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Abstract— Function Point Analysis is widely used, especially to 

quantify the size of applications in the early stages of 

development, when effort estimates are needed. However, the 

measurement process is often too long or too expensive, or it 

requires more knowledge than available when development effort 

estimates are due. To overcome these problems, simplified 

methods have been proposed to measure Function Points. We 

used simplified methods for sizing both “traditional” and Real-

Time applications, with the aim of evaluating the accuracy of the 

sizing with respect to full-fledged Function Point Analysis. To 

this end, a set of projects, which had already been measured by 

means of Function Point Analysis, have been measured using a 

few simplified processes, including those proposed by NESMA, 

the Early&Quick Function Points, the ISBSG average weights, 

and others; the resulting size measures were then compared. We 

also derived simplified size models by analyzing the dataset used 

for experimentations. In general, all the methods that provide 

predefined weights for all the transaction and data types 

identified in Function Point Analysis provided similar results, 

characterized by acceptable accuracy. On the contrary, methods 

that rely on just one of the elements that contribute to size tend to 

be quite inaccurate. In general, different methods show different 

accuracy for Real-Time and non Real-Time applications. The 

results of the analysis reported here show that in general it is 

possible to size software via simplified measurement processes 

with an acceptable accuracy. In particular, the simplification of 

the measurement process allows the measurer to skip the 

function weighting phases, which are usually expensive, since 

they require a thorough analysis of the details of both data and 

operations. Deriving our own models from the project datasets 

proved possible, and yielded results that are similar to those 

obtained via the methods proposed in the literature. 

Keywords-Functional Size Measures; Function Points; 

Simplified measurement processes; Early&Quick Function Points 

(EQFP); NESMA estimated; NESMA indicative. 

I.  INTRODUCTION 

The empirical evaluation of simplified Function Points 
processes [1] is motivated by the popularity of Function Points. 
In fact, Function Point Analysis (FPA) [2][3][4][5] is widely 
used. Among the reasons for the success of FPA is that it can 
provide measures of size in the early stages of software 
development, when they are most needed for cost estimation. 

However, FPA performed by a certified function point 
consultant proceeds at a relatively slow pace: between 400 and 

600 function points (FP) per day, according to Capers Jones 
[6], between 200 and 300 function points per day according to 
experts from Total Metrics [7]. Consequently, measuring the 
size of a moderately large application can take too long, if cost 
estimation is needed urgently. Also the cost of measurement 
can be often considered excessive by software developers. In 
addition, cost estimates may be needed when requirements 
have not yet been specified in detail and completely. 

To overcome the aforementioned problems, simplified FP 
measurement processes have been proposed. A quite 
comprehensive list of such methods is given in [8]. Among 
these are the NESMA (NEtherland Software Metrics 
Association) indicative and estimated methods, and the Early 
& Quick Function Points method. Other methods were also 
proposed, including the Tichenor ILF Model [9] and models 
featuring fixed weights for the computation of size measures. 
These models are briefly described in Section II. The proposers 
of these methods claim that they allow measurers to compute 
good approximations of functional size measures with little 
effort and in a fairly short time.  

The goal of the work reported here is to test the application 
of several simplified functional size measurement processes to 
real projects in both the “traditional” and Real-Time domains. 
Function Points are often reported as not suited for measuring 
the functional size of embedded applications, since FP –
conceived by Albrecht when the programs to be sized were 
mostly Electronic Data Processing applications– capture well 
the functional size of data storage and movement operations, 
but are ill-suited for representing the complexity of control and 
elaboration that are typical of embedded and Real-Time 
software. However, it has been shown that a careful 
interpretation of FP counting rules makes it possible to apply 
FPA to embedded software as well [10]. 

In this paper, we apply the International Function Points 
User Group (IFPUG) measurement rules [4] to size a set of non 
Real-Time programs, and we apply the guidelines given in [11] 
(which are as IFPUG-compliant as possible) to measure a set of 
embedded Real-Time avionic applications. All these measures 
are used to test the accuracy of simplified functional size 
measurement processes. In fact, there is little doubt that the 
simplified Functional Size Measurement (FSM) methods 
actually allow for early and quick sizing; the real point is to 
evaluate to what extent the savings in time and costs are paid in 
terms of inaccurate size estimates. So, we concentrate on the 
assessment of the accuracy of size estimates, for both Real-
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Time and embedded applications, as well as “traditional” 
business applications. Throughout the paper, by “accuracy” we 
mean the closeness of a size estimate to the real size measure, 
i.e., the size measured according to IFPUG rules by an 
experienced measurer. 

In this paper, we enhance the work reported in [1] by using 
an extended dataset, and by testing the usage of additional 
simplified FSM techniques, not used in [1]. However, in the 
paper we do not just evaluate existing proposals for simplifying 
the functional size measurement process; instead, we produce 
our own simplified models for estimating the functional size of 
software applications. This is done using the same approaches 
already used to produce the existing simplified methods: in 
fact, we obtained models that are structurally similar to the 
existing ones, but featuring different parameters (e.g., weights 
for basic functional components). 

All the methods –i.e., both those proposed in the literature 
and ours– are tested on a set of projects and the results are 
compared. 

We also analyze the differences between Real-Time and 
non Real-Time applications, and derive a few considerations 
on what models are best suited to estimate the size of each 
class of applications.  

The results of the measurements and analyses reported in 
the paper are expected to provide two types of benefits: on the 
one hand, they contribute to enhancing our understanding of 
functional size measurement processes and their suitability; on 
the other hand, we provide useful information and suggestions 
to the practitioners that have to decide whether to use 
simplified FSM methods, and which one to choose.  

The paper is organized as follows: Section II briefly 
introduces the simplified FSM processes used in the paper. 
Section III describes the projects being measured and gives 
their sizes measured according to the full-fledged, canonical 
FPA process. Section IV illustrates the sizes obtained via 
simplified functional size measurement processes. Section V 
discusses the accuracy of the measures obtained via the 
simplified methods used and outlines the lessons that can be 
learned from the reported experiment. In Section VI, the 
dataset described in Section III is analyzed, in order to get 
simplified FSM models that are similar to those presented in 
Section II, but which rely on the measures of the considered 
projects. Section VII accounts for related work. Section VIII 
discusses the threats to the validity of the study. Finally, 
Section IX draws some conclusions and outlines future work. 

Throughout the paper, we assume that the reader is familiar 
with the concepts of FPA and the IFPUG rules. Readers that 
need explanations and details about FP counting can refer to 
official documentation and manuals [4][5]. 

Throughout the paper, we refer exclusively to unadjusted 
function points (UFP), even when we talk generically of 
“Function Points” or “FP”. 

II. A BRIEF INTRODUCTION TO SIMPLIFIED SIZE 

MEASUREMENT PROCESSES 

The FP measurement process involves (among others) the 
following activities: 

− Identifying logic data; 

− Identifying elementary processes; 

− Classifying logic data as internal logic files (ILF) or 
external interface files (EIF); 

− Classifying elementary processes as external inputs 
(EI), outputs (EO), or queries (EQ); 

− Weighting data functions; 

− Weighting transaction functions. 
Simplified measurement processes allow measurers to skip 

–possibly in part– one or more of the aforementioned activities, 
thus making the measurement process faster and cheaper. 
Table III provides a quick overview of the activities required 
by FP measurement and estimation methods. Of course, the 
IFPUG method requires all the activities listed in Table III, 
while simplified methods require a subset of such activities. 

A. Early & Quick Function Points 

The most well-known approach for simplifying the process 
of FP counting is probably the Early & Quick Function Points 
(EQFP) method [12]. EQFP descends from the consideration 
that estimates are sometimes needed before requirements 
analysis is completed, when the information on the software to 
be measured is incomplete or not sufficiently detailed.  

Since several details for performing a correct measurement 
following the rules of the FP manual [4] are not used in EQFP, 
the result is a less accurate measure. The trade-off between 
reduced measurement time and costs is also a reason for 
adopting the EQFP method even when full specifications are 
available, but there is the need for completing the measurement 
in a short time, or at a lower cost. An advantage of the method 
is that different parts of the system can be measured at different 
detail levels: for instance, a part of the system can be measured 
following the IFPUG manual rules [4][5], while other parts can 
be measured on the basis of coarser-grained information. In 
fact, the EQFP method is based on the classification of the 
processes and data of an application according to a hierarchy 
(see Fig. 1 [12]). 
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Figure 1.  Functional hierarchy in the Early & Quick FP technique 

Transactional BFC (Base Functional Components) and 
Data BFC correspond to IFPUG’s elementary processes and 
LogicData, while the other elements are aggregations of 
processes or data groups. The idea is that if you have enough 
information at the most detailed level you count FP according 
to IFPUG rules; otherwise, you can estimate the size of larger 
elements (e.g., General or Macro processes) either on the basis 
of analogy (e.g., a given General process is “similar” to a 
known one) or according to the structured aggregation (e.g., a 
General process is composed of 3 Transactional BFC). By 
considering elements that are coarser-grained than the FPA 
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BFC, the EQFP measurement process leads to an approximate 
measure of size in IFPUG FP. 

Tables taking into account the previous experiences with 
the usage of EQFP are provided to facilitate the task of 
assigning a minimum, maximum and most likely quantitative 
size to each component. For instance, Table I provides 
minimum, maximum and most likely weight values for generic 
(i.e., not weighted) functions as given in [12]. The time and 
effort required by the weighting phases are thus saved. Such 
saving can be relevant, since weighting a data or transaction 
function requires analyzing it in detail. 

TABLE I.  EQFP: FUNCTION TYPE WEIGHTS FOR GENERIC FUNCTIONS 

Function type 
Weight 

Low Likely High 

Generic ILF 7.4 7.7 8.1 

Generic EIF 5.2 5.4 5.7 

Generic EI 4 4.2 4.4 

Generic EO 4.9 5.2 5.4 

Generic EQ 3.7 3.9 4.1 

 
The size of unspecified generic processes (i.e., transactions 

that have not been yet classified as inputs, outputs or queries) 
and unspecified generic data groups (i.e., logical files that have 
not been yet classified as ILF or EIF) as given in [12] are 
illustrated in Table II. When using this method, only the 
identification of logical data and elementary processes needs to 
be done: both the classification of data and transaction 
functions and their weighting are skipped. Consequently, sizing 
based on unspecified generic processes and data groups is even 
more convenient –in terms of time and effort spent– than sizing 
based on generic (i.e., non weighted) functions. 

TABLE II.  EQFP: FUNCTION TYPE WEIGHTS FOR UNSPECIFIED GENERIC 

PROCESSES AND DATA GROUPS 

Function type 
Weight 

Low Likely High 

Unspefied Generic Processes 4.3 4.6 4.8 

Unspefied Generic Data Group 6.4 7.0 7.8 

B. NESMA indicative and estimated methods 

The Indicative NESMA method [13] simplifies the process 
by only requiring the identification of LogicData from a 
conceptual data model. The Function Point size is then 
computed by applying the following formulae –where #ILF is 
the number of ILF and #EIF is the number of EIF– whose 
parameters depend on whether the data model is normalized in 
3

rd
 normal form: 

Non normalized model: FP = # ILF × 35 + # EIF × 15 

Normalized model: FP = # ILF × 25 + # EIF × 10 

The process of applying the NESMA indicative method 
involves only identifying logic data and classifying them as 
ILF or EIF. Accordingly, it requires less time and effort than 
the EQFP methods described above, in general. However, the 
Indicative NESMA method is quite rough in its computation: 

the official NESMA counting manual specifies that errors in 
functional size with this approach can be up to 50%. 

The Estimated NESMA method requires the identification 
and classification of all data and transaction functions, but does 
not require the assessment of the complexity of each function: 
Data Functions (ILF and EIF) are all assumed to be of low 
complexity, while Transactions Functions (EI, EQ and EO) are 
all assumed to be of average complexity: 

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 7 + #EIF × 5 

C. Other simplified FSM process proposals 

1) Tichenor method 
The Tichenor ILF Model [9] bases the estimation of the 

size on the number of ILF via the following formula for 
transactional system (for batch systems, Tichenor proposes a 
smaller multiplier): 

UFP = #ILF × 14.93 

This model assumes a distribution of BFC with respect to 
ILF as follows: EI/ILF = 0.33, EO/ILF = 0.39, EQ/ILF = 0.01, 
EIF/ILF = 0.1. If the considered application features a different 
distribution, the estimation can be inaccurate. 

The fact that a method based only on ILF requires a given 
distribution for the other BFC is not surprising. In fact, the size 
of the application depends on how many transactions are 
needed to elaborate those data, and the number of transaction 
cannot be guessed only on the basis of the number of ILF, as it 
depend on the number of ILF just very loosely. Instead of 
allowing the user to specify the number of transactions that are 
needed, the Tichenor method practically imposes that the 
number of transactions complies with the distribution given 
above. 

2) ISBSG distribution model 
 The analysis of the ISBSG dataset yielded the following 

distribution of BFC contributions to the size in FP: 

ILF 22.3%, EIF 3.8%, EI 37.2%, EO 23.5%, EQ 13.2% 

The analysis of the ISBSG dataset also shows that the 
average size of ILF is 7.4 UFP. It is thus possible to compute 
the estimated size on the basis of the number of ILF as follows: 

UFP = (#ILF × 7.4) × 100 / 22.3 

The same considerations reported above for the Tichenor 
model apply. If the application to be measured does not fit the 
distribution assumed by the ISBSG distribution model, it is 
likely that the estimation will be inaccurate. 

3) Simplified FP 
The simplified FP (sFP) approach assumes that all BFC are 

of average complexity [14], thus: 

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 10 + #EIF × 7 

4) ISBSG average weights 
This model is based on the average weights for each BFC, 

as resulting from the analysis of the ISBSG dataset [15], which 
contains data from a few thousand projects. Accordingly, the 
ISBSG average weights model suggests that that the average 
function complexity is used for each BFC, thus 

UFP = #EI × 4.3 + #EO × 5.4 + #EQ × 3.8 + #ILF × 7.4 + 
#EIF × 5.5. 
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TABLE III.  ACTIVITIES REQUIRED BY DIFFERENT SIMPLIFIED MEASUREMENT PROCESSES 

Measurement activities IFPUG 
NESMA 

indic. 
NESMA 

estim. 

EQFP 
Generic 

func. 

EQFP 
Unspec. 

generic func. 

Tichenor ILF 
Model 

ISBSG 
distribution 

sFP 
ISBSG 
average 
weights 

Identifying logic data � � � � � � � � � 

Identifying elementary processes � 
 

� � �   � � 

Classifying logic data as ILF or EIF � � � � 
 

� � � � 

Classifying elementary processes as EI, EO, 
or EQ 

� 
 

� � 
 

  � � 

Weighting data functions � 
    

    

Weighting transaction functions � 
    

    

 

III. THE CASE STUDY 

A. Real-Time projects 

Most of the Real-Time projects measured are from a 
European organization that develops avionic applications, and 
other types of embedded and Real-Time applications. All the 
measured projects concerned typical Real-Time applications 
for avionics or electro-optical projects, and involved 
algorithms, interface management, process control and 
graphical visualization. 

The projects’ FUR were modeled using UML as described 
in [11], and then were measured according to IFPUG 
measurement rules [4]. When the Real-Time nature of the 
software made IFPUG guidelines inapplicable, we adopted ad-
hoc counting criteria, using common sense and striving to 
preserve the principles of FPA, as described in [10]. The same 
projects were then sized using the simplified functional size 
measurement processes mentioned in Section II, using the data 
that were already available as a result of the IFPUG 
measurement. 

Table IV reports the size in UFP of the measured projects, 
together with the BFC and –in parentheses– the number of 
unweighted BFC. For instance, project 1 involved 18 Internal 
Logic Files, having a size of 164 FP. 

B. Non Real-Time projects 

The considered non Real-Time projects are mostly 
programs that allow users to play board or card games vs. 
remote players via the internet; a few ones are typical business 
information systems. 

The projects were measured –as the Real-Time ones– in 
two steps: the UML model of each product was built along the 
guidelines described in [16]; then, the function points were 
counted, on the basis of the model, according to IFPUG rules. 

Table V reports the size in UFP of the measured projects, 
together with the BFC and –in parentheses– the number of 
unweighted BFC. 

TABLE IV.  REAL-TIME PROJECTS’ SIZES (IFPUG METHOD) 

Project 

ID. 
ILF EIF EI EO EQ UFP 

1 
164 

(18) 

5 

(1) 

90  

(21) 

8 

(2) 

22 

(5) 
289 

2 
56 

(8) 

0 

(0) 

21 

(6) 

18 

(3) 

6 

(1) 
101 

3 
73 

(7) 

0 

(0) 

12 

(2) 

47 

(8) 

4 

(1) 
136 

4 
130 

(15) 

15 

(3) 

44 

(11) 

0 

(0) 

6 

(1) 
195 

5 
39 

(4) 

0 

(0) 

28 

(8) 

39 

(8) 

0 

(0) 
106 

6 
71 

(9) 

5 

(1) 

8 

(2) 

139 

(28) 

0 

(0) 
223 

7 
7 

(1) 

0 

(0) 

3 

(1) 

5 

(1) 

0 

(0) 
15 

8 
21 

(3) 

0 

(0) 

4 

(1) 

8 

(2) 

0 

(0) 
33 

9 
21 

(3) 

0 

(0) 

7 

(2) 

16 

(4) 

0 

(0) 
44 

TABLE V.  NON REAL-TIME PROJECTS’ SIZES (IFPUG METHOD) 

Project 

ID. 
ILF EIF EI EO EQ UFP 

1 
45 

(6) 

7 

(1) 

34 

(10) 

6 

(1) 

0 

(0) 
92 

2 
28 

(4) 

20 

(4) 

37 

(9) 

5 

(1) 

4 

(1) 
94 

3 
21 

(3) 

5 

(1) 

27 

(7) 

8 

(2) 

18 

(6) 
79 

4 
31 

(4) 

0 

(0) 

49 

(16) 

13 

(3) 

3 

(1) 
96 

5 
24 

(3) 

0 

(0) 

45 

(14) 

21 

(5) 

0 

(0) 
90 

6 
49 

(7) 

0 

(0) 

36 

(9) 

0 

(0) 

6 

(2) 
91 

7 
21 

(3) 

0 

(0) 

31 

(9) 

14 

(3) 

14 

(4) 
80 

8 
42 

(6) 

5 

(1) 

35 

(9) 

17 

(3) 

10 

(2) 
109 

9 
21 

(3) 

0 

(0) 

38 

(11) 

15 

(5) 

8 

(2) 
82 
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IV. RESULTS OF SIMPLIFIED MEASUREMENT 

Simplified measurement processes were applied following 
their definitions, which require data that can be easily derived 
from the tables above. So, for instance, the data required for 
Real-Time project 1 are the following: 

− The NESMA indicative method requires the numbers of 
ILF and EIF. Table I shows that the number of ILF is 18, 
and the number of EIF is 1. 

− Similarly, the Tichenor ILF model and the ISBSG 
distribution models just require the ILF number. 

− The NESMA estimated method, the EQFP generic 
functions method, the  sFP method and the ISBSG average 
weights method require the numbers of ILF, EIF, EI, EO, 
and EQ. Table I shows that the numbers of ILF, EIF, EI, 
EO, and EQ are, respectively,  18, 1, 21, 2, and 5.  

− The EQFP unspecified generic functions method requires 
the numbers of data groups (that is, the number of ILF plus 
the number of EIF) and the number of transactions (that is, 
the sum of the numbers of EI, EO, and EQ). Table I shows 
that the number of data groups is 18+1 = 19, and the 
number of transactions is 21+2+5 = 28. 

TABLE VI.  SIZES OF REAL-TIME PROJECTS OBTAINED VIA THE NESMA 

METHODS 

Project 

ID 
IFPUG 

NESMA 

indicative 

non 

normalized 

NESMA 

indicative 

normalized 

NESMA 

estimated  

1 289 645 460 245 

2 101 280 200 99 

3 136 245 175 101 

4 195 570 405 168 

5 106 140 100 100 

6 223 330 235 216 

7 15 35 25 16 

8 33 105 75 35 

9 44 105 75 49 

A. Applying NESMA indicative 

The applications to be measured were modeled according 
to the guidelines described in [16]. The logic data files –
modeled as UML classes– provide a data model that cannot be 
easily recognized as normalized or not normalized. Therefore, 
we applied both the formulae for the normalized and not 
normalized models. 

The formulae of the NESMA indicative method were 
applied to the number of ILF and EIF that had been identified 
during the IFPUG function point counting process. The results 
are given in Table VI for Real-Time projects and in Table VII 
for non Real-Time projects. 

B. Applying NESMA estimated 

The formulae of the NESMA indicative method were 

applied to the number of ILF, EIF, EI, EO, and EQ that had 
been identified during the IFPUG function point counting 
process. The results are given in Table VI for Real-Time 
projects and in Table VII for non Real-Time projects. 

TABLE VII.  SIZES OF NON REAL-TIME PROJECTS OBTAINED VIA THE 

NESMA METHODS 

Project 

ID 
IFPUG 

NESMA 

indicative 

non normalized 

NESMA 

indicative 

normalized 

NESMA 

estimated  

1 92 225 160 92 

2 94 200 140 93 

3 79 120 85 88 

4 96 140 100 111 

5 90 105 75 102 

6 91 245 175 93 

7 80 105 75 88 

8 109 225 160 106 

9 82 105 75 98 

C. Applying EQFP 

As described in Figure 1. , the EQFP method can be applied 
at different levels. Since we had the necessary data, we adopted 
the BFC aggregation level. At this level it is possible to use the 
data functions and transaction functions without weighting 
them or even without classifying transactions into EI, EO, and 
EQ and logic data into ILF and EIF. In the former case (generic 
functions) the weights given in Table I are used, while in the 
latter case (unspecified generic functions) the weights given in 
Table II are used.  

The results of the application of EQFP are given in Table 
VIII for Real-Time projects, and in Table IX for non Real-
Time projects. 

TABLE VIII.  MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE 

EQFP METHOD 

Project ID IFPUG 

EQFP – unspecified 

generic processes and 

data groups 

EQFP –generic 

transactions and 

data files 

1 289 262 262 

2 101 102 106 

3 136 100 108 

4 195 181 182 

5 106 102 106 

6 223 208 229 

7 15 16 17 

8 33 35 38 

9 44 49 52 
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TABLE IX.  MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE 

EQFP METHOD 

Project ID IFPUG 

EQFP – unspecified 

generic processes and 

data groups 

EQFP –generic 

transactions and 

data files 

1 92 100 99 

2 94 107 99 

3 79 97 92 

4 96 120 118 

5 90 108 108 

6 91 100 100 

7 80 95 92 

8 109 113 113 

9 82 104 103 

TABLE X.  MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE 

TICHENOR ILF MODEL, ISBSG DEISTRIBUTION, SFP AND ISBSG AVERAGE 

WEIGHTS METHODS. 

Project ID IFPUG 
Tichenor 

ILF model 
ISBSG 
distrib. 

sFP 
ISBSG 
average 
weights 

1 92 90 199 112 98 

2 94 60 133 113 100 

3 79 45 100 99 91 

4 96 60 133 123 118 

5 90 45 100 111 109 

6 91 105 232 114 98 

7 80 45 100 97 92 

8 109 90 199 126 112 

9 82 45 100 107 104 

TABLE XI.  MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE 

TICHENOR ILF MODEL, ISBSG DEISTRIBUTION, SFP AND ISBSG AVERAGE 

WEIGHTS METHODS. 

Project ID IFPUG 
Tichenor 

ILF model 
ISBSG 
distrib. 

sFP 
ISBSG 
average 
weights 

1 289 269 597 301 259 

2 101 119 265 123 105 

3 136 105 232 122 107 

4 195 224 498 219 179 

5 106 60 133 112 107 

6 223 134 299 245 232 

7 15 15 33 19 17 

8 33 45 100 44 37 

9 44 45 100 58 52 

D. Applying Tichenor ILF Model 

In order to apply the model we just had to multiply the 
number of ILF of each of our projects for the constant 14.93 
suggested by Tichenor. The obtained results are illustrated in 
Table X and Table XI for non Real-Time and Real-Time 
projects, respectively. 

When applying this method, it should be remembered that 
the results are likely to be incorrect if the distribution of BFC 
in the estimated application does not match the distribution 
observed by Tichenor. Accordingly, when applying the 
method, one should also check the distribution of BFC. 
Unfortunately, this implies making more work, namely, one 
should count the number of EIF, EI, EO, and EQ in addition to 
ILF. Even worse, one could discover that the distribution of 
his/her application is different from the distribution assumed by 
Tichenor, so that the estimated size is not reliable. 

In our case, the projects do not appear to fit well in the 
distribution assumed by Tichenor: the differences between the 
measured ratios and the ratios expected by Tichenor are the 
following: 

− For Real-Time projects: 14.3% for EI/ILF, 43.7% for 
EO/ILF, 3.9% for EQ/ILF, 7.9% for EIF/ILF. 

− For non Real-Time projects: 96.7% for EI/ILF, 22.2% for 
EO/ILF, 27.3% for EQ/ILF, 14.7% for EIF/ILF. 

In practice, our projects have a very different distribution of 
BFC sizes with respect to Tichenor expectations (for instance, 
in non Real-Time projects EI had often a larger size than ILF, 
while it is expected that the size of EI is about one third of the 
size of ILF). So, we must expect a quite poor accuracy from 
Tichenor estimates. This is actually confirmed by the data in 
Table XIV, Table XV and Table XVI. 

E. Applying the ISBSG distribution model 

We applied the formula UFP = (#ILF × 7.4) × 100 / 22.3 
prescribed by the method. Then, we evaluated the differences 
between the measured percentage contribution of BFC and the 
ISBSG averages. The differences we found were relatively 
small: 

− For Real-Time projects: 28.7% for ILF, 3.4% for EIF, 
19.3% for EI, 21.3% for EO, 13.2% for EQ. 

− For non Real-Time projects: 12% for ILF, 4.8% for EIF, 
5.6% for EI, 15.4% for EO, 13.2% for EQ. 

Accordingly, we expect that the ISBSG distribution model 
applies reasonably well to our dataset, especially as non Real-
Time projects are involved. 

The obtained size estimates are illustrated in Table X and 
Table XI for non Real-Time and Real-Time projects, 
respectively. 

F. Applying the sFP and ISBSG average weights 

The application of the sFP and ISBSG average weights 
methods was extremely similar to the application of the 
NESMA estimated and EQFP generic methods, only the values 
of weights being different. 

The obtained results are illustrated in Table X and Table XI 
for non Real-Time and Real-Time projects, respectively. 
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V. SUMMARY AND LESSONS LEARNED 

In this section, the results of our empirical analysis are 
reports. First we discuss the quantitative results, then we 
analyze the results from a more theoretical point of view. 

A. Applying the sFP and ISBSG average weights 

To ease comparisons, all the size measures of RT projects 
are reported in Table XII and those of non RT projects are 
reported in Table XIII. 

 

TABLE XII.  MEASURES OF REAL-TIME PROJECTS OBTAINED VIA THE VARIOUS METHODS 

Proj 

ID 
IFPUG 

NESMA 

ind. non norm. 

NESMA 

ind. norm. 

NESMA 

estim. 

EQFP 

unspec. 

EQFP 

generic 

Tichenor 
ILF model 

ISBSG 
distrib. 

sFP 
ISBSG 
average 
weights 

1 289 645 460 245 262 262 269 597 301 259 

2 101 280 200 99 102 106 119 265 123 105 

3 136 245 175 101 100 108 105 232 122 107 

4 195 570 405 168 181 182 224 498 219 179 

5 106 140 100 100 102 106 60 133 112 107 

6 223 330 235 216 208 229 134 299 245 232 

7 15 35 25 16 16 17 15 33 19 17 

8 33 105 75 35 35 38 45 100 44 37 

9 44 105 75 49 49 52 45 100 58 52 

TABLE XIII.  MEASURES OF NON REAL-TIME PROJECTS OBTAINED VIA THE VARIOUS METHODS 

Proj 

ID 
IFPUG 

NESMA 

ind. non norm. 

NESMA 

ind. norm. 
NESMA 

estim. 

EQFP 

unspec. 

EQFP 

generic 

Tichenor 
ILF 

model 

ISBSG 
distrib. 

sFP 
ISBSG 
average 
weights 

1 92 225 160 92 100 99 90 199 112 98 

2 94 200 140 93 107 99 60 133 113 100 

3 79 120 85 88 97 92 45 100 99 91 

4 96 140 100 111 120 118 60 133 123 118 

5 90 105 75 102 108 108 45 100 111 109 

6 91 245 175 93 100 100 105 232 114 98 

7 80 105 75 88 95 92 45 100 97 92 

8 109 225 160 106 113 113 90 199 126 112 

9 82 105 75 98 104 103 45 100 107 104 

TABLE XIV.  RELATIVE MEASUREMENT ERRORS (REAL-TIME PROJECTS) 

Proj 

ID 

NESMA ind. 

non norm. 

NESMA 

ind. norm. 
NESMA 

estim. 

EQFP 

unspec. 

EQFP 

generic 

Tichenor 
ILF 

model 

ISBSG 
distrib. 

sFP 
ISBSG 
average 
weights 

1 123% 59% -15% -9% -9% -7% 107% 4% -10% 

2 177% 98% -2% 1% 5% 18% 162% 22% 4% 

3 80% 29% -26% -26% -21% -23% 71% -10% -21% 

4 192% 108% -14% -7% -7% 15% 155% 12% -8% 

5 32% -6% -6% -4% 0% -43% 25% 6% 1% 

6 48% 5% -3% -7% 3% -40% 34% 10% 4% 

7 133% 67% 7% 7% 13% 0% 120% 27% 13% 

8 218% 127% 6% 6% 15% 36% 203% 33% 12% 

9 139% 70% 11% 11% 18% 2% 127% 32% 18% 
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TABLE XV.  RELATIVE MEASUREMENT ERRORS (NON REAL-TIME PROJECTS) 

Proj 

ID 

NESMA ind. 

non norm. 

NESMA 

ind. norm. 
NESMA 

estim. 

EQFP 

unspec. 

EQFP 

generic 

Tichenor 
ILF 

model 

ISBSG 
distrib. 

sFP 
ISBSG 
average 
weights 

1 145% 74% 0% 9% 8% -2% 116% 22% 7% 

2 113% 49% -1% 14% 5% -36% 41% 20% 6% 

3 52% 8% 11% 23% 16% -43% 27% 25% 15% 

4 46% 4% 16% 25% 23% -38% 39% 28% 23% 

5 17% -17% 13% 20% 20% -50% 11% 23% 21% 

6 169% 92% 2% 10% 10% 15% 155% 25% 8% 

7 31% -6% 10% 19% 15% -44% 25% 21% 15% 

8 106% 47% -3% 4% 4% -17% 83% 16% 3% 

9 28% -9% 20% 27% 26% -45% 22% 30% 27% 

TABLE XVI.  MEAN AND STDEV OF ABSOLUTE RELATIVE ERRORS 

 

NESMA 

ind. 

non norm. 

NESMA 

ind. norm. 
NESMA 

estim. 

EQFP 

unspec. 

EQFP 

generic 
Tichenor 

ILF model 
ISBSG 
distrib. 

sFP 
ISBSG 
average 
weights 

Mean 

(RT only) 
127% 63% 10% 9% 10% 20% 112% 17% 10% 

Stdev 

(RT only) 
64% 44% 7% 7% 7% 16% 59% 11% 7% 

Mean 

(non RT) 
79% 34% 8% 17% 14% 32% 58% 23% 14% 

Stdev 

(non RT) 
56% 33% 7% 8% 8% 17% 50% 4% 8% 

Mean 

(all) 
103% 49% 9% 13% 12% 26% 85% 20% 12% 

Stdev 

(all) 
63% 40% 7% 8% 8% 17% 60% 9% 8% 

 
 

The relative measurement errors are given in Table XIV 
and Table XV. 

The obtained results show that we can divide the simplified 
FSM methods in two classes: those which base the size 
estimation exclusively on some measure of the data (like the 
NESMA indicative, the Tichenor and ISBSG distribution 
methods) and those which propose fixed weights for all the 
BFC of FPA. 

The former methods yield the largest errors. Although it 
was expected that estimates based on less information are 
generally less accurate than estimates based on more 
information, the really important finding of our experimental 
evaluation is that the size estimates based on data measures 
feature quite often intolerably large errors, i.e., errors that are 
likely to cause troubles, if development plans were based on 
such estimates. For instance, let us consider the Tichenor 
method (which appears the best of those based on data 
measures) and assume that only size estimation errors not 
larger than 20% are acceptable: 10 estimates out of 18 would 
be unacceptable. 

On the contrary, the methods that take into consideration all 
BFC and provide fixed weights for them yield size estimates 
that are close to the actual size. Among these methods sFP is 
an exception, since it regularly overestimates the size of 
projects, often by over 20%. This seems to indicate that 

“average” projects are characterized by data and/or transactions 
whose actual complexity is smaller than the complexity 
expected by the sFP method. 

The accuracy of the used methods is summarized in Table 
XVI, where the mean and standard deviation of the absolute 
relative errors are given for Real-Time projects, for non Real-
Time projects, and for the entire set of projects. The mean 
value of absolute relative errors is a quite popular statistic, 
often termed MMRE (Mean Magnitude of Relative Errors). 

Table XVI shows that the NEMSA estimated, the two 
EQFP methods and the ISBSG average weights methods 
provide essentially equivalent accuracy. This is not surprising, 
given that these methods propose very similar weight values. 
The NESMA estimated method appears the best, but for Real-
Time projects the EQFP methods perform similarly, often even 
better. 

For Real-Time projects, EQFP (either in the unspecified or 
generic flavor) tends to provide the most accurate results, while 
the NESMA estimated method provides quite reasonable 
estimates.  

It is worthwhile noticing that EQFP is more accurate than 
NESMA for Real-Time applications because it uses bigger 
weights, which suite better Real-Time application, which are 
more complex than non Real-Time applications. 
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B. Theoretical analysis 

As mentioned in Section II, simplified FSM methods are 
based on skipping one or more phases of the standards 
Function Point measurement process (see Table III). It is 
reasonable to assume that the accuracy of the measure is 
inversely proportional to the number of phases not performed, 
hence to the amount of data not retrieved from the functional 
user requirements of the software to be measured.  

To confirm such hypothesis, we have enhanced the 
information reported in Table III with the data concerning 
mean errors and error standard deviations: the result is given in 
Table XVII. The direct comparison of accuracy data with the 
information used for measurement makes the following 
observations possible. 

Any simplified method that does not involve the weighting 
appears to be bound to a 10-15% mean absolute error. 

It does not appear true that the more you measure, the best 
accuracy you get. For instance, EQFP considering unspecified 

generic functions appear more accurate than sFP, even though 
the former method does not involve classifying function types. 

Among methods that use the same type and amount of data, 
there are relatively large differences in accuracy: for instance, 
the Tichenor ILF model appears more precise than both the 
NESMA indicative (with normalized data) and the ISBSG 
distribution. 

The last two observations suggest that exploiting the 
knowledge provided by statistical analysis can be decisive for 
achieving accurate measures via simplified processes. For 
instance, the EQFP method considering unspecified generic 
functions is quite accurate because the likely complexity of 
data and transactions assumed by the method (see Table II) 
were derived via accurate statistical analysis. On the contrary, 
the complexity values assumed by the sFP method were chosen 
on the basis of expectations, not on rigorous statistical analysis. 

The exploitation of statistical data is the base for the new 
methods described in the next section. 

TABLE XVII.  MEASUREMENT PROCESSES: REQUIRED DATA VS. ACCURACY 

 
IFPUG 

NESMA 
indic. 
Norm. 

NESMA 
estim. 

EQFP 
Generic 

func. 

EQFP Unspec. 
generic func. 

Tichenor ILF 
Model 

ISBSG 
distribution 

sFP 
ISBSG average 

weights 

Identifying logic data � � � � � � � � � 

Identifying elementary processes � 
 

� � � (*) (*) � � 

Classifying logic data as ILF or EIF � � � � 
 

� � � � 

Classifying elementary processes as EI, 
EO, or EQ 

� 
 

� � 
 

(*) (*) � � 

Weighting data functions � 
    

    

Weighting transaction functions � 
    

    

Mean error - 49% 9% 13% 12% 26% 85% 20% 12% 

Error stdev - 40% 7% 8% 8% 17% 60% 9% 8% 

(*) required to verify applicability 

VI. NEW SIMPLIFIED FSM MODELS 

In this section, we derive simplified FSM models similar to 
those described in Section II, but based on the measures of our 
own applications (as reported in Table IV and Table V). 

In Table XVIII we give the average weights of the BFC 
computed over all the measured applications. Note that the 
given averages are computed as the mean –at the dataset level– 
of the mean values computed for each application. In the table, 
the mean weights derived from our dataset are shown together 
with the weights proposed by other simplified FSM methods, 
for comparison. The fact that our EI and EO means are smaller 
than the values proposed by other methods, while the ILF and 
EIF means are very close to those proposed by other methods 
probably means that our applications were simpler than those 
considered in the definition of other methods. 

TABLE XVIII.  AVERAGE FUNCTION TYPE WEIGHTS FOR OUR DATASET 

Function 

type 

EQFP 

generic 

NESMA 

Estim. 

ISBSG 

average 
sFP 

Our 

dataset 

(all proj.) 

ILF 7.7 7 7.4 7 7.4 

EIF 5.4 5 5.5 5 5.3 

EI 4.2 4 4.3 3 3.7 

EO 5.2 5 5.4 4 4.6 

EQ 3.9 4 3.8 3 4 

 
In Table XIX we give the average values of weights 

derived from our dataset, distinguishing Real-Time and non 
Real-Time applications. We also give the average value of the
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ratio between the number of ILF and the size in UFP. It is 
possible to note that the average number of UFP per ILF we 
found is quite larger than that found by Tichenor. This suggests 
that models based just on ILF can be hardly generalized. 

Note that we computed also the weights for transaction 
functions (TF) and data functions (DF). These weights can be 
used in simplified measurement processes like the EQFP 
unspecified generic method. 

TABLE XIX.  MEAN AND MDEIAN WEIGHTS FOR THE PROJECTS IN OUR 

DATASET 

 Mean (median) weight  

Dataset ILF EIF EI EO EQ TF DF 
UFP/ 
#ILF 

All non 
RT proj 

6.6 5.5 3.5 4.4 3.4 7.0 3.7 22.7 

All RT 
proj 

8.2 5.0 4.0 4.8 5.1 8.1 4.4 17.0 

All proj 7.4 5.3 3.7 4.6 4.0 7.6 4.1 19.9 

 
The values in Table XIX suggest that transactions were 

generally more complex in Real-Time applications than in non 
Real-Time applications. The latter are probably responsible for 
relatively smaller weights of transaction (EI, EO, and EQ) in 
Table XVIII. 

Using the values in Table XIX it was possible to derive 
models that are similar to those described in Section II: they are 
described in Table XX and Table XXI. 

TABLE XX.  MODELS FOR NON RT PROJECTS. 

Average weights 

(all BFC) 

UFP = 6.6 #ILF+ 5.5 #EIF + 3.5 #EI + 4.4 #EO + 3.4 

#EQ 

Average weights 

(DF and TF) 
UFP = 7.0 #TF + 3.7 #DF 

ILF based model UFP = 22.7 #ILF 

TABLE XXI.  MODELS FOR RT PROJECTS. 

Average weights 

(all BFC) 
UFP = 8.2 #ILF+ 5 #EIF + 4 #EI + 4.8 #EO + 5.1 #EQ 

Average weights 

(DF and TF) 
UFP = 8.1 #TF + 4.4 #DF 

ILF based model UFP = 17 #ILF 

 
We used such models to estimate the size of the projects in 

our dataset. The results of the estimations are reported in Table 
XXII and Table XXIII for Real-Time and non Real-Time 
projects, respectively. 

Table XXII and Table XXIII show a rather poor accuracy 
of the estimation based on ILF, with error greater than 20% for 
several projects. 

On the contrary, the estimations based on average weights 
are reasonably accurate; the obtained results are particularly 
good for non Real-Time projects, with all the estimates 
featuring errors not greater than 10%.  

The average values of the absolute relative errors are 
reported in Table XXIV together with the average values of the 
absolute relative errors obtained with the best among the other 
methods, for comparison. 

It is easy to see that the estimates obtained using the 
average weights of the projects being estimated feature 
practically the same accuracy as the other methods. 

TABLE XXII.  ESTIMATES OF RT PROJECTS BASED ON MODELS USING THE 

PARAMETERS GIVEN IN TABLE XIX. 

Proj. 

ID 

 Average 

weights 

(all BFC) 

Average 

weights 

(DF and TF) 

ILF based 

model 

Actual 

size 

Est. 

size 
% err 

Est. 

size 
% err 

Est. 

size 
% err 

1 289 273 -6% 277 -4% 306 6% 

2 101 110 9% 109 8% 136 35% 

3 136 109 -20% 105 -23% 119 -13% 

4 195 187 -4% 198 2% 255 31% 

5 106 104 -2% 103 -3% 68 -36% 

6 223 223 0% 213 -4% 153 -31% 

7 15 17 13% 17 13% 17 13% 

8 33 39 18% 37 12% 51 55% 

9 44 52 18% 51 16% 51 16% 

TABLE XXIII.  ESTIMATES OF NON RT PROJECTS BASED ON MODELS USING 

THE PARAMETERS GIVEN IN TABLE XIX. 

Proj. 

ID 

 Average 

weights (all 

BFC) 

Average 

weights (DF 

and TF) 

ILF based 

model 

Actual 

size 

Est. 

size 
% err 

Est. 

size 
% err 

Est. 

size 
% err 

1 92 85 -8% 90 -2% 136 48% 

2 94 87 -7% 97 3% 91 -3% 

3 79 81 3% 84 6% 68 -14% 

4 96 98 2% 102 6% 91 -5% 

5 90 91 1% 92 2% 68 -24% 

6 91 85 -7% 90 -1% 159 75% 

7 80 79 -1% 79 -1% 68 -15% 

8 109 98 -10% 101 -7% 136 25% 

9 82 88 7% 88 7% 68 -17% 

 
It is a bit surprising that in the literature a few models of 

type UFP = k × #ILF were proposed, while model of type UFP 
= k × #EP (where #EP is the number of elementary processes, 
i.e., #EI + #EO + #EQ) received hardly any attention. We 
computed the ratio UFP/#EP for each application, and used the 
average value k in models UFP = k × #EP, to estimate the size 
of the applications in our dataset. The obtained estimates were 
characterized by errors quite similar to those of ILF-based 
models (the average absolute error was 25% for Real-Time 
projects and 27% for non Real-Time projects). Accordingly, it 
seems that models of type UFP = k × #EP are not likely to 
provide good estimates. 
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TABLE XXIV.  MEAN AND STDEV OF ABSOLUTE RELATIVE ERRORS 

 
Average weights, 

all BFC 

Average weights, 

DF & TF 

Average 

UFP / #ILF 

NESMA 

estim. 

EQFP 

unspec. 

EQFP 

generic 

ISBSG average 
weights 

Mean (RT only) 10% 9% 26% 10% 9% 10% 10% 

Stdev (RT only) 8% 10% 29% 7% 7% 7% 7% 

Mean (non RT) 5% 4% 25% 8% 17% 14% 14% 

Stdev (non RT) 3% 4% 22% 7% 8% 8% 8% 

Mean (all) 8% 10% 31% 9% 13% 12% 12% 

Stdev (all) 6% 6% 19% 7% 8% 8% 8% 

 

VII. RELATED WORK 

Meli and Santillo were among the first to recognize the 
need for comparing the various functional size methods 
proposed in the literature [17]. To this end, they also provided a 
benchmarking model. 

In [18], van Heeringen et al. report the results of measuring 
42 projects with the full-fledged, indicative and estimated 
NESMA methods. They found a 1.5% mean error of NESMA 
estimated method and a 16.5% mean error of NESMA 
indicative method. 

Using a database of about 100 applications, NESMA did 
some research on the accuracy of the estimated and indicative 
function point counts. They got very good results 
(http://www.nesma.nl/section/fpa/earlyfpa.htm), although no 
statistics (e.g., mean relative error) are given. 

In [19], Vogelezang summarized the two techniques to 
simplified measuring given in the COSMIC measurement 
manual: the approximate technique and the refined 
approximate technique. In the approximate technique, the 
average size of a functional process is multiplied with the 
number of functional processes the software should provide. 
The refined approximate technique uses the average sizes of 
small, medium, large and very large functional processes. The 
accuracy of the COSMIC-FFP approximate technique is good 
enough with less than 10% deviation on a portfolio and less 
than 15% on a project within a specified environment [19]. 

Popović and Bojić compared different functional size 
measures –including NESMA indicative and estimated– by 
evaluating their accuracy in effort estimation in various phases 
of the development lifecycle [20]. Not surprisingly, they found 
that the NESMA indicative method provided the best accuracy 
at the beginning of the project. With respect to Popović and 
Bojić, we made two quite different choices: the accuracy of the 
method is evaluated against the actual size of the software 
product and –consistently– all the information needed to 
perform measurement is available to all processes.   

There is no indication that Real-Time projects were among 
those measured by van Heeringen et al. or by NESMA. 

In [8], Santillo suggested probabilistic approaches, where 
the measurer can indicate the minimum, medium and 
maximum weight of each BFC, together with the expected 
probability that the weight is actually minimum, medium or 
maximum. This leads to estimate not only the size, but also the 
probability that the actual size is equal to the estimate. 

VIII. THREATS TO VALIDITY 

A first possible threat to the internal validity of the study is 
due to the relatively small datasets. 

Another possible issue concerns the size and complexity of 
the applications. As far as the Real-Time applications are 
concerned, we measured real industrial projects. Accordingly, 
we are fairly sure that they represent a good benchmark for the 
considered simplified FSM methods. On the contrary, our non 
Real-Time projects are fairly small. However, the really 
important point for testing the adequacy of simplified FSM 
methods is not the size of the benchmark applications, but their 
complexity. It is possible that our non Real-Time projects are 
slightly less complex than average applications: this would 
explain why most simplified FSM methods overestimate them 
(see Table XV). 

The fact that our datasets are not very homogeneous is 
actually not a problem; rather it is useful to challenge the 
proposed simplified FSM methods with different types of 
software applications. 

IX. CONCLUSION 

Sometimes, FPA is too slow or too expensive for practical 
usage. Moreover, FPA requires a knowledge of requirements 
that may not be available when the measures of size are 
required, i.e., at the very first stages of development, when 
development costs have to be estimated. To overcome these 
problems, simplified measurement processes have been 
proposed. 

In this paper, we applied simplified functional size 
measurement processes to both traditional software 
applications and Real-Time applications. 

The obtained results make it possible to draw a few relevant 
conclusions: 
1. Some of the simplified FSM methods we experimented 

with seem to provide fairly good accuracy. In particular, 
NESMA estimated, EQFP, and ISBSG average weights 
yielded average absolute relative errors close to 10%. This 
level of error is a very good trade off, if you consider that 
it can be achieved without going through the expensive 
phase of weighting data and transactions. 

2. Organizations that have historical data concerning 
previous projects can build their own models. We showed 
that with a relatively small number of projects it is 
possible to build models that provide a level of accuracy 
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very close to that of methods like NESMA estimated and 
EQFP. 

3. The simplified FSM methods are generally based on 
average values of ratios among the elements of FP 
measurement. Accordingly, projects that have unusual 
characteristics tend to be ill suited for simplified size 
estimation. For instance, project 3 in our set of Real-Time 
projects is more complex than the other projects in the set, 
having most EI and EO characterized by high complexity. 
This causes most method to underestimate the size of the 
project by over 20%. Therefore, before applying a 
simplified FSM method to a given application, it is a good 
idea to verify that this application is not too much (or too 
less) complex with respect to “average” applications. Our 
Real-Time project 3 was characterized by the need to store 
or communicate many data at a time: this situation could 
have suggested that using average values for an early 
measurement leads to a rather large underestimation. 

EQFP methods proved more accurate in estimating the size 
of Real-Time applications, while the NESMA estimated 
method proved fairly good in estimating both Real-Time and 
non Real-Time applications. However, the relatively small 
number of projects involved in the analysis does not allow 
generalizing these results. 

Even considering the relatively small dataset, it is however 
probably not casual that the NESMA estimated method 
happened to underestimate all projects. Probably NESMA 
should consider reviewing the weights used in the estimated 
method, in the sense of increasing them. 

When considering the results of our analysis from a 
practical viewpoint, a very interesting question is “what 
simplified method is the best one for my application(s)?”. 
Table XIV and Table XV show that the methods that are better 
on average are not necessarily the best ones for a given project. 
To answer the question above it would be useful to characterize 
the projects according to properties not considered in FSM, and 
look for correlations with the measures provided by different 
simplified methods. This would allow selecting the simplified 
measurement method that provided the best accuracy for 
applications of the same type as the one to be sized. 
Unfortunately, it was not possible to analyze the possibly 
relevant features of the dataset described in Section III (we had 
no access to the code of Real-Time projects), thus this analysis 
is among future activities. 

As already mentioned, the results presented here are based 
on datasets in which the largest project has size of 289 FP: 
further work for verifying the accuracy of simplified 
measurement methods when dealing with larger project is 
needed.  

 Among the future work is also the experimentation of 
simplified measurement processes in conjunction with 
measurement-oriented UML modeling [16], as described in 
[21]. 

The models described in Section II are generally derived in 
a rather naive way, i.e., simply computing averages of some 
elements that are involved in the measurement: e.g., the 
average ration between the measure of BFC and their number. 
Simplified measurement models should be better derived via 
regression analysis. Unfortunately, the relatively little number 
of applications in our datasets does not support this type of 

analysis, especially if multiple independent variables are 
involved, as in models of type UFP = f(EI, EO, EQ, ILF, EIF) 
or UFP = f(TF, DF). Performing this type of analysis is among 
our goal for future activities, provided that we can get enough 
data points. 
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