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Abstract—Creating 3D content requires a lot of expert knowl-
edge and is often a very time consuming task. Procedural mod-
eling can simplify this process for several application domains.
However, creating procedural descriptions is still a complicated
task. Graph based visual programming languages can ease the
creation workflow; however, direct manipulation of procedural
3D content rather than of a visual program is desirable as it
resembles established techniques in 3D modeling. In this paper,
we present a dataflow language that features novel contributions
towards direct interactive manipulation of procedural 3D models:
We eliminate the need to manually program loops (via implicit
handling of nested repetitions), we introduce partial reevaluation
strategies for efficient execution, and we show the integration of
stateful external libraries (scene graphs) into the dataflow model
of the proposed language.

Keywords-procedural modeling, dataflow graphs, loops, term
graphs

I. INTRODUCTION

This is a revised and augmented version of “Implicit Nested
Repetition in Dataflow for Procedural Modeling”, which ap-
peared in the Proceedings of The Third International Confer-
ence on Computational Logics, Algebras, Programming, Tools,
and Benchmarking (COMPUTATION TOOLS 2012) [1].

Conventional 3D models consist of geometric information
only, whereas a procedural model is represented by the op-
erations used to create the geometry [2]. Complex man-made
shapes exhibit great regularities for a number of reasons, from
functionality over manufacturability to aesthetics and style. A
procedural representation is therefore commonly perceived as
most appropriate, but not so many 3D artists accept a code
editor as user interface for 3D modeling, and only few of them
are good programmers. Recently, dataflow graph based visual
programming languages for 3D modeling have emerged [3],
[4]. These languages facilitate a graphical editing paradigm,
thus allowing to create programs without writing code. How-
ever, such languages are not always easier to read than a
textual representation [5]. Therefore, the goal is a modeler
that allows direct manipulation of procedural content on the
concrete 3D model, without any knowledge of the underlying

representation (code), while retaining the expressiveness of
dataflow graph based methods.

In this paper, we present a term graph based language
for procedural modeling with features that facilitate direct
manipulation. First, we give an overview of related work in
Section II. Then, we give a summary of the requirements for
the language in Section III. Next, in Section IV the language is
formally defined, and a compilation technique to embed such
models in existing procedural modeling systems is described.
Section V describes how the language can be applied to
different modeling operations. Going beyond our previous
work in [1], Section VI describes a method for incrementally
reevaluating a procedural model expressed in our language in
response to user interaction. We conclude with a discussion
and some points of future research.

II. RELATED WORK

Procedural modeling is an umbrella term for procedural de-
scriptions in computer graphics. As a procedural description is
basically just a computer program, there are many possibilities
to express procedural content.

One category are general purpose programming languages
with geometric libraries, for example C++ with CGAL [6] or
the Generative Modeling Language (GML) [2] which utilizes
a language similar to Adobe’s PostScript [7]. Processing [8]
is an open source programming language based on Java with
a focus on computer programming within a visual context.

As many professional 3D modeling packages contain em-
bedded scripting languages, these can be used to express
procedural content. Some representatives are for example MEL
script for Autodesk Maya [9] or RhinoScript for Rhinoceros
[10].

Some domain specific languages have successfully been
applied to express procedural content. For example, based on
the work of Stiny et al. [11] who applied the concept of formal
grammars (string replacements) to the domain of 2D shapes,
Wonka et al. [12] introduced split grammars for automatic
generation of architecture. These concepts have further been
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extended by Mueller et al. [13] into CGA Shape, which is
available as the commercial software package CityEngine [14]
that allows procedural generation of buildings up to whole
cities.

Visual Programming Languages (VPLs) allow to create
and edit programs using a visual editing metaphor. Many
VPLs are based on a dataflow paradigm [15]; the program is
represented by a graph consisting of nodes (which represent
operations) and wires along which streams of tokens are
passed. Some examples in the context of procedural modeling
are the procedural modeler Houdini [4] and the Grasshopper
plugin for Rhinoceros [10], which both feature visual editors
for dataflow graphs. Furthermore, the work of Patow et al. [16]
has shown that shape grammars can also be represented as
dataflow graphs. Such a representation also allows established
interaction metaphors to be accessible for procedural modeling
packages [17].

Term Graphs [18] arose as a development in the field of term
rewriting. While term graphs are intuitively similar to dataflow
graphs, there is no concept of a stream of tokens. Term graphs
are a generalization of terms and expressions which makes
explicit sharing of common subexpressions possible. Formally,
we base our work on the definitions given in [19] rather than
on any dataflow formalism.

III. LANGUAGE REQUIREMENTS

Dataflow languages have a number of properties that make
them very desirable for interactive procedural modeling. They
allow efficient partial reevaluation in order to interactively
respond to “localized” changes, they are expressive enough
to cover traditional domains of procedural modeling such
as compass-and-ruler constructions and split-grammars, and
they can be extended in various ways to support repeated
structures/repeated operations.

We are currently researching direct manipulation based user
interfaces for dataflow-based procedural modeling. This means
that the dataflow graph itself is not visible to the user; instead,
the user interacts with a concrete instance of the procedural
model, i.e., a 3D model generated from a concrete set of
parameter values. The basic usage paradigm is that the user
selects objects in this 3D view and applies operations to them;
these operations are added to the graph.

The goal of keeping the graph hidden during normal user
interaction leads to additional requirements for the language
that differ from traditional approaches.

A. Repetition

Loops should not be represented explicitly, i.e., loops
should not be represented by an object that needs to be visual-
ized so the user can interact with it directly. Operations should
be implicitly repeated when they are applied to collections of
objects.

It must be possible to deal with nested repetitions as
part of this implicit repetition behaviour. Existing dataflow-
based procedural modeling systems use a “stream-of-tokens”
concept, i.e., a wire in the dataflow graph transports a linear

stream of tokens that all get treated the same by subsequent
operations. Nested structures are not preserved in this model.

When directly interacting with a 3D model, we expect the
user to frequently zoom to details of the model. For example,
consider a model of a building façade that consists of several
stories, each of which contains several identical windows,
which in turn contain several separate window panes. A user
will zoom in to see a single window on their screen and
then proceed to edit that archetypal window, for example by
applying some operation to two neighbouring window panes
of that same window. All operations in the modeling user
interface should always behave consistently, independent of
whether the user is editing a model consisting of just a single
window, or one of many windows. In both cases, the system
needs to remember that a collection of window panes belongs
to a single window. Thus, flat token streams are not suited to
direct-manipulation procedural modeling.

B. Failures

There are many modeling operations that do not always suc-
ceed, e.g., intersection operations between geometric objects.
When applying volumetric split operations, a volume might
become empty, rendering (almost) all further operations on
that volume meaningless.

Often, these failures have only local effects on the model, so
aborting the evaluation of the entire model is excessive; rather,
we propagate errors only along the dependencies in the code
graph — if its sources could not be calculated, an edge is not
executed. In many cases, this is exactly the desired behaviour
and allows to easily express simple conditional behaviours
such as “if there is an intersection, construct this object at
the intersection point” or “if there is enough space available,
construct an object”.

C. Side Effects

Neither dataflow graphs nor term graphs are particularly
well-suited for dealing with side-effecting operations; also, to
simplify analysing the code for purposes of the GUI, we have
a strong motivation to forbid side effects.

However, it is a fundamental user expectation to be able to
have operations that create objects, and to be able to replace
or refine objects. Both Grasshopper and Houdini use side-
effect free operations and rely on the user to pick one or more
dataflow graph nodes whose results are to be used for the final
model; this solution is not applicable to a direct manipulation
procedural modeler because it would require interacting with
the graph rather than with a 3D model.

IV. THE LANGUAGE

Below, we will first define the term graphs that form the
basis of our language; we will then proceed to discuss our
treatment of side effects, repetition and failing operations.
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Fig. 1. A code graph (as presented by [19]) is a hypergraph that consists
of nodes that correspond to results and hyperedges that represent operations
(left). In this illustration the nodes are represented as ellipses. Hyperedges are
visualized as boxes; they can have any number of source and target nodes.
Hyperedges with no source nodes correspond to constants. This example
shows a code graph that carries out a simple construction: Two points define
a straight line; two lines yield an intersection point (right).

A. Code Graphs

The underlying data structure is a hypergraph consisting of
nodes, which correspond to (intermediate) values and graph-
ical objects, and hyperedges, which represent the operations
applied to those values as shown in Figure 1.

Note that we are following term graph terminology here,
which differs from the terminology traditionally used for
dataflow graphs. In a dataflow graph, nodes are labelled with
operations, and they are connected with edges or wires, which
transport values or tokens. In a term graph, hyperedges (i.e.,
edges that may connect more or fewer than two nodes) are
labelled with operations or literal constants, and values are
stored in nodes, which are labelled with a type.

We reuse the following definition from [19]:
Definition 1: A code graph over an edge label set ELab

and a set of types NType is defined as a tuple G =
(N , E , In,Out, src, trg, nType, eLab) that consists of:
• a set N of nodes and a set E of hyperedges (or edges),
• two node sequences In,Out : N ∗ containing the input

nodes and output nodes of the code graph,
• two functions src, trg : E → N ∗ assigning each edge the

sequence of its source nodes and target nodes respec-
tively,

• a function nType : N → NType assigning each node its
type, and

• a function eLab : E → ELab assigning each edge its edge
label. �

Furthermore, we require all code graphs in our system to
be acyclic and that every node occurs exactly once in either
the input list of the graph, or in exactly one target list of an
edge.

Definition 2: Edge labels are associated with an input type
sequence and an output type sequence by the functions
edgeInType and edgeOutType : ELab→ NType∗. �

Definition 3: An edge e is considered type-correct if
edgeInType(eLab(e)) matches the type of the edge’s source
nodes, and edgeOutType(eLab(e)) matches the type of its
target nodes. A codegraph is type-correct if all edges are type-
correct. �

B. Limited Side Effects

In Section III-C, we have noted the need to be able to
model creation and replacement operations. The scene is the
set of visible objects; we define it as a global mutable set of
object references. We only allow two kinds of side-effecting
operations: (a) adding a newly-created object to the scene, thus
making it visible; and (b) removing a given object reference
from the scene.

Replacement and refinement can be modeled by removing
an existing object and adding a new one. Object removal is
idempotent and only affects object visibility, not the actual
object. Object visibility cannot be observed by operations.
Therefore, no additional constraints on the order of execution
are introduced.

C. Implicit Repetition

When an operation is applied to a list rather than a single
value, it is implicitly repeated for all values in the list; if two or
more lists are given, the operation is automatically applied to
corresponding elements of the lists (cf. Figure 2). It is assumed
that the lists have been arranged properly.

We define our method of implicitly handling repetition by
defining a translation from codegraphs with implicitly-repeated
operations to codegraphs with explicit loops.

1) Explicit Loops:
Definition 4: A codegraph with explicit loops is a code-

graph where the set of possible edge labels ELab has been
extended to include loop-boxes. A loop-box edge label is a
tuple (LOOP, G′, f) where G′ is a code graph (the loop body)
with n inputs and f ∈ {0, 1}n is a sequence of boolean flags,
such that at least one element of f is 1. The intention behind
the flags f is to indicate which inputs are lists that are iterated
over (fi = 1), and which inputs are non-varying values that
are used by the loop (fi = 0). The number of iterations
corresponds to the length of the shortest input list. The edge
input and output types of a loop are defined by wrapping the
input and output types of the loop body (referred to as tii and
toi below) with List[· · · ] as appropriate:

edgeOutType((LOOP, G′, f))i := List[toi]

edgeInType ((LOOP, G′, f))i :=

{
List[ti i] if fi = 1

ti i otherwise
�

2) Codegraphs with Implicit Repetition: To allow implicit
repetition, we relax the type-correctness requirement that edge
input/output types match the corresponding node types.

A codegraph with implicit repetition is translated to a code-
graph with explicit loops by repeatedly applying the following
translation; the original codegraph is considered type-correct
iff this algorithm yields a codegraph with explicit loops that
fulfills the type-correctness requirement.

Consider an edge e where the type-correctness condition is
violated. If any of the output nodes is not a list, or if any of the
mis-matching input nodes is not a list, abort; in this case, the
input codegraph is considered to be invalid. Replace the edge
e by a loop edge e′. The repetition flags fi for the new loop
edge are set to 1 for every input with a type mismatch, and
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(a) (b) (c) (d)

Fig. 2. Handling repetitions: The images show examples of simple procedural models ((b) and (d)) that create a list of line segments (blue) and their
respective code graphs ((a) and (c)). Points, lines and circles correspond to intermediate results (nodes) of the same color. makeCircle creates a circle out of
a point and a radius, pointsOnCircle creates a list of evenly distributed points on a circle and makeSegment creates a straight line segment between two
points. This operation can be implicitly repeated to create segments from a list of points (on a circle) to a single point ((b)), or between two lists of points
on circles ((d)) using makeSegment. Multiple graphical elements are represented by single nodes in the corresponding code graphs ((a) and (c)).

to 0 otherwise. The loop body G′ is a codegraph containing
just the edge e; the types of its input and output nodes are
chosen such that the edge e′ becomes type-correct within the
outer codegraph. The translation is then applied to the loop
body G′.

3) Fusing Loops: The result of the above translation is a
codegraph that contains separate (and possibly nested) loops
for each edge. This is undesirable for two reasons, namely
performance and code readability. Performance is relevant
whenever the operations used in the codegraph edges are
relatively cheap, such as, for example, compass and ruler
constructions, as opposed to boolean operations on 3D vol-
umes (constructive solid geometry, CSG). Code readability
is important because a procedural model might still need to
be modified after it has been exported from our system to a
traditional script-based system.

Consecutive loops, i.e., loops where the second loop iterates
over an output of the first, can be fused if both loops have
the same number of iterations and if the second loop does
not, either directly nor indirectly, depend on values from other
iterations of the first loop.

To determine which loops have the same number of it-
erations, we will annotate each occurrence of List in each
node type with a symbolic item count, represented by a set
of variable names. Each variable is an arbitrary name for an
integer that is unknown at compile time. A set denotes the
minimum of all the contained variables. List{a}[t] means a
list of a items of type t, and List{a,b}[t] means a list of
min(a, b) items.

All List types that appear as outputs of non-loop edges
are annotated with a single unique variable name each. Every
loop edge is annotated with a symbolic iteration count that is
the minimum (represented by set union) of the symbolic item
counts of all the lists it iterates over. Annotations on nested
List types are propagated into and out of the loop bodies.
The resulting List types of a loop box are annotated with
a symbolic item count that is equal to the symbolic iteration
count of the loop.

Fig. 3. Two consecutive loops containing one operation each that gets
applied to every item of the list. Under certain conditions (see text) the loops
can be fused in order to simplify the graph.

Two consecutive loop edges e1 and e2 can be fused when the
symbolic iteration counts of the loops are equal, the repetition
flag fi is set to 1 for all inputs of e2 that are outputs of e1,
and e2 is not reachable from any edge that is reachable from
e1, other than e1 and e2 themselves.

If all these conditions are fulfilled for a given pair of edges,
the edges can then be replaced by a single edge (cf. Figure
3); the fused loop body is the sequential concatenation of the
two individual loop bodies. The inputs for the fused edge are
the inputs of e1 and all nodes that are inputs of e2 but not
outputs of e1. The flags fi for the fused edge are equal to the
corresponding flags for inputs of e1 and e2. The outputs for
the fused edge are all nodes that are either outputs of e1 or of
e2. This fusing operation is applied until no more edges can
be fused.

D. Handling Errors

The desired error-handling behaviour can be described by
regarding ERROR as a special value which is propagated
through the codegraph. If an operation fails, all its outputs are
set to ERROR; an operation is also considered to fail whenever
any of its inputs are ERROR.

In a naive translation, all arguments need to be explicitly
checked for every single operation. To arrive at a better
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Fig. 4. Left: two consecutive if-boxes used for handling potentially-failing
operations. The input (Opt[x] at the top) is already the result of a potentially-
failing operation. Note that in this example, operation A itself cannot fail
(result type is plain y), while operation B can (result type is Opt[z]). They
can be combined by nesting the second box inside the first (center). This often
exposes opportunities for eliminating redundant error checks (right).

translation, we use a similar method as for the loops above;
we first make the error checking explicit and then introduce a
rule for combining consecutive error-checks.

Definition 5: Opt[t] := t ∪ {ERROR} for all types t, i.e.,
Opt[t] is a type that can take any value that type t can, or
a special error token. Opt[t] is idempotent: Opt[Opt[t]] =
Opt[t]. Also note that Opt can nest with List — the types
Opt[List[t]] and List[Opt[t]] and Opt[List[Opt[t]]] are three
different types. �

Definition 6: An if-box edge label is a tuple (IF, G′, f)
where G′ is a codegraph with n inputs and f ∈ {0, 1}n is
a sequence of boolean flags, such that at least one element of
f is 1. The edge input and output types of a loop are defined
by wrapping the input and output types of the loop body with
Opt[· · · ] as appropriate, analogously to the treatment of loop
boxes (cf. Definition 4). When an if-box is executed, all input
values for which fi = 1 are first checked for ERRORs; if
any of the input values is equal to ERROR, execution of the
box immediately finishes with a result value of ERROR for
each output. If none of the inputs are ERROR, the body G′ is
executed; its output values are the output values of the if-box.
�

Predefined operations that can fail will return optional
values (Opt[· · · ]). For every edge in the code graph, if-boxes
have to be inserted if necessary to make the codegraph type-
consistent.

Two consecutive if-box edges e1 and e2 can be fused when
the flag fi is set to 1 for at least one input e2 that is an output
of e1, and e2 is not reachable from any edge that is reachable
from e1, other than e1 and e2 themselves.

Fusing of if-boxes happens by moving the edge e2 into the
body of the if-box e1, yielding two nested if-boxes (cf. Figure
4). The inputs for the fused edge are the inputs of e1 and
additionally all nodes that are inputs of e2 but not outputs of
e1; the flags fi for the additional flags are all set to 0, which
means that the outer box does not need to check these inputs
against ERROR, because the inner box will do so if necessary.
For the nested if-box inside the fused edge, we next check
whether that box is still required; first, for every input whose

(a) (b)

Fig. 5. This gothic window construction was created in our test framework
using direct manipulation without any code or graph editing. The number of
repetitions is an input parameter of the model.

node type is not of the form Opt[t], the corresponding flag fi is
set to 0. If all flags are set to zero for the inner if-box, the box
is eliminated by replacing the edge with its body codegraph.

V. MODELING VOCABULARIES

In this section, we describe some common modeling opera-
tions and their realization within our framework. The examples
in this section have been created using direct manipulation on
a visible model only (without visualization of the underlying
code graph), the concrete user interface is, however, outside
the scope of this paper. Refer to [20] and [21] for accounts of
different applications of our system.

A. Compass & Ruler

Compass and ruler operations have long been used in
interactive procedural modeling [22]; these operations are well
suited to a side-effect free implementation, and usually return
only a single result per operation. Our addition of repetition
allows for new constructions (Figure 5).

B. Split Grammars

We can use a methodology similar to Patow et al. [16] to
map split grammars to code graphs (see Figure 6). A model is
described by a set of replacement rules. Successive application
of rules gradually refines the result (coarse to fine description).
Just as in CGA Shape [13] and the work of Thaller et al.
[23], a shape consists of a bounding volume called scope, a
individual local coordinate system, and geometry within the
scope. These shapes are partitioned into smaller volumes by
operations split and repeat (replacement as side-effect). The
split operation partitions the scope in a predefined number of
parts, whereas with the repeat operation the number of parts
is determined by the size of the scope at the time of rule
application.

A complex example of a façade that was realized through
our system is shown in Figure 7.
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Fig. 6. Split grammar example: A simple shape grammar with split and
repeat operations can be expressed using a textual description (a). This
structure can be mapped to a codegraph (b) and executed, which yields (c).

(a)

(b)

Fig. 7. A complex façade example realized with our system. These images
stem from parts of the Louvre that were reconstructed in the work of Zmugg
et al. [20]. Figure (a) shows the hierarchical split layout of the façade, which
led to the rendering (b).

Fig. 8. Illustration of interconnected structures: The pillars of the bridges
are constructed using ray casting for obstacle detection; The pillars of the
larger bridge are constructed with respect to the position of the lower bridge.

C. Interconnected Structures

A drawback of (context-free) shape grammar systems is that
they lack mechanisms for connecting structures across differ-
ent parts of the top-down modeling hierarchy. The solution
proposed in [24] is to extend a text-based shape grammar
system by a feature called “containers”. The idea is to pass
mutable containers, currently implemented via nested arrays,
as parameters to shape grammar rules. During the evaluation
of the rules, objects which are potential attaching points can
be appended to these arrays as a side effect of the grammar
evaluation. These arrays can later be used to define structures
that connect elements from independent parts of the model
hierarchy. These connecting elements can follow different
connection patterns based on geometric queries, such as ray
casting (see Figure 8).

We can directly translate the idea of containers in [24] to
our system, with the only difference being that attaching points
have to be explicitly grouped in arrays. This does not cause
additional complexity; receiving a container as an input and
explicitly adding objects should take about the same “effort”
as explicitly grouping objects and returning a nested list as
an output. In the context of direct manipulation of procedural
models, however, our approach has two advantages, both of
which stem from the absence of side effects in our system:
• A list in our system has a concrete visual representation

— the user can click on it; by contrast, a mutable
container has different states throughout its lifetime, and
it is created as an empty container before objects are
added. As such it is a “virtual” object for which no
concrete 3D representation seems possible.

• Passing a mutable container enforces a linear execution
order; different operations that access the same container
must always be executed in the same order, or the mean-
ing will change, preventing efficient partial reevaluation
of the scene. This is not a problem in the context of [24],
which focuses on offline generation of geometry.

D. Scene Graphs

Many three-dimensional scenes have a hierarchical structure
where individual objects are placed relative to a parent object,
e.g., pieces of furniture are placed relative to the room that
they are located in, but the objects on a table are placed
relative to the table. The structure describing such relations
is referred to as a scene graph. When objects that occur more
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Fig. 9. Scene graphs allow the representation of hierarchical dependencies;
As the TV is placed in dependence of the table, changing the table’s position
will also move the TV accordingly. Furthermore, scene graphs are memory
efficient through instancing: the two chairs in this scene refer to the same
geometry with different transformations.

than once in a scene are taken into account, the scene graph
is an acyclic graph instead of a tree. Each node in a scene
graph contains a transformation and, optionally, geometry. The
transformation that is applied to each piece of geometry —
defining its placement in the scene — is the product of all
transformations on the path from the root to the node (see
Figure 9). By gradually changing the transformations of nodes,
animated objects can be achieved easily.

To embed a scene graph in our system, we first need a
type Node to represent scene graph nodes; we will assume
that one instance of that type, the root of the scene graph,
will get passed to the code graph as an input. Child nodes
are created using operations that take the parent as an input;
in particular, there is an operation createNode that creates a
transformation node (without any visible geometry) and an op-
eration loadGeometry that creates a node with pre-generated
geometry loaded from a file. Finally, the toGlobal converts a
point from the local coordinate system of a scene graph node
to global coordinates; this operation allows creating structures
that connect objects that reside in different parts of the scene
graph.

Building on top of the createNode and toGlobal oper-
ations, we can also provide a createNodeAt operation that
places a child node at a point given in global coordinates
(instead of the usual parent-relative transformation).

The first question that has to be asked is whether this vocab-
ulary fulfills the requirements of our code graph formalism, in
particular the limitations on side effects. There are no object
removal or replacement operations; both createNode and
loadGeometry are intended as object creation functions, but
they actually modify the parent node’s set of children rather
than a global set of visible objects. This is, however, equivalent
to having one global set of objects, where each object can
contain a reference to its parent object. Storing individual sets
of child nodes at each node rather than a single global set can
thus be seen as a performance optimisation that is transparent
from the semantics point of view.

For real-world applications, the range of node-creating
operations needs to be extended, but the basic structure will

Fig. 10. A procedural scene graph: Scene graph nodes with pedestals are
placed at points distributed on a circle. On top of each pedestal, a museum
exhibit is placed. The input for the code graph that represents this procedural
model is a list of file paths to load the exhibits from.

Node List[Point]

List[Node] List[Path]

List[Node]

loadGeometry

createNodeAt

Circle 5

pointsOnCircle

Fig. 11. The code graph representing Figure 10. For simplicity, the operations
representing the pedestals have been left out.

remain the same. This is a straightforward mapping of a scene
graph to the code graph, which is important because it allows
the user interface to present standard scene graph semantics
to the user. The work of Zmugg et al. [21] describes this from
an application’s point of view.

Figure 10 shows a variant of a use case described in [21];
the corresponding code graph can be seen in Figure 11. The
inputs for this code graph are the number of museum exhibits
to be shown and a list of paths to files containing the 3D
models of the exhibits. The requested number of models is
loaded from the list and placed in scene graph nodes arranged
in a circle.

As the transformations could be represented explicitly as
values in the code graph, a code graph based system is
necessarily at least as powerful as a scene graph system.
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However, there are two reasons why it is desirable to use
existing scene graph systems (such as OpenSG [25]) as a
modeling vocabulary for a code graph based system:
• Scene graphs, with their hierarchical way of managing

object placement, provide a useful abstraction; dealing
with transformations as values in a code graph can be
hard to understand for the end user. A scene graph node,
on the other hand, ties the transformation to a concrete
object and can thus be represented in a more intuitive
way in a graphical user interface.

• Scene graph systems are available as ready-to-use li-
braries and already solve many problems related to effi-
cient rendering and animation. It is therefore desirable to
be able to use them from the procedural modeling system,
rather than having to re-implement their functionality.

VI. INCREMENTAL UPDATES

During interactive manipulation of a procedural object, it
is usually a single parameter that is being modified, for
example using a mouse dragging operation. This parameter
often only affects a small part of the model, so, for reasons of
performance, it is not desirable to reevaluate the entire model.
Instead, we want to perform the minimum amount of work
required, i.e., to only reevaluate those individual operations
that really depend on the changed input.

The straightforward method is thus to reevaluate all hyper-
edges that are below the changed value (i.e., that consume it
directly or indirectly). Reevaluating an operation entails first
undoing all side effects caused by that operation, before re-
executing the operations with updated parameters.

In the course of this section, we will first show why this
approach is not sufficient and then proceed to describe a
method that takes the discussed problems into account.

A. The Problem of Aggregate Values

Excessive recalculation can happen whenever an input of a
code graph edge is of an aggregate type, i.e., any type that
consists of several parts such that some of these parts might
stay unchanged. Lists are an obvious example of an aggregate
data type in our language; if a change in an input parameter
causes a change in one element of an intermediary result of
list type, we do not want to undo and recalculate all operations
that use the unchanged elements.

Individual modeling vocabularies can add further aggre-
gate data types which can also cause excessive recalculation;
changing the color of an object might, for example, only affect
the colors of objects that depend on it, but not their shape.
Recalculating the geometry of those objects might be a lot
more expensive than just updating their color.

In particular, this problem affects our use of scene graphs as
described in Section V-D. One of the main strengths of scene
graphs is that a scene graph can be efficiently animated by
changing the transformation on a node; this affects all children
of the node without requiring that subgraph to be changed. The
code graph representation of a scene graph, however, encodes
dependencies that do not actually exist. Each scene graph node

Node Trans

createNode

Node

(a)

Node

setTransformation

createNode

Trans

Node

(b)

Fig. 12. With a simple representation of scene graphs, child nodes will
depend on the transformation (a); this can be avoided by having separate
createNode and setTransformation operations (b). This will avoid a reeval-
uation of createNode after changing the transformation.

depends on its transformation, and all children of a scene graph
node depend on the parent node.

Thus, when a naive method is used to evaluate the code-
graph, all children of a node are rebuilt from scratch when the
transformation of the parent is changed.

The “museum” example from Figures 10 and 11 constitutes
a further example. When the number of museum exhibits to be
displayed is changed, already-loaded objects should never be
re-loaded. Ideally, only new objects should be loaded, while
all objects that were previously visible should be re-used.

B. A Possible Alternate Interface to Scene Graphs

A possible way to solve this problem is to make the code
graph encode the dependencies more accurately. In particular,
this means using several separate operations to achieve the
work of createNode and related operations. In particular,
node creation needs to be separated from setting a node’s
transformation (Figure 12). A node’s children will thus depend
on the parent node’s existence, but not on its transformation.

This hypothetical setTransformation instruction introduces
some problems. It is obviously a side-effecting operation, and
it does not seem to fit any of the allowed side effects described
in Section IV-B. It can, however, be interpreted as an object
creation function that creates an invisible “transformation
object” that contains the transformation and a reference to
the scene graph node to be transformed. After code graph
evaluation is complete, the scene can be scanned for these
transformation objects and the transformations applied to the
scene graph nodes.

The toGlobal operation can not be supported directly by this
approach, as it would need to observe the set of transformation
objects that are part of the scene, which is not allowed
according to Section IV-B. Instead, the actual transformation
will need to be passed to it using an explicit connection in the
code graph.

This approach thus fulfills all the formal criteria, but it has
serious disadvantages for the user interface. Direct manipu-
lation of the setTransformation operation by itself is next
to impossible, as it does not have any result that can be
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visualized in a 3D GUI. The GUI layer will probably have
to present a simplified view of the situation to the user, where
the createNode and setTransformation operations are folded
back together.

Likewise, note that the loadGeometry operation used in
the example in Figure 11 is responsible for both loading a
model from a file and placing it in the scene. Separating a
loading operation from a placement operation would introduce
additional complexity at the user interface level, as the user
interface would need to have a visual representation of “loaded
but not displayed” models. It is thus highly desirable to have
a single operation for loading and placement.

It is therefore preferable by far to define a method to
efficiently handle incremental updates on codegraphs that
use the more straightforward representation of scene graphs
described earlier.

C. Incremental Update for Individual Operations

To define the semantics of incremental updates, we will
follow a bottom-up approach. We will start by defining updates
for individual hyperedges in a code graph, i.e., for individual
operations, before building up to entire code graphs.

Modeling operations are defined outside the code graph.
When basic term graph evaluation is used to evaluate code
graphs, each modeling operation can be implemented by a
simple function in the underlying language of the system.

To partially reevaluate a code graph, the side effects of the
affected operations have to be taken into account; in partic-
ular, old side effects have to be undone before an operation
can again be executed with new parameters. Therefore, for
each modeling operation op we require a modeling operation
library to provide at least the two implementation functions
evaluateop and undoop . The former performs the operation
(potentially causing side effects) and the latter reverses those
side effects.

evaluateop : (in1 · · · inn)

→ (Sop , out1 · · · outm)

undoop : Sop → ()

In addition to the modeling operation’s output values, the
evaluateop function also returns a value that gets passed to
the next invocation of undoop . The type Sop of this state
value depends on the operation. For operations without side
effects, the undoop function does nothing and Sop contains no
information.

To allow reevaluations to be optimized by taking advantage
of previous evaluations and to allow partial updates of ag-
gregate values such as lists and scene graph nodes, modeling
operation libraries may also provide a updateop function.

The input and output values of the updateop function will
each be annotated with a tag. A tag is intended to specify if a
value has changed, and if so, in what way it has changed.
For many datatypes, it will be enough to track whether a
value has changed or not. For scene graph nodes, we need to

distinguish between changes that only affect the transformation
and changes that should trigger a complete reevaluation of
subsequent operations.

We therefore define a parametric datatype Tag, i.e., for
each data type t, we define a datatype Tag[t]. The individual
Tag datatypes should be defined individually according to
the requirements for the datatype t. We require that every
Tag datatype has at least the two special values NEW and
UNCHANGED.

The updateop function is also supplied with the outputs of
the previous evaluation of the operation; its signature is thus
as follows:

updateop : (Sop , in1 · · · inn,

Tag[in1] · · · Tag[inn],

oldout1, · · · oldoutm)

→ (Sop , out1 · · · outm,

Tag[out1] · · · Tag[outm])

If the update function is not defined, a default implementa-
tion is provided based on the evaluate and undo functions;
it can be seen in Listing 1.

Listing 1 Default update function for operations
function updateop(s, arg1···n, atag1···n, oldout1···m)

if all atag i are UNCHANGED then
return (s, oldout1···m,

UNCHANGED · · · UNCHANGED)
else

undoop(s)
(s′, out1 · · · outm) ← evaluateop(arg0 · · · argn)
return (s′, out1···m, NEW · · · NEW)

end if
end function

To solve the problem of transformations causing subsequent
scene graph nodes to be recreated, we need to define tags for
scene graph nodes that can describe the situation that only the
transformation has changed:

Tag[Node] := {NEW, UNCHANGED, TRANSFORMED}

For scene graph nodes that are TRANSFORMED, most update
operations will simply reuse their old outputs, but tag any
scene node outputs as TRANSFORMED as well; the toGlobal
operation, however, which actually depends on the transfor-
mation of the input, will calculate a new result and tag it as
NEW.

D. Incremental Update for Entire Code Graphs

We are now ready to define evaluateG, undoG and updateG
on entire codegraphs.

For the purpose of this section, we assume G to be a code
graph without implicit repetition or error handling.

Definition 7: For each code graph G, we define evaluateG
to be the evaluation function on the entire code graph. Evalu-
ating a code graph entails calling the individual evaluateop
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functions for each edge of G in an arbitrary topologically
sorted order. The state value returned is a map associating
each edge of G with the state value returned by the evaluateop
invocation for that edge. �

Definition 8: The undo function undoG on a code graph
G calls the individual undoop for all the edges of G in
an unspecified order. Each individual undoop is passed the
appropriate state value. �

Definition 9: The function updateG calls each updateop
function for each edge of G in an arbitrary topologically sorted
order. Each individual updateop is passed the appropriate state
value from the input state, and the state value returned is again
a map associating each edge of G with the state value returned
by the updateop invocation for that edge. �

Updating of a code graph can be optimized under the
assumption that the individual update functions will return
UNCHANGED results when all their inputs are UNCHANGED. That
way, a complete traversal of the code graph can often be
avoided.

E. Incremental Update of Error Checks and Loops

We can handle implicit loops and error handling by first
using the translation given in Sections IV-C and IV-D to trans-
late these features to explicit loop-boxes and if-boxes. We then
treat the (LOOP, G′, f) and (IF, G′, f) families of edge labels
as regular operations and define appropriate implementation
functions for them.

The Opt[t] types used for error handling are not aggregate
datatypes. We do not need any special tag values beyond those
defined for the underlying type t, so we define Tag[Opt[t]] :=
Tag[t] for all types t.

To handle update for an if-box, the state value will be either
the state for the contained graph, or the value ERROR, if the
graph was not evaluated because the error check failed. This
is used to decide whether the contents of the if box should be
evaluated, updated or undone, and whether any ERROR outputs
should be marked as NEW or as UNCHANGED.

The implementation of update(IF,G′,f) can be seen in
Listing 2; the implementations of evaluate(IF,G′,f) and
undo(IF,G′,f) trivially forward to the corresponding functions
on the contained graph G′ and are therefore left out for brevity.

Dealing with repetition is more complicated, as List[t] is an
aggregate type. When individual items in a list are changed, we
want to reevaluate only the corresponding iterations of loops
that iterate over that list. The tag types Tag[List[t]] therefore
need to store individual tags for the list elements.

Definition 10: We define the tag for a list type to be either
NEW, UNCHANGED or a list of tags for the individual list
elements, or, more formally:

Tag[List[t]] := {NEW, UNCHANGED} ∪ Tag[t]∗

where ∗ denotes the Kleene closure. �
Note that this definition does not allow tracking movement

of elements within an array; the added complexity of such a
system does not seem worthwhile at this time. Permuting or
swapping list elements in response to a parameter change will

Listing 2 The update function for if boxes
function update(IF,G′,f)(s, arg1···n, oldout1···m)

if all atag i are UNCHANGED then
return (s, oldout1···m,

UNCHANGED · · · UNCHANGED)
end if

if any arg i with fi = 1 is ERROR then
if s is ERROR then

for all outputs do
(out i, otag i)← (ERROR, UNCHANGED)

end for
else

undoG′ (s)
for all outputs do

(out i, otag i)← (ERROR, NEW)
end for

end if
s′ ← ERROR

else
if s is ERROR then

(s′, out1···m) ← evaluateG′ (arg1···n)
otag1···m ← NEW

else
(s′, out1···m, otag1···m)
← updateG′(s, arg1···n, tag1···n)

end if
end if
return (s′, out1, otag1 · · · outm, otagm)

end function

therefore require all involved list elements to be marked as
changed.

The persistent state s for a loop box is a list of the persistent
states for the individual iterations. Thus, the update function
will calculate the number of iterations required and compare
it with the number of iterations done the previous time. States
that are still needed are updated using updateG′ . If fewer
iterations are needed, extra states are destroyed using undoG′ .
If the number of iterations has increased, new states are created
using evaluateG′ .

The update function for loop edges, update(LOOP,G′,f), can
be seen in Listing 3. Extracting the proper arguments for
specific loop iterations happens as described in Section IV-C.
The definitions of evaluate(LOOP,G′,f) and undo(LOOP,G′,f) are
straightforward and are left out for brevity.

This concludes the extensions to the language (cf. Sec-
tion IV). They cover the incremental updates of individual
operations up to incremental updates of whole code graphs,
as well as the handling of implicit loops and error checks in
this context.

VII. DISCUSSION AND CONCLUSION

We have presented a formal framework for the representa-
tion of procedural models that is particularly suited for direct
manipulation of procedural 3D content.
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Listing 3 The update function for loop boxes
function update(LOOP,G′,f)(s, arg1···n, oldout1···m)

if all atag i are UNCHANGED then
return (s, oldout1···m,

UNCHANGED · · · UNCHANGED)
end if

nnew ← min(lengths of relevant input arrays)
nold ← length of s
for i← 1, max(nnew , nold) do

iarg1···n ← extract arguments for iteration i
itag1···n ← extract tags for iteration i
if i > nold then

(s′[i], out1···m[i]) ← evaluateG′ (iarg1···n)
otag1···m[i]← NEW

else if i > nnew then
undoG′ (s[i])

else
(s′[i], out1···m[i], otag1···m[i])
← updateG′ (s[i], iarg1···n, itag1···n)

end if
end for
return (s′, out1···m, otag1···m)

end function

The design space for the dataflow language is constrained
by three main considerations: simplicity, efficiency and inter-
activity.

Simplicity in this case means minimizing the number of
entities that do not have a natural visual representation in the
GUI. A three-dimensional shape can be represented directly
in the GUI; a repeated three-dimensional shape can also be
represented. A repetition operator, on the other hand, is an
abstract concept, not a three-dimensional object. By introduc-
ing implicit looping and error handling constructs (Section IV),
we have avoided this problem.

Next is efficiency. Even simple procedural models can, by
virtue of their procedural nature, generate relatively large
amounts of geometry data; efficiency is thus always a concern.
We have benchmarked the loop fusion and error handling
optimizations on three different models. The code graphs
are compiled to GML [2], a language syntactically similar
to PostScript. The measurement is based on the number of
executable statements, or tokens; this is independent of model
parameters (repetition counts) and of the implementation qual-
ity of basic operations. See Table I for the results of optimizing
loops (Opt A) and loops and error handling (Opt B).

TABLE I
OPTIMIZATION BENCHMARK: EFFECTS OF FUSING LOOPS (OPT A) AND

LOOPS & ERROR HANDLING (OPT B) ON MODEL SIZE.

Model Tokens Opt A Opt B
gothic ornament 1322 992 789
simple house 408 258 225
complex façade 69769 30846 24865

The third and final consideration was interactivity. Proce-

dural models are not always evaluated from scratch; this is
especially the case in an interactive procedural editor, where
the user can adjust individual parameters of a model using
the mouse. For a procedural modeling system to perform
well in that situation, it needs to avoid doing unnecessary
recalculations. We have found that it is not enough to do this
at the level of individual objects, as the granularity of these
objects is dictated by the requirement of simplicity. An entity
perceived as a single object by the user might in fact consist
of several parts that can be updated individually. The method
we have described in Section VI addresses this by allowing
the implementations of the modeling operations to cooperate
in providing incremental update functionality.

Taken together, these individual aspects form a system
that constitutes a solid base for a direct manipulation based
graphical procedural modeler that can be used with different
modeling vocabularies depending on the concrete application.
Since the publication of our conference paper [1], we have
successfully used systems based on this framework for differ-
ent applications of procedural modeling [20], [21].

A. Future Work

Interactive performance could, in theory, be improved fur-
ther by taking advantage of the fact that during interactive
manipulation of a procedural model, the same parameters are
often changed repeatedly. Applying a form of constant folding
to the tag values described in Section VI might serve to
eliminate a lot of redundant checking. Parallel execution of
modeling operations would be very beneficial for large and
complex models, as well.

There are also many research opportunities for adapting
existing programming language concepts to our framework
and to the context of direct manipulation procedural modeling.
Defining modules or functions is a well-known technique,
but it is unknown how well they can be adapted to the spe-
cial requirements imposed by direct manipulation. Complex
procedural 3D models will necessarily suffer from the same
problems as complex software does in general; so at some
point it will be necessary to investigate methods of ’shape
refactoring’.
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