
1

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Empirical Evaluation of Simplified Function Point

Measurement Processes

Luigi Lavazza Geng Liu

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

luigi.lavazza@uninsubria.it, giulio.liu@gmail.com

Abstract— Function Point Analysis is widely used, especially to

quantify the size of applications in the early stages of

development, when effort estimates are needed. However, the

measurement process is often too long or too expensive, or it

requires more knowledge than available when development effort

estimates are due. To overcome these problems, simplified

methods have been proposed to measure Function Points. We

used simplified methods for sizing both “traditional” and Real-

Time applications, with the aim of evaluating the accuracy of the

sizing with respect to full-fledged Function Point Analysis. To

this end, a set of projects, which had already been measured by

means of Function Point Analysis, have been measured using a

few simplified processes, including those proposed by NESMA,

the Early&Quick Function Points, the ISBSG average weights,

and others; the resulting size measures were then compared. We

also derived simplified size models by analyzing the dataset used

for experimentations. In general, all the methods that provide

predefined weights for all the transaction and data types

identified in Function Point Analysis provided similar results,

characterized by acceptable accuracy. On the contrary, methods

that rely on just one of the elements that contribute to size tend to

be quite inaccurate. In general, different methods show different

accuracy for Real-Time and non Real-Time applications. The

results of the analysis reported here show that in general it is

possible to size software via simplified measurement processes

with an acceptable accuracy. In particular, the simplification of

the measurement process allows the measurer to skip the

function weighting phases, which are usually expensive, since

they require a thorough analysis of the details of both data and

operations. Deriving our own models from the project datasets

proved possible, and yielded results that are similar to those

obtained via the methods proposed in the literature.

Keywords-Functional Size Measures; Function Points;

Simplified measurement processes; Early&Quick Function Points

(EQFP); NESMA estimated; NESMA indicative.

I. INTRODUCTION

The empirical evaluation of simplified Function Points
processes [1] is motivated by the popularity of Function Points.
In fact, Function Point Analysis (FPA) [2][3][4][5] is widely
used. Among the reasons for the success of FPA is that it can
provide measures of size in the early stages of software
development, when they are most needed for cost estimation.

However, FPA performed by a certified function point
consultant proceeds at a relatively slow pace: between 400 and

600 function points (FP) per day, according to Capers Jones
[6], between 200 and 300 function points per day according to
experts from Total Metrics [7]. Consequently, measuring the
size of a moderately large application can take too long, if cost
estimation is needed urgently. Also the cost of measurement
can be often considered excessive by software developers. In
addition, cost estimates may be needed when requirements
have not yet been specified in detail and completely.

To overcome the aforementioned problems, simplified FP
measurement processes have been proposed. A quite
comprehensive list of such methods is given in [8]. Among
these are the NESMA (NEtherland Software Metrics
Association) indicative and estimated methods, and the Early
& Quick Function Points method. Other methods were also
proposed, including the Tichenor ILF Model [9] and models
featuring fixed weights for the computation of size measures.
These models are briefly described in Section II. The proposers
of these methods claim that they allow measurers to compute
good approximations of functional size measures with little
effort and in a fairly short time.

The goal of the work reported here is to test the application
of several simplified functional size measurement processes to
real projects in both the “traditional” and Real-Time domains.
Function Points are often reported as not suited for measuring
the functional size of embedded applications, since FP –
conceived by Albrecht when the programs to be sized were
mostly Electronic Data Processing applications– capture well
the functional size of data storage and movement operations,
but are ill-suited for representing the complexity of control and
elaboration that are typical of embedded and Real-Time
software. However, it has been shown that a careful
interpretation of FP counting rules makes it possible to apply
FPA to embedded software as well [10].

In this paper, we apply the International Function Points
User Group (IFPUG) measurement rules [4] to size a set of non
Real-Time programs, and we apply the guidelines given in [11]
(which are as IFPUG-compliant as possible) to measure a set of
embedded Real-Time avionic applications. All these measures
are used to test the accuracy of simplified functional size
measurement processes. In fact, there is little doubt that the
simplified Functional Size Measurement (FSM) methods
actually allow for early and quick sizing; the real point is to
evaluate to what extent the savings in time and costs are paid in
terms of inaccurate size estimates. So, we concentrate on the
assessment of the accuracy of size estimates, for both Real-

2

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Time and embedded applications, as well as “traditional”
business applications. Throughout the paper, by “accuracy” we
mean the closeness of a size estimate to the real size measure,
i.e., the size measured according to IFPUG rules by an
experienced measurer.

In this paper, we enhance the work reported in [1] by using
an extended dataset, and by testing the usage of additional
simplified FSM techniques, not used in [1]. However, in the
paper we do not just evaluate existing proposals for simplifying
the functional size measurement process; instead, we produce
our own simplified models for estimating the functional size of
software applications. This is done using the same approaches
already used to produce the existing simplified methods: in
fact, we obtained models that are structurally similar to the
existing ones, but featuring different parameters (e.g., weights
for basic functional components).

All the methods –i.e., both those proposed in the literature
and ours– are tested on a set of projects and the results are
compared.

We also analyze the differences between Real-Time and
non Real-Time applications, and derive a few considerations
on what models are best suited to estimate the size of each
class of applications.

The results of the measurements and analyses reported in
the paper are expected to provide two types of benefits: on the
one hand, they contribute to enhancing our understanding of
functional size measurement processes and their suitability; on
the other hand, we provide useful information and suggestions
to the practitioners that have to decide whether to use
simplified FSM methods, and which one to choose.

The paper is organized as follows: Section II briefly
introduces the simplified FSM processes used in the paper.
Section III describes the projects being measured and gives
their sizes measured according to the full-fledged, canonical
FPA process. Section IV illustrates the sizes obtained via
simplified functional size measurement processes. Section V
discusses the accuracy of the measures obtained via the
simplified methods used and outlines the lessons that can be
learned from the reported experiment. In Section VI, the
dataset described in Section III is analyzed, in order to get
simplified FSM models that are similar to those presented in
Section II, but which rely on the measures of the considered
projects. Section VII accounts for related work. Section VIII
discusses the threats to the validity of the study. Finally,
Section IX draws some conclusions and outlines future work.

Throughout the paper, we assume that the reader is familiar
with the concepts of FPA and the IFPUG rules. Readers that
need explanations and details about FP counting can refer to
official documentation and manuals [4][5].

Throughout the paper, we refer exclusively to unadjusted
function points (UFP), even when we talk generically of
“Function Points” or “FP”.

II. A BRIEF INTRODUCTION TO SIMPLIFIED SIZE

MEASUREMENT PROCESSES

The FP measurement process involves (among others) the
following activities:

− Identifying logic data;

− Identifying elementary processes;

− Classifying logic data as internal logic files (ILF) or
external interface files (EIF);

− Classifying elementary processes as external inputs
(EI), outputs (EO), or queries (EQ);

− Weighting data functions;

− Weighting transaction functions.
Simplified measurement processes allow measurers to skip

–possibly in part– one or more of the aforementioned activities,
thus making the measurement process faster and cheaper.
Table III provides a quick overview of the activities required
by FP measurement and estimation methods. Of course, the
IFPUG method requires all the activities listed in Table III,
while simplified methods require a subset of such activities.

A. Early & Quick Function Points

The most well-known approach for simplifying the process
of FP counting is probably the Early & Quick Function Points
(EQFP) method [12]. EQFP descends from the consideration
that estimates are sometimes needed before requirements
analysis is completed, when the information on the software to
be measured is incomplete or not sufficiently detailed.

Since several details for performing a correct measurement
following the rules of the FP manual [4] are not used in EQFP,
the result is a less accurate measure. The trade-off between
reduced measurement time and costs is also a reason for
adopting the EQFP method even when full specifications are
available, but there is the need for completing the measurement
in a short time, or at a lower cost. An advantage of the method
is that different parts of the system can be measured at different
detail levels: for instance, a part of the system can be measured
following the IFPUG manual rules [4][5], while other parts can
be measured on the basis of coarser-grained information. In
fact, the EQFP method is based on the classification of the
processes and data of an application according to a hierarchy
(see Fig. 1 [12]).

Application to

be measured

Macro

process

General

data group

General

process

General

process

Transactional

BFC

Transactional

BFC

Transactional

BFC

Transactional

BFC

Data

BFC

Data

BFC

Data

BFC

……

Figure 1. Functional hierarchy in the Early & Quick FP technique

Transactional BFC (Base Functional Components) and
Data BFC correspond to IFPUG’s elementary processes and
LogicData, while the other elements are aggregations of
processes or data groups. The idea is that if you have enough
information at the most detailed level you count FP according
to IFPUG rules; otherwise, you can estimate the size of larger
elements (e.g., General or Macro processes) either on the basis
of analogy (e.g., a given General process is “similar” to a
known one) or according to the structured aggregation (e.g., a
General process is composed of 3 Transactional BFC). By
considering elements that are coarser-grained than the FPA

3

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

BFC, the EQFP measurement process leads to an approximate
measure of size in IFPUG FP.

Tables taking into account the previous experiences with
the usage of EQFP are provided to facilitate the task of
assigning a minimum, maximum and most likely quantitative
size to each component. For instance, Table I provides
minimum, maximum and most likely weight values for generic
(i.e., not weighted) functions as given in [12]. The time and
effort required by the weighting phases are thus saved. Such
saving can be relevant, since weighting a data or transaction
function requires analyzing it in detail.

TABLE I. EQFP: FUNCTION TYPE WEIGHTS FOR GENERIC FUNCTIONS

Function type
Weight

Low Likely High

Generic ILF 7.4 7.7 8.1

Generic EIF 5.2 5.4 5.7

Generic EI 4 4.2 4.4

Generic EO 4.9 5.2 5.4

Generic EQ 3.7 3.9 4.1

The size of unspecified generic processes (i.e., transactions

that have not been yet classified as inputs, outputs or queries)
and unspecified generic data groups (i.e., logical files that have
not been yet classified as ILF or EIF) as given in [12] are
illustrated in Table II. When using this method, only the
identification of logical data and elementary processes needs to
be done: both the classification of data and transaction
functions and their weighting are skipped. Consequently, sizing
based on unspecified generic processes and data groups is even
more convenient –in terms of time and effort spent– than sizing
based on generic (i.e., non weighted) functions.

TABLE II. EQFP: FUNCTION TYPE WEIGHTS FOR UNSPECIFIED GENERIC

PROCESSES AND DATA GROUPS

Function type
Weight

Low Likely High

Unspefied Generic Processes 4.3 4.6 4.8

Unspefied Generic Data Group 6.4 7.0 7.8

B. NESMA indicative and estimated methods

The Indicative NESMA method [13] simplifies the process
by only requiring the identification of LogicData from a
conceptual data model. The Function Point size is then
computed by applying the following formulae –where #ILF is
the number of ILF and #EIF is the number of EIF– whose
parameters depend on whether the data model is normalized in
3

rd
 normal form:

Non normalized model: FP = # ILF × 35 + # EIF × 15

Normalized model: FP = # ILF × 25 + # EIF × 10

The process of applying the NESMA indicative method
involves only identifying logic data and classifying them as
ILF or EIF. Accordingly, it requires less time and effort than
the EQFP methods described above, in general. However, the
Indicative NESMA method is quite rough in its computation:

the official NESMA counting manual specifies that errors in
functional size with this approach can be up to 50%.

The Estimated NESMA method requires the identification
and classification of all data and transaction functions, but does
not require the assessment of the complexity of each function:
Data Functions (ILF and EIF) are all assumed to be of low
complexity, while Transactions Functions (EI, EQ and EO) are
all assumed to be of average complexity:

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 7 + #EIF × 5

C. Other simplified FSM process proposals

1) Tichenor method
The Tichenor ILF Model [9] bases the estimation of the

size on the number of ILF via the following formula for
transactional system (for batch systems, Tichenor proposes a
smaller multiplier):

UFP = #ILF × 14.93

This model assumes a distribution of BFC with respect to
ILF as follows: EI/ILF = 0.33, EO/ILF = 0.39, EQ/ILF = 0.01,
EIF/ILF = 0.1. If the considered application features a different
distribution, the estimation can be inaccurate.

The fact that a method based only on ILF requires a given
distribution for the other BFC is not surprising. In fact, the size
of the application depends on how many transactions are
needed to elaborate those data, and the number of transaction
cannot be guessed only on the basis of the number of ILF, as it
depend on the number of ILF just very loosely. Instead of
allowing the user to specify the number of transactions that are
needed, the Tichenor method practically imposes that the
number of transactions complies with the distribution given
above.

2) ISBSG distribution model
 The analysis of the ISBSG dataset yielded the following

distribution of BFC contributions to the size in FP:

ILF 22.3%, EIF 3.8%, EI 37.2%, EO 23.5%, EQ 13.2%

The analysis of the ISBSG dataset also shows that the
average size of ILF is 7.4 UFP. It is thus possible to compute
the estimated size on the basis of the number of ILF as follows:

UFP = (#ILF × 7.4) × 100 / 22.3

The same considerations reported above for the Tichenor
model apply. If the application to be measured does not fit the
distribution assumed by the ISBSG distribution model, it is
likely that the estimation will be inaccurate.

3) Simplified FP
The simplified FP (sFP) approach assumes that all BFC are

of average complexity [14], thus:

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 10 + #EIF × 7

4) ISBSG average weights
This model is based on the average weights for each BFC,

as resulting from the analysis of the ISBSG dataset [15], which
contains data from a few thousand projects. Accordingly, the
ISBSG average weights model suggests that that the average
function complexity is used for each BFC, thus

UFP = #EI × 4.3 + #EO × 5.4 + #EQ × 3.8 + #ILF × 7.4 +
#EIF × 5.5.

4

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. ACTIVITIES REQUIRED BY DIFFERENT SIMPLIFIED MEASUREMENT PROCESSES

Measurement activities IFPUG
NESMA

indic.
NESMA

estim.

EQFP
Generic

func.

EQFP
Unspec.

generic func.

Tichenor ILF
Model

ISBSG
distribution

sFP
ISBSG
average
weights

Identifying logic data � � � � � � � � �

Identifying elementary processes �

� � � � �

Classifying logic data as ILF or EIF � � � �

� � � �

Classifying elementary processes as EI, EO,
or EQ

�

� �

 � �

Weighting data functions �

Weighting transaction functions �

III. THE CASE STUDY

A. Real-Time projects

Most of the Real-Time projects measured are from a
European organization that develops avionic applications, and
other types of embedded and Real-Time applications. All the
measured projects concerned typical Real-Time applications
for avionics or electro-optical projects, and involved
algorithms, interface management, process control and
graphical visualization.

The projects’ FUR were modeled using UML as described
in [11], and then were measured according to IFPUG
measurement rules [4]. When the Real-Time nature of the
software made IFPUG guidelines inapplicable, we adopted ad-
hoc counting criteria, using common sense and striving to
preserve the principles of FPA, as described in [10]. The same
projects were then sized using the simplified functional size
measurement processes mentioned in Section II, using the data
that were already available as a result of the IFPUG
measurement.

Table IV reports the size in UFP of the measured projects,
together with the BFC and –in parentheses– the number of
unweighted BFC. For instance, project 1 involved 18 Internal
Logic Files, having a size of 164 FP.

B. Non Real-Time projects

The considered non Real-Time projects are mostly
programs that allow users to play board or card games vs.
remote players via the internet; a few ones are typical business
information systems.

The projects were measured –as the Real-Time ones– in
two steps: the UML model of each product was built along the
guidelines described in [16]; then, the function points were
counted, on the basis of the model, according to IFPUG rules.

Table V reports the size in UFP of the measured projects,
together with the BFC and –in parentheses– the number of
unweighted BFC.

TABLE IV. REAL-TIME PROJECTS’ SIZES (IFPUG METHOD)

Project

ID.
ILF EIF EI EO EQ UFP

1
164

(18)

5

(1)

90

(21)

8

(2)

22

(5)
289

2
56

(8)

0

(0)

21

(6)

18

(3)

6

(1)
101

3
73

(7)

0

(0)

12

(2)

47

(8)

4

(1)
136

4
130

(15)

15

(3)

44

(11)

0

(0)

6

(1)
195

5
39

(4)

0

(0)

28

(8)

39

(8)

0

(0)
106

6
71

(9)

5

(1)

8

(2)

139

(28)

0

(0)
223

7
7

(1)

0

(0)

3

(1)

5

(1)

0

(0)
15

8
21

(3)

0

(0)

4

(1)

8

(2)

0

(0)
33

9
21

(3)

0

(0)

7

(2)

16

(4)

0

(0)
44

TABLE V. NON REAL-TIME PROJECTS’ SIZES (IFPUG METHOD)

Project

ID.
ILF EIF EI EO EQ UFP

1
45

(6)

7

(1)

34

(10)

6

(1)

0

(0)
92

2
28

(4)

20

(4)

37

(9)

5

(1)

4

(1)
94

3
21

(3)

5

(1)

27

(7)

8

(2)

18

(6)
79

4
31

(4)

0

(0)

49

(16)

13

(3)

3

(1)
96

5
24

(3)

0

(0)

45

(14)

21

(5)

0

(0)
90

6
49

(7)

0

(0)

36

(9)

0

(0)

6

(2)
91

7
21

(3)

0

(0)

31

(9)

14

(3)

14

(4)
80

8
42

(6)

5

(1)

35

(9)

17

(3)

10

(2)
109

9
21

(3)

0

(0)

38

(11)

15

(5)

8

(2)
82

5

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. RESULTS OF SIMPLIFIED MEASUREMENT

Simplified measurement processes were applied following
their definitions, which require data that can be easily derived
from the tables above. So, for instance, the data required for
Real-Time project 1 are the following:

− The NESMA indicative method requires the numbers of
ILF and EIF. Table I shows that the number of ILF is 18,
and the number of EIF is 1.

− Similarly, the Tichenor ILF model and the ISBSG
distribution models just require the ILF number.

− The NESMA estimated method, the EQFP generic
functions method, the sFP method and the ISBSG average
weights method require the numbers of ILF, EIF, EI, EO,
and EQ. Table I shows that the numbers of ILF, EIF, EI,
EO, and EQ are, respectively, 18, 1, 21, 2, and 5.

− The EQFP unspecified generic functions method requires
the numbers of data groups (that is, the number of ILF plus
the number of EIF) and the number of transactions (that is,
the sum of the numbers of EI, EO, and EQ). Table I shows
that the number of data groups is 18+1 = 19, and the
number of transactions is 21+2+5 = 28.

TABLE VI. SIZES OF REAL-TIME PROJECTS OBTAINED VIA THE NESMA

METHODS

Project

ID
IFPUG

NESMA

indicative

non

normalized

NESMA

indicative

normalized

NESMA

estimated

1 289 645 460 245

2 101 280 200 99

3 136 245 175 101

4 195 570 405 168

5 106 140 100 100

6 223 330 235 216

7 15 35 25 16

8 33 105 75 35

9 44 105 75 49

A. Applying NESMA indicative

The applications to be measured were modeled according
to the guidelines described in [16]. The logic data files –
modeled as UML classes– provide a data model that cannot be
easily recognized as normalized or not normalized. Therefore,
we applied both the formulae for the normalized and not
normalized models.

The formulae of the NESMA indicative method were
applied to the number of ILF and EIF that had been identified
during the IFPUG function point counting process. The results
are given in Table VI for Real-Time projects and in Table VII
for non Real-Time projects.

B. Applying NESMA estimated

The formulae of the NESMA indicative method were

applied to the number of ILF, EIF, EI, EO, and EQ that had
been identified during the IFPUG function point counting
process. The results are given in Table VI for Real-Time
projects and in Table VII for non Real-Time projects.

TABLE VII. SIZES OF NON REAL-TIME PROJECTS OBTAINED VIA THE

NESMA METHODS

Project

ID
IFPUG

NESMA

indicative

non normalized

NESMA

indicative

normalized

NESMA

estimated

1 92 225 160 92

2 94 200 140 93

3 79 120 85 88

4 96 140 100 111

5 90 105 75 102

6 91 245 175 93

7 80 105 75 88

8 109 225 160 106

9 82 105 75 98

C. Applying EQFP

As described in Figure 1. , the EQFP method can be applied
at different levels. Since we had the necessary data, we adopted
the BFC aggregation level. At this level it is possible to use the
data functions and transaction functions without weighting
them or even without classifying transactions into EI, EO, and
EQ and logic data into ILF and EIF. In the former case (generic
functions) the weights given in Table I are used, while in the
latter case (unspecified generic functions) the weights given in
Table II are used.

The results of the application of EQFP are given in Table
VIII for Real-Time projects, and in Table IX for non Real-
Time projects.

TABLE VIII. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE

EQFP METHOD

Project ID IFPUG

EQFP – unspecified

generic processes and

data groups

EQFP –generic

transactions and

data files

1 289 262 262

2 101 102 106

3 136 100 108

4 195 181 182

5 106 102 106

6 223 208 229

7 15 16 17

8 33 35 38

9 44 49 52

6

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IX. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE

EQFP METHOD

Project ID IFPUG

EQFP – unspecified

generic processes and

data groups

EQFP –generic

transactions and

data files

1 92 100 99

2 94 107 99

3 79 97 92

4 96 120 118

5 90 108 108

6 91 100 100

7 80 95 92

8 109 113 113

9 82 104 103

TABLE X. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE

TICHENOR ILF MODEL, ISBSG DEISTRIBUTION, SFP AND ISBSG AVERAGE

WEIGHTS METHODS.

Project ID IFPUG
Tichenor

ILF model
ISBSG
distrib.

sFP
ISBSG
average
weights

1 92 90 199 112 98

2 94 60 133 113 100

3 79 45 100 99 91

4 96 60 133 123 118

5 90 45 100 111 109

6 91 105 232 114 98

7 80 45 100 97 92

8 109 90 199 126 112

9 82 45 100 107 104

TABLE XI. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE

TICHENOR ILF MODEL, ISBSG DEISTRIBUTION, SFP AND ISBSG AVERAGE

WEIGHTS METHODS.

Project ID IFPUG
Tichenor

ILF model
ISBSG
distrib.

sFP
ISBSG
average
weights

1 289 269 597 301 259

2 101 119 265 123 105

3 136 105 232 122 107

4 195 224 498 219 179

5 106 60 133 112 107

6 223 134 299 245 232

7 15 15 33 19 17

8 33 45 100 44 37

9 44 45 100 58 52

D. Applying Tichenor ILF Model

In order to apply the model we just had to multiply the
number of ILF of each of our projects for the constant 14.93
suggested by Tichenor. The obtained results are illustrated in
Table X and Table XI for non Real-Time and Real-Time
projects, respectively.

When applying this method, it should be remembered that
the results are likely to be incorrect if the distribution of BFC
in the estimated application does not match the distribution
observed by Tichenor. Accordingly, when applying the
method, one should also check the distribution of BFC.
Unfortunately, this implies making more work, namely, one
should count the number of EIF, EI, EO, and EQ in addition to
ILF. Even worse, one could discover that the distribution of
his/her application is different from the distribution assumed by
Tichenor, so that the estimated size is not reliable.

In our case, the projects do not appear to fit well in the
distribution assumed by Tichenor: the differences between the
measured ratios and the ratios expected by Tichenor are the
following:

− For Real-Time projects: 14.3% for EI/ILF, 43.7% for
EO/ILF, 3.9% for EQ/ILF, 7.9% for EIF/ILF.

− For non Real-Time projects: 96.7% for EI/ILF, 22.2% for
EO/ILF, 27.3% for EQ/ILF, 14.7% for EIF/ILF.

In practice, our projects have a very different distribution of
BFC sizes with respect to Tichenor expectations (for instance,
in non Real-Time projects EI had often a larger size than ILF,
while it is expected that the size of EI is about one third of the
size of ILF). So, we must expect a quite poor accuracy from
Tichenor estimates. This is actually confirmed by the data in
Table XIV, Table XV and Table XVI.

E. Applying the ISBSG distribution model

We applied the formula UFP = (#ILF × 7.4) × 100 / 22.3
prescribed by the method. Then, we evaluated the differences
between the measured percentage contribution of BFC and the
ISBSG averages. The differences we found were relatively
small:

− For Real-Time projects: 28.7% for ILF, 3.4% for EIF,
19.3% for EI, 21.3% for EO, 13.2% for EQ.

− For non Real-Time projects: 12% for ILF, 4.8% for EIF,
5.6% for EI, 15.4% for EO, 13.2% for EQ.

Accordingly, we expect that the ISBSG distribution model
applies reasonably well to our dataset, especially as non Real-
Time projects are involved.

The obtained size estimates are illustrated in Table X and
Table XI for non Real-Time and Real-Time projects,
respectively.

F. Applying the sFP and ISBSG average weights

The application of the sFP and ISBSG average weights
methods was extremely similar to the application of the
NESMA estimated and EQFP generic methods, only the values
of weights being different.

The obtained results are illustrated in Table X and Table XI
for non Real-Time and Real-Time projects, respectively.

7

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. SUMMARY AND LESSONS LEARNED

In this section, the results of our empirical analysis are
reports. First we discuss the quantitative results, then we
analyze the results from a more theoretical point of view.

A. Applying the sFP and ISBSG average weights

To ease comparisons, all the size measures of RT projects
are reported in Table XII and those of non RT projects are
reported in Table XIII.

TABLE XII. MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE VARIOUS METHODS

Proj

ID
IFPUG

NESMA

ind. non norm.

NESMA

ind. norm.

NESMA

estim.

EQFP

unspec.

EQFP

generic

Tichenor
ILF model

ISBSG
distrib.

sFP
ISBSG
average
weights

1 289 645 460 245 262 262 269 597 301 259

2 101 280 200 99 102 106 119 265 123 105

3 136 245 175 101 100 108 105 232 122 107

4 195 570 405 168 181 182 224 498 219 179

5 106 140 100 100 102 106 60 133 112 107

6 223 330 235 216 208 229 134 299 245 232

7 15 35 25 16 16 17 15 33 19 17

8 33 105 75 35 35 38 45 100 44 37

9 44 105 75 49 49 52 45 100 58 52

TABLE XIII. MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE VARIOUS METHODS

Proj

ID
IFPUG

NESMA

ind. non norm.

NESMA

ind. norm.
NESMA

estim.

EQFP

unspec.

EQFP

generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG
average
weights

1 92 225 160 92 100 99 90 199 112 98

2 94 200 140 93 107 99 60 133 113 100

3 79 120 85 88 97 92 45 100 99 91

4 96 140 100 111 120 118 60 133 123 118

5 90 105 75 102 108 108 45 100 111 109

6 91 245 175 93 100 100 105 232 114 98

7 80 105 75 88 95 92 45 100 97 92

8 109 225 160 106 113 113 90 199 126 112

9 82 105 75 98 104 103 45 100 107 104

TABLE XIV. RELATIVE MEASUREMENT ERRORS (REAL-TIME PROJECTS)

Proj

ID

NESMA ind.

non norm.

NESMA

ind. norm.
NESMA

estim.

EQFP

unspec.

EQFP

generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG
average
weights

1 123% 59% -15% -9% -9% -7% 107% 4% -10%

2 177% 98% -2% 1% 5% 18% 162% 22% 4%

3 80% 29% -26% -26% -21% -23% 71% -10% -21%

4 192% 108% -14% -7% -7% 15% 155% 12% -8%

5 32% -6% -6% -4% 0% -43% 25% 6% 1%

6 48% 5% -3% -7% 3% -40% 34% 10% 4%

7 133% 67% 7% 7% 13% 0% 120% 27% 13%

8 218% 127% 6% 6% 15% 36% 203% 33% 12%

9 139% 70% 11% 11% 18% 2% 127% 32% 18%

8

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XV. RELATIVE MEASUREMENT ERRORS (NON REAL-TIME PROJECTS)

Proj

ID

NESMA ind.

non norm.

NESMA

ind. norm.
NESMA

estim.

EQFP

unspec.

EQFP

generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG
average
weights

1 145% 74% 0% 9% 8% -2% 116% 22% 7%

2 113% 49% -1% 14% 5% -36% 41% 20% 6%

3 52% 8% 11% 23% 16% -43% 27% 25% 15%

4 46% 4% 16% 25% 23% -38% 39% 28% 23%

5 17% -17% 13% 20% 20% -50% 11% 23% 21%

6 169% 92% 2% 10% 10% 15% 155% 25% 8%

7 31% -6% 10% 19% 15% -44% 25% 21% 15%

8 106% 47% -3% 4% 4% -17% 83% 16% 3%

9 28% -9% 20% 27% 26% -45% 22% 30% 27%

TABLE XVI. MEAN AND STDEV OF ABSOLUTE RELATIVE ERRORS

NESMA

ind.

non norm.

NESMA

ind. norm.
NESMA

estim.

EQFP

unspec.

EQFP

generic
Tichenor

ILF model
ISBSG
distrib.

sFP
ISBSG
average
weights

Mean

(RT only)
127% 63% 10% 9% 10% 20% 112% 17% 10%

Stdev

(RT only)
64% 44% 7% 7% 7% 16% 59% 11% 7%

Mean

(non RT)
79% 34% 8% 17% 14% 32% 58% 23% 14%

Stdev

(non RT)
56% 33% 7% 8% 8% 17% 50% 4% 8%

Mean

(all)
103% 49% 9% 13% 12% 26% 85% 20% 12%

Stdev

(all)
63% 40% 7% 8% 8% 17% 60% 9% 8%

The relative measurement errors are given in Table XIV
and Table XV.

The obtained results show that we can divide the simplified
FSM methods in two classes: those which base the size
estimation exclusively on some measure of the data (like the
NESMA indicative, the Tichenor and ISBSG distribution
methods) and those which propose fixed weights for all the
BFC of FPA.

The former methods yield the largest errors. Although it
was expected that estimates based on less information are
generally less accurate than estimates based on more
information, the really important finding of our experimental
evaluation is that the size estimates based on data measures
feature quite often intolerably large errors, i.e., errors that are
likely to cause troubles, if development plans were based on
such estimates. For instance, let us consider the Tichenor
method (which appears the best of those based on data
measures) and assume that only size estimation errors not
larger than 20% are acceptable: 10 estimates out of 18 would
be unacceptable.

On the contrary, the methods that take into consideration all
BFC and provide fixed weights for them yield size estimates
that are close to the actual size. Among these methods sFP is
an exception, since it regularly overestimates the size of
projects, often by over 20%. This seems to indicate that

“average” projects are characterized by data and/or transactions
whose actual complexity is smaller than the complexity
expected by the sFP method.

The accuracy of the used methods is summarized in Table
XVI, where the mean and standard deviation of the absolute
relative errors are given for Real-Time projects, for non Real-
Time projects, and for the entire set of projects. The mean
value of absolute relative errors is a quite popular statistic,
often termed MMRE (Mean Magnitude of Relative Errors).

Table XVI shows that the NEMSA estimated, the two
EQFP methods and the ISBSG average weights methods
provide essentially equivalent accuracy. This is not surprising,
given that these methods propose very similar weight values.
The NESMA estimated method appears the best, but for Real-
Time projects the EQFP methods perform similarly, often even
better.

For Real-Time projects, EQFP (either in the unspecified or
generic flavor) tends to provide the most accurate results, while
the NESMA estimated method provides quite reasonable
estimates.

It is worthwhile noticing that EQFP is more accurate than
NESMA for Real-Time applications because it uses bigger
weights, which suite better Real-Time application, which are
more complex than non Real-Time applications.

9

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Theoretical analysis

As mentioned in Section II, simplified FSM methods are
based on skipping one or more phases of the standards
Function Point measurement process (see Table III). It is
reasonable to assume that the accuracy of the measure is
inversely proportional to the number of phases not performed,
hence to the amount of data not retrieved from the functional
user requirements of the software to be measured.

To confirm such hypothesis, we have enhanced the
information reported in Table III with the data concerning
mean errors and error standard deviations: the result is given in
Table XVII. The direct comparison of accuracy data with the
information used for measurement makes the following
observations possible.

Any simplified method that does not involve the weighting
appears to be bound to a 10-15% mean absolute error.

It does not appear true that the more you measure, the best
accuracy you get. For instance, EQFP considering unspecified

generic functions appear more accurate than sFP, even though
the former method does not involve classifying function types.

Among methods that use the same type and amount of data,
there are relatively large differences in accuracy: for instance,
the Tichenor ILF model appears more precise than both the
NESMA indicative (with normalized data) and the ISBSG
distribution.

The last two observations suggest that exploiting the
knowledge provided by statistical analysis can be decisive for
achieving accurate measures via simplified processes. For
instance, the EQFP method considering unspecified generic
functions is quite accurate because the likely complexity of
data and transactions assumed by the method (see Table II)
were derived via accurate statistical analysis. On the contrary,
the complexity values assumed by the sFP method were chosen
on the basis of expectations, not on rigorous statistical analysis.

The exploitation of statistical data is the base for the new
methods described in the next section.

TABLE XVII. MEASUREMENT PROCESSES: REQUIRED DATA VS. ACCURACY

IFPUG

NESMA
indic.
Norm.

NESMA
estim.

EQFP
Generic

func.

EQFP Unspec.
generic func.

Tichenor ILF
Model

ISBSG
distribution

sFP
ISBSG average

weights

Identifying logic data � � � � � � � � �

Identifying elementary processes �

� � � (*) (*) � �

Classifying logic data as ILF or EIF � � � �

� � � �

Classifying elementary processes as EI,
EO, or EQ

�

� �

(*) (*) � �

Weighting data functions �

Weighting transaction functions �

Mean error - 49% 9% 13% 12% 26% 85% 20% 12%

Error stdev - 40% 7% 8% 8% 17% 60% 9% 8%

(*) required to verify applicability

VI. NEW SIMPLIFIED FSM MODELS

In this section, we derive simplified FSM models similar to
those described in Section II, but based on the measures of our
own applications (as reported in Table IV and Table V).

In Table XVIII we give the average weights of the BFC
computed over all the measured applications. Note that the
given averages are computed as the mean –at the dataset level–
of the mean values computed for each application. In the table,
the mean weights derived from our dataset are shown together
with the weights proposed by other simplified FSM methods,
for comparison. The fact that our EI and EO means are smaller
than the values proposed by other methods, while the ILF and
EIF means are very close to those proposed by other methods
probably means that our applications were simpler than those
considered in the definition of other methods.

TABLE XVIII. AVERAGE FUNCTION TYPE WEIGHTS FOR OUR DATASET

Function

type

EQFP

generic

NESMA

Estim.

ISBSG

average
sFP

Our

dataset

(all proj.)

ILF 7.7 7 7.4 7 7.4

EIF 5.4 5 5.5 5 5.3

EI 4.2 4 4.3 3 3.7

EO 5.2 5 5.4 4 4.6

EQ 3.9 4 3.8 3 4

In Table XIX we give the average values of weights

derived from our dataset, distinguishing Real-Time and non
Real-Time applications. We also give the average value of the

10

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ratio between the number of ILF and the size in UFP. It is
possible to note that the average number of UFP per ILF we
found is quite larger than that found by Tichenor. This suggests
that models based just on ILF can be hardly generalized.

Note that we computed also the weights for transaction
functions (TF) and data functions (DF). These weights can be
used in simplified measurement processes like the EQFP
unspecified generic method.

TABLE XIX. MEAN AND MDEIAN WEIGHTS FOR THE PROJECTS IN OUR

DATASET

 Mean (median) weight

Dataset ILF EIF EI EO EQ TF DF
UFP/
#ILF

All non
RT proj

6.6 5.5 3.5 4.4 3.4 7.0 3.7 22.7

All RT
proj

8.2 5.0 4.0 4.8 5.1 8.1 4.4 17.0

All proj 7.4 5.3 3.7 4.6 4.0 7.6 4.1 19.9

The values in Table XIX suggest that transactions were

generally more complex in Real-Time applications than in non
Real-Time applications. The latter are probably responsible for
relatively smaller weights of transaction (EI, EO, and EQ) in
Table XVIII.

Using the values in Table XIX it was possible to derive
models that are similar to those described in Section II: they are
described in Table XX and Table XXI.

TABLE XX. MODELS FOR NON RT PROJECTS.

Average weights

(all BFC)

UFP = 6.6 #ILF+ 5.5 #EIF + 3.5 #EI + 4.4 #EO + 3.4

#EQ

Average weights

(DF and TF)
UFP = 7.0 #TF + 3.7 #DF

ILF based model UFP = 22.7 #ILF

TABLE XXI. MODELS FOR RT PROJECTS.

Average weights

(all BFC)
UFP = 8.2 #ILF+ 5 #EIF + 4 #EI + 4.8 #EO + 5.1 #EQ

Average weights

(DF and TF)
UFP = 8.1 #TF + 4.4 #DF

ILF based model UFP = 17 #ILF

We used such models to estimate the size of the projects in

our dataset. The results of the estimations are reported in Table
XXII and Table XXIII for Real-Time and non Real-Time
projects, respectively.

Table XXII and Table XXIII show a rather poor accuracy
of the estimation based on ILF, with error greater than 20% for
several projects.

On the contrary, the estimations based on average weights
are reasonably accurate; the obtained results are particularly
good for non Real-Time projects, with all the estimates
featuring errors not greater than 10%.

The average values of the absolute relative errors are
reported in Table XXIV together with the average values of the
absolute relative errors obtained with the best among the other
methods, for comparison.

It is easy to see that the estimates obtained using the
average weights of the projects being estimated feature
practically the same accuracy as the other methods.

TABLE XXII. ESTIMATES OF RT PROJECTS BASED ON MODELS USING THE

PARAMETERS GIVEN IN TABLE XIX.

Proj.

ID

 Average

weights

(all BFC)

Average

weights

(DF and TF)

ILF based

model

Actual

size

Est.

size
% err

Est.

size
% err

Est.

size
% err

1 289 273 -6% 277 -4% 306 6%

2 101 110 9% 109 8% 136 35%

3 136 109 -20% 105 -23% 119 -13%

4 195 187 -4% 198 2% 255 31%

5 106 104 -2% 103 -3% 68 -36%

6 223 223 0% 213 -4% 153 -31%

7 15 17 13% 17 13% 17 13%

8 33 39 18% 37 12% 51 55%

9 44 52 18% 51 16% 51 16%

TABLE XXIII. ESTIMATES OF NON RT PROJECTS BASED ON MODELS USING

THE PARAMETERS GIVEN IN TABLE XIX.

Proj.

ID

 Average

weights (all

BFC)

Average

weights (DF

and TF)

ILF based

model

Actual

size

Est.

size
% err

Est.

size
% err

Est.

size
% err

1 92 85 -8% 90 -2% 136 48%

2 94 87 -7% 97 3% 91 -3%

3 79 81 3% 84 6% 68 -14%

4 96 98 2% 102 6% 91 -5%

5 90 91 1% 92 2% 68 -24%

6 91 85 -7% 90 -1% 159 75%

7 80 79 -1% 79 -1% 68 -15%

8 109 98 -10% 101 -7% 136 25%

9 82 88 7% 88 7% 68 -17%

It is a bit surprising that in the literature a few models of

type UFP = k × #ILF were proposed, while model of type UFP
= k × #EP (where #EP is the number of elementary processes,
i.e., #EI + #EO + #EQ) received hardly any attention. We
computed the ratio UFP/#EP for each application, and used the
average value k in models UFP = k × #EP, to estimate the size
of the applications in our dataset. The obtained estimates were
characterized by errors quite similar to those of ILF-based
models (the average absolute error was 25% for Real-Time
projects and 27% for non Real-Time projects). Accordingly, it
seems that models of type UFP = k × #EP are not likely to
provide good estimates.

11

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XXIV. MEAN AND STDEV OF ABSOLUTE RELATIVE ERRORS

Average weights,

all BFC

Average weights,

DF & TF

Average

UFP / #ILF

NESMA

estim.

EQFP

unspec.

EQFP

generic

ISBSG average
weights

Mean (RT only) 10% 9% 26% 10% 9% 10% 10%

Stdev (RT only) 8% 10% 29% 7% 7% 7% 7%

Mean (non RT) 5% 4% 25% 8% 17% 14% 14%

Stdev (non RT) 3% 4% 22% 7% 8% 8% 8%

Mean (all) 8% 10% 31% 9% 13% 12% 12%

Stdev (all) 6% 6% 19% 7% 8% 8% 8%

VII. RELATED WORK

Meli and Santillo were among the first to recognize the
need for comparing the various functional size methods
proposed in the literature [17]. To this end, they also provided a
benchmarking model.

In [18], van Heeringen et al. report the results of measuring
42 projects with the full-fledged, indicative and estimated
NESMA methods. They found a 1.5% mean error of NESMA
estimated method and a 16.5% mean error of NESMA
indicative method.

Using a database of about 100 applications, NESMA did
some research on the accuracy of the estimated and indicative
function point counts. They got very good results
(http://www.nesma.nl/section/fpa/earlyfpa.htm), although no
statistics (e.g., mean relative error) are given.

In [19], Vogelezang summarized the two techniques to
simplified measuring given in the COSMIC measurement
manual: the approximate technique and the refined
approximate technique. In the approximate technique, the
average size of a functional process is multiplied with the
number of functional processes the software should provide.
The refined approximate technique uses the average sizes of
small, medium, large and very large functional processes. The
accuracy of the COSMIC-FFP approximate technique is good
enough with less than 10% deviation on a portfolio and less
than 15% on a project within a specified environment [19].

Popović and Bojić compared different functional size
measures –including NESMA indicative and estimated– by
evaluating their accuracy in effort estimation in various phases
of the development lifecycle [20]. Not surprisingly, they found
that the NESMA indicative method provided the best accuracy
at the beginning of the project. With respect to Popović and
Bojić, we made two quite different choices: the accuracy of the
method is evaluated against the actual size of the software
product and –consistently– all the information needed to
perform measurement is available to all processes.

There is no indication that Real-Time projects were among
those measured by van Heeringen et al. or by NESMA.

In [8], Santillo suggested probabilistic approaches, where
the measurer can indicate the minimum, medium and
maximum weight of each BFC, together with the expected
probability that the weight is actually minimum, medium or
maximum. This leads to estimate not only the size, but also the
probability that the actual size is equal to the estimate.

VIII. THREATS TO VALIDITY

A first possible threat to the internal validity of the study is
due to the relatively small datasets.

Another possible issue concerns the size and complexity of
the applications. As far as the Real-Time applications are
concerned, we measured real industrial projects. Accordingly,
we are fairly sure that they represent a good benchmark for the
considered simplified FSM methods. On the contrary, our non
Real-Time projects are fairly small. However, the really
important point for testing the adequacy of simplified FSM
methods is not the size of the benchmark applications, but their
complexity. It is possible that our non Real-Time projects are
slightly less complex than average applications: this would
explain why most simplified FSM methods overestimate them
(see Table XV).

The fact that our datasets are not very homogeneous is
actually not a problem; rather it is useful to challenge the
proposed simplified FSM methods with different types of
software applications.

IX. CONCLUSION

Sometimes, FPA is too slow or too expensive for practical
usage. Moreover, FPA requires a knowledge of requirements
that may not be available when the measures of size are
required, i.e., at the very first stages of development, when
development costs have to be estimated. To overcome these
problems, simplified measurement processes have been
proposed.

In this paper, we applied simplified functional size
measurement processes to both traditional software
applications and Real-Time applications.

The obtained results make it possible to draw a few relevant
conclusions:
1. Some of the simplified FSM methods we experimented

with seem to provide fairly good accuracy. In particular,
NESMA estimated, EQFP, and ISBSG average weights
yielded average absolute relative errors close to 10%. This
level of error is a very good trade off, if you consider that
it can be achieved without going through the expensive
phase of weighting data and transactions.

2. Organizations that have historical data concerning
previous projects can build their own models. We showed
that with a relatively small number of projects it is
possible to build models that provide a level of accuracy

12

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

very close to that of methods like NESMA estimated and
EQFP.

3. The simplified FSM methods are generally based on
average values of ratios among the elements of FP
measurement. Accordingly, projects that have unusual
characteristics tend to be ill suited for simplified size
estimation. For instance, project 3 in our set of Real-Time
projects is more complex than the other projects in the set,
having most EI and EO characterized by high complexity.
This causes most method to underestimate the size of the
project by over 20%. Therefore, before applying a
simplified FSM method to a given application, it is a good
idea to verify that this application is not too much (or too
less) complex with respect to “average” applications. Our
Real-Time project 3 was characterized by the need to store
or communicate many data at a time: this situation could
have suggested that using average values for an early
measurement leads to a rather large underestimation.

EQFP methods proved more accurate in estimating the size
of Real-Time applications, while the NESMA estimated
method proved fairly good in estimating both Real-Time and
non Real-Time applications. However, the relatively small
number of projects involved in the analysis does not allow
generalizing these results.

Even considering the relatively small dataset, it is however
probably not casual that the NESMA estimated method
happened to underestimate all projects. Probably NESMA
should consider reviewing the weights used in the estimated
method, in the sense of increasing them.

When considering the results of our analysis from a
practical viewpoint, a very interesting question is “what
simplified method is the best one for my application(s)?”.
Table XIV and Table XV show that the methods that are better
on average are not necessarily the best ones for a given project.
To answer the question above it would be useful to characterize
the projects according to properties not considered in FSM, and
look for correlations with the measures provided by different
simplified methods. This would allow selecting the simplified
measurement method that provided the best accuracy for
applications of the same type as the one to be sized.
Unfortunately, it was not possible to analyze the possibly
relevant features of the dataset described in Section III (we had
no access to the code of Real-Time projects), thus this analysis
is among future activities.

As already mentioned, the results presented here are based
on datasets in which the largest project has size of 289 FP:
further work for verifying the accuracy of simplified
measurement methods when dealing with larger project is
needed.

 Among the future work is also the experimentation of
simplified measurement processes in conjunction with
measurement-oriented UML modeling [16], as described in
[21].

The models described in Section II are generally derived in
a rather naive way, i.e., simply computing averages of some
elements that are involved in the measurement: e.g., the
average ration between the measure of BFC and their number.
Simplified measurement models should be better derived via
regression analysis. Unfortunately, the relatively little number
of applications in our datasets does not support this type of

analysis, especially if multiple independent variables are
involved, as in models of type UFP = f(EI, EO, EQ, ILF, EIF)
or UFP = f(TF, DF). Performing this type of analysis is among
our goal for future activities, provided that we can get enough
data points.

ACKNOWLEDGMENT

The research presented in this paper has been partially
supported by the project “Metodi, tecniche e strumenti per
l’analisi, l’implementazione e la valutazione di sistemi
software” funded by the Università degli Studi dell’Insubria.

REFERENCES

[1] L. Lavazza and G. Liu, “A Report on Using Simplified Function Point
Measurement Processes”, Int. Conf. on Software Engineering Advances,
(ICSEA 2012), Nov. 2012, pp. 18-25.

[2] A.J. Albrecht, “Measuring Application Development Productivity”,
Joint SHARE/ GUIDE/IBM Application Development Symposium,
1979.

[3] A.J. Albrecht and J.E. Gaffney, “Software function, lines of code and
development effort prediction: a software science validation”, IEEE
Transactions on Software Engineering, vol. 9, 1983.

[4] International Function Point Users Group, “Function Point Counting
Practices Manual - Release 4.3.1”, 2010.

[5] ISO/IEC 20926: 2003, “Software engineering – IFPUG 4.1 Unadjusted
functional size measurement method – Counting Practices Manual”,
ISO, Geneva, 2003.

[6] C. Jones, “A new business model for function point metrics”,
http://www.itmpi.org/assets/base/images/itmpi/privaterooms/capersjones
/FunctPtBusModel2008.pdf, 2008

[7] “Methods for Software Sizing – How to Decide which Method to Use”,
Total Metrics, www.totalmetrics.com/function-point-
resources/downloads/R185_Why-use-Function-Points.pdf, August 2007.

[8] L. Santillo, “Easy Function Points – ‘Smart’ Approximation Technique
for the IFPUG and COSMIC Methods”, Joint Conf. of the 22nd Int.
Workshop on Software Measurement and the 7th Int. Conf. on Software
Process and Product Measurement, Oct. 2012.

[9] C. Tichenor, “The IRS Development and Application of the Internal
Logical File Model to Estimate Function Point Counts”, IFPUG Fall
Conference of Use (ESCOM-ENCRESS 1998), May 1998.

[10] L. Lavazza and C. Garavaglia, “Using Function Points to Measure and
Estimate Real-Time and Embedded Software: Experiences and
Guidelines”, 3rd Int. Symp. on Empirical SW Engineering and
Measurement (ESEM 2009), Oct. 2009.

[11] L. Lavazza and C. Garavaglia, “Using Function Point in the Estimation
of Real-Time Software: an Experience”, Software Measurement
European Forum (SMEF 2008), May 2008.

[12] “Early & Quick Function Points for IFPUG methods v. 3.1 Reference
Manual 1.1”, April 2012.

[13] ISO, Iec 24570: 2004, “Software Engineering-NESMA Functional Size
Measurement Method version 2.1 - Definitions and Counting Guidelines
for the Application of Function Point Analysis. International
Organization for Standardization”, Geneva, 2004.

[14] L. Bernstein and C. M. Yuhas, “Trustworthy Systems Through
Quantitative Software Engineering”, John Wiley & Sons, 2005.

[15] International Software Benchmarking Standards Group, “Worldwide
Software Development: The Benchmark, release 11”, 2009.

[16] L. Lavazza, V. del Bianco, C. Garavaglia, “Model-based Functional Size
Measurement”, 2nd International Symposium on Empirical Software
Engineering and Measurement (ESEM 2008), Oct. 2008.

[17] R. Meli and L. Santillo, “Function point estimation methods: a
comparative overview”, Software Measurement European Forum
(FESMA 1999), Oct. 1999.

[18] H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement - Accuracy versus costs - Is it really worth it?”, Software
Measurement European Forum (SMEF 2009), May 2009.

13

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] F.W. Vogelezang, “COSMIC Full Function Points, the Next
Generation”, in Measure! Knowledge! Action! – The NESMA
anniversary book, NESMA, 2004.

[20] J. Popović and D. Bojić, “A Comparative Evaluation of Effort
Estimation Methods in the Software Life Cycle”, Computer Science and
Information Systems, vol. 9, Jan. 2012.

[21] V. del Bianco, L. Lavazza, and S. Morasca, “A Proposal for Simplified
Model-Based Cost Estimation Models”, 13th Int. Conf. on Product-
Focused Software Development and Process Improvement (PROFES
2012), June 2012.

