
170

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Derivation of Web Service Implementation Artifacts

 from Service Designs Based on SoaML

Michael Gebhart

Gebhart Quality Analysis (QA) 82

Karlsruhe, Germany

michael.gebhart@qa82.de

Jaouad Bouras

ISB AG

Karlsruhe, Germany

jaouad.bouras@isb-ag.de

Abstract—The increasing complexity of service landscapes

requires a detailed planning that considers wide-spread quality

attributes, such as loose coupling between services and their

autonomy. To support this planning task, the Object

Management Group standardized the Service oriented

architecture Modeling Language for designing services and

entire service-oriented architectures. In order to use the

service designs modeled using SoaML within a model-driven

development process, the created service designs have to be

used to derive web service implementation artifacts. However,

mapping rules described nowadays do not consider the SoaML

design artifacts or do not consider service designs as a whole.

In this article, mapping rules are identified and enhanced to

transform service designs into web service implementation

artifacts. The transformation rules are exemplarily applied to

implement a service-oriented workshop organization system.

Keywords-service design; SoaML; web service,

implementation; derivation.

I. INTRODUCTION

This article is an extension of the work presented in [1].
Due to the increasing number of applications within
Information Technology (IT) landscapes, the integration of
these applications is an important success factor when
realizing new functionality. For that purpose, service-
oriented architecture (SOA) evolved as architecture
paradigm [2] to create a flexible and maintainable IT. These
strategic goals are massively influenced by the design of the
building blocks of an SOA, the services. Quality attributes,
such as loose coupling and autonomy [3], have been
identified that impact flexibility and maintainability as
higher-value quality attributes [4]. In order to ensure their
fulfillment, a detailed planning is necessary.

For that purpose and for reducing the complexity when
designing services, the Object Management Group (OMG)
standardized a new language for designing services and
entire service-oriented architectures, the Service oriented
architecture Modeling Language (SoaML). The standard is
vendor- and tool-independent and provides a meta model and
a profile for the Unified Modeling Language (UML). As
UML profile SoaML adds several stereotypes that focus on
the specifics when designing services. Currently, SoaML is
released in version 1.0.1 and is already supported by several
tool vendors. Also some vendors already replaced their
proprietary UML profiles with SoaML, such as IBM [4].

In order to use SoaML as language within a model-driven
development process for services in particular web services
as introduced by Hoyer et al. [5], a derivation of web service
implementation artifacts from service designs based on
SoaML is necessary. For that purpose, mapping rules have to
be formalized that describe the relation between constructs of
the modeled service designs and the generated final
implementation. Furthermore, they constitute the basis for
automatic transformations that can be embedded into
software development tools. The mapping rules have to
consider the underlying concepts so that the characteristics of
the service designs are reflected by the web services. This is
an important aspect for mapping rules, because for example
when quality attributes have been considered during the
service design phase, such as introduced by Gebhart et al.
[1][6][7], the mapping rules are then expected to create web
services that again fulfill these quality attributes.

This article analyses proposed mapping rules for creating
web service implementation artifacts from service designs
based on SoaML. As languages for web service
implementation the Web Service Description Language
(WSDL) and XML Schema Definition (XSD) are chosen to
describe the service interface and included data types.
Furthermore, Service Component Architecture (SCA) as
component model, and Business Process Execution
Language (BPEL) for the implementation of composed
services are considered. In a first step, existing rules are
analyzed. Since SoaML is available as a UML profile there
exist a lot of rules, for instance to create data types based on
XSD from UML Classes that can be reused. Afterwards,
these rules are extended to support the service designs as a
whole. To illustrate the mapping process introduced above,
web service designs describing a workshop organization
system have been designed using SoaML regarding wide-
spread quality attributes.

The article is organized as follows: Section II introduces
the concept of service designs and their creation using
SoaML. Furthermore, in this section, existing mapping rules
and their applicability for service designs are analyzed. In
Section III, the scenario of the workshop organization is
illustrated and its functioning especially through the created
service designs is described. In Section IV, these service
designs are mapped onto web services using the prior created
mapping rules. Section V concludes this article and
introduces future research work.

171

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK

This section describes the fundamental terms and existing
work in the context of specifying service designs and their
mapping onto web service implementation artifacts based on
XSD, WSDL, BPEL, and SCA.

A. Service Design

According to Gebhart et al. [7][8] and Erl [9], a service
design consists of a service interface as external point of
view and a service component fulfilling its functionality. In
order to formalize service designs and to enable their
transformation into implementation artifacts, Mayer et al. [9]
introduce a UML profile for describing behavioral and
structural aspects of service interactions. Similarly, within
the SENSORIA project [10] a UML profile for the service
interaction is specified. Also IBM [11] introduced a UML
profile for modeling software services. Even though all of
these UML profiles enable the modeling of services they
lack in acceptance as they are not standardized. For that
reason the OMG decided to work on a standardized UML
profile [12] and a meta model to formalize service-oriented
architectures and their services. As a result, SoaML has been
created [13]. In this article, SoaML in version 1.0.1 is used.

According to Gebhart [14], in SoaML a service interface
is described by a stereotyped UML Class that realizes a
UML Interface describing the provided operations. A second
UML Interface can be used for specifying callback
operations the service consumer has to provide. These are
necessary to realize asynchronous operation calls as they are
for example required to invoke long-running business
processes [7].

Figure 1. Service interface in SoaML.

An interaction protocol can be added as owned behavior.
It is described by means of a UML Activity and determines
the valid order of the operation calls. Every call is modeled
using a UML Call Operation Action and is assigned to a
UML Partition that represents one of the participating roles.
Figure 1 shows a service interface in SoaML. In this case,
the service interface describes that an operation is provided,
namely the operation “operation1”. There is one request
message expected as input parameter. A response message
will be returned as a result of the operation call. Furthermore,
one callback operation is expected to be provided by the
service consumer. In this case according messages are also
included. The service provider is named “provider” and the
service consumer is named “consumer”. The interaction
protocol describes that for a valid result the provided
operation has be to be called initially on the part of the
provider. Afterwards, the callback operation will be invoked.
The messages used as input and output parameters are
modeled using UML Classes stereotyped by
“MessageType”. They can be further refined into more fine-
grained data types. Figure 2 shows the modeling of message
types.

Figure 2. Message types in SoaML.

The service component is represented by a UML
Component stereotyped by “Participant”. Ports with Service
or Request stereotype constitute the access points to the
provided or required functionality and are typed by a certain
service interface. An Activity as an owned behavior and
visualized as UML activity diagram enables the specification
of the internal logic.

Figure 3. Service component in SoaML.

«ServiceInterface»

ServiceName

«interface»

ProvidedOperations

+ operation1(: Operation1Request) : Operation1Response

consumer :

«interface» RequiredOperations

provider :

«interface» ProvidedOperations

+

Interaction Protocol

: provider : consumer

operation1

«use»

«interface»

RequiredOperations

+ callbackOperation1(: CallbackOperation1Request) : CalbackOperation1Response

callbackOperation1

«MessageType»

Operation1Request

«dataType»

DataType1

+ attribute1 : String

+ attribute2 : String
«MessageType»

Operation1Response

+ success : Boolean

*

«Participant»

ServiceComponent
«ServicePoint»

serviceName :

ServiceName

«RequestPoint»

serviceName2 :

ServiceName2

«RequestPoint»

serviceName3 :

ServiceName3
+

operation1

: serviceName : serviceName2 : serviceName3

Internal

operation

operation2

operation3

callback

Operation1

callback

Operation2

172

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3 shows a service component in SoaML. It
provides one service specified by the service interface
depicted before. In order to fulfill the functionality of the
service component, two other services are required.
According to the Activity owned by the component, in a first
step, an internal operation is performed. This means that this
functionality is completely fulfilled by the service
component itself. Thus it is modeled using a UML Opaque
Action. Afterwards, the operations “operation2” and
“operation3”, provided by the services “serviceName2” and
“serviceName3” respectively, are invoked. These operation
calls are modeled using UML Call Operation Actions within
according UML Partitions. Next, the service component
waits for “callbackOperation2” being invoked. Finally, it
invokes the callback operation provided by the initial service
consumer.

B. Mapping Rules

In the context of mapping formalized service designs
onto web service implementation artifacts based on XSD,
WSDL, SCA, and BPEL approaches exist that consider
either the derivation from SoaML-based models, UML
models with own applied UML profiles, or standard UML
models.

For the generation of XSD, IBM [15] and Sparx Systems
[16] provide adequate mapping rules that map UML class
diagrams onto XSD artifacts and support both the
transformation of classes and their relationships like
aggregations, compositions, associations, and generalization.
Both vendors integrate the mapping rules into their own
tools, which enable a model-driven development with a
graphical tool support. The transformations are applicable to
all UML models without any constraints. The applied rules
can be used in our approach to map message types of service
designs onto XSD.

Regarding WSDL, Grønmo et al. [17] discuss the
advantages and disadvantages between using WSDL-
independent and WSDL-dependent models. Their conclusion
is that WSDL-dependent models, which are UML models
containing WSDL-specific constructs, obscure the behavior
and content of modeled services and make service designs
incomprehensible. WSDL-independent models in contract
simplify building complex web services and integrating
existing web services. For that reason, they provide
transformations based on UML class diagrams with custom
WSDL-independent stereotypes. However, most of the
presented transformations are based on standard UML
elements and are thus applicable for service designs based on
SoaML as it abstracts from WSDL details too. Also IBM
[18] introduces mapping rules and an automatic
transformation from UML to WSDL in [8]. These rules fully
cover the transformation of standard UML elements into
WSDL but are not described in detail. Only the relationships
between source and target elements can be inferred and used
in our work. In contradistinction to the previous related work
the transformation generates also needed namespaces not
bound to the source models but bound to the project structure
used during the transformation. The project structure has the
form of a file system containing source models and the

relative paths will be used in order to generate namespaces
for the target artifacts. This strategy may generate correct
namespaces for a simple project. However, when merging
the generated artifacts from many projects or changing the
project structure during development the resulting
namespace changes will make the WSDL files ambiguous.

Hahn et al. [19] present a transformation from a Platform
Independent Model (PIM) to a Platform Specific Model
(PSM), which converts SoaML to BPEL, WSDL, and XSD
artifacts. Compared to our approach requiring a generation of
BPEL processes from UML activity diagrams, the authors
use BPMN processes as source models for the generation of
executable BPEL processes. Even though no detailed
mapping rules are provided, a promising and consistent
output is generated and the mapping is illustrated using a
simple scenario. The approach can be considered as a proof
for the possibility of producing web service artifacts from
SoaML service designs. The authors restrict that a SoaML
service interface is mapped onto one and only one WSDL
document containing XSD types that represent the SoaML
Messages. A new capability supported by the SoaML to
WSDL transformation is the ability to generate Semantic
Annotations for WSDL (SAWSDL).

For generating BPEL, Mayer et al. [20] discuss the
difficulties when transforming a UML Activity illustrated by
means of a UML activity diagram into an executable
language, such as BPEL. They introduce two alternatives on
generating BPEL constructs. The first alternative is to
generate a BPEL process similar to the UML Activity, where
control nodes of the UML are replaced with edge and
activity guards. The second alternative is to create a BPEL
process with constructs in UML converted to their equivalent
BPEL constructs. The first alternative is easy to be
implemented and results in an unreadable and complex
BPEL process, whereas the second one results in a better
structured orchestration. The approach presents a robust and
promising transformation into BPEL. However, the WSDL
artifacts are inferred from elements described by a custom
UML profile. Further mapping rules to transform workflows
modeled using UML Activity elements onto BPEL artifacts
are presented by IBM [21]. The approach handles some
constraints of a UML Activity and provides adequate
solutions. For example, to specify needed information, as for
instance the partner links, the activity diagram should be
extended with UML elements, such as input and output pins.
Another constraint handled by the authors is how to model
loop nodes in an Activity. Here, the authors propose a
specific representation in UML to enable an easy and
consistent generation of a BPEL loop element. These
enhancements among others can be applied to consistently
transform a UML Activity as the internal behavior of service
components into an executable BPEL process.

SCA is a software technology which provides a model
for building and composing applications and systems
applying a service-oriented architecture paradigm. Combined
with other technologies, such as WSDL and BPEL, SCA
provides the underlying component model. In [18], Digre
provides mapping rules for SoaML elements and SCA. The
transformation is executed manually and the author mentions

173

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that ambiguities in the SoaML model may prevent from
producing proper SCA models. This is exactly the reason
why a certain self-contained and well-understood design
artifact, such as the service design in this article, has to be
chosen when describing transformations. Another fully
automated and tool-supported mapping of SoaML onto SCA
artifacts is proposed by IBM [22]. The tool allows the
application of SCA stereotypes to the source models in order
to add more details specific to the SCA domain.

III. SCENARIO

In order to illustrate the transformation of service designs
based on SoaML into web service implementation artifacts,
the scenario of a workshop organization at a university and
the involved systems are introduced in this section. The
system helps visitors and members of the university in
organizing a meeting or a workshop at a room located at the
university campus. Additionally, the development steps for
creating the required service designs are explained.

A. Business Requirements

In a first step, the business requirements have to be
formalized. For that purpose, a domain model, business use
cases, and the business processes that are expected to be
supported by IT have to be described. These artifacts
constitute the basis to create service designs based on
SoaML that can be used to derive web service
implementation artifacts.

The domain model describes entities and their relation
within the considered domain. It is necessary to understand
the domain, to unify the terminology, and to avoid
misunderstandings. Thus, terms used within business use
cases and business processes are expected to follow the
domain model. Furthermore, operations and parameters are
expected to be named functionally when designing services
[1]. This can be only determined when functional terms, such
as entities, are documented. To formalize the domain model,
there exist several approaches. One alternative is to use UML
class diagrams.

Figure 5. Domain model for workshop organization scenario.

Another alternative that has been chosen in this article is
the Web Ontology Language (OWL) [23][24]. One
advantage of OWL is that it can be directly referenced by
WSDL using the Semantic Annotations language for WSDL
(SAWSDL) [25]. By means of labels, OWL allows the
description of terms in various languages. This is especially
helpful when different languages are used during the
requirements, the design, and implementation phases. In this
case, the domain model includes the terms in English and
German. An excerpt of the domain model for the workshop
organization scenario is depicted in Figure 5. The domain
model can either be formalized directly using XML or by
means of tools, such as Protégé [24].

Figure 6. Business use case expected to be supported by IT.

The business use cases are modeled using UML use

cases extended by the UML profile for business modeling as
introduced by Johnston in [26]. The business use case
expected to be supported by IT is illustrated in Figure 6.

Compared to standard UML use cases, a business use
case describes the business boundaries instead of system

Workshop
(Seminar@de)

Room
(Raum@de)

POI
(POI@de)

Attendees
(Teilnehmer@de)

takes place at
(findet statt in@de)

has

(hat@de)

Perform a workshop

organization

Direction committee

Figure 4. Business process of the workshop organization scenario.

University

Search for

a suitable room

Book a suitable

room

Search for relevant

POIs in the area

Create an

information

brochure

Determine route between

room and each POI

Direction committee

E
v
e

n
t

p
la

n
n

e
r

R
o

o
m

c
o

o
rd

in
a
to

r

O
rg

a
n

iz
e

r

Perform a workshop

organization

Reservation confirmationAttendee count

Attendee

count and

time interval

Room Room Confirmation

Room POIs
Room and

POI
Route (including map sections)

174

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

boundaries. This means that the business actor specified by
the stereotyped UML Actor is not part of the business
represented by the business use case. The business actor, i.e.,
is an external participant that interacts with the business
realizing the business use case. According to the diagram a
direction committee is expected to be supported while
performing a workshop organization.

A business use case is realized by means of a business
process. The business process, i.e., describes the internal
behavior of a business use case. Since the business process
represents the essential artifact when deriving service
designs, the business process for the workshop organization
business use case has to be described. For that purpose the
Business Process Model and Notation (BPMN) [27] is
applied. The process for the considered scenario is illustrated
in Figure 4. Two existing systems, provided by the
university, are involved in the realization of the business
process, namely the KITCampusGuide system and the
facility management system. The KITCampusGuide system
provides operations to manage Points of Interest (POI) such
as the determination of all relevant POIs (Parking, Cafeteria,
etc.) in the area surrounding the target and the provision of
route guidance to all relevant POIs. The facility management
system is concerned with room searches and enables the
reservation of a room for a given number of attendees at the
desired time interval.

B. Service Designs

In the second phase of the development process, the
service design phase, a set of service designs have to be
designed and modeled using SoaML. Each service design is
built according to the understanding introduced in Section II.
The service designs can be created systematically as
introduced by Gebhart et al. in [28]. In a first step, the
service designs are derived from the business requirements.
For example, for every pool within the business process, one
service interface and one service component is created. All
message interactions are used to derive provided and
required operations. For example, a message start event in
BPMN is transformed into one provided operation. In a next
step, the derived service designs are revised regarding
quality attributes, such as loose coupling and autonomy, as
introduced in [29]. This is important, because these quality
attributes influence higher-value ones, such as flexibility and
maintainability, which in turn represent essential drivers for
service-oriented architectures. For example, in this step
naming conventions are considered, operations within
service interfaces are split or merged, and it is ensured that
long-running operations are provided by means of
asynchronous instead of synchronous operations.

The resulting artifact from the design phase which
describes the service “WorkshopOrganization” are presented
below. This represents the business process and realizes the
orchestration of involved services. Figure 7 shows the
designed service interface. The UML Interface realized by
the ServiceInterface element lists the provided operation
“organize” with its input and output parameters. The input
and output parameters are defined using the message types
“OrganizeRequest” and “OrganizeResponse” described in
Figure 9. As the interface associated by means of the usage
dependency does not contain any operation, the service
consumer does not have to provide callback operations. This
corresponds to the interaction protocol. This example also
shows the consideration of quality attributes. The operation
“organize” represents the “Perform a workshop
organization” message start event within the business
process modeled in BPMN. However, the quality attribute
discoverability describes that operations should be
functionally named and should follow naming conventions.
Thus, after a systematic derivation of the service interface,
the operation is renamed from “Perform a workshop
organization” to “organize”.

In addition, a service component, representing the
component that fulfills the functionality, is specified for this
service. The service component and its internal behavior are
illustrated in Figure 8. Also in this case, a systematic
derivation is first performed. For example, every invoke
activity within the business process in BPMN is transformed
into a UML Call Operation Action that is assigned to a UML
Partition representing a certain system. Flow elements are
transformed into equivalents UML constructs. In a next step,
quality attributes are considered, i.e., regarding the
discoverability, naming conventions are considered and the
functional naming is ensured.

«ServiceInterface»

WorkshopOrganization

«interface»

WorkshopOrganization

consumer :

«interface» WorkshopOrganizationRequester

provider :

«interface» WorkshopOrganization

Interaction Protocol

: provider : consumer

organize

«interface»

WorkshopOrganizationRequester

«use»

+ organize(: OrganizeRequest) : OrganizeResponse

+

Figure 7. Derived service interface.

175

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Derived service component.

IV. DERIVATION OF WEB SERVICE IMPLEMENTATION

ARTIFACTS FROM SERVICE DESIGNS BASED ON SOAML

In this section, the steps necessary to derive web service
implementation artifacts from service design are illustrated.
Divided into four parts, the first subsection targets the
derivation of data types and their definitions using XSD. For
the provided and required interfaces of the service interface,
service interface descriptions based on WSDL with
associated message types are generated. For realizing the
orchestration of services, BPEL is derived from UML
Activity elements and added as the owned behavior of the
service component. Finally, a SCA component model
describing the structure of the application is derived from the
service component. For each step and for each
transformation performed existing mapping rules are applied.

A. Derivation of Data Types

Data types contained within the SoaML service designs
are expected to be mapped onto XSD to describe request and
response messages used within WSDL operations.

 The service interface in Figure 7 provides the operation
“organize”, which contains input and output messages in the
form of UML DataTypes stereotyped by MessageType. They
constitute containers for further data types described using
attributes or UML Associations to other UML Classes. We
follow the mapping rules provided by Sparx Systems [16].
Each input and output parameter is mapped onto an element
with a complexType and a sequence of XML elements
defining the attributes of the messages as demonstrated in
Source Code 1. The XSD descriptions are stored in separate
files in order to allow other WSDL documents to reuse the
data types.

The separated XSD files are then imported into the
WSDL document using an import statement with the
corresponding namespace and schema location as shown in
Source Code 1.

<wsdl:types>

 <xs:import namespace="http://.../OrganizeRequest"

 schemaLocation="http://.../organize.xsd"/>

</wsdl:types>

<wsdl:message name="OrganizeRequestMessage">

 <wsdl:part name="body" element="OrganizeRequest"/>

</wsdl:message>

Source Code 1. Derived WSDL message types.

Table I summarizes the transformation, provides more

details about the mapping rules, and lists the source and the

target elements with necessary attribute configurations.

TABLE I. SOAML ARTIFACTS TO XML SCHEMA DEFINITION

SoaML Artifact XML Schema Definition

Package A schema element with the “targetNamespace“
attribute to identify and reference the XSD is

generated.

Class

(MessageType)

An element as a root element and a
complexType definition containing a sequence

of child elements are generated. The “name”

attribute corresponds to the name of the class.

Attributes

(ownedAttributes)

Is mapped onto an element with the “name” and

“type” attributes set to the same as in the
source.

PrimitiveType,
Datatype and

MessageType

Are mapped onto the “type” attribute of an
element generated while mapping the member

attributes of a class. For each referenced data
type an import element is used to add the

corresponding external schema.

Association An element is declared for each association
owned by a class. The “name” attribute is set to

the one of the association role. The
“minOccurs” and “maxOccurs” reflect the

cardinality of the association.

Generalization

(Inheritance)

An extension element is generated for a single

inheritance with the “base” attribute set to the

base class name. The UML Attributes of the

child class are then appended to an “all” group

within the extension element.

<<Participant>>

WorkshopOrganization

Component

<<ServicePoint>>

workshopOrganization:

WorkshopOrganization

<<RequestPoint>>

room: Room

<<RequestPoint>>

pOI: POI

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<<RequestPoint>>

routeDetermination:

RouteDetermination

«MessageType»

OrganizeResponse

+ reservation: Conf irmation

«MessageType»

OrganizeRequest

+ attendeeCount: Integer

+ startTime: DateTime

+ endTime: DateTime

<xs:schema targetNamespace="http://.../OrganizeRequest">

<xs:element name="OrganizeRequest">

<xs:complexType>

<xs:sequence>

<xs:element name="attendeeCount“ type="integer"/>

...

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 9. Derived XML Schema Definitions from SoaML messages.

176

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Derivation of Service Interfaces

After generating data types, the operation definitions and
their parameters can be derived from the SoaML service
interface and its realized interface.

According to IBM [18], a port type acting as container
for the operations is generated and each parameter is mapped
onto a part element as shown in Source Code 1. The name of
the port type is derived from the name of the realized
interface in the SoaML service design and enhanced with the
suffix “PortType”. The WSDL operation element includes
the attribute “name”, which corresponds to the operation
name within the service design. Additionally, the previously
derived input and output messages are associated. In case of
service inheritance the operations of the parent interface are
copied to the same generated port type as stated by Hahn et
al. [19]. This allows overcoming the not supported WSDL
inheritance limitation.

<wsdl:portType name="WorkshopOrganizationPortType">

 <wsdl:operation name="organize">

 <wsdl:input message="OrganizeRequestMessage"/>

 <wsdl:output message="OrganizeResponseMessage"/>

 </wsdl:operation>

</wsdl:portType>

Source Code 2. Derived port type in WSDL.

Till now, the abstract part of a WSDL was generated.

The concrete part encompasses deployment-specific details
about how and where to access a service. A binding
definition specifying the communication technology that can
be used by the consumer is generated. The binding is named
as a combination of the interface name and the suffix
“SOAP”. Additionally, it is associated with the prior defined
port type by setting the attribute “type” to the name of the
interface including the suffix “PortType”. The messaging
protocol binding and the transport protocol binding are set to
Simple Object Access Protocol (SOAP) and Hypertext
Transfer Protocol (HTTP). In this work, we use SOAP as a
default protocol. The final part focuses on the physical
endpoint of the service. The endpoint is specified by a URL
that has to be specified by the developer.

<wsdl:binding name="WorkshopOrganizationSOAP"

 type="WorkshopOrganizationPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="organize"/>

</wsdl:binding>

<wsdl:service name="WorkshopOrganization">

 <wsdl:port binding="tns:WorkshopOrganizationSOAP"

 name="WorkshopOrganizationSOAP">

 <soap:address location="<server>:<port>"/>

 </wsdl:port>

</wsdl:service>

Source Code 3: Derived binding and service definition.

TABLE II. SOAML ARTIFACTS TO WSDL

SoaML Artifact WSDL

Interface realized by a
ServiceInterface

WSDL PortType that will be named
according to the interface. It represents

provided operations.

Interfaces used by a

ServiceInterface

WSDL PortType that will be named

according to the interface. It represents
callback operations.

Input / Result /
Exception parameters

in a service interface

WSDL Messages that can be used within the
operations.

Parameters Message Parts that reference the WSDL

Messages.

Parameter types Types, they will be defined in a separate *.xsd

document

C. Derivation of Executable Business Logic

The mapping rules provided by IBM [21] cover all UML
artifacts of a UML Activity involved in the derivation of
control flow elements of a BPEL process. Additionally, new
mapping rules to set attribute values were identified in this
article and are also mentioned in the following
transformation description.

The UML activity diagram in Figure 8 describes the
internal behavior of a service operation “organize” and is
considered to demonstrate the transformation for most often
used control flow elements of a UML activity diagram. The
first generated fragment for the BPEL process is the main
scope. It exists only once and consists of a sequence of other
activities.

Figure 10. Derivation of main scope.

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<bpel:process>

…

<bpel:sequence name="main">

<bpel:receive name="organize" operation="organize"

partnerLink="workshopOrganization“

portType="tns:WorkshopOrganization"

createInstance="yes" variable="input"/>

…

</bpel:sequence>

…

</bpel:process>

177

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The first partition in the activity diagram contains an
initial node which is mapped onto a receive activity with the
attribute “partnerLink” set to the label of the partition,
namely “workshopOrganization”. The attribute “operation”
corresponds to the operation name in the interaction
protocol. This activity is located at the top of the main scope
and waits for an arriving message. The derivation is shown
in Figure 10. The mapping rules are not summarized within a
table, as according tables are directly available in [21].

The involved web services are specified by separate
WSDL definitions containing partnerLink definitions. In
order to call these web services, the BPEL process sets a
partnerLink for each invoke activity. The partnerLinks are
derived from the label of the partitions, such as “room” or
“rootDetermination”.

Figure 11. Derivation of partner links.

The partition containing the initial node is mapped onto a
partnerLink definition with the attribute “name” set to the
value “client” representing the BPEL process itself. For the
other partitions, the attribute “name” is equal to the label of
the respective partition. Moreover, the partnerLink defining
the process itself has the attribute “myRole” whereas other
partnerLinks have an attribute “partnerRole” representing the
role of an invoked web service. Figure 11 shows the derived
partnerLinks for the considered service operation and the
invoked service “Room”. After defining the partnerLinks,
which belong to the abstract part of a BPEL process, the
actions within the partitions are mapped onto invoke
activities as illustrated in Figure 12.

Figure 12. Derivation of activities.

Each activity has the attributes “name” and “operation”

set to the name of the action. The attribute “partnerLink” is
set to the corresponding partnerLink defined earlier. The
activities are located within the corresponding scopes of flow
elements mapped later. Compared to the other activities, the
action “ReservationConfirmation” in the first partition is an
opaque action executed by the BPEL process itself and thus
is not mapped onto an invoke activity. After a skeleton for
the BPEL process has been created, the control flow
elements are derived from corresponding UML elements.
The decision node is mapped onto a BPEL if-else construct.
The condition of the node has to be added manually by the
developer. The black bar representing a fork node and a
parallel execution of the contained action is mapped onto a
BPEL flow construct. The black bar representing a join node
with incoming arrows is implicitly included in the earlier
derived BPEL flow construct. The loop node is illustrated
using a dashed area and is mapped onto a forEach construct
with the attribute “parallel” set to the value “no”. If the loop
node in UML contains a fork and a join node, the attribute
“parallel” is set to “yes”. The derivation of flow elements is
depicted in Figure 13.

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<bpel:partnerLinks>

<bpel:partnerLink name="client"

partnerLinkType="tns:WorkshopOrganization"

myRole="WorkshopOrganizationProvider"/>

<bpel:partnerLink name="room"

partnerLinkType="tns:Room"

partnerRole="RoomProcessProvider"/>

<bpel:partnerLink name="pOI"

partnerLinkType="tns:POI"

partnerRole="POIProcessProvider"/>

<bpel:partnerLink name="rootDetermination"

partnerLinkType="tns:RootDetermination"

partnerRole="RootDeterminationProcessProvider"/>

</bpel:partnerLinks>

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<bpel:invoke name="book" operation="get" partnerLink="room"

portType="tns:Room" />

<bpel:if name="If">

<bpel:flow name="Flow">

...

<bpel:forEach parallel="no" counterName="Counter"

name="ForEach">

<bpel:scope>

<bpel:invoke name="determine"

operation="determine"

partnerLink="rootDetermination"/>

</bpel:scope>

</bpel:forEach>

...

</bpel:flow>

<bpel:else>...</bpel:else>

</bpel:if>

178

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Derivation of flow elements.

D. Derivation of Component Models

In order to embed the already generated artifacts into an
entire component model, SCA elements are derived from the
service designs. Figure 14 illustrates the mapping between
service components described by SoaML Participants and
SCA elements, such as SCA Composites, Components,
Services, References, and Wires, using mapping rules
provided by Digre et al. in [18].

Figure 14. Derivation of SCA component model.

Regard naming conventions, each Participant is mapped
onto a SCA component with name set to the label of the
Participant. Since each SoaML Participant contains Services
and Requests representing provided and required services,
SCA Services and SCA References are generated. The
names of these elements are set to the names of the ports
within the SoaML Participant. The derivation is shown in
Figure 14.

The SCA Composite is the basic unit of a composition in
a SCA Domain and is an assembly of SCA Components,
Services, References, and Wires. The service component
presented earlier deals with the orchestration of external
services and contains also a reference to an internal
component for creating the reservation confirmation. These
two components are to be grouped into an SCA Composite,
whereas SoaML service channels wiring the Services to
Requests are mapped onto SCA Wire elements. Additionally,
if two Services or two Requests are wired together to
delegate service calls, a promote element is added. Figure 15
illustrates the final SCA Composite in a graphical
visualization as introduced by the standard.

Figure 15. SCA Composite for the workshop organization process.

SCA requires that Service and Reference elements are
compatible. The compatibility is assured by means of the
assigned interfaces. The interfaces used in this context can be
derived from service interfaces in SoaML as illustrated in
Section B. The resulting service interface descriptions based
on WSDL can be embedded into the SCA Composite. For
this purpose, based on the realized and used UML Interfaces
representing provided and required interfaces within the
service designs, a bidirectional service interface description
using WSDL with a base and a callback interface is
generated. An “interface.wsdl” element is added to the
Service element with the attribute “interface” set to the URL
of the WSDL service representing the provided service
interface “WorkshopOrganization”. The “callbackInterface”
attribute of the Service element is set to the port type
representing the “WorkshopOrganizationRequester”. For the
corresponding SCA Reference, the assignment is reversed,
i.e., the attribute “interface” of the interface element within
the SCA Reference is set to the required interface and the
attribute “callbackInterface” is set to the provided interface.
The systematical derivation is depicted in the following
figure.

: workshopOrganization

organize

Reservation

Confirmation

: room

get

: pOI : rootDetermination

book get

determine
For each POI

[room found]

[room not found]

<bpel:if name="If">

<bpel:flow name="Flow">

...

<bpel:forEach parallel="no" counterName="Counter"

name="ForEach">

<bpel:scope>

...

</bpel:scope>

</bpel:forEach>

</bpel:flow>

<bpel:else>

...

</bpel:else>

</bpel:if>

<sca:component

name="WorkshopOrganization Composition Component">

<sca:service name="workshopOrganization"/>

<sca:reference name="room"/>

<sca:reference name="poi"/>

<sca:reference name="routeDetermination"/>

<sca:reference name="createReservationConfirmation"/>

</sca:component>

<<Participant>>

WorkshopOrganization

Composition

Component

<<ServicePoint>>

workshopOrganization:

WorkshopOrganization

<<RequestPoint>>

room: Room

<<RequestPoint>>

poi: POI

<<RequestPoint>>

routeDetermination:

RouteDetermination

<<RequestPoint>>

createReservation

Confirmation

Internal
Component

Composition
Component

WorkshopOrganizationComposite

179

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. Integration of WSDL into SCA.

When a service component in SoaML consists of further

service components, these refinements are also transformed

into equivalents in SCA. Figure 17 illustrates the mapping

of composite service components.

Figure 17. Transformation of composite service components.

As a result, the entire service components including their

implementation and refinements into further service

components can be mapped into SCA. The following table

summarizes the mapping rules.

TABLE III. SOAML ARTIFACTS TO WSDL

SoaML Artifact SCA

Service Component /
Participant

Composite that is named according to the
Participant.

Service Service that is named according to the Service
in SoaML. As interface in SCA the mapped

service interface the Service is typed by is
referenced.

Request Reference that is named according to the
Request in SoaML. Also in this case the

Reference has an interface that is derived by

the service interface the Request is typed by.

ServiceInterface The service interface a Service or Request is
typed by is transformed into a WSDL

according to the rules described before. The

service interface is transformed into a
interface in SCA that is used to describe

Service and References.

OwnedBehavior An owned behavior that can be transformed
into a BPEL process is set as implementation

for a certain component in SCA.

Internal
Participant

Component within the SCA composite. The
component is named according to the internal

participant.

Service Channels Wiring between component within the SCA
composite.

V. CONCLUSION AND OUTLOOK

In this article, we illustrated the derivation of web service
implementation artifacts from prior created service designs
that base on SoaML as standardized modeling language. For
that purpose, existing mapping rules that in particular focus
on UML as source artifacts have been analyzed and enriched
with details that aim at supporting service design specifics.
As a result, the mapping rules could be identified to enable
the systematic derivation of web services based on XSD,
WSDL, BPEL, and SCA as wide-spread technologies.

This systematic derivation is especially necessary in
model-driven development approaches for web services. As
SoaML is a language standardized by the OMG it is the
preferred language when modeling services. Due to the
complexity of today’s software, a detailed planning and thus
modeling before implementation is recommended. During
the design phase it is easier to focus on architecture-relevant
issues, such as a loose coupling between services. The
mapping rules enable a systematic derivation of web services
so that prior considered quality attributes are also fulfilled by
the implementation artifacts.

The created mapping rules have been exemplified by
means of a service-oriented workshop organization system.
The system has been created using a model-driven approach.
After capturing the requirements, the service designs have
been created and aligned with wide-spread quality attributes
as introduced by Gebhart et al. [7][29] using the QA82
Analyzer [32]. The methodology has been described in [33].
Afterwards, the service designs have been used to derive
web services using the extended mapping rules.

«ServiceInterface»

WorkshopOrganization

consumer :

«interface» WorkshopOrganizationRequester

provider :

«interface» WorkshopOrganization

«interface»

WorkshopOrganization

+ organize(: OrganizeRequest) : OrganizeResponse

<sca:service name="workshopOrganization">

<interface.wsdl

interface="http://.../WorkshopOrganization#

wsdl.interface(WorkshopOrganization)"

callbackInterface="http://.../WorkshopOrganizationRequester#

wsdl.interface(WorkshopOrganizationRequester)"

remotable="true"/>

</sca:service>

«interface»

WorkshopOrganization

Requester

«use»

<<Participant>>

WorkshopOrganization

<<Participant>>

Workshop

Organization

Composition

Component

<<Participant>>

WorkshopOrganization

Intern

Component

<<RequestPoint>>

room: Room

<<RequestPoint>>

routeDetermination:

RouteDetermination

<<ServicePoint>>

workshopOrganization:

WorkshopOrganization

<sca:composite ... name="WorkshopOrganization">

<sca:component

name="WorkshopOrganization Composition Component">

...

</sca:component>

<sca:component

name="WorkshopOrganization Intern Component">

...

</sca:component>

</sca:composite>

180

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The rules on the one hand help IT architects to
understand the relation between service designs, the
language SoaML, and web services as implementation,
which allows IT architects to reduce the impact of service
design changes on the final implementation. On the other
hand, the mapping rules constitute the conceptual basis for
automatic transformation as they can be realized using
languages, such as Query Views Transformation (QVT) [34].
This will increase the significance of SoaML in model-
driven development processes as it represents a full-fledged
development artifact.

In the past, we especially focused on the creation of
quality attributes and metrics for service designs based on
SoaML. Also our tool, the QA82 Analyzer that enables
automatic quality analyses aimed at the analyses of SoaML
models. The conceptual understanding about how
characteristics of service designs are reflected within web
service implementations enables us to transform our existing
SoaML metrics into metrics for web services. Thus, in the
future our QA82 Analyzer will also be able to analyze web
services regarding wide-spread quality attributes, such as
loose coupling and autonomy.

REFERENCES

[1] M. Gebhart and J. Bouras, “Mapping between service designs based
on soaml and web service implementation artifacts”, Seventh
International Conference on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, November 2012, pp. 260-266.

[2] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[3] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[4] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, Addison-Wesley, 2003. ISBN 978-0321154958.

[5] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[6] M. Gebhart and S. Abeck, “Quality-oriented design of services”,
International Journal on Advances in Software, 4(1&2), 2011, pp.
144-157.

[7] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[8] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service
design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[9] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[10] SENSORIA, “D1.4a: UML for Service-Oriented Systems”,
http://www.sensoria-ist.eu/, 2006. [accessed: July 11, 2012]

[11] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: July 11, 2012]

[12] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[13] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0, 2012.

[14] M. Gebhart, “Service Identification and Specification with SoaML”,
in Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments, Vol. I, A. D.

Ionita, M. Litoiu, and G. Lewis, Eds. 2012. IGI Global.
ISBN 978-1-46662488-7.

[15] IBM, Generating XSD Schemas from UML Models, Rational
Systems Developer Information Center.
http://publib.boulder.ibm.com/infocenter/rsdvhelp/v6r0m1/index.jsp.
[accessed: July 11, 2012]

[16] Sparx Systems, XML Schema Generation,
http://www.sparxsystems.com.au/resources/xml_schema_generation.
html, 2011. [accessed: July 11, 2012]

[17] Roy Grønmo, David Skogan, Ida Solheim and Jon Oldevik, Model-
driven Web Services Development, SINTEF Telecom and
Informatics, 2004.

[18] IBM, Transforming UML models into WSDL documents, Rational
Software Architect. http://publib.boulder.ibm.com/infocenter/
rsahelp/v7r0m0/index.jsp. [accessed: July 11, 2012]

[19] Christian Hahn, David Cerri, Dima Panfilenko, Gorka Benguria,
Andrey Sadovykh and Cyril Carrez, Model transformations and
deployment, SHAPE 2010.

[20] Philip Mayer, Andreas Schroeder and Nora Koch, MDD4SOA
Model-Driven Service Orchestration, 2008.

[21] IBM: Transforming UML models to BPEL artifacts, Rational
Software Architect. http://publib.boulder.ibm.com/infocenter/rsahelp/
v7r0m0/index.jsp, 2010. [accessed: July 11, 2012]

[22] IBM, Transforming UML models to Service Component Architecture
artifacts, Rational Software Architect. http://publib.boulder.ibm.com/
infocenter/rsahelp/v7r0m0/index.jsp. [accessed: July 11, 2012]

[23] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[24] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: January 04, 2011]

[25] W3C, “Semantic Annotations for WSDL and XML Schema
(SAWSDL)”, W3C Recommendation, 2007.

[26] S. Johnston, “Rational uml profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004. [accessed: March 04, 2013]

[27] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[28] M. Gebhart, S. Sejdovic, and S. Abeck, “Case study for a quality-
oriented service design process”, Sixth International Conference on
Software Engineering Advances (ICSEA 2011), Barcelona, Spain,
October 2011, pp. 92-97.

[29] M. Gebhart and S. Abeck, “Metrics for evaluating service designs
based on soaml”, International Journal on Advances in Software,
4(1&2), 2011, pp. 61-75.

[30] Tom Digre, ModelDriven.org, http://lib.modeldriven.org/MDLibrary/
trunk/Applications/ModelPro/docs/SoaML/SCA/SoaML to
SCA.docx, May 2009. [accessed: July 11, 2012]

[31] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: July 11, 2012]

[32] Gebhart Quality Analysis (QA) 82, QA82 Analyzer,
http://www.qa82.de. [accessed: July 11, 2012]

[33] M. Gebhart and S. Sejdovic, “Quality-oriented design of software
services in geographical information systems”, International Journal
on Advances in Software, 5(3&4), 2012, pp. 293-307.

[34] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification”, Version 1.1, 2011. [accessed: July 11, 2012]

