the Italian language with 44,000 words and
35,400 synsets. Later on, several projects, such as ArchiWN
[10], attempt to integrate WordNet with domain-specific
knowledge.

RitaWN [11], developed by Daniel Howe, is an
interesting library built on WordNet®. It provides simple
access to the WordNet ontology for language-oriented artists.
RitaWN provides semantically related alternatives for a
given word and parts-of-speech (POS) such as returning all
synonyms, antonyms, hyponyms for the noun “cat”. The
library also provides distance metrics between ontology
terms, and assigns unique IDs for each word sense/pos.

Several projects aim at providing access to the
WordNet® native dictionary. For example, JWNL [12]
provides a low-level API to the data provided by the standard
WordNet® distribution. In its core, RitaWN uses JWNL to
access the native file-based WordNet® dictionary. Other
projects, such as WordNetScope [13], WNSQL [14], and
wordnet2sql® [15], provide a relational database storage for
WordNet®.

B. Graph Databases

NoSQL databases are older than relational databases.
Nevertheless, their renaissance came first with the
emergence of Web 2.0 during the last decade. Their main
strengths come from the need to manage extremely large
volumes of data that are collected by modern social
networks, search engines, global online marketplaces, etc.
For this type of applications, ACID (Atomicity, Consistency,
Isolation, Durability) transaction properties [16] are simply
too restrictive. More relaxed models emerged such as the
CAP (Consistency, Availability and Partition Tolerance)
theory or eventually consistent [17], which in general means
that any large scale distributed DBMS can guarantee for two
of three aspects: Consistency, Availability, and Partition
tolerance. In order to solve the conflicts of the CAP theory,
the BASE consistency model (Basically, soft state,
eventually consistent) was defined for modern applications
[17]. In contrast to ACID, BASE concentrates on availability
at the cost of consistency. BASE adopts an optimistic
approach, in which consistency is seen as a transitional
process that will be eventually reached. Together with the
publication of Google’s BigTable and Map/Reduce
frameworks [18], dozens of NoSQL databases emerged. A
good overview of existing NoSQL database management
systems can be found in [19].

Mainly, NoSQL database systems fall into four
categories:

 Key-value systems,

 Column-family systems,

 Document stores, and

 Graph databases.
Graph databases have a long academic tradition.

Traditionally, research concentrated on providing new
algorithms for storing and processing very large and
distributed graphs. These research efforts helped a lot in
forming object-oriented database management systems and
later XML databases.

Since social networks can be easily viewed as one large
graph of interconnected users, they offer graph databases the
chance for a great comeback. Since then, the whole stack of
database science was redefined for graph databases. At the
heart of any graph database lies an efficient representation of
entities and relationships between them. All graph database
models have, as their formal foundation, variations on the
basic mathematical definition of a graph, for example,
directed or undirected graphs, labeled or unlabeled edges and
nodes, hypergraphs, and hypernodes [20]. For querying and
manipulating the data in the graph, a substantial work
focused on the problem of querying graphs, the visual
presentation of results, and graphical query languages. Old
languages such as G, G++ in the 80s [21], the object-oriented
Pattern Matching Language (PaMaL) in the 90s [22],
through Glide [23] in 2002 appeared. G is based on regular
expressions that allow simple formulation of recursive
queries. PaMaL is a graphical data manipulation language
that uses patterns. Glide is a graph query language where
queries are expressed using a linear notation formed by

300

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

labels and wildcards. Glide uses a method called GraphGrep
[23] based on sub-graph matching to answer the queries.

However, modern graph databases prefer providing
traversal methods instead of declarative languages due to its
simplicity and ease of use within modern languages such as

Java. Taking Neo4j as example, when a Traverser is
created, it is parameterized with two evaluators and the
relationship types to traverse, with the direction to traverse
each type. The evaluators are used for determining for each
node in the set of candidate nodes if it should be returned or
not, and if the traversal should be pruned (stopped) at this

point. The nodes that are traversed by a Traverser are
each visited exactly once, meaning that the returned iterator
of nodes will never contain duplicate nodes [3].

Several systems such as Neo4j [3], InfoGrid [24], and
many other products are available for research and
commercial use today. Typical uses of these new graph
database management systems include social networks, GIS,
and XML applications. However, they did not find
application in moderate sized text analysis applications or
relationship mining.

III. PROPOSED SYSTEM AND DATA MODEL

Fig. 1 provides an overview of the proposed
implementation. RitaWN [11] provides synonyms,
antonyms, hypernyms, hyponyms, holonyms, meronyms,
coordinates, similars, nominalizations, verb-groups, derived-
terms glossaries, descriptions, support for pattern matching,
soundex, anagrams, etc. In Fig. 1, RitaWN is represented by
an arbitrary client in this domain, which sends semantic
inquiries and receives the results as a list of related terms. In
the actual RitaWN, the library wraps Jawbone/JWNL [12]
functionality for Java processing; which, in turn, accesses the
native WordNet® dictionary.

Figure 1. Architecture of the proposed system.

In order to separate the data representation model from

the logic, we extract a RiWordNetIF Java interface. The
interface defines methods to return semantically related
words. The methods are categorized into 4 groups in
ascending complexity with respect to reaching the returned
values:

 Attribute inquiries: these methods return single

attribute values for a given word, such as String

getBestPos(String w) and boolean

isNoun(String w).

 Semantic relationships inquiries: in this set, methods
return all semantically related words for a given

word and POS, such as String[]

getHolonyms(String w, String pos)

and String[] getHypernyms(String w,

String pos). In our system, we define eight such
methods.

 Relationship tree inquiries: in this set of methods,
the library returns the whole path from the first
synset for a given word and POS to the root word.
Typical root words in WordNet® are “Entity” or
“Object”. In our implementation, we have
String[] getHyponymTree(String w,

String pos) and String[]

getHypernymTree(String w, String

pos); which basically trace back

getHyponym(String w, String pos) and
getHypernym(String w, String pos)
respectively to the root word.

 Common parent inquiries: methods of this group
find a common semantic path between two words in
a POS subnet by traversing the WordNet® synset

graph. For example, the method String[]

getCommonParent(String w1, String

pos, String w2) finds the following path
illustrated in Fig. 2 for the nouns “dog” and
“animal”. Traversal is done based on a Depth First
Search algorithm with a slight adaptation to stop
traversing whenever one of the synsets of the sink

term w2 is reached.

Figure 2. Semantic path from ‘dog’ to ‘animal’ .

A. Data Model

In the storage layer, illustrated in the lower part of Fig. 1,
we provide four different representations for the WordNet®
dictionary as described in the following subsections.

1) File-based Model
In its original implementation, RiTa.WordNet uses the

JWNL [12] library to directly browse the native dictionary
provided by a standard WordNet® installation. As will be
shown later, this implementation has the worst performance.
We use it for validation purposes for the other three
implementations.

2) Relational Database Model
We use a database model similar to the one used in [15].

Fig. 3 illustrates a UML class diagram for the relevant

301

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

classes. The words entity has a wordid as a primary key,

the lemma definition and the different POSs are coded as
string with the best POS as the first character of the string.

Similarly, the synsets entity holds all WordNet® synsets,

their POS, and definition. The primary key is synsetid.
The many-to-many relationship between words and synsets

is modeled by the senses entity. It contains the foreign

keys wordid and synsetid. Synsets are related to

each other via the semlinks entity. Synset1id points to

the from direction and Synset2id to the to direction.

The types of semantic links are defined by linkid which is

a foreign key to the linktype entity. All types of links are

listed in the linktype entity.

Figure 3. UML class diagram for the relational database.

3) Graph Database Model
In our proposed work, we model the WordNet® as a

graph database. An object diagram is illustrated in Fig. 4. We

have two types of nodes: words (illustrated as ellipses) and

synsets (illustrated as hexagons). The attributes of a word

are a lemma and the different POSs, which are coded as a
string with the best POS as the first character of the string.

The synset has a property definition. There exists a

bi-directional relation Rel_sense between words and

synsets. The attribute pos of the relation indicates the

POS associated with the sense. Synsets are interconnected
by directed relations. These relationships

Rel_SemanticLink carry the type of the link in the

attribute type. For example, in Fig. 4, word w1 has one sense

as a noun with link to sysnset sa and two senses as verbs

for synsets sc and sd. Synset sa has two hyponyms

sb and se by following the relationships

Rel_SemanticLink with type “hyponym”. w4 has one

sense sb as a noun. w2 and w3 – as nouns - share the same

synset se. w5 has only one sense as a verb which is sc.

So, if getHoponyms(“w1”, “n”) is called, the result

will be w2, w3, and w4.

Figure 4. Object diagram for the proposed WordNet® graph database

model.

4) Graph Database Storage with Additional Directly

Derived Relationships
In the RiTa.WordNet application scenario, we expect

many inquiries about semantically related words (e.g.,
hyponyms, synonyms, meronyms, etc.). Synsets are mainly
the means to return the semantically related words. At the
same time, the application is typically read-only and
represents a good example for a wide range of read-only (or
low-update/high-read) applications. The graph database is
only updated with the release of a new WordNet®
dictionary. This motivates us to augment the design
mentioned in the previous section with the derived semantic
relationships between words and not only synsets. The idea
is similar to materialized views known in relational
databases. The result of semantic relationship inquiries (e.g.,

getHyponyms(), getSynonyms(),

getMeronyms(), etc.) is generated by traversing only one
relationship for each result word. We intuitively expect a
quicker response time at the cost of a high storage volume
since the connectivity of the graph is highly increased. In the
case of the limitation of the client application to inquiries
within the above-mentioned four categories, the original
relationships can be even dropped.

In terms of implementation, these relationships are
identified through the relationship type. Fig. 5 illustrates the
derived relationships for the example in Fig. 4. Only the

relationship of type Rel_Hyponym for noun POS of word

w1; namely, w2, w3, and w4 is drawn. For more complex
inquiries outside the categories “relationship tree” and
“common parent”, a combination of original and derived
relationships are used in the traversal.

302

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Object diagram with the extra derived relationships.

IV. STORAGE MODEL

We implement the graph data models using the currently
leading graph database management system: Neo4j [3]. For
all implementation models, we attempt to store the data on-
disk. In addition to our work done and presented in [1], we
also provide implementations stored in-memory.

A. On-Disk implementations

Using on-disk implementations is the traditional way for
storing data. It preserves the content after system shutdown
but suffers from the latency of hard disks.

In the file-based data model, WordNet® data is stored
within the WordNet installation directory on disk. Native
access is done through JWNL [12] library.

As for the relational database model, we choose Apache
Derby [25] as the database management system to hold this
data model. Apache Derby is part of the Apache Group. It
gained a good reputation and a high spread for applications
requiring embedded relational DBMS. We explicitly rule out
the usage of larger relational database management systems
running in server mode, such as Oracle or DB2, since we are
concerned with the use case of relatively small-sized read-
only interrelated data sets. Apache Derby is distributed as a
Java jar file to be added to the classpath of the application. It
also comes as a stand-alone version. In this case, the data
resides in the database container on disk. We follow the
common practices for standard relational database by
building indices on the primary and foreign keys.

For the two data models we introduce in our research, we
provide implementations for the emerging graph database
management system Neo4j [3].

From its background and growing customer base, it is
clear that Neo4j enjoys an increasing wide spread especially
in the industry. Another advantage over InfoGrid [24] is its
ease of use as it does not require the explicit definition of the
model of the schema in XML as in the case of InfoGrid,
which renders the addition of more entity types to the graph
more simple. The basic setup for Neo4j is that the data is

stored in a proprietary format on-disk. Neo4j then provides
various data caching strategies in memory for so-called hot-
spot data access.

B. In-Memory implementations

For the in-memory implementations, the whole
WordNet® content is loaded in memory from the permanent
storage during system startup. Having the content cached in
memory avoids any access to the hard disk. The moderate
size of the WordNet® data enables this setting.

We create a virtual disk out of RAM using RamDisk Plus
[26], which uses a patented memory management component
that makes a predefined portion of the RAM appear as a
physical hard disk to the operating system and programs.
The file-based data model of WordNet® is simply deployed
on this virtual hard disk and the same JWNL [12] library is
used to access the content.

In the case of the relational model, we experiment using
two options:

 Similar to the file-based implementation, the Apache
Derby database is stored in the virtual RAM Disk.

 We migrate the implementation to HSQL [27],
which provides an in-memory transient storage
mechanism for its tables. During startup, the content
is loaded from the permanent storage into the in-

memory tables created by the CREATE MEMORY

TABLE SQL command.
Finally, for the two Neo4j data models, we also try the

following two settings:

 Similar to the file-based and the relational
implementations, we store both graph data models
on the virtual RAM Disk.

 We set the cache management policy in Neo4j to

strong. This cache setting holds on to all data that
gets loaded to never release it. Additionally, Neo4j
store can use memory mapped I/O for
reading/writing. For optimized I/O access, Neo4j

uses the java.nio package. Native I/O results in
memory being allocated outside the normal Java
heap so that memory usage needs to be taken into
consideration. In order to get the best out of this
setting, we increase the size of the cache used and
the size of the memory mapped I/O to hold all the
WordNet® data content.

V. PERFORMANCE EVALUATION

In order to evaluate the performance of our proposed
system, we provide four implementations for the Java

interface RiWordNetIF mentioned in Section III. The
implementations are file-based storage, relational DBMS
using Apache Derby and HSQL, the graph database using
Neo4j, and a second implementation using the materialized
directly derived relationships also using Neo4j. For each one
of the settings, we deploy the implementation twice: on-disk
and in-memory.

It is important to notice that the purpose of this
evaluation is to give a general impression on the
performance impact and not to give concrete benchmarking

303

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

figures. For sure, the optimization of all DBMS
implementations; such as using indices or even exchanging
the DBMS itself versus using future versions of Neo4j might
lead to different results. We would be satisfied if our
proposed solution provides slightly better results than
relational DBMS. It is interesting to observe the effect of
using in-memory and large caching settings for the different
data model strategies on a moderately sized content like
WordNet® as well.

We develop a simple performance evaluation toolkit
around our implementations. A workload generator sends
inquiries to all back-ends. The inquiries are grouped into four
categories, as mentioned in Section III. The workload
generator submits the inquiries in parallel to the application
with each inquiry executing in a separate thread.

The input for the inquiry is chosen at random from an
input file containing WordNet® words and their associated

best POS. In case of getCommonParent(), another input
file is used, which contains tuples of somehow related words,
together with their common POS (e.g., “tiger”, “cat”, and
“noun”). The tuples are chosen carefully to yield paths of
different lengths.

The performance of the system is monitored using a
performance monitor unit that records the response time of
each inquiry and the number of inquiries performed by each
thread in a regular time interval.

A. Input Parameters and Performance Metrics

The number of concurrent inquiry threads is increased
from 1 to 50. Each experiment executes on each back-end for
5 minutes in order to eliminate any transient effects and
measure the system performance after the ‘warm-up’ phase.
The experiments are conducted for each type of inquiries
separately.

In all our experiments, we monitor the system response
time in terms of microseconds per operation from the
moment of submitting the inquiry until receiving the result.

We also monitor the system throughput in terms of
inquires per hour for each thread.

B. System Configuration

In our experiments, we use an Intel CORE™ i7 vPro
2.7GHz processor, 8 GB RAM and a Solid State Drive
(SSD). The operating system is Windows 7 64-bits. In order
to build in-memory storage, we use RamDisk Plus [26].

We use JDK 1.6.0, Neo4j version 1.6 for the graph
database engine, embedded Derby™ version 10.7.1.1 and
HSQL version 2.3.0 for the SQL back-ends, JWNL library
version 1.4 [12] for file system based storage.

C. Experiment Results

The performance evaluation considers all four types of
inquiries:

 Attribute,

 Semantic relationships,

 Relationship trees, and

 Common parent

for the four back-end implementations for both on-disk and
in-memory settings.

We drop plotting the results of the native file system-
based implementation from our graphs, although it is the
only available implementation previous to this research. The
reason behind this is that the results are far worse than the
other implementations. The difference in most cases is more
than one order of magnitude as can be seen on the exemplary
plot of Fig. 6 of the response time of one the experiments.
We also drop plotting the results of HSQL implementation
in-memory, since the deployment using the combination of
Apache Derby and RamDisk Plus always supersedes the
relational implementation of HSQL using its in-memory
feature. In all legends of the subsequent figures, NEO DD
means using Neo4j with the additional Directly Derived
Relationships, NEO noDD means using Neo4j with the
original relationships, and SQL Derby denotes the
implementation using the SQL Apache Derby embedded
relational database management system.

Figure 6. Average response time across increasing the number of threads

with the File System (FS) included in the grpah.

1) Attribute inquiries

a) On-disk experiments

In this set of experiments, the inquiries sent by the
workload generator comprise attribute inquiries only. Both
response time, illustrated in Fig. 7, and throughput,
illustrated in Fig. 8, degrade gracefully with the increase in
number of threads while having good absolute values.
Remarkably, the simple Neo4j implementation (without the
extra directly derived relationships) has a 20% better
response time than the other two implementations, while the
full blown Neo4j implementation has a 40% decrease in
system throughput. The reason for that is the attribute
inquiries are mainly affected by the node (or tuple in case of
relational databases) retrieval and caching. No relationship
traversal is done and hence the Neo4j only suffers from its
large database size especially with the augmented directly
derived relationships (see Section V.E).

In summary, this set of experiments demonstrates that the
caching mechanisms of graph databases are in general as
good as the relational databases and that simple operations
without graph traversals are not underprivileged in this
environment.

304

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Response time for attribute inquiries (on-disk).

Figure 8. Throughput for attribute inquiries (on-disk).

b) In-Memory experiments

We repeat the same set of experiments using the
RamDisk Plus settings explained in Section IV.B. The
response time is plotted in Fig. 9 and the throughput for
attribute inquiries in Fig. 10.

These figures indicate exactly the same behavior as their
corresponding experiments in the on-disk Section. The
relative decrease in response time and the relative increase in
system throughput is explained separately and more
elaborately in Section V.D.

From Fig. 9, it is clear that the response time of the
simple Neo4j implementation is still the best by approx.
20%, while the throughput of the full-blown Neo4j has the
worst values among the three implementations.

Figure 9. Response time for attribute inquiries (in-memory).

Figure 10. Throughput for attribute inquiries (in-memory).

2) Semantic relationship inquiries

a) On-disk experiments

In this set of experiments, the explicit storage of semantic
relationships shows its benefit. The results are retrieved by
traversing one relationship only, in contrast to 3 for the
simple implementation and several joins in the relational
database implementation. The response time, as illustrated in
Fig. 11, is enhanced by approx. 50% for all number of
threads when compared to Apache Derby and 30% by adding
these directly derived relationships to a simple Neo4j
implementation. However, all three back-ends behave
identically when it comes to throughput as illustrated in Fig.
12. The absolute values are far below those of the simple
attribute inquiries described in the previous section, which is
expected due to the complexity of these inquiries as
compared to attribute inquiries. In case of response time, it is
almost 10 times higher than the previous set of experiments.
The same applies to the throughput, which is lower by a
factor of 10 as well.

Figure 11. Response time for semantic relationship inquiries (on-disk).

Figure 12. Throughput for semantic relationship inquiries (on-disk).

305

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

b) In-Memory experiments

The semantic relationship inquiries are repeated for the
virtual disk settings. Here again, the same system behavior in
terms of response time and througput is identical as the on-
disk experiments. Fig. 13 illustrates the same response time
pattern as in Fig. 11 and Fig. 14 illustrates that all three back-
ends behave identically when it comes to throughput; which
is the same scalability behavior as in the on-disk setting. The
absolute values, as illustrated in Section V.D are almost the
same as compared to Fig. 11 and Fig. 12.

Figure 13. Response time for semantic relationship inquiries (in-memory).

Figure 14. Throughput for semantic relationship inquiries (in-memory).

3) Relationship tree inquiries

a) On-disk experiments

The operations of this set of experiments are more
complex than the previous ones. This explains the drop in
absolute values of the response time and throughput,
illustrated in Fig. 15 and Fig. 16, respectively when
compared to the previous experiment. This time the
degradation factor is only 4. Yet, the system behavior
remains the same. The response time of Neo4j with the
directly derived relationships is half that’s of the SQL
implementation. Even without the extra relationships, the
response time of Neo4j is 25-30% better than the relational
model. Here, again, the throughput, illustrated in Fig. 16, for
all three implementations is the same. The equality of the
throughput performance index of Apache Derby and the
Neo4j implementations, despite the short response time of
the later, is an indication that the internal pipeline
capabilities of Neo4j is not as good as that of the relational
model.

Figure 15. Response time for relationship tree inquiries (on-disk).

Figure 16. Throughput for relationship tree inquiries (on-disk).

b) In-Memory experiments

The same trend as the semantic relationship inquiries

continues with the relationship tree inquiries when running

in-memory.
The same drop in absolute values by a factor of 4 when

compared to the semantic relationship inquiries is also
reported here. As illustrated in Fig. 17, the response time of
Neo4j with the directly derived relationships is half that’s of
the SQL implementation using Apache Derby.

The response time of Neo4j without the extra relationship
remains in the middle of both curves. The Throughput
illustrated in Fig. 18 for all implementations remains
identical.

Figure 17. Response time for relationship tree inquiries (in-memory).

306

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. Throughput for relationship tree inquiries (in-memory).

4) Common parent inquiries

a) On-disk experiments

The inquiries for this set of experiments are the most
complicated among all experiments. Yet, this is a very
common use case in social networks. For example, in XING
[28], the user can always see all paths of relationships
leading from the user to any arbitrary user in the network. No
wonder here that Neo4j implementations outperform the
Apache Derby implementation (and the file system
implementation which seems to be not able to handle all the
running threads) in requesting depth first searches of the
semantic network of WordNet®.

Again, Fig. 19 illustrates the extreme superiority of graph
database, especially with the addition of the extra
relationships. The response time is also enhanced by 45%
and 30% with and without directly derived relationships,
respectively.

The throughput, illustrated in Fig. 20, holds its trend
across all experiments of being almost the same for the three
implementations (and omitting the file system
implementation of course, whose values cannot be plotted
with the same scale next to their counterparts).

Figure 19. Response time for common parent inquiries (on-disk).

Figure 20. Throughput for common parent inquiries (on-disk).

b) In-Memory experiments

Similar to all previous in-memory experiments, the
common parent inquiries yield the exact same curves as their
on-disk counterparts illustrated in Fig. 21 and Fig. 22.

Figure 21. Response time for relationship tree inquiries (in-memory).

Figure 22. Throughput for relationship tree inquiries (in-memory).

307

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Comparison Between On-Disk and In-Memory

Performance

In this section, we compare the performance of the on-
disk implementations versus their counterpart experiments
done in-memory. The target is to evaluate the performance
gain – if any- when keeping the whole content of
WordNet® in memory. In Table I, we list the relative
change in response time for each inquiry type. We define
the average relative change in response time over all
experiments to be:

TABLE I. CHANGES IN RESPONSE TIME HD VS. MEM

Inquiry type FS SQL

Derby

NEO

DD

NEO

NoDD

Attribute -11% 8% 11% 8%

Semantic relationships 7% 7% 7% 7%

Relationship trees 4% 5% 4% 5%

Common parent 4% 5% 4% 5%

Similarly, we list the relative change in throughput for each
inquiry type in Table II. Analogously, we define the average
relative change in throughput over all experiments to be:

TABLE II. CHANGES IN THROUGHPUT HD VS. MEM

Inquiry type FS SQL

Derby

NEO

DD

NEO

NoDD

Attribute 13% -8% -10% -8%

Semantic relationships -6% -6% -6% -6%

Relationship trees -4% 5% -5% 5%

Common parent -4% -4% -4% -4%

Remarkably, the performance does not increase
substantially. In several experiments, the performance
indices even slightly degrade. In all cases, the
increase/decrease in performance remains within the ±10%
range. This is attributed to the relatively small size of the
WordNet® content as will be seen in the coming Section.
The normal caching mechanisms provided by Apache
Derby and Neo4j result in loading the whole content in-
memory and renders the usage of the virtual RAM disk and
all further memory optimization settings needless.

E. Storage Requirements

Performance in terms of good response time comes with
its price. Fig. 23 illustrates the storage requirements for all
four implementations. The Apache Derby and the normal
Neo4j implementation occupy slightly more than double the
original size of the WordNet® file-based dictionary. The
redundant relationships account for more than 350 MB,
making the size of the graph database 12 times larger than
the file-based dictionary taken as a reference point. The

good side of this particular application scenario is the
absolute size of the back-ends is affordable by any desktop
application. As the in-memory experiments also show, there
is no need to implement extra virtual disks or extravagant
caching settings, since the size of the largest implementation
fits easily in the heap of any Java virtual machine of
moderate size.

Figure 23. Storage for each back-end implementation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present two Neo4j graph data models
for the WordNet® dictionary. We use Ri.WordNet as a
typical client application that submits semantic inquiries
discovering the relationships between English terms. We
divide the inquiries into 4 categories depending on the
complexity of their operations. Our performance analysis
demonstrates that graph databases yield much better results
than traditional relational databases in terms of response time
even under extreme workloads thus speaking for their
promised scalability. We also show that storing materialized
directly derived relationships can improve the performance
by factors of 2. This redundancy has its price in terms of
storage requirements, which is acceptable due to the
moderate size of the database with 117,000 synsets and
147,000 terms and the read-only nature of this small-scale
social network. We also prove that there is no need for extra
measures to hold the moderate size WordNet® content in
memory by using in-memory databases, creating virtual
RAM disks, or substantially increasing the caching
mechanisms. In all our experiments, the on-disk deployments
yield almost the same performance as the in-memory
settings. On the long run, i.e., after having the Neo4j warm-
started, almost all of the dataset is cached in memory by the
underlying graph database management system. The reason
is that the WordNet® database fits in the heap of the normal
Java virtual machine even with the materialization on the
redundant relationships. This adds to the advantages of
using the graph databases in such moderate-sized scenarios,
since the benchmarks demonstrate that there is no real need
to spend extra effort in tweaking the memory usage.

One important contribution of this work is that it opens
the door for new application areas for NoSQL databases (in
this case the Neo4j graph database), namely smaller read-
intensive database applications, in contrast to typical

308

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

applications of the NoSQL in large scale Web 2.0 such as
social networks.

Yet, this is only the beginning. In the future, we plan to
benchmark other graph database providers, such as InfoGrid
[24]. We also plan to migrate several research done on
relationship mining to work on graph database back-ends. If
the benchmarking experiments show promising results, this
will open the door for the application of graph databases in
OLAP applications. Another extension area is the
comparison against other types of NoSQL such as XML
databases, document stores or column-family systems.

REFERENCES

[1] K. Nagi, “A New Representation of aWordNet® using Graph
Databases,” 5th International Conference on Advances in
Databases, Knowledge, and Data Applications, DBKDA,
Seville, 2013.

[2] C. Fellbaum, “WordNet and wordnets,” in Encyclopedia of
Language and Linguistics, Second Edition, Brown, Keith et
al., Eds. Elsevier, Oxford, 2005, pp. 665—670.

[3] Neo4j. The World’s Leading Graph Database,
http://www.neo4j.org [retrieved: December, 2013].

[4] E. Voorhees, “Using WordNet for Text Retrieval,” In
WordNet An Electronic Lexical Database, C. Fellbaum, Ed.,
0-262-06197-X. MIT Press, 1998.

[5] The Global WordNet Association,
http://www.globalwordnet.org [retrieved: December, 2013].

[6] Mimida: A mechanically generated Multilingual Semantic
Network,
http://gittens.nl/gittens/topics/SemanticNetworks.html
[retrieved: December, 2013].

[7] P. Vossen, “EuroWordNet: a multilingual database for
information retrieval,” DELOS workshop on Cross-language
Information Retrieval, Zürich, 1997.

[8] P. Vossen, W. Peters, and J. Gonzalo, “Towards a Universal
Index of Meaning,” ACL-99 Siglex workshop, Maryland,
1999.

[9] E. Pianta, L. Bentivogli, and C. Girardi, “MultiWordNet:
developing an aligned multilingual database,” 1st International
Conference on Global WordNet, Mysore, India, 2002.

[10] L. Bentivogli, A. Bocco, and E. Pianta, “ArchiWordNet:
Integrating WordNet with Domain-Specific Knowledge,” 2nd
Global WordNet Conference, Brno, Czech Republic, 2004,
pp. 39—46.

[11] RiTa.WordNet: a WordNet library for Java/Processing,
http://www.rednoise.org/rita/wordnet/documentation
[retrieved: December, 2013].

[12] Java WordNet Library, http://sourceforge.net/projects/
jwordnet [retrieved: December, 2013].

[13] WordNetScope, http://wnscope.sourceforge.net [retrieved:
December, 2013].

[14] WordNetSQL, http://wnsql.sourceforge.net [retrieved:
December, 2013].

[15] wordnet2sql, http://www.semantilog.org/wn2sql.html
[retrieved: December, 2013].

[16] J. Gray, and A. Reuter, “Transaction Processing: Concepts
and Techniques,” Morgan Kaufmann, 1983.

[17] E. Brewer, “Towards Robust Distributed Systems,” ACM
Symposium on Principles of Distributed Computing, Keynote
speech, 2000.

[18] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach,
M. Burrows, T. Chandra, and A. Fikes, “Bigtable: A
distributed storage system for structured data,” 7th Symposium
on Operating System Design and Implementation. Seattle,
2006.

[19] S. Edlich, A. Friedland, J. Hampe, and B. Brauer, “NoSQL:
Introduction to the World of non-relational Web 2.0
Databases,” (In German) NoSQL: Einstieg in die Welt
nichrelationaler Web 2.0 Datenbanken. Hanser Verlag, 2010.

[20] R. Angles, and C. Gutierrez, “Survey of Graph Database
Models,” ACM Computing Surveys, Vol. 40. No. 1 Article 1,
2008.

[21] I.F. Cruz, A.O. Mendelzon, and P.T. Wood, “A graphical
query language supporting recursion,” Association for
Computing Machinery Special Interest Group on
Management of Data, ACM Press, 1987, pp. 323—330.

[22] M. Gemis, and J. Paredaens, “An object-oriented pattern
matching language,” 1st JSSST International Symposium on
Object Technologies for Advanced Software. Springer-
Verlag, 1993, pp. 339–355.

[23] R. Giugno, and D. Shasha, “GraphGrep: A fast and universal
method for querying graphs,” IEEE International Conference
in Pattern recognition, 2002.

[24] InfoGrid: The Web Graph Database, http://infogrid.org/trac
[retrieved: December, 2013].

[25] Apache Derby, http://db.apache.org/derby [retrieved:
December, 2013].

[26] RamDisk Plus, http://www.raxco.com/home/
ramdiskplus_workstation.aspx [retrieved: December, 2013].

[27] HyperSQL, http://hsqldb.org [retrieved: December, 2013].

[28] XING das professionelle Netzwerk, http://www.xing.com
[retrieved: December, 2013].

