
263

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using Functional Complexity Measures in Software Development Effort Estimation

Luigi Lavazza

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

luigi.lavazza@uninsubria.it

Gabriela Robiolo

Departamento de Informática

Universidad Austral

Buenos Aires, Argentina

grobiolo@austral.edu.ar

Abstract — Several definitions of measures that aim at

representing the size of software requirements are currently

available. These measures have gained a quite relevant role,

since they are one of the few types of objective measures upon

which effort estimation can be based. However, traditional

Functional Size Measures do not take into account the amount

and complexity of elaboration required, concentrating instead

on the amount of data accessed or moved. This is a problem

since the amount and complexity of the required data

elaboration affect the implementation effort, but are not

adequately represented by the current size measures, including

the standardized ones. Recently, a few approaches to

measuring aspects of user requirements that are supposed to

be related with functional complexity and/or data elaboration

have been proposed by researchers. In this paper, we take into

consideration some of these proposed measures and compare

them with respect to their ability to predict the development

effort, especially when used in combination with measures of

functional size. A few methods for estimating software

development effort –both based on model building and on

analogy– are experimented with, using different types of

functional size and elaboration complexity measures. All the

most significant models obtained were based on a notion of

computation density that is based on the number of

computation flows in functional processes. When using

estimation by analogy, considering functional complexity in the

selection of analogue projects improved accuracy in all the

evaluated cases. In conclusion, it appears that functional

complexity is a factor that affects development effort;

accordingly, whatever method is used for effort estimation, it is

advisable to take functional complexity into due consideration.

Keywords – Functional size measurement; Function Points;

COSMIC function points; effort estimation; functional

complexity measurement.

I. INTRODUCTION

Several definitions of measures intended to represent the
functional size of software are being used. The popularity of
these measures is due to the fact that functional size
measures are typically used to drive the estimation of the
development effort. To this end, effort models require
several inputs in addition to the functional size, including the
complexity of the software to be developed [11][47]. In fact,
problem complexity is recognized as one of the elements that
contribute to the comprehensive notion of software size [17].

The need to account for software complexity when
estimating the development effort does not depend on the
functional size measurement (FSM) method used.

Before proceeding, it is useful to spend some words on
the fact that throughout the paper we treat the terms
“complexity” and “amount of data elaboration” as
synonyms. This is due to the facts that complexity is an
inherently elusive concept, and at the functional
requirements level it is not clear what should be the
difference between the amount and the complexity of data
elaboration: for instance, in many cases, complexity is
considered proportional to the number of alternatives in a
process execution, but this number is also clearly related also
to the size of the process.

When dealing with effort estimation, the most popular
methods require an evaluation of the complexity of the
application. Currently such evaluation is of a purely
qualitative nature. For instance, COCOMO II [11] provides a
table that allows the user to evaluate complexity on an
ordinal scale (from “very low” to “extra high”) according to
five aspects (control operations, computational operations,
device-dependent operations, data management operations,
user interface management operations) that have to be
evaluated in a qualitative and subjective way: e.g., the
characterization of computational operations corresponding
to the “Nominal” complexity is “Use of standard math and
statistical routines. Basic matrix/vector operations” [15].

It is quite clear that it would be greatly beneficial to
replace such subjective and approximate assessment of
complexity with a real measure, based on objective and
quantitative evaluations, since this would enable the
construction of more reliable and accurate models of effort.

Previous work showed that effort models that take into
consideration complexity measures are more precise than
those based on the functional size only. In particular, the
authors of this paper showed that development effort
correlates well with COSMIC function points (CFP) [16] and
Path [43], and that the inclusion of a Path-based complexity
measure improves the models based on size, whatever size
measure is used (IFPUG Function Points [24], CFP [23], or
even Use Case Points [28]) [34].

In [1], the work reported in [34] was extended, by taking
into consideration some measures that represent potential
complexity dimensions, by building effort estimation models
that exploit these measures, and by discussing the precision
of fit of these models.

264

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this paper, we further enhance the work reported in [1]
by using an extended dataset, and by refining it (the largest
project was removed, being an evident outlier). More
important, here we test the importance of functional
complexity measures in effort estimation, by experimenting
with a wider range of estimation methods. In particular, we
use not only model-based estimation, but also Estimation by
Analogy (EbA), as this is a very popular technique: model-
based estimation and EbA are definitely the most relevant
techniques for cost estimation [25].

The results of the measurements and analyses reported in
the paper contribute to enhancing the knowledge of how to
measure functional complexity at the requirements level, and
what is the contribution of such measure to effort estimation.

The paper is organized as follows: Section II accounts for
related work; Section III is dedicated to illustrating the
measures of functional size and functional complexity used
in this study; Section IV describes the dataset and the types
of analysis performed; Section V and VI illustrate the results
of the analyses via regression and analogy, respectively; in
Section VII the outcomes of the research are discussed; in
Section VIII the threats to the validity of the study are
discussed. Finally, Section IX draws some conclusions and
outlines future work.

II. RELATED WORK

A few attempts to account for data elaboration in FSM
have been done. Feature points by Capers Jones [26] aim at
capturing the algorithmic complexity of the elaboration.
However, according to Capers Jones, “the feature point
metric was created to deal with the psychological problem
that members of the real-time and systems software world
viewed function point metrics as being suitable only for
management information systems” [27]. Therefore, feature
points simply moved part of the ‘size’ from data to
algorithms, leaving the measure substantially unaltered with
respect to FPA. In fact, currently Capers Jones recommends
“the use of the standard IFPUG methodology combined
with a rating of ‘Project Complexity’ to properly scale
effort”.

3D Function Points [50] consider three dimensions of
the application to be measured: Data, Function, and Control.
The Function measurement considers the complexity of
algorithms; and the Control portion measures the number of
major state transitions within the application.

Gencel and Demirors [19] point out that we still need a
new Base Functional Component (BFC) Types for the
Boolean operations of Functional User Requirements, which
are often not considered to be algorithmic operations, but
which are related to complexity. This point of view
highlights the necessity of considering the complexity of
elaboration required in FSM, and they suggested
introducing as a new BFC type that differs from authors’
proposal.

Bernárdez et al. [10] measured the cyclomatic
complexity of a use case in order to validate the use case
definition, while Levesque et al. [35] measured the
conditions of inputs in a sequential diagram in order to add
the concept of complexity to the COSMIC method.

 Yavari et al. [51] evaluated the weak points of Use Case
complexity measures, in particular, those of transaction
identification, and introduced other measures to determine
Use Case complexity. They focused on Use Case
specification and flow of events. Also, the authors
considered main and alternative scenarios. However, this is
only an early definition of the new measures, as they did not
use them in a case study.

Aggarwal et al. [4] defined an estimation model that can
be used to estimate the effort required for designing and
developing hypermedia content management systems
(CMS). The model is designed to help project manager to
estimate effort at the very early stage of requirement
analysis. Questionnaires are used to estimate the complexity
of the project. The final effort is estimated using the project
size and various adjustment factors. The size of the project
is evaluated by using a modified object point analysis
approach. The proposed model shows a great improvement
as compared to the earlier models used in effort estimation
of CMS projects.

Visaggio [48] proposes a metric for expressing the
entropy of a software system and for assessing the quality of
its organization from the perspective of impact analysis. The
metric is called “structural information” and is based on a
model dependency descriptor. The metric is characterized
by its independence from the techniques used to build the
system and the architectural styles used to represent the
system at the various levels of abstraction. The metric is
sensitive to and reflects both internal and external
complexity, but is independent of and ignores intrinsic
complexity, which is our interest focus.

Briand and Wust [14] used structural design properties
of an object-oriented development project, such as coupling,
cohesion, and complexity (of late design) as additional cost
factors. They empirically conclude that the measures of such
properties did not play a significant role in improving
system effort predictions.

Mendes et al. [38] compared length, functionality and
complexity metrics as effort predictors by generating
corresponding prediction models and comparing their
accuracy using boxplots of the residuals for web
applications. Their results suggest that in general the various
considered measures provide similar prediction accuracy.

Baresi and Morasca [8] analyzed the impact of attributes
like the size and complexity of W2000 (a special-purpose
design notation for the design of Web applications [7])
design artifacts on the total effort needed to design web
applications. They identified for Information, Navigation,
and Presentation models a set of size and complexity
metrics. The complexity metrics are based on associations
and links identified in the models. The three studies
performed correlated different size measures with the actual
effort: no general hypotheses could be supported by the
analyses that were conducted, probably because the
designer’s background impacted the perception of
complexity.

Lind and Heldal [36] conducted four experiments in the
automotive industry, which showed a strong correlation
between COSMIC functional size measures and

265

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implemented code size in Bytes of real-time applications.
They reported that it was possible to obtain accurate Code
Size estimates even for software components containing
complex calculations –which are not captured by COSMIC–
as the factors affecting the relationship are functionality
type, quality constraints, development methods and tools,
and information regarding hardware interfaces missing in
the requirement specification.

Bashir and Thomson [9] used traditional regression
analysis to derive two types of parametric models: a single
variable model based on product complexity and a
multivariable model based on product complexity and
requirements severity. Generally, the models performed
well according to a number of accuracy tests. In particular,
product complexity explained more than 80% of variation in
estimating effort. They concluded that product complexity
as an indicator for project size is the dominant parameter in
estimating design effort. Our results agree with those by
Bashir and Thomson, as the results they obtained using
functional complexity measures (0.64<R

2
<0.81) are quite

similar to ours.
Quite interestingly, in the parametric models that are

most used in practice –like COCOMO II [11] or
SEER/SEM [18]– the functional complexity is taken into
account as part of the product characteristics in formulas of
the type Effort=f(Size, <product characteristics>, <process
characteristics>).

Hastings and Sajeev [21] proposed a Vector Size
Measure (VSM) that incorporates both functionality and
problem complexity in a balanced and orthogonal manner.
VSM is used as the input to a Vector Prediction Model
(VPM), which can be used to estimate development effort
early in the software life cycle. The results indicate that the
proposed technique allows for estimating the development
effort early in the software life cycle with errors not greater
than 20% across a range of application types.

AlSharif et al. [5] introduced a measure for assessing the
overall complexity of software architecture. To accomplish
this, they chose to use the Full Function Points (FFP)
methodology –a former version of COSMIC Function
Points– as a building block to measure complexity. The new
measure was inspired by the fact that, in general, the
components of an architecture comprise collections of
services (functionality) that each component provides for
other components. The allocation of these functionalities
affects the required interface (external dependency) and the
internal work performed by each component. Therefore,
measuring the functionality of the components can serve as
an indicator of the internal and external complexity of the
components and, consequently, the complexity of the
architecture. Also, Sengupta et al. [44] proposed the
Component Architecture Complexity Measurement Metrics
(CACMM), based on Component Architecture Graph
(CAG), a graphical model used for representing a UML
component diagram. An analysis of the graph was
performed to measure complexity at different levels – the
individual component level, the component-to-component
level and the overall architecture. However, neither in [5]

nor in [44] the relationship between architecture complexity
and effort was analyzed.

Misra [40] proposed a modified cognitive complexity
measure (MCCM), which is a modification of the Cognitive
Information Complexity Measure (CICM). In the cognitive
functional size measure, the functional size depends upon
the internal architecture of the software and its inputs and
outputs. For the new measure, the occurrence of operators
and operands is taken into account, instead of the number of
inputs and outputs. The author compared the values
obtained by calculating the complexity of eight C programs;
however, a relation with Effort was not reported.

Wijayasiriwardhane and Lai [49] described a Function
Point-like measure named Component Point (CP), which
was used to measure the system-level size of a Component-
Based Software System (CBSS), specified in the Unified
Modeling Language. In the CP counting process, the
complexity of the component was assessed, which depended
not only on the number, but also on the complexity of its
interfaces and interactions. The complexity level of each
interface was specified using the Number of Operations
(NO) and the Number of Parameters (NP), which were
derived from the operation signatures for each interface.
They provided an empirical analysis of seven projects in
order to verify the validity and usefulness of the CP measure
with regard to its correlation to the effort of component-
based development. They reported that the R

2
obtained was

greater than 0.9.
Our results are in accordance with the consideration

expressed by Morasca on the definition of measures [42], as
it appears that the notion of complexity may be represented
by taking into account several basic indicators (size, control
flow, data, etc.) that can be used individually (i.e., without
the need to build a derived measure defined as a weighted
sum) in estimation models.

Mittas and Angelis [41] introduced the use of a semi-
parametric model that managed to incorporate some
parametric information into a non-parametric model,
combining in this way regression and analogy. They
demonstrated the procedure used to build such a model from
two well-known datasets. The MMRE reported for EbA
were 35.57% and 33.45% and the improvement using the
combination model was about 50%. The results using EbA
fell within the range of our results, but the improvement
obtained was higher. However, the method proposed by
Mittas and Angelis has some limits in practical
applicability, because the models are more difficult to build,
as more variables and several estimation techniques have to
be used.

Shepperd and Schofield [45] described an approach to
estimation based upon the use of analogies. The underlying
principle was to characterize projects in terms of features
(for example, the number of interfaces, the development
method or the size of the functional requirements
document). Similarity was defined as the Euclidean distance
in an n-dimensional space, where n is the number of project
features. Each dimension is standardized, so all dimensions
have equal weight. The known effort values of the closest
neighbors to the new project are then used as the basis for

266

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

prediction. The method was validated on nine different
industrial datasets (a total of 275 projects) and in all cases
analogy outperformed algorithmic models based upon
stepwise regression. Although we had a different research
objective, it was useful to see that the results they obtained
were in a range of values similar to ours: the MMRE of
analogy based method of homogeneous data set were in the
26%-60% range.

Finally, Gupta et al. [20] studied analogy based
estimation methods and compared estimation results
reported by nine authors using Fuzzy logic, Grey System
Theory, Machine Learning techniques such as Genetic
Algorithms, Support vector Machines. The reported results
are characterized by quite large variations: MMRE varies
from a minimum 12% to a maximum 111%, while Pred(25)

is in the 15%−83.75% range. Our results fall in these ranges
of values.

III. MEASURES INVOLVED IN THE STUDY

In this study, we used the size measures and functional
complexity measures described in the following sections.

A. Function Points

The Function Point method was originally introduced by
Albrecht to measure the size of a data-processing system
from the end-user’s point of view, with the goal of
estimating the development effort [2][3]. IFPUG FPA is now
an ISO standard [24] in its “unadjusted” version. So,
throughout the paper, unless otherwise explicitly stated, we
refer exclusively to Unadjusted Function Points, which are
generally referred to as “UFP.”

The basic idea of FPA is that the “amount of
functionality” released to the user can be evaluated by taking
into account the data used by the application to provide the
required functions, and the transactions (i.e., operations that
involve data crossing the boundaries of the application)
through which the functionality is delivered to the user. Both
data and transactions are evaluated at the conceptual level,
i.e., they represent data and operations that are relevant to the
user. Therefore, Function Points (FP) are counted on the
basis of the user requirements specification. The boundary
indicates the border between the application being measured
and the external applications and user domain.

The core of the counting procedure consists in
identifying and weighting so-called data function types and
transactional function types. Data functions represent data
that are relevant to the user and are required to perform some
function. Data functions (DF) are classified into internal
logical files (ILF), and external interface files (EIF). An ILF
is a user identifiable group of logically related information
maintained (i.e., managed –in FPA terminology,
“maintaining” data means creating, modifying, deleting
data–) within the boundary of the application. An EIF is
similar to an ILF, but is maintained within the boundary of
another application, i.e., it is outside the application being
measured, for which an EIF is a read-only file.

Transactional functions represent operations that are
relevant to the user and cause input and/or output data to
cross the application boundary. Transactional functions

represent elementary processes. An elementary process is the
smallest unit of activity that is meaningful to the user(s). An
elementary process must be self-contained and leave the
application being counted in a consistent state. Transactional
functions are classified into external inputs (EI), external
outputs (EO), and external inquiries (EQ) according to the
main intent of the process: updating ILF for EI, computing
and outputting results for EO, retrieving and outputting data
for EQ.

Every function, either data or transaction, contributes a
number of FP that depends on its weight. The weight of ILF
and EIF is evaluated based on Data Element Types (DET)
and Record Element Types (RET). A DET is a unique, non-
repeated field recognizable by the user. A RET is a subgroup
of the information units contained in a file. To give a rough
idea of what RET and DET are, if the specifications are
written in an object-oriented language (like UML), the
concept of RET maps (with some exceptions) onto the
concept of class, while DET are the class attributes.

For transactions, the weight is based on the number of
DET and File Type Referenced (FTR). An FTR can be an
ILF referenced or maintained by the transaction or an EIF
read by the transaction. The DET considered are those that
cross the application boundary when the transaction is
performed.

Each function is weighted according to given tables
(weight tables can be found here: http://www.eng-it.it/qg-
ifpug-fpa-v42en.pdf).

Finally, the number of so-called Unadjusted Function
Points (UFP) is obtained by summing the contribution of the
function types UFP = EI + EO + EQ + ILF + EIF.

According to the definition of UFP, it is clear that the
amount and complexity of the elaboration required in the
transaction functions is not taken into consideration. For
instance two External Output transactions that involve 2 FTR
and 10 DET both have the same weight, even if one just
performs sums and the other performs very complex
operations according to a very sophisticated algorithm.

B. COSMIC Function Points

COSMIC (Common Software Measurement International
Consortium) [16][23] function points are growingly used for
measuring the functional size of applications, i.e., to measure
the size of functional user requirements.

COSMIC measurement is applied to the “Functional
User Requirements” of a software application (actually, there
is no difference between the user requirements used to count
FP and CFP). The result is a number representing the
functional size of the application in COSMIC Function
Points.

In the COSMIC model of software (illustrated in Fig. 1),
the Functional User Requirements can be mapped into
unique functional processes, initiated by functional users.
Each functional process consists of sub-processes that
involve data movements. A data movement concerns a single
data group, i.e., a unique set of data attributes that describe a
single object of interest. In practice, the COSMIC data
groups correspond to FPA logical data files (or to RET), but
do not contribute directly to the size in CFP: they are

267

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

relevant only because they are the objects of data
movements. There are four types of data movements:

− An Entry moves a data group into the software from a
functional user.

− An Exit moves a data group out of the software to a
functional user.

− A Read moves a data group from persistent storage to
the software.

− A Write moves a data group from the software to
persistent storage.

In the COSMIC approach, the term “persistent storage”
denotes data (including variables stored in central memory)
whose value is preserved between two activations of a
functional process.

The size in CFP is given by equation CFP = Entries +
Exits + Reads + Writes, where each term in the formula
denotes the number of corresponding data movements. So,
there is no concept of “weighting” of a data movement in
COSMIC, or, equivalently, all data movement have the same
unit weight.

COSMIC function points do not represent the amount
and complexity of data elaboration required. COSMIC
function points concentrate on the measure of data
movements, neglecting data elaboration. More precisely, the
model of software used by the COSMIC method –illustrated
in Fig. 1– includes data elaboration, but no indication on how
to measure it is provided. The COSMIC measurement
manual [16] simply assumes that every data movement
accounts for some amount of data elaboration, and that such
amount is proportional to the number of data movements, so
that by measuring data movements, one measures also data
manipulation.

As size units, we adopted both CFP and the number of
functional processes. In fact, the number of functional
processes is suggested as a reasonable approximation of the
size in CFP in [16]. Moreover, being a sort of “by product”
of CFP measurement, computing the number of Functional
Processes does not actually require additional effort.

Functional User
Requirements

Sub-process types

Functional

Process Type

Data Movement
Type

Data Manipulation
Type

Figure 1. The COSMIC generic software model.

C. Use Case-based Measures

In 1993, Karner introduced Use Case Points (UCP), a
redefinition of the Function Point method in the context of
the use case requirements specification [28][29].

Use cases yield an observable result that is meaningful
for the actors [12]. Karner based the conception of use case
functional size on two elements: the use cases themselves
and the actors, which are the external entities that interact
with the system.

Every element, i.e., every use case and actor, contributes
to the software product size with a number of UCP that
depends on the “complexity” of each use case and actor.
The complexity of use cases is defined in terms of the
number of transactions and analysis objects (which are
conceptually similar to ILF). The complexity of actors is
associated to the characteristics of the interface and protocol
used in the interaction with the system. Each element is
weighted on the basis of its complexity according to the
values specified in [28][29].

Since the concept of transaction is not clearly defined in
Karners’s method –as already pointed out by [51]– we
decided to interpret it as the stimulus triggered by an actor:
each stimulus that an actor triggers defines a transaction, as
described in [32]. Also, the analysis objects were not taken
into account to measure the complexity of the use cases;
only the number of transactions was used. This was done in
order to make our results comparable to those obtained by
[6].

We consider UCP in their “unadjusted” version. So,
throughout the paper, unless otherwise explicitly stated, we
will exclusively refer to Unadjusted Use Case Points, which
are generally referred to as “UUCP.”

Finally, it is important to note that the number of UUCP,
i.e., the “amount of functionality” of a use case, is obtained
by adding up the contribution of the elements: UUCP = Use
Case + Actor.

D. Functional Complexity Measures

Several different possible measures of functional
complexity were proposed. For instance, in [46] the number
of inputs and outputs, the number of decision nodes, the sum
of predicates of all decision nodes, the depth of decision tree
and the length of paths are considered as possible indicators
of complexity.

In [47], Tran Cao et al. propose the usage of the number
of data groups (NOD), the number of conditions (NOC) and
entropy of system (EOS). They also study how these
measures (also in combination with COSMIC FP) are
correlated with the development effort.

Another measure of complexity, the Paths, was defined
on the basis of the information typically available from use
case descriptions [43]. The measure of the complexity of use
cases is based on the application of the principles of
McCabe’s complexity measure [37] to the descriptions of
use cases in terms of scenarios. In fact, use cases are usually
described giving a main scenario, which accounts for the
‘usual’ behaviour of the user and system, and a set of
alternative scenarios, which account for all the possible
deviations from the normal behaviour that have to be

268

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

supported by the system. Robiolo and Orosco [43] apply to
the use case textual descriptions the same measure applied
by McCabe to code. Every different path in a given use case
scenario contributes to the measure of the use case’s
complexity. The definition of Paths conforms to several
concepts enounced by Briand et al. [13]: Paths represent “an
intrinsic attribute of an object and not its perceived
psychological complexity as perceived by an external
observer”, and they represent complexity as “a system
property that depends on the relationship between elements
and is not an isolated element's property”. A detailed
description of the Paths measure and its applicability to use
cases described in UML can be found in [33].

In the research work reported here, we used measures
that are conceptually very close to those proposed in
previous studies [46][47]. However, we did not stick exactly
to the previous proposals, essentially for practical reasons.
We used Paths instead of NOC because both measures
capture essentially the same meaning, and the measures of
Paths were already available. Similarly, we used the number
of COSMIC data groups and the FPA number of logic data
files instead of NOD because –having measured the size of
the applications in FP and CFP, the documentation on data
groups and logic files was already available, thus the
measurement could be performed very easily.

TABLE I. THE DATASET

Project

ID
Type

Actual

Effort
Path

Use

Cases
UUCP UFP

FPA

transactions
CFP

Functional

Processes

Data

Groups

Pers.

DG

P1 Academic 410 71 39 201 185 39 143 39 21 7

P2 Academic 474 73 28 149 269 58 118 28 15 9

P3 Academic 382 60 7 84 171 19 109 24 15 12

P4 Academic 285 49 6 72 113 15 74 25 14 8

P5 Academic 328 34 12 72 110 14 48 12 17 7

P6 Academic 198 35 8 62 86 9 67 10 15 7

P7 Academic 442 50 6 71 75 10 81 16 12 6

P8 Industrial 723 97 27 175 214 33 115 27 19 10

P9 Industrial 392 83 15 111 340 47 105 24 35 24

P10 Industrial 272 42 19 119 179 27 73 21 9 9

P11 Industrial 131 18 13 68 115 17 51 13 5 5

P12 Industrial 348 32 12 71 107 16 46 12 13 7

P13 Academic 243 68 12 99 111 12 96 26 18 9

P14 Academic 300 33 4 57 40 4 54 12 12 4

P15 Academic 147 20 10 53 59 10 53 14 15 4

P16 Academic 169 17 5 28 61 5 30 5 10 6

P17 Academic 121 21 13 52 72 13 47 13 15 5

P18 Academic 342 24 9 48 11 27 40 9 12 2

P19 Academic 268 16 9 49 12 27 30 9 10 3

IV. THE EXPERIMENTAL EVALUATION

A. The Dataset

In order to evaluate the measures mentioned above with
respect to their usability as effort predictors, we collected all
such measures for a set of projects. We could not use data
from the best known repositories –such as the PROMISE or
ISBSG datasets– because they do not report the size of each
project according to different FSM methods; moreover, the
Paths measure is quite recent, and no historical data exist for
it.

We measured 19 small business projects, which were
developed in three different contexts: an advanced
undergraduate academic environment at Austral University,

the System and Technology (S&T) Department at Austral
University and a CMM level 4 Company. The involved
human resources shared a similar profile: advanced
undergraduate students, who had been similarly trained,
worked both at the S&T Department and at the CMM level 4
Company. All the selected projects met the following
requisites:
a) Use cases describing requirements were available.
b) All projects were new developments.
c) The use cases had been completely implemented, and the

actual development effort in PersonHours was known.
The dataset is reported in Table I. Note that we

distinguished the number of persistent data groups (column
Pers. DG) from the total number of data groups, which
includes also transient data groups. Our hypothesis is that

269

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

persistent data groups are more representative of the amount
of data being handled by the application.

B. The Estimation Methods Used

We first checked if statistically significant models could
be built using ordinary least squares (OLS) linear regression.

We used also linear regression after log-log
transformation, as is usually done in studies concerning
effort [11][47].

In model building, a 0.05 statistical significance
threshold was used throughout the paper, as is customary in
Empirical Software Engineering studies. All the results
reported in the paper are characterized by p-value < 0.05. All
the validity requirements for the proposed models (e.g., the
normal distribution of residuals of OLS regressions) were
duly checked.

Moreover, in order to avoid overfitting, we retained only
models based on datasets containing –after the elimination of
outliers– at least seven data points for each independent
variables. In this way we get datasets containing enough data
points to support statistically significant analyses.

Then, we applied Estimation by Analogy (EbA). That is,
we estimated the development effort required by each project
on the basis of the actual development effort required by
similar projects (i.e., projects having similar size and/or
complexity characteristics).

C. The Measures

The measures actually employed in the analysis are
described in Table II. They are a superset of those used in
[1].

Among the measures listed in Table II, we have not only
size and complexity measures, but also several density
measures. These density measures introduce the concept of
functional complexity per size unit: for instance, we consider
the Path/UFP ratio, which indicates how many Paths per
UFP are required in the software being measured. The reason
for using functional complexity per size unit is that
functional complexity measures are often correlated to size
itself, thus the density appears more relevant to indicate how
complex and difficult the development is.

The complexity of a system is a property that depends on
the relationships among system’s elements [13]. So, the
measures discussed above represent the density of
relationships among elements per unit size.

V. USING FUNCTIONAL COMPLEXITY MEASURES IN

EFFORT ESTIMATION MODELS

In this section, we report about the construction of
development effort models. We systematically tried to build
models that have the development effort as dependent
variable and one or two independent variables belonging to
the set described in Table II. In particular, when building
models having two independent variables, all the possible
pairs of measures from Table II were tried out. Models with
more than two independent variables were not sought,
because the available dataset does not contain enough data
points to support such analysis while avoiding data
overfitting.

TABLE II. MEASURES USED

Name Description

Path Path

CFP COSMIC Function Points

FPr Functional Processes

DG Data Groups

PDG Persistent Data Groups

UC Number of Use Cases

UUCP Unadjusted Use Case Points

UFP Unadjusted Function Points

FPAtrans Number of unweighted FPA transactions

NumFiles Number of unweighted FPA logic data files

Path/FPr Path per Functional Process

Path/CFP Path per CFP

DG/FPr Data Groups per Functional Process

DG/CFP Data Groups per CFP

PDG/FPr Persistent Data Groups per Functional Process

PDG/CFP Persistent Data Groups per CFP

Path/UFP Paths per unadjusted Function Point

Path/FPAtrans Paths per unweighted FPA transactions

NumFiles/UFP
Unweighted FPA logic data files per unadjusted

Function Point

NumFiles/FPAtrans
Unweighted FPA logic data files per unweighted

FPA transactions

Path/UC Paths per use case

Path/UUCP Paths per use case point

A. Analysis of the dataset using linear regression

Linear regression did not provide any statistically
significant model when FPA or UC measures were used. On
the contrary, when using COSMIC-based measures, a single
statistically significant model was found, having equation

 Effort = -29.9 + 139.1× Path/FPr

The model –obtained after eliminating 4 outliers (P1, P6,
P8, P17)– has adjusted R

2
=0.64. The regression line is

illustrated in Fig. 2. This model is quite interesting, as a
functional size density measure is the independent variable:
the model seems to suggest that the actual complexity of
software, rather than its size, determines development effort.

The accuracy of the model is characterized by MMRE =
34%, while Pred(25) –i.e., the percentage of project whose
absolute relative estimation error is in the ±25% range– is

63%, and Error range = -46%−162%. The distribution of
relative residuals is illustrated in Fig. 3.

Throughout the paper, MMRE and Pred(25) are used as
indicators of the accuracy of models, because they are often
quoted as the de facto current accuracy indicators used in

270

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Empirical Software Engineering, even though criticisms
have been cast on the usefulness and meaning of MMRE and
Pred(25) [31]. Boxplots representing the distributions of
relative residuals are always given, to provide meaningful
and unbiased information on estimation accuracy.

Figure 2. Effort vs. Path/FPr: OLS regression line.

Figure 3. Effort vs. Path/FPr OLS model: relative residuals.

B. Analysis of the dataset using log-log transformations

We used linear regression after log-log transformation, as
is usually done in studies concerning effort [11][47].

The models found by checking the correlation between
effort and FPA measures are summarized in Table III, while
their accuracy is illustrated in Table IV. Both the models
found involve a size measure (the number of FPA
transactions) and a complexity density measure (Paths/UFP
or Path/FPA transactions).

TABLE III. OLS EFFORT MODELS INVOLVING FPA-BASED MEASURES

Model Adj. R2 Outl.

Effort = 120.6 × FPAtrans0.654
×

(Path/UFP)0.958
0.642 3 (P21, P22, P17)

Effort = 12.2 × FPAtrans0.816 ×

(Path/FPAtrans)0.976
0.812 3 (P22, P21, P14)

TABLE IV. ACCURACY OF OLS FPA-BASED EFFORT MODELS

Model MMRE Pred(25) Error range

Effort = 120.6 × FPAtrans0.654

× (Path/UFP)0.958
71% 53% -40%−543%

Effort = 12.2 × FPAtrans0.816

× (Path/FPAtrans)0.976
25% 63% -60%−108%

The models found by checking the correlation between

effort and COSMIC measures are summarized in Table V. It
is interesting to note that both the models found involve the
usage of a size measure (the Function Points or the number
of functional processes) and a complexity density measure
(Paths/CFP). The accuracy of the models found is illustrated
in Table VI.

TABLE V. OLS EFFORT MODELS INVOLVING COSMIC-BASED

MEASURES

Model Adj. R2 Outliers

Effort = 112.2 × CFP0.391 × (Path/CFP)1.298 0.658 0

Effort = 231.8 × FPr0.377 × (Path/CFP)
1.468

 0.744 1 (P14)

TABLE VI. ACCURACY OF OLS COSMIC-BASED EFFORT MODELS

Model MMRE Pred(25) Error range

Effort = 112.2 × CFP0.391 ×

(Path/CFP)1.298
22% 68% -30%−77%

Effort = 231.8 × FPr0.377 ×

(Path/CFP)
1.468

23% 68% -27%−97%

Finally, we checked the correlation between effort and

Use Case. The models found are summarized in Table VII. It
is noticeable that both the models found involve the usage of
a size measure (either the number of use cases or the use case
points) and a complexity density measure.

TABLE VII. OLS EFFORT MODELS INVOLVING USE CASE-BASED

MEASURES

Model Adj. R2 Outliers

Effort = 21.9 × UC0.68 × (Path/UC)0.728 0.609 1 (P22)

Effort = 24.9 × UUCP0.679 × (Path/UUCP)0.775 0.608 1 (P22)

The accuracy of the models found is illustrated in Table

VIII. Again, we got significant models only based on
variables involving Paths.

It is quite interesting to observe that all the models found
have two independent variables, and that one is a measure of
size, while the other is a measure of complexity density.

TABLE VIII. ACCURACY OF OLS USE CASE-BASED EFFORT MODELS

Model MMRE Pred(25) Error range

Effort = 21.9 × UC0.68 ×

(Path/UC)0.728
24% 63% -45%−73%

Effort = 24.9 × UUCP0.679 ×

(Path/UUCP)0.775
24% 63% -45%−74%

271

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E

ff
o

rt
 v

s.

F
P

A
tr

an
s,

 P
at

h
/U

F
P

E
ff

o
rt

 v
s.

F

P
A

tr
an

s,
 P

at
h
/F

P
A

tr
an

s

E
ff

o
rt

 v
s.

C

F
P

,
P

at
h
/C

F
P

E
ff

o
rt

 v
s.

F

P
r,

 P
at

h
/C

F
P

E
ff

o
rt

 v
s.

U

C
,
P

at
h
/U

C

E
ff

o
rt

 v
s.

U

U
C

P
,
P

at
h
/U

U
C

P

Figure 4. Model comparison: relative residuals.

It is also interesting to see that these models appear
reasonably good both in terms of their ability to explain the
variation of effort depending on the variation of the size and
complexity measures (as indicated by the values of the
adjusted R

2
) and in terms of precision of the fit (as indicated

by MMRE, Pred(25) and the relative error range).
The data illustrated in the tables above do not indicate if

a model is definitely better than the others with respect to
accuracy. A possible way for identifying the best model is by
comparing the relative residuals (since we are considering
the ability to predict effort, we have to look at relative
residuals, since an error of, say, two PersonMonths can be
irrelevant or very important, depending on the total effort).

The boxplots representing relative residuals of the
models obtained via OLS regression after log-log
transformation are reported in Fig. 4 (where two extreme
outliers of the first model were omitted to preserve the
readability of the figure). The boxplots indicate quite clearly
that the values and distributions of residuals are very similar
for all the models.

VI. USING FUNCTIONAL COMPLEXITY MEASURES IN

ESTIMATION BY ANALOGY

In this section, we test the effects of considering
complexity density when selecting “analogous” projects
upon which effort estimation is based. To this end, we
compute effort estimates in two ways: identifying analogous
projects only on the basis of size, and considering both size
and complexity density. The hypothesis that we want to test

is that considering both size and complexity density leads to
better estimates.

There are several criteria that can be used to identify
analogous projects. Some of these involve identifying the k
closest projects, where closeness is generally evaluated as
the distance between projects. Accordingly, we chose to use
a criterion that ensures –as far as possible– that the
analogous projects are all within a given distance from the
project to be estimated.

For each project, we select among the remaining projects
those having both size and complexity density in a ±20%
range. The mean of these projects’ efforts is assumed as the
estimate. If no project is found in the ±20% range, the range
is progressively increased until at least one project in the
range is found. The estimation for a given project of size S is
thus performed according to the following procedure:

R=0.2

P = {}

while |P|<1 do

for all Pi in the set of projects

if (1-R)×S ≤ Pi.size ≤ (1+R)×S

 then P = P ∪ {Pi.effort}

R=R+0.1

done

EstimatedEffort = mean(P)

So, for instance, given P3 (whose size is 171 UFP), P1

and P10 (which have size 185 UFP and 179 UFP,
respectively) are selected as analogue projects. In fact, these
are the only projects that have size in the range 171 ±20%,

i.e., in range 137−205. Since the developments of the
selected projects required 410 and 272 PersonHours, we
assume that P3 requires (410+272)/2 = 341 PersonHours.

When analogue projects are selected also on the basis of
complexity density, the condition for inclusion into the set of
analogous projects is modified in order to select projects
whose size Si and complexity density Ci satisfy the condition

((1-R)×S ≤ Si ≤ (1+R)×S) ∧ ((1-R)×C ≤ Ci ≤ (1+R)×C),
where C is the complexity density of the project being
estimated.

A. Estimation by Analogy using FPA Measures

In this subsection, we present the results of estimation by
analogy based on FPA measures: we used UFP as a size
measure and Path/UFP as complexity density measure.

UFP were chosen because they are the most obvious size
measures, when FPA is used. Similarly, we used CFP and
UUCP in the following sections.

Effort estimates and the differences with respect to actual
efforts are illustrated in Table IX, where columns labeled
“CA est. (2 var)” report results concerning the estimation
based on both size and complexity density.

It is easy to see that the estimation error is generally
larger for the estimates based only on size similarity, than for
the estimates based on the similarity of both size and
complexity density.

272

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IX. ANALOGY-BASED ESTIMATES OBTAINED USING FPA

MEASURES

PID
Actual
Effort

CA
est.

CA est.
 (2 var)

Error CA Error CA (2 var)

1 410 459 553 49 (12%) 143 (35%)

2 474 557 392 84 (18%) -82 (-17%)

3 382 341 410 -41 (-11%) 28 (7%)

4 285 262 263 -23 (-8%) -22 (-8%)

5 328 252 348 -76 (-23%) 20 (6%)

6 198 282 266 84 (42%) 68 (34%)

7 442 163 198 -279 (-63%) -244 (-55%)

8 723 341 410 -382 (-53%) -313 (-43%)

9 392 474 474 82 (21%) 82 (21%)

10 272 505 230 233 (86%) -43 (-16%)

11 131 301 272 170 (130%) 141 (108%)

12 348 237 328 -111 (-32%) -20 (-6%)

13 243 273 285 31 (13%) 43 (18%)

14 300 147 147 -153 (-51%) -153 (-51%)

15 147 169 169 22 (15%) 22 (15%)

16 169 134 121 -35 (-21%) -48 (-28%)

17 121 239 158 118 (98%) 37 (31%)

18 342 268 268 -74 (-22%) -74 (-22%)

19 268 342 342 74 (28%) 74 (28%)

The relative estimation errors reported in parentheses are

computed as the estimation errors divided by the actual
efforts, expressed as percentages. For instance, for project 1
ErrorCa = 49, ActualEffort = 410, thus the relative error is
49/410 = 12%.

For eleven projects, considering also the complexity
density in the selection of analogous projects leads to smaller
absolute relative errors. In five cases, considering also the
complexity density does not cause any change in the absolute
relative error. Only for three projects (P1, P13 and P16) the
relative absolute error is smaller when the estimate is based
only on size.

The mean and median absolute relative errors (i.e.,
MMRE and MdMRE) are reported in Table X, together with
Pred(25). Table X shows that considering complexity density
allows for better accuracy than considering size alone to
identify analogous projects. This fact is confirmed by the
distributions of relative errors (illustrated by the boxplot in
Fig. 5) and absolute relative errors (illustrated by the boxplot
in Fig. 6). Fig. 5 shows that when complexity density is
considered, the median, the mean (represented as a diamond)
and the errors in general are closer to zero. Fig. 6 shows that
the median, the mean and the errors in general are smaller
when complexity density is taken into consideration in the
EbA.

TABLE X. ANALOGY-BASED ESTIMATES OBTAINED USING FPA

MEASURES: MMRE, MDMRE AND PRED(25)

 CA CA (2 var)

Mean 39.2% 28.8%

Median 23.3% 21.6%

Pred(25) 52.6% 52.6%

Figure 5. Estimation by analogy based on FPA measures: relative errors.

Figure 6. Estimation by analogy based on FPA measures: absolute

relative errors.

273

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XI. ANALOGY-BASED ESTIMATES USING COSMIC MEASURES

PID
Actual
Effort

CA
est.

CA est.
 (2 var)

Error CA Error CA (2 var)

1 410 598 428 188 (46%) 18 (4%)

2 474 435 312 -39 (-8%) -161 (-34%)

3 382 458 474 75 (20%) 91 (24%)

4 285 304 357 19 (7%) 72 (25%)

5 328 231 330 -97 (-29%) 2 (1%)

6 198 286 286 88 (44%) 88 (44%)

7 442 249 249 -193 (-44%) -193 (-44%)

8 723 373 317 -350 (-48%) -405 (-56%)

9 392 455 483 63 (16%) 91 (23%)

10 272 308 308 36 (13%) 36 (13%)

11 131 249 147 118 (90%) 16 (12%)

12 348 228 323 -120 (-34%) -25 (-7%)

13 243 485 519 242 (100%) 276 (114%)

14 300 215 338 -85 (-28%) 38 (13%)

15 147 246 126 99 (67%) -21 (-14%)

16 169 268 268 99 (59%) 99 (59%)

17 121 266 147 145 (120%) 26 (21%)

18 342 266 338 -76 (-22%) -4 (-1%)

19 268 169 169 -99 (-37%) -99 (-37%)

B. Estimation by using COSMIC Measures

In this subsection, we present the results of estimation by
analogy based on COSMIC measures: we used CFP as a size
measure and Path/CFP as complexity density measure.

Effort estimates and the differences with respect to actual
efforts are illustrated in Table XI.

For eight projects, considering also the complexity
density in the selection of analogous projects leads to smaller
absolute relative errors. For six projects the relative absolute
error is smaller when the estimate is based only on size
analogy. In five cases, considering also the complexity
density does not cause any change in the absolute relative
error.

MMRE, MdMRE and Pred(25) are given in Table XII.
Table XII shows that considering complexity density allows
for better accuracy than considering size alone to identify
analogous projects. This fact is confirmed by the
distributions of relative errors and absolute relative errors
(illustrated by the boxplots in Fig. 7 and Fig. 8, respectively).

TABLE XII. ANALOGY-BASED ESTIMATES OBTAINED USING COSMIC

MEASURES: MMRE, MDMRE AND PRED(25)

 CA CA (2 var)

MMRE 43.8% 28.8%

MdMRE 36.9% 23.1%

Pred(25) 31.6% 57.9%

Figure 7. Estimation by analogy based on COSMIC measures: relative

errors.

Figure 8. Estimation by analogy based on COSMIC measures: absolute

relative errors.

Fig. 7 shows that when complexity density is considered,
the median, the mean (represented as a diamond) and the
errors in general are (slightly) closer to zero. Fig. 8 shows
that the median, the mean and the errors in general are
smaller when complexity density is taken into consideration
in the EbA.

We can also observe that the results obtained when using
COSMIC measures are very similar to those obtained using
FPA measures.

C. Estimation by Analogy using Use Case Measures

In this subsection, we present the results of estimation by
analogy based on Use Case measures: we used UUCP as a
size measure and Path/UUCP as complexity density
measure.

Effort estimates and the differences with respect to actual
efforts are illustrated in Table XIII.

274

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XIII. ANALOGY-BASED ESTIMATES OBTAINED USING USE CASE

MEASURES

PID
Actual
Effort

CA
est.

CA est.
 (2 var)

Error CA
Error CA (2

var)

1 410 723 474 313 (76%) 64 (15%)

2 474 723 723 249 (53%) 249 (53%)

3 382 296 323 -86 (-23%) -59 (-15%)

4 285 305 341 20 (7%) 56 (20%)

5 328 298 273 -30 (-9%) -55 (-17%)

6 198 263 314 65 (33%) 116 (59%)

7 442 282 291 -160 (-36%) -151 (-34%)

8 723 442 474 -281 (-39%) -249 (-34%)

9 392 257 243 -135 (-34%) -150 (-38%)

10 272 317 401 45 (17%) 129 (47%)

11 131 317 268 186 (142%) 137 (105%)

12 348 295 328 -53 (-15%) -20 (-6%)

13 243 387 387 145 (60%) 145 (60%)

14 300 201 270 -99 (-33%) -30 (-10%)

15 147 246 195 99 (67%) 48 (32%)

16 169 305 305 136 (80%) 136 (80%)

17 121 251 208 130 (107%) 87 (71%)

18 342 209 210 -133 (-39%) -132 (-38%)

19 268 227 147 -41 (-15%) -121 (-45%)

For ten projects, considering also the complexity density

in the selection of analogous projects leads to smaller
absolute relative errors. For six projects the relative absolute
error is smaller when the estimate is based only on size
analogy.

The MMRE, MdMRE and Pred(25) are reported in Table
XIV. Table XIV shows that considering complexity density
allows for better accuracy than considering size alone to
identify analogous projects only as far as is concerned.

The distributions of relative errors (illustrated by the
boxplot inFig. 9) and absolute relative errors (illustrated by
the boxplot in Fig. 10) show that taking into account
complexity density when selecting analogue projects causes
marginal improvements in estimation accuracy.

TABLE XIV. ANALOGY-BASED ESTIMATES OBTAINED USING USE CASE

MEASURES: MMRE, MDMRE AND PRED(25)

 CA CA (2 var)

MMRE 46.6% 41.1%

MdMRE 36.3% 38.1%

Pred(25) 31.6% 31.6%

Figure 9. Estimation by analogy based on Use Case measures: relative

errors.

Figure 10. Estimation by analogy based on Use Case measures

As a final observation, we note that using both size and
complexity density in the selection of analogue projects
generally results in more accurate estimates. Only when the
size measures are based on use cases, considering
complexity density does not lead to a clear improvement in
estimation accuracy.

We can conclude that complexity density appears to be a
relevant factor to be considered when EbA is adopted.

VII. DISCUSSION

Table XV summarizes the accuracy of the effort models
described in Section V. These models are all those
statistically significant and featuring R

2
 > 0.6.

275

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XV. ACCURACY OF EFFORT MODELS

Model MMRE Pred(25) Error range

Effort = -29.9 + 139.1×

Path/FPr
34% 63% -46%−162%

Effort = 120.6 × FPAtrans0.654
×

(Path/UFP)0.958
71% 53% -40%−543%

Effort = 12.2 × FPAtrans0.816 ×

(Path/FPAtrans)0.976
25% 63% -60%−108%

Effort = 112.2 × CFP0.391 ×

(Path/CFP)1.298
22% 68% -30%−77%

Effort = 231.8 × FPr0.377 ×

(Path/CFP)
1.468

23% 68% -27%−97%

Effort = 21.9 × UC0.68 ×

(Path/UC)0.728
24% 63% -45%−73%

Effort = 24.9 × UUCP0.679 ×

(Path/UUCP)0.775
24% 63% -45%−74%

It is easy to see that all models in Table XV have at least

one parameter that accounts for functional complexity per
size unit.

It should be noted that we found also a model based
exclusively on complexity density. This model was rather
unexpected, as it says that the size of the programs is not
important at all. This result is probably due to the fact that
the variation of size is relatively little in the set of projects
that we analysed. Additional research is needed to explore
this point.

Having shown that functional complexity per size unit is
essential for regression models, we looked at the role that
functional complexity per size unit can play in EbA. To this
end, EbA was applied using two criteria for determining
analogues projects:

− According to size only;

− According to both size and functional complexity
per size unit.

Table XVI illustrates the results of EbA concerning the
accuracy of estimates via MMRE, MdMRE and Pred(25).

TABLE XVI. ACCURACY OF ANALOGY-BASED ESTIMATES

Variables used to
identify analogue

projects
MMRE MdMRE Pred(25)

UFP 39.2% 23.3% 52.6%

UFP, Path/UFP 28.8% 21.6% 52.6%

CFP 43.8% 36.9% 31.6%

CFP, Path/CFP 28.8% 23.1% 57.9%

UUCP 46.6% 36.3% 31.6%

UUCP, Path/UUCP 41.1% 38.1% 31.6%

Table XVI confirms the relevance of functional

complexity per size unit, as it helps increasing accuracy.
Actually it can be noted that EbA’s accuracy is generally
worse than regression models’. However, using functional
complexity per size unit for determining analogues projects
tends to make estimation accuracy closer to regression
models’.

VIII. THREATS TO VALIDITY

As in any software engineering empirical study, several
issues threaten the validity of the results. Here we discuss
such factors and the actions that have been undertaken to
mitigate them.

The limited size of the available dataset can be regarded
as a first threat to internal validity. The used dataset is
sufficiently large to support statistically significant analysis;
however, the fact that our dataset is representative of most
software systems is doubtful. To this end, we note that the
projects from which the data used in the paper were derived
are all real development projects, as those in best known
datasets, like the PROMISE [39] and ISBSG [22] datasets.
Some of our projects are rather small, but the majority of our

projects (namely 11 out of 19) have size in the 100−340
UFP, thus they can be considered medium-sized projects

(40% of the projects in the ISBSG dataset are in the 100−340
UFP range, while more than half have size smaller than 340
UFP).

Another possible threat to the validity of the study
derives from part of the projects being academic projects.
However, the projects that were carried out at the Austral
University were developed using techniques, tools and
methodologies similar to those used in the industrial projects.
Accordingly, we do not expect that these projects required
substantially different effort than other projects.

IX. CONCLUSION

The work reported here moves from the consideration
that development effort depends (also) on the complexity or
the amount of computation required, but no suitable measure
has emerged as a reliable way for capturing such complexity.
In fact, very popular methods like COCOMO II [11][15] still
use just an ordinal scale measure for complexity, based on
the subjective evaluation performed by the user.

We approached the problem of measuring the required
functional complexity by considering the most relevant
approaches presented in the literature, and testing them on a
set of projects that were measured according to FPA,
COSMIC and Use Case-based functional size measurement
methods.

The results of our analysis do not allow us to draw
definite conclusions, since our observations are based on a
specific set of data (see Table I). However, we observed that
all the models obtained were based on a notion of
computation density, which is based on the measure of Paths
[43], i.e., the number of distinct computation flows in
functional processes. Similarly, Estimation by Analogy
appears to benefit from the possibility of using the notion of
computation (or complexity) density in identifying analogue
projects.

Since Paths are quite easy to measure [33] and appear as
good effort predictors, we suggest that future research on
effort estimation takes into consideration the possibility of
involving a Path based measure of functional complexity.

An important results for practitioners is that functional
complexity appears as a factor that affects development
effort; accordingly, whatever method is used for effort

276

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

estimation, it is advisable to take functional complexity into
due consideration.

We plan to continue experimenting with measures of
functional complexity. Since in this type of experimentations
a critical point is the difficulty to get measures, we kindly
invite all interested readers that are involved in effort
estimations to perform functional complexity measurement
and share the data with us and the research community.

ACKNOWLEDGMENT

The research presented in this paper has been partially
funded by the project “Metodi, tecniche e strumenti per
l’analisi, l’implementazione e la valutazione di sistemi
software” funded by the Università degli Studi dell’Insubria,
and by the Research Fund of the School of Engineering of
Austral University.

REFERENCES

[1] L. Lavazza and G. Robiolo, “Functional Complexity
Measurement: Proposals and Evaluations, ” Proc. 6th Int.
Conf. on Software Engineering Advances (ICSEA 2011).

[2] A. Albrecht, “Measuring Application Development
Productivity,” Proc. IBM Application Development Symp.
I.B.M. Press, 1979.

[3] A.J. Albrecht and J.E. Gaffney, “Software Function, Lines of
Code and Development Effort Prediction: a Software Science
Validation,” IEEE Transactions on Software Engineering, vol.
9, November 1983.

[4] N.Aggarwal, N. Prakash, S. Sofat, “Web Hypermedia Content
Management System Effort Estimation Model,” SIGSOFT
Software Engineering Notes, vol. 34, March 2009.

[5] M. AlSharif, W.P. Bond, and T. Al-Otaiby, “Assessing the
complexity of software architecture,” Proc 42nd annual
Southeast regional conference (ACM-SE 42). ACM, New
York, NY, USA, 2004, pp. 98-103.

[6] B.Anda, E. Angelvik, and K. Ribu, “Improving Estimation
Practices by Applying Use Case Models,” Lecture Notes In
Computer Science, vol. 2559, Springer, 2002, pp. 383-397.

[7] L. Baresi, S. Colazzo, L. Mainetti, and S. Morasca, “W2000:
A modeling notation for complex Web applications,” In Web
Engineering, E. Mendes and N. Mosley. Eds., Springer-
Verlag, 2006.

[8] L. Baresi, and S. Morasca, “Three Empirical Studies on
Estimating the Design Effort of Web Applications,” ACM
Transactions on Software Engineering and Methodology, vol.
16, September 2007.

[9] H. Bashir, and V. Thomson, “Models for Estimating Design
Effort and Time,” Design Studies, vol. 22, March, Elsevier,
2001.

[10] B. Bernárdez, A. Durán, and M. Genero, “Empirical
Evaluation and Review of a Metrics–Based Approach for Use
Case Verification,” Journal of Research and Practice in
Information Technology, vol. 36, November 2004.

[11] B.W. Boehm, E. Horowitz, R. Madachy, D. Reifer, B.K.
Clark, B. Steece, A. Winsor Brown, S. Chulani and C. Abts,
Software Cost Estimation with Cocomo II. Prentice Hall,
2000.

[12] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison Weley, 1998.

[13] L. Briand, S. Morasca, and V.R. Basili, “Property-Based
Software Engineering Measurement,” IEEE Transactions on
Software Engineering, vol. 22, Month, 1996.

[14] L. Briand and J. Wust, “Modeling Development Effort in
Object-Oriented Systems Using Design Properties,” IEEE

Transactions on Software Engineering, vol. 27, November
2001.

[15] COCOMO II Model Definition Manual. http://
csse.usc.edu/csse/research/COCOMOII/cocomo_downloads.h
tm, last access Dec. 20, 2012.

[16] COSMIC – Common Software Measurement International
Consortium, 2009. The COSMIC Functional Size
Measurement Method - version 3.0.1 Measurement Manual
(The COSMIC Implementation Guide for ISO/IEC 19761:
2003), May 2009.

[17] N.E. Fenton, Software Metrics: A Rigorous Approach.
Chapman and Hall, London, 1991.

[18] D.D. Galorath and M.W. Evans, Software Sizing, Estimation,
and Risk Management, Auerbach Publications, 2006.

[19] C. Gencel and O. Demirors, “Functional Size Measurement
Revisited,” ACM Transactions on Software Engineering and
Methodology, vol. 17, June 2008.

[20] S. Gupta, G. Sikka, and H. Verma, “Recent methods for
software effort estimation by analogy,” SIGSOFT Softw. Eng.
Notes , vol. 36, August 2011, pp 1-5.

[21] T. Hastings and A. Sajeev, “A Vector-Based Approach to
Software Size Measurement and Effort Estimation,” IEEE
Transactions on Software Engineering, vol. 27 April 2001.

[22] International Software Benchmarking Standards Group:
Worldwide Software Development: The Benchmark, release
11, 2009.

[23] ISO/IEC19761:2003, Software Engineering – COSMIC-FFP
– A Functional Size Measurement Method, International
Organization for Standardization, Geneve, 2003.

[24] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, International Organization for
Standardization, Geneve, 2003.

[25] M. Jørgensen, M. Boehm, S. Rifkin, “Software Development
Effort Estimation: Formal Models or Expert Judgment?,”
IEEE Software, vol. 26, March-April 2009.

[26] C. Jones, A Short History of Function Points and Feature
Points. Software Productivity Research, Inc., Burlington,
Mass., 1986.

[27] C. Jones, Strengths and Weaknesses of Software Metrics.
Version 5, Software Productivity Research, 2006.

[28] G. Karner, Resource Estimation for Objectory Projects.
Objectory Systems, 1993.

[29] G. Karner, “Metrics for Objectory,” Diploma thesis,
University of Linköping, 1993.

[30] B. Kitchenham, S.L. Pfleeger, B. McColl, and S. Eagan, “An
Empirical Study of Maintenance and Development
Accuracy,” Journal of Systems and Software, vol. 64, October
2002.

[31] B. Kitchenham, L.M. Pickard, S.G. MacDonell, M.J.
Shepperd, “What accuracy statistics really measure [software
estimation],” IEE Proceedings - Software vol. 148 , June
2001, pp. 81 – 85.

[32] S. Kusumoto, F. Matukawa, K. Inoue, S .Hanabusa, and Y.
Maegawa, “Estimating effort by Use Case Points: Method,
Tool and Case Study,” Proc. 10th International Symposium
on Software Metrics, 2004.

[33] L. Lavazza and G. Robiolo, “Introducing the Evaluation of
Complexity in Functional Size Measurement: a UML-based
Approach,” Proc. 4th Int. Symposium on Empirical Software
Engineering and Measurement (ESEM 2010).

[34] L. Lavazza and G. Robiolo, “The Role of the Measure of
Functional Complexity in Effort Estimation,” Proc. 6th Int.
Conf. on Predictive Models in Software Engineering
(PROMISE 2010).

277

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[35] G. Levesque V. Bevo, and Tran Cao, D., “Estimating
Software size with UML Models,” Proc. 2008 C3S2E
conference, ACM International Conference Proceeding
Series, vol. 290, 2008.

[36] K. Lind and R. Heldal, “Categorization of Real-time Software
Components for Code Size Estimation,” Proc. ACM-IEEE
Int. Symp. on Empirical Software Engineering and
Measurement (ESEM 2010). ACM, New York, NY, USA,
2010.

[37] T.J. McCabe, “A Complexity Measure,” IEEE Transactions
on Software Engineering, vol.2, December 1976.

[38] E. Mendes, N. Mosley, and S. Counsell, “A Comparison of
Length, Complexity and Functionality as Size Measures for
Predicting Web Design and Authoring Effort,” Proc.
Evaluation and Assessment in Software Engineering
Conference (EASE 2001).

[39] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters,
and B. Turhan, “The PROMISE Repository of Empirical Soft-
ware Engineering Data http://promisedata.googlecode.com,”
West Virginia University, Department of Computer Science,
2012, last access Dec. 20, 2012.

[40] S. Misra, “Modified Cognitive Complexity Measure,” Proc.
21st international conference on Computer and Information
Sciences (ISCIS'06), A. Levi, E. Savaş, H. Yenigün, S.
Balcisoy and Y. Saygin Eds., Springer-Verlag, Berlin,
Heidelberg, 2006, pp. 1050-1059.

[41] N. Mittas and L. Angelis, “Combining Regression and
Estimation by Analogy in a Semi-parametric Model for
Software Cost Estimation,” Proc. 2nd ACM-IEEE Int. Symp.
on Empirical Software Engineering and Measurement (ESEM
2008). ACM, New York, NY, USA, 2008, pp. 70-79.

[42] S. Morasca, “On the Use of Weighted Sums in the Definition
of Measures,” ICSE Workshop on Emerging Trends in
Software Metrics (WETSoM 2010).

[43] G. Robiolo, G. and R. Orosco, “Employing Use Cases to
Early Estimate Effort with Simpler Metrics,” Innovations
Syst. Softw. Eng, vol.4, April 2008.

[44] S. Sengupta, A. Kanjilal, and S. Bhattacharya, “Measuring
Complexity of Component Based Architecture: a Graph
Based Approach,” SIGSOFT Softw. Eng. Notes vol. 36,
January 2011, pp. 1-10.

[45] M. Shepperd and C. Schofield, “Estimating Software Project
Effort Using Analogies”, IEEE Transactions on Software
Engineering, vol. 23, month11, 1997, pp. 736-774.

[46] D. Tran Cao, G. Lévesque, and A. Abran, “From
Measurement of Software Functional Size to Measurement of
Complexity”, Int. Conf. on Software Maintenance (ICSM
2002).

[47] D. Tran Cao, G. Lévesque, and J-G. Meunier, “A Field Study
of Software Functional Complexity Measurement”, Proc. 14th
Int. Workshop on Software Measurement (IWSM/
METRIKON 2004).

[48] G. Visaggio, “Structural Information as a Quality Metric in
Software Systems Organization,” Proc. Int. Conf. on Software
Maintenance, 1997, pp. 92-99.

[49] T. Wijayasiriwardhane and R. Lai, “Component Point: A
System-level Size Measure for Component-Based Software
Systems,” Journal of Systems and Software vol. 83, month
2010, pp. 2456-2470.

[50] A. Whitmire, “An Introduction to 3D Function Points,”
Software Development, vol. 3, April 1995.

[51] Y. Yavari, M. Afsharchi, and M. Karami, “Software
Complexity Level Determination Using Software Effort
Estimation Use Case Points Metrics,” 5th Malaysian
Conference in Software Engineering (MySEC 2011), pp. 257-
262.

