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Abstract — Several definitions of measures that aim at 

representing the size of software requirements are currently 

available. These measures have gained a quite relevant role, 

since they are one of the few types of objective measures upon 

which effort estimation can be based. However, traditional 

Functional Size Measures do not take into account the amount 

and complexity of elaboration required, concentrating instead 

on the amount of data accessed or moved. This is a problem 

since the amount and complexity of the required data 

elaboration affect the implementation effort, but are not 

adequately represented by the current size measures, including 

the standardized ones. Recently, a few approaches to 

measuring aspects of user requirements that are supposed to 

be related with functional complexity and/or data elaboration 

have been proposed by researchers. In this paper, we take into 

consideration some of these proposed measures and compare 

them with respect to their ability to predict the development 

effort, especially when used in combination with measures of 

functional size. A few methods for estimating software 

development effort –both based on model building and on 

analogy– are experimented with, using different types of 

functional size and elaboration complexity measures. All the 

most significant models obtained were based on a notion of 

computation density that is based on the number of 

computation flows in functional processes. When using 

estimation by analogy, considering functional complexity in the 

selection of analogue projects improved accuracy in all the 

evaluated cases. In conclusion, it appears that functional 

complexity is a factor that affects development effort; 

accordingly, whatever method is used for effort estimation, it is 

advisable to take functional complexity into due consideration. 

Keywords – Functional size measurement; Function Points; 

COSMIC function points; effort estimation; functional 

complexity measurement. 

I.  INTRODUCTION 

Several definitions of measures intended to represent the 
functional size of software are being used. The popularity of 
these measures is due to the fact that functional size 
measures are typically used to drive the estimation of the 
development effort. To this end, effort models require 
several inputs in addition to the functional size, including the 
complexity of the software to be developed [11][47]. In fact, 
problem complexity is recognized as one of the elements that 
contribute to the comprehensive notion of software size [17]. 

The need to account for software complexity when 
estimating the development effort does not depend on the 
functional size measurement (FSM) method used. 

Before proceeding, it is useful to spend some words on 
the fact that throughout the paper we treat the terms 
“complexity” and “amount of data elaboration” as 
synonyms. This is due to the facts that complexity is an 
inherently elusive concept, and at the functional 
requirements level it is not clear what should be the 
difference between the amount and the complexity of data 
elaboration: for instance, in many cases, complexity is 
considered proportional to the number of alternatives in a 
process execution, but this number is also clearly related also 
to the size of the process.  

When dealing with effort estimation, the most popular 
methods require an evaluation of the complexity of the 
application. Currently such evaluation is of a purely 
qualitative nature. For instance, COCOMO II [11] provides a 
table that allows the user to evaluate complexity on an 
ordinal scale (from “very low” to “extra high”) according to 
five aspects (control operations, computational operations, 
device-dependent operations, data management operations, 
user interface management operations) that have to be 
evaluated in a qualitative and subjective way: e.g., the 
characterization of computational operations corresponding 
to the “Nominal” complexity is “Use of standard math and 
statistical routines. Basic matrix/vector operations” [15]. 

It is quite clear that it would be greatly beneficial to 
replace such subjective and approximate assessment of 
complexity with a real measure, based on objective and 
quantitative evaluations, since this would enable the 
construction of more reliable and accurate models of effort. 

Previous work showed that effort models that take into 
consideration complexity measures are more precise than 
those based on the functional size only. In particular, the 
authors of this paper showed that development effort 
correlates well with COSMIC function points (CFP) [16] and 
Path [43], and that the inclusion of a Path-based complexity 
measure improves the models based on size, whatever size 
measure is used (IFPUG Function Points [24], CFP [23], or 
even Use Case Points [28]) [34].  

In [1], the work reported in [34] was extended, by taking 
into consideration some measures that represent potential 
complexity dimensions, by building effort estimation models 
that exploit these measures, and by discussing the precision 
of fit of these models. 
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In this paper, we further enhance the work reported in [1] 
by using an extended dataset, and by refining it (the largest 
project was removed, being an evident outlier). More 
important, here we test the importance of functional 
complexity measures in effort estimation, by experimenting 
with a wider range of estimation methods. In particular, we 
use not only model-based estimation, but also Estimation by 
Analogy (EbA), as this is a very popular technique: model-
based estimation and EbA are definitely the most relevant 
techniques for cost estimation [25]. 

The results of the measurements and analyses reported in 
the paper contribute to enhancing the knowledge of how to 
measure functional complexity at the requirements level, and 
what is the contribution of such measure to effort estimation. 

The paper is organized as follows: Section II accounts for 
related work; Section III is dedicated to illustrating the 
measures of functional size and functional complexity used 
in this study; Section IV describes the dataset and the types 
of analysis performed; Section V and VI illustrate the results 
of the analyses via regression and analogy, respectively; in 
Section VII the outcomes of the research are discussed; in 
Section VIII the threats to the validity of the study are 
discussed. Finally, Section IX draws some conclusions and 
outlines future work. 

II. RELATED WORK 

A few attempts to account for data elaboration in FSM 
have been done. Feature points by Capers Jones [26] aim at 
capturing the algorithmic complexity of the elaboration. 
However, according to Capers Jones, “the feature point 
metric was created to deal with the psychological problem 
that members of the real-time and systems software world 
viewed function point metrics as being suitable only for 
management information systems” [27]. Therefore, feature 
points simply moved part of the ‘size’ from data to 
algorithms, leaving the measure substantially unaltered with 
respect to FPA. In fact, currently Capers Jones recommends 
“the use of the standard IFPUG methodology combined 
with a rating of ‘Project Complexity’ to properly scale 
effort”. 

3D Function Points [50] consider three dimensions of 
the application to be measured: Data, Function, and Control. 
The Function measurement considers the complexity of 
algorithms; and the Control portion measures the number of 
major state transitions within the application. 

Gencel and Demirors [19] point out that we still need a 
new Base Functional Component (BFC) Types for the 
Boolean operations of Functional User Requirements, which 
are often not considered to be algorithmic operations, but 
which are related to complexity. This point of view 
highlights the necessity of considering the complexity of 
elaboration required in FSM, and they suggested 
introducing as a new BFC type that differs from authors’ 
proposal.  

Bernárdez et al. [10] measured the cyclomatic 
complexity of a use case in order to validate the use case 
definition, while Levesque et al. [35] measured the 
conditions of inputs in a sequential diagram in order to add 
the concept of complexity to the COSMIC method. 

 Yavari et al. [51] evaluated the weak points of Use Case 
complexity measures, in particular, those of transaction 
identification, and introduced other measures to determine 
Use Case complexity. They focused on Use Case 
specification and flow of events. Also, the authors 
considered main and alternative scenarios. However, this is 
only an early definition of the new measures, as they did not 
use them in a case study.  

Aggarwal et al. [4] defined an estimation model that can 
be used to estimate the effort required for designing and 
developing hypermedia content management systems 
(CMS). The model is designed to help project manager to 
estimate effort at the very early stage of requirement 
analysis. Questionnaires are used to estimate the complexity 
of the project. The final effort is estimated using the project 
size and various adjustment factors. The size of the project 
is evaluated by using a modified object point analysis 
approach. The proposed model shows a great improvement 
as compared to the earlier models used in effort estimation 
of CMS projects. 

Visaggio [48] proposes a metric for expressing the 
entropy of a software system and for assessing the quality of 
its organization from the perspective of impact analysis. The 
metric is called “structural information” and is based on a 
model dependency descriptor. The metric is characterized 
by its independence from the techniques used to build the 
system and the architectural styles used to represent the 
system at the various levels of abstraction. The metric is 
sensitive to and reflects both internal and external 
complexity, but is independent of and ignores intrinsic 
complexity, which is our interest focus.  

Briand and Wust [14] used structural design properties 
of an object-oriented development project, such as coupling, 
cohesion, and complexity (of late design) as additional cost 
factors. They empirically conclude that the measures of such 
properties did not play a significant role in improving 
system effort predictions.  

Mendes et al. [38] compared length, functionality and 
complexity metrics as effort predictors by generating 
corresponding prediction models and comparing their 
accuracy using boxplots of the residuals for web 
applications. Their results suggest that in general the various 
considered measures provide similar prediction accuracy. 

Baresi and Morasca [8] analyzed the impact of attributes 
like the size and complexity of W2000 (a special-purpose 
design notation for the design of Web applications [7]) 
design artifacts on the total effort needed to design web 
applications. They identified for Information, Navigation, 
and Presentation models a set of size and complexity 
metrics. The complexity metrics are based on associations 
and links identified in the models. The three studies 
performed correlated different size measures with the actual 
effort: no general hypotheses could be supported by the 
analyses that were conducted, probably because the 
designer’s background impacted the perception of 
complexity. 

Lind and Heldal [36] conducted four experiments in the 
automotive industry, which showed a strong correlation 
between COSMIC functional size measures and 
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implemented code size in Bytes of real-time applications. 
They reported that it was possible to obtain accurate Code 
Size estimates even for software components containing 
complex calculations –which are not captured by COSMIC– 
as the factors affecting the relationship are functionality 
type, quality constraints, development methods and tools, 
and information regarding hardware interfaces missing in 
the requirement specification. 

Bashir and Thomson [9] used traditional regression 
analysis to derive two types of parametric models: a single 
variable model based on product complexity and a 
multivariable model based on product complexity and 
requirements severity. Generally, the models performed 
well according to a number of accuracy tests. In particular, 
product complexity explained more than 80% of variation in 
estimating effort. They concluded that product complexity 
as an indicator for project size is the dominant parameter in 
estimating design effort. Our results agree with those by 
Bashir and Thomson, as the results they obtained using 
functional complexity measures (0.64<R

2
<0.81) are quite 

similar to ours. 
Quite interestingly, in the parametric models that are 

most used in practice –like COCOMO II [11] or 
SEER/SEM [18]– the functional complexity is taken into 
account as part of the product characteristics in formulas of 
the type Effort=f(Size, <product characteristics>, <process 
characteristics>). 

Hastings and Sajeev [21]  proposed a Vector Size 
Measure (VSM) that incorporates both functionality and 
problem complexity in a balanced and orthogonal manner. 
VSM is used as the input to a Vector Prediction Model 
(VPM), which can be used to estimate development effort 
early in the software life cycle. The results indicate that the 
proposed technique allows for estimating the development 
effort early in the software life cycle with errors not greater 
than 20% across a range of application types. 

AlSharif et al. [5] introduced a measure for assessing the 
overall complexity of software architecture. To accomplish 
this, they chose to use the Full Function Points (FFP) 
methodology –a former version of COSMIC Function 
Points– as a building block to measure complexity. The new 
measure was inspired by the fact that, in general, the 
components of an architecture comprise collections of 
services (functionality) that each component provides for 
other components. The allocation of these functionalities 
affects the required interface (external dependency) and the 
internal work performed by each component. Therefore, 
measuring the functionality of the components can serve as 
an indicator of the internal and external complexity of the 
components and, consequently, the complexity of the 
architecture. Also, Sengupta et al. [44] proposed the 
Component Architecture Complexity Measurement Metrics 
(CACMM), based on Component Architecture Graph 
(CAG), a graphical model used for representing a UML 
component diagram. An analysis of the graph was 
performed to measure complexity at different levels – the 
individual component level, the component-to-component 
level and the overall architecture. However, neither in [5] 

nor in [44] the relationship between architecture complexity 
and effort was analyzed. 

Misra [40] proposed a modified cognitive complexity 
measure (MCCM), which is a modification of the Cognitive 
Information Complexity Measure (CICM). In the cognitive 
functional size measure, the functional size depends upon 
the internal architecture of the software and its inputs and 
outputs. For the new measure, the occurrence of operators 
and operands is taken into account, instead of the number of 
inputs and outputs. The author compared the values 
obtained by calculating the complexity of eight C programs; 
however, a relation with Effort was not reported.  

Wijayasiriwardhane and Lai [49] described a Function 
Point-like measure named Component Point (CP), which 
was used to  measure the system-level size of a Component-
Based Software System (CBSS), specified in the Unified 
Modeling Language. In the CP counting process, the 
complexity of the component was assessed, which depended 
not only on the number, but also on the complexity of its 
interfaces and interactions. The complexity level of each 
interface was specified using the Number of Operations 
(NO) and the Number of Parameters (NP), which were 
derived from the operation signatures for each interface. 
They provided an empirical analysis of seven projects in 
order to verify the validity and usefulness of the CP measure 
with regard to its correlation to the effort of component-
based development. They reported that the R

2 
obtained was

 

greater than 0.9. 
Our results are in accordance with the consideration 

expressed by Morasca on the definition of measures [42], as 
it appears that the notion of complexity may be represented 
by taking into account several basic indicators (size, control 
flow, data, etc.) that can be used individually (i.e., without 
the need to build a derived measure defined as a weighted 
sum) in estimation models. 

Mittas and Angelis [41] introduced the use of a semi-
parametric model that managed to incorporate some 
parametric information into a non-parametric model, 
combining in this way regression and analogy. They 
demonstrated the procedure used to build such a model from 
two well-known datasets. The MMRE reported for EbA 
were 35.57% and 33.45% and the improvement using the 
combination model was about 50%. The results using EbA 
fell within the range of our results, but the improvement 
obtained was higher. However, the method proposed by 
Mittas and Angelis has some limits in practical 
applicability, because the models are more difficult to build, 
as more variables and several estimation techniques have to 
be used.  

Shepperd and Schofield [45] described an approach to 
estimation based upon the use of analogies. The underlying 
principle was to characterize projects in terms of features 
(for example, the number of interfaces, the development 
method or the size of the functional requirements 
document). Similarity was defined as the Euclidean distance 
in an n-dimensional space, where n is the number of project 
features. Each dimension is standardized, so all dimensions 
have equal weight. The known effort values of the closest 
neighbors to the new project are then used as the basis for 
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prediction. The method was validated on nine different 
industrial datasets (a total of 275 projects) and in all cases 
analogy outperformed algorithmic models based upon 
stepwise regression. Although we had a different research 
objective, it was useful to see that the results they obtained 
were in a range of values similar to ours: the MMRE of 
analogy based method of homogeneous data set were in the 
26%-60% range.  

Finally, Gupta et al. [20] studied analogy based 
estimation methods and compared estimation results  
reported by nine authors using Fuzzy logic, Grey System 
Theory, Machine Learning techniques such as Genetic 
Algorithms, Support vector Machines. The reported results 
are characterized by quite large variations: MMRE varies 
from a minimum 12% to a maximum 111%, while Pred(25)  

is in the 15%−83.75% range. Our results fall in these ranges 
of values.  

III. MEASURES INVOLVED IN THE STUDY 

In this study, we used the size measures and functional 
complexity measures described in the following sections. 

A. Function Points 

The Function Point method was originally introduced by 
Albrecht to measure the size of a data-processing system 
from the end-user’s point of view, with the goal of 
estimating the development effort [2][3]. IFPUG FPA is now 
an ISO standard [24] in its “unadjusted” version. So, 
throughout the paper, unless otherwise explicitly stated, we 
refer exclusively to Unadjusted Function Points, which are 
generally referred to as “UFP.” 

The basic idea of FPA is that the “amount of 
functionality” released to the user can be evaluated by taking 
into account the data used by the application to provide the 
required functions, and the transactions (i.e., operations that 
involve data crossing the boundaries of the application) 
through which the functionality is delivered to the user. Both 
data and transactions are evaluated at the conceptual level, 
i.e., they represent data and operations that are relevant to the 
user. Therefore, Function Points (FP) are counted on the 
basis of the user requirements specification. The boundary 
indicates the border between the application being measured 
and the external applications and user domain. 

The core of the counting procedure consists in 
identifying and weighting so-called data function types and 
transactional function types. Data functions represent data 
that are relevant to the user and are required to perform some 
function. Data functions (DF) are classified into internal 
logical files (ILF), and external interface files (EIF). An ILF 
is a user identifiable group of logically related information 
maintained (i.e., managed –in FPA terminology, 
“maintaining” data means creating, modifying, deleting 
data–) within the boundary of the application. An EIF is 
similar to an ILF, but is maintained within the boundary of 
another application, i.e., it is outside the application being 
measured, for which an EIF is a read-only file. 

Transactional functions represent operations that are 
relevant to the user and cause input and/or output data to 
cross the application boundary. Transactional functions 

represent elementary processes. An elementary process is the 
smallest unit of activity that is meaningful to the user(s). An 
elementary process must be self-contained and leave the 
application being counted in a consistent state. Transactional 
functions are classified into external inputs (EI), external 
outputs (EO), and external inquiries (EQ) according to the 
main intent of the process: updating ILF for EI, computing 
and outputting results for EO, retrieving and outputting data 
for EQ. 

Every function, either data or transaction, contributes a 
number of FP that depends on its weight. The weight of ILF 
and EIF is evaluated based on Data Element Types (DET) 
and Record Element Types (RET). A DET is a unique, non-
repeated field recognizable by the user. A RET is a subgroup 
of the information units contained in a file. To give a rough 
idea of what RET and DET are, if the specifications are 
written in an object-oriented language (like UML), the 
concept of RET maps (with some exceptions) onto the 
concept of class, while DET are the class attributes. 

For transactions, the weight is based on the number of 
DET and File Type Referenced (FTR). An FTR can be an 
ILF referenced or maintained by the transaction or an EIF 
read by the transaction. The DET considered are those that 
cross the application boundary when the transaction is 
performed. 

Each function is weighted according to given tables 
(weight tables can be found here: http://www.eng-it.it/qg-
ifpug-fpa-v42en.pdf). 

Finally, the number of so-called Unadjusted Function 
Points (UFP) is obtained by summing the contribution of the 
function types UFP = EI + EO + EQ + ILF + EIF. 

According to the definition of UFP, it is clear that the 
amount and complexity of the elaboration required in the 
transaction functions is not taken into consideration. For 
instance two External Output transactions that involve 2 FTR 
and 10 DET both have the same weight, even if one just 
performs sums and the other performs very complex 
operations according to a very sophisticated algorithm. 

B. COSMIC Function Points 

COSMIC (Common Software Measurement International 
Consortium) [16][23] function points are growingly used for 
measuring the functional size of applications, i.e., to measure 
the size of functional user requirements. 

COSMIC measurement is applied to the “Functional 
User Requirements” of a software application (actually, there 
is no difference between the user requirements used to count 
FP and CFP). The result is a number representing the 
functional size of the application in COSMIC Function 
Points. 

In the COSMIC model of software (illustrated in Fig. 1), 
the Functional User Requirements can be mapped into 
unique functional processes, initiated by functional users. 
Each functional process consists of sub-processes that 
involve data movements. A data movement concerns a single 
data group, i.e., a unique set of data attributes that describe a 
single object of interest. In practice, the COSMIC data 
groups correspond to FPA logical data files (or to RET), but 
do not contribute directly to the size in CFP: they are 
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relevant only because they are the objects of data 
movements. There are four types of data movements: 

− An Entry moves a data group into the software from a 
functional user. 

− An Exit moves a data group out of the software to a 
functional user. 

− A Read moves a data group from persistent storage to 
the software. 

− A Write moves a data group from the software to 
persistent storage. 

In the COSMIC approach, the term “persistent storage” 
denotes data (including variables stored in central memory) 
whose value is preserved between two activations of a 
functional process. 

The size in CFP is given by equation CFP = Entries + 
Exits + Reads + Writes, where each term in the formula 
denotes the number of corresponding data movements. So, 
there is no concept of “weighting” of a data movement in 
COSMIC, or, equivalently, all data movement have the same 
unit weight. 

COSMIC function points do not represent the amount 
and complexity of data elaboration required. COSMIC 
function points concentrate on the measure of data 
movements, neglecting data elaboration. More precisely, the 
model of software used by the COSMIC method –illustrated 
in Fig. 1– includes data elaboration, but no indication on how 
to measure it is provided. The COSMIC measurement 
manual [16] simply assumes that every data movement 
accounts for some amount of data elaboration, and that such 
amount is proportional to the number of data movements, so 
that by measuring data movements, one measures also data 
manipulation. 

As size units, we adopted both CFP and the number of 
functional processes. In fact, the number of functional 
processes is suggested as a reasonable approximation of the 
size in CFP in [16]. Moreover, being a sort of “by product” 
of CFP measurement, computing the number of Functional 
Processes does not actually require additional effort. 

 
 

Functional User 
Requirements

Sub-process types

Functional 

Process Type

Data Movement 
Type

Data Manipulation
Type

 
Figure 1.  The COSMIC generic software model. 

C. Use Case-based  Measures 

In 1993, Karner introduced Use Case Points (UCP), a 
redefinition of the Function Point method in the context of 
the use case requirements specification [28][29].  

Use cases yield an observable result that is meaningful 
for the actors [12]. Karner based the conception of use case 
functional size on two elements: the use cases themselves 
and the actors, which are the external entities that interact 
with the system.  

Every element, i.e., every use case and actor, contributes 
to the software product size with a number of UCP that 
depends on the “complexity” of each use case and actor. 
The complexity of use cases is defined in terms of the 
number of transactions and analysis objects (which are 
conceptually similar to ILF). The complexity of actors is 
associated to the characteristics of the interface and protocol 
used in the interaction with the system. Each element is 
weighted on the basis of its complexity according to the 
values specified in [28][29].  

Since the concept of transaction is not clearly defined in 
Karners’s method –as already pointed out by [51]– we 
decided to interpret it as the stimulus triggered by an actor: 
each stimulus that an actor triggers defines a transaction, as 
described in [32]. Also, the analysis objects were not taken 
into account to measure the complexity of the use cases; 
only the number of transactions was used. This was done in 
order to make our results comparable to those obtained by 
[6]. 

We consider UCP in their “unadjusted” version. So, 
throughout the paper, unless otherwise explicitly stated, we 
will exclusively refer to Unadjusted Use Case Points, which 
are generally referred to as “UUCP.” 

Finally, it is important to note that the number of UUCP, 
i.e., the “amount of functionality” of a use case, is obtained 
by adding up the contribution of the elements: UUCP = Use 
Case + Actor. 

D. Functional Complexity Measures 

Several different possible measures of functional 
complexity were proposed. For instance, in [46] the number 
of inputs and outputs, the number of decision nodes, the sum 
of predicates of all decision nodes, the depth of decision tree 
and the length of paths are considered as possible indicators 
of complexity. 

In [47], Tran Cao et al. propose the usage of the number 
of data groups (NOD), the number of conditions (NOC) and 
entropy of system (EOS). They also study how these 
measures (also in combination with COSMIC FP) are 
correlated with the development effort. 

Another measure of complexity, the Paths, was defined 
on the basis of the information typically available from use 
case descriptions [43]. The measure of the complexity of use 
cases is based on the application of the principles of 
McCabe’s complexity measure [37] to the descriptions of 
use cases in terms of scenarios. In fact, use cases are usually 
described giving a main scenario, which accounts for the 
‘usual’ behaviour of the user and system, and a set of 
alternative scenarios, which account for all the possible 
deviations from the normal behaviour that have to be 
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supported by the system. Robiolo and Orosco [43] apply to 
the use case textual descriptions the same measure applied 
by McCabe to code. Every different path in a given use case 
scenario contributes to the measure of the use case’s 
complexity. The definition of Paths conforms to several 
concepts enounced by Briand et al. [13]: Paths represent “an 
intrinsic attribute of an object and not its perceived 
psychological complexity as perceived by an external 
observer”, and they represent complexity as “a system 
property that depends on the relationship between elements 
and is not an isolated element's property”. A detailed 
description of the Paths measure and its applicability to use 
cases described in UML can be found in [33].  

In the research work reported here, we used measures 
that are conceptually very close to those proposed in 
previous studies [46][47]. However, we did not stick exactly 
to the previous proposals, essentially for practical reasons. 
We used Paths instead of NOC because both measures 
capture essentially the same meaning, and the measures of 
Paths were already available. Similarly, we used the number 
of COSMIC data groups and the FPA number of logic data 
files instead of NOD because –having measured the size of 
the applications in FP and CFP, the documentation on data 
groups and logic files was already available, thus the 
measurement could be performed very easily. 

 

TABLE I.  THE DATASET 

Project 

ID 
Type 

Actual 

Effort 
Path 

Use 

Cases 
UUCP UFP 

FPA 

transactions 
CFP 

Functional 

Processes 

Data 

Groups 

Pers. 

DG 

P1 Academic 410 71 39 201 185 39 143 39 21 7 

P2 Academic 474 73 28 149 269 58 118 28 15 9 

P3 Academic 382 60 7 84 171 19 109 24 15 12 

P4 Academic 285 49 6 72 113 15 74 25 14 8 

P5 Academic 328 34 12 72 110 14 48 12 17 7 

P6 Academic 198 35 8 62 86 9 67 10 15 7 

P7 Academic 442 50 6 71 75 10 81 16 12 6 

P8 Industrial 723 97 27 175 214 33 115 27 19 10 

P9 Industrial 392 83 15 111 340 47 105 24 35 24 

P10 Industrial 272 42 19 119 179 27 73 21 9 9 

P11 Industrial 131 18 13 68 115 17 51 13 5 5 

P12 Industrial 348 32 12 71 107 16 46 12 13 7 

P13 Academic 243 68 12 99 111 12 96 26 18 9 

P14 Academic 300 33 4 57 40 4 54 12 12 4 

P15 Academic 147 20 10 53 59 10 53 14 15 4 

P16 Academic 169 17 5 28 61 5 30 5 10 6 

P17 Academic 121 21 13 52 72 13 47 13 15 5 

P18 Academic 342 24 9 48 11 27 40 9 12 2 

P19 Academic 268 16 9 49 12 27 30 9 10 3 

 

IV. THE EXPERIMENTAL EVALUATION 

A. The Dataset 

In order to evaluate the measures mentioned above with 
respect to their usability as effort predictors, we collected all 
such measures for a set of projects. We could not use data 
from the best known repositories –such as the PROMISE or 
ISBSG datasets– because they do not report the size of each 
project according to different FSM methods; moreover, the 
Paths measure is quite recent, and no historical data exist for 
it. 

We measured 19 small business projects, which were 
developed in three different contexts: an advanced 
undergraduate academic environment at Austral University, 

the System and Technology (S&T) Department at Austral 
University and a CMM level 4 Company. The involved 
human resources shared a similar profile: advanced 
undergraduate students, who had been similarly trained, 
worked both at the S&T Department and at the CMM level 4 
Company. All the selected projects met the following 
requisites: 
a) Use cases describing requirements were available. 
b) All projects were new developments. 
c) The use cases had been completely implemented, and the 

actual development effort in PersonHours was known. 
The dataset is reported in Table I. Note that we 

distinguished the number of persistent data groups (column 
Pers. DG) from the total number of data groups, which 
includes also transient data groups. Our hypothesis is that 
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persistent data groups are more representative of the amount 
of data being handled by the application. 

B. The Estimation Methods Used 

We first checked if statistically significant models could 
be built using ordinary least squares (OLS) linear regression. 

We used also linear regression after log-log 
transformation, as is usually done in studies concerning 
effort [11][47]. 

In model building, a 0.05 statistical significance 
threshold was used throughout the paper, as is customary in 
Empirical Software Engineering studies. All the results 
reported in the paper are characterized by p-value < 0.05. All 
the validity requirements for the proposed models (e.g., the 
normal distribution of residuals of OLS regressions) were 
duly checked. 

Moreover, in order to avoid overfitting, we retained only 
models based on datasets containing –after the elimination of 
outliers– at least seven data points for each independent 
variables. In this way we get datasets containing enough data 
points to support statistically significant analyses.  

Then, we applied Estimation by Analogy (EbA). That is, 
we estimated the development effort required by each project 
on the basis of the actual development effort required by 
similar projects (i.e., projects having similar size and/or 
complexity characteristics). 

C. The Measures 

The measures actually employed in the analysis are 
described in Table II. They are a superset of those used in 
[1]. 

Among the measures listed in Table II, we have not only 
size and complexity measures, but also several density 
measures. These density measures introduce the concept of 
functional complexity per size unit: for instance, we consider 
the Path/UFP ratio, which indicates how many Paths per 
UFP are required in the software being measured. The reason 
for using functional complexity per size unit is that 
functional complexity measures are often correlated to size 
itself, thus the density appears more relevant to indicate how 
complex and difficult the development is. 

The complexity of a system is a property that depends on 
the relationships among system’s elements [13]. So, the 
measures discussed above represent the density of 
relationships among elements per unit size.  

V. USING FUNCTIONAL COMPLEXITY MEASURES IN 

EFFORT ESTIMATION MODELS 

In this section, we report about the construction of 
development effort models. We systematically tried to build 
models that have the development effort as dependent 
variable and one or two independent variables belonging to 
the set described in Table II. In particular, when building 
models having two independent variables, all the possible 
pairs of measures from Table II were tried out. Models with 
more than two independent variables were not sought, 
because the available dataset does not contain enough data 
points to support such analysis while avoiding data 
overfitting. 

TABLE II.  MEASURES USED 

Name Description 

Path Path 

CFP COSMIC Function Points 

FPr Functional Processes 

DG Data Groups 

PDG Persistent  Data Groups 

UC Number of Use Cases 

UUCP Unadjusted Use Case Points 

UFP Unadjusted Function Points 

FPAtrans Number of unweighted FPA transactions 

NumFiles Number of unweighted FPA logic data files 

Path/FPr Path per Functional Process 

Path/CFP Path per CFP 

DG/FPr Data Groups per Functional Process 

DG/CFP Data Groups per CFP 

PDG/FPr Persistent Data Groups per Functional Process 

PDG/CFP Persistent Data Groups per CFP 

Path/UFP Paths per unadjusted Function Point 

Path/FPAtrans Paths per unweighted FPA transactions 

NumFiles/UFP 
Unweighted FPA logic data files per unadjusted 

Function Point 

NumFiles/FPAtrans 
Unweighted FPA logic data files per unweighted 

FPA transactions 

Path/UC Paths per use case 

Path/UUCP Paths per use case point 

A. Analysis of the dataset using linear regression 

Linear regression did not provide any statistically 
significant model when FPA or UC measures were used. On 
the contrary, when using COSMIC-based measures, a single 
statistically significant model was found, having equation 

 Effort  = -29.9 + 139.1× Path/FPr 

The model –obtained after eliminating 4 outliers (P1, P6, 
P8, P17)– has adjusted R

2
=0.64. The regression line is 

illustrated in Fig. 2. This model is quite interesting, as a 
functional size density measure is the independent variable: 
the model seems to suggest that the actual complexity of 
software, rather than its size, determines development effort.  

The accuracy of the model is characterized by MMRE = 
34%, while Pred(25) –i.e., the percentage of project whose 
absolute relative estimation error is in the ±25% range– is  

63%, and Error range = -46%−162%. The distribution of 
relative residuals is illustrated in Fig. 3. 

Throughout the paper, MMRE and Pred(25) are used as 
indicators of the accuracy of models, because they are often 
quoted as the de facto current accuracy indicators used in 
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Empirical Software Engineering, even though criticisms 
have been cast on the usefulness and meaning of MMRE and 
Pred(25) [31]. Boxplots representing the distributions of 
relative residuals are always given, to provide meaningful 
and unbiased information on estimation accuracy. 

 

 

Figure 2.  Effort vs. Path/FPr: OLS regression line. 

 

Figure 3.  Effort vs. Path/FPr OLS model: relative residuals. 

B. Analysis of the dataset using log-log transformations 

We used linear regression after log-log transformation, as 
is usually done in studies concerning effort [11][47].  

The models found by checking the correlation between 
effort and FPA measures are summarized in Table III, while 
their accuracy is illustrated in Table IV. Both the models 
found involve a size measure (the number of FPA 
transactions) and a complexity density measure (Paths/UFP 
or Path/FPA transactions).  

TABLE III.  OLS EFFORT MODELS INVOLVING FPA-BASED MEASURES  

Model Adj. R2 Outl. 

Effort = 120.6 × FPAtrans0.654 
× 

(Path/UFP)0.958 
0.642 3 (P21, P22, P17) 

Effort = 12.2 × FPAtrans0.816 × 

(Path/FPAtrans)0.976 
0.812 3 (P22, P21, P14) 

TABLE IV.  ACCURACY OF OLS FPA-BASED EFFORT MODELS 

Model MMRE Pred(25) Error range 

Effort = 120.6 × FPAtrans0.654 

× (Path/UFP)0.958 
71% 53% -40%−543% 

Effort = 12.2 × FPAtrans0.816 

× (Path/FPAtrans)0.976 
25% 63% -60%−108% 

 
The models found by checking the correlation between 

effort and COSMIC measures are summarized in Table V. It 
is interesting to note that both the models found involve the 
usage of a size measure (the Function Points or the number 
of functional processes) and a complexity density measure 
(Paths/CFP). The accuracy of the models found is illustrated 
in Table VI. 

TABLE V.  OLS EFFORT MODELS INVOLVING COSMIC-BASED 

MEASURES  

Model Adj. R2 Outliers 

Effort = 112.2 × CFP0.391 × (Path/CFP)1.298 0.658 0 

Effort = 231.8 × FPr0.377  × (Path/CFP)
1.468

 0.744 1 (P14) 

TABLE VI.  ACCURACY OF OLS COSMIC-BASED EFFORT MODELS 

Model MMRE Pred(25) Error range 

Effort = 112.2 × CFP0.391 × 

(Path/CFP)1.298 
22% 68% -30%−77% 

Effort = 231.8 × FPr0.377  × 

(Path/CFP)
1.468

 
23% 68% -27%−97% 

 
Finally, we checked the correlation between effort and 

Use Case. The models found are summarized in Table VII. It 
is noticeable that both the models found involve the usage of 
a size measure (either the number of use cases or the use case 
points) and a complexity density measure. 

TABLE VII.  OLS EFFORT MODELS INVOLVING USE CASE-BASED 

MEASURES  

Model Adj. R2 Outliers 

Effort = 21.9 × UC0.68 × (Path/UC)0.728 0.609 1 (P22) 

Effort = 24.9 × UUCP0.679  × (Path/UUCP)0.775 0.608 1 (P22) 

 
The accuracy of the models found is illustrated in Table 

VIII. Again, we got significant models only based on 
variables involving Paths. 

It is quite interesting to observe that all the models found 
have two independent variables, and that one is a measure of 
size, while the other is a measure of complexity density. 

TABLE VIII.  ACCURACY OF OLS USE CASE-BASED EFFORT MODELS 

Model MMRE Pred(25) Error range 

Effort = 21.9 × UC0.68 × 

(Path/UC)0.728 
24% 63% -45%−73% 

Effort = 24.9 × UUCP0.679  × 

(Path/UUCP)0.775 
24% 63% -45%−74% 
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Figure 4.  Model comparison: relative residuals. 

It is also interesting to see that these models appear 
reasonably good both in terms of their ability to explain the 
variation of effort depending on the variation of the size and 
complexity measures (as indicated by the values of the 
adjusted R

2
) and in terms of precision of the fit (as indicated 

by MMRE, Pred(25) and the relative error range). 
The data illustrated in the tables above do not indicate if 

a model is definitely better than the others with respect to 
accuracy. A possible way for identifying the best model is by 
comparing the relative residuals (since we are considering 
the ability to predict effort, we have to look at relative 
residuals, since an error of, say, two PersonMonths can be 
irrelevant or very important, depending on the total effort).  

The boxplots representing relative residuals of the 
models obtained via OLS regression after log-log 
transformation are reported in Fig. 4 (where two extreme 
outliers of the first model were omitted to preserve the 
readability of the figure). The boxplots indicate quite clearly 
that the values and distributions of residuals are very similar 
for all the models. 

VI. USING FUNCTIONAL COMPLEXITY MEASURES IN 

ESTIMATION BY ANALOGY 

In this section, we test the effects of considering 
complexity density when selecting “analogous” projects 
upon which effort estimation is based. To this end, we 
compute effort estimates in two ways: identifying analogous 
projects only on the basis of size, and considering both size 
and complexity density. The hypothesis that we want to test 

is that considering both size and complexity density leads to 
better estimates. 

There are several criteria that can be used to identify 
analogous projects. Some of these involve identifying the k 
closest projects, where closeness is generally evaluated as 
the distance between projects. Accordingly, we chose to use 
a criterion that ensures –as far as possible– that the 
analogous projects are all within a given distance from the 
project to be estimated. 

For each project, we select among the remaining projects 
those having both size and complexity density in a ±20% 
range. The mean of these projects’ efforts is assumed as the 
estimate. If no project is found in the ±20% range, the range 
is progressively increased until at least one project in the 
range is found. The estimation for a given project of size S is 
thus performed according to the following procedure: 

 

R=0.2 

P = {} 

while |P|<1 do 

for all Pi in the set of projects  

if (1-R)×S ≤ Pi.size ≤ (1+R)×S 

      then P = P ∪ {Pi.effort} 

R=R+0.1 

done 

EstimatedEffort = mean(P) 

 
So, for instance, given P3 (whose size is 171 UFP), P1 

and P10 (which have size 185 UFP and 179 UFP, 
respectively) are selected as analogue projects. In fact, these 
are the only projects that have size in the range 171 ±20%, 

i.e., in range 137−205. Since the developments of the 
selected projects required 410 and 272 PersonHours, we 
assume that P3 requires (410+272)/2 = 341 PersonHours. 

When analogue projects are selected also on the basis of 
complexity density, the condition for inclusion into the set of 
analogous projects is modified in order to select projects 
whose size Si and complexity density Ci satisfy the condition 

((1-R)×S ≤ Si ≤ (1+R)×S) ∧ ((1-R)×C ≤ Ci ≤ (1+R)×C), 
where C is the complexity density of the project being 
estimated. 

A. Estimation by Analogy using FPA Measures 

In this subsection, we present the results of estimation by 
analogy based on FPA measures: we used UFP as a size 
measure and Path/UFP as complexity density measure. 

UFP were chosen because they are the most obvious size 
measures, when FPA is used. Similarly, we used CFP and 
UUCP in the following sections.  

Effort estimates and the differences with respect to actual 
efforts are illustrated in Table IX, where columns labeled 
“CA est. (2 var)” report results concerning the estimation 
based on both size and complexity density. 

It is easy to see that the estimation error is generally 
larger for the estimates based only on size similarity, than for 
the estimates based on the similarity of both size and 
complexity density. 
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TABLE IX.  ANALOGY-BASED ESTIMATES OBTAINED USING FPA 

MEASURES 

PID 
Actual 
Effort 

CA 
est. 

CA est. 
 (2 var) 

Error CA Error CA (2 var) 

1 410 459 553 49 (12%) 143 (35%) 

2 474 557 392 84 (18%) -82 (-17%) 

3 382 341 410 -41 (-11%) 28 (7%) 

4 285 262 263 -23 (-8%) -22 (-8%) 

5 328 252 348 -76 (-23%) 20 (6%) 

6 198 282 266 84 (42%) 68 (34%) 

7 442 163 198 -279 (-63%) -244 (-55%) 

8 723 341 410 -382 (-53%) -313 (-43%) 

9 392 474 474 82 (21%) 82 (21%) 

10 272 505 230 233 (86%) -43 (-16%) 

11 131 301 272 170 (130%) 141 (108%) 

12 348 237 328 -111 (-32%) -20 (-6%) 

13 243 273 285 31 (13%) 43 (18%) 

14 300 147 147 -153 (-51%) -153 (-51%) 

15 147 169 169 22 (15%) 22 (15%) 

16 169 134 121 -35 (-21%) -48 (-28%) 

17 121 239 158 118 (98%) 37 (31%) 

18 342 268 268 -74 (-22%) -74 (-22%) 

19 268 342 342 74 (28%) 74 (28%) 

 
The relative estimation errors reported in parentheses are 

computed as the estimation errors divided by the actual 
efforts, expressed as percentages. For instance, for project 1 
ErrorCa = 49, ActualEffort = 410, thus the relative error is 
49/410 = 12%. 

For eleven projects, considering also the complexity 
density in the selection of analogous projects leads to smaller 
absolute relative errors. In five cases, considering also the 
complexity density does not cause any change in the absolute 
relative error. Only for three projects (P1, P13 and P16) the 
relative absolute error is smaller when the estimate is based 
only on size. 

The mean and median absolute relative errors (i.e., 
MMRE and MdMRE) are reported in Table X, together with 
Pred(25). Table X shows that considering complexity density 
allows for better accuracy than considering size alone to 
identify analogous projects. This fact is confirmed by the 
distributions of relative errors (illustrated by the boxplot in 
Fig. 5) and absolute relative errors (illustrated by the boxplot 
in Fig. 6). Fig. 5 shows that when complexity density is 
considered, the median, the mean (represented as a diamond) 
and the errors in general are closer to zero. Fig. 6 shows that 
the median, the mean and the errors in general are smaller 
when complexity density is taken into consideration in the 
EbA. 

TABLE X.  ANALOGY-BASED ESTIMATES OBTAINED USING FPA 

MEASURES: MMRE, MDMRE AND PRED(25)  

 CA CA (2 var) 

Mean 39.2% 28.8% 

Median 23.3% 21.6% 

Pred(25) 52.6% 52.6% 

 
 
 

 
Figure 5.  Estimation by analogy based on FPA measures: relative errors. 

 

 

 
Figure 6.  Estimation by analogy based on FPA measures: absolute 

relative errors. 
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TABLE XI.  ANALOGY-BASED ESTIMATES USING COSMIC MEASURES 

PID 
Actual 
Effort 

CA 
est. 

CA est. 
 (2 var) 

Error CA Error CA (2 var) 

1 410 598 428 188 (46%) 18 (4%) 

2 474 435 312 -39 (-8%) -161 (-34%) 

3 382 458 474 75 (20%) 91 (24%) 

4 285 304 357 19 (7%) 72 (25%) 

5 328 231 330 -97 (-29%) 2 (1%) 

6 198 286 286 88 (44%) 88 (44%) 

7 442 249 249 -193 (-44%) -193 (-44%) 

8 723 373 317 -350 (-48%) -405 (-56%) 

9 392 455 483 63 (16%) 91 (23%) 

10 272 308 308 36 (13%) 36 (13%) 

11 131 249 147 118 (90%) 16 (12%) 

12 348 228 323 -120 (-34%) -25 (-7%) 

13 243 485 519 242 (100%) 276 (114%) 

14 300 215 338 -85 (-28%) 38 (13%) 

15 147 246 126 99 (67%) -21 (-14%) 

16 169 268 268 99 (59%) 99 (59%) 

17 121 266 147 145 (120%) 26 (21%) 

18 342 266 338 -76 (-22%) -4 (-1%) 

19 268 169 169 -99 (-37%) -99 (-37%) 

 

B. Estimation by using COSMIC Measures 

In this subsection, we present the results of estimation by 
analogy based on COSMIC measures: we used CFP as a size 
measure and Path/CFP as complexity density measure.  

Effort estimates and the differences with respect to actual 
efforts are illustrated in Table XI. 

For eight projects, considering also the complexity 
density in the selection of analogous projects leads to smaller 
absolute relative errors. For six projects the relative absolute 
error is smaller when the estimate is based only on size 
analogy. In five cases, considering also the complexity 
density does not cause any change in the absolute relative 
error. 

MMRE, MdMRE and Pred(25) are given in Table XII. 
Table XII shows that considering complexity density allows 
for better accuracy than considering size alone to identify 
analogous projects. This fact is confirmed by the 
distributions of relative errors and absolute relative errors 
(illustrated by the boxplots in Fig. 7 and Fig. 8, respectively). 

TABLE XII.  ANALOGY-BASED ESTIMATES OBTAINED USING COSMIC 

MEASURES: MMRE, MDMRE AND PRED(25)  

 CA CA (2 var) 

MMRE 43.8% 28.8% 

MdMRE 36.9% 23.1% 

Pred(25) 31.6% 57.9% 

 
Figure 7.  Estimation by analogy based on COSMIC measures: relative 

errors. 

 
Figure 8.  Estimation by analogy based on COSMIC measures: absolute 

relative errors. 

Fig. 7 shows that when complexity density is considered, 
the median, the mean (represented as a diamond) and the 
errors in general are (slightly) closer to zero. Fig. 8 shows 
that the median, the mean and the errors in general are 
smaller when complexity density is taken into consideration 
in the EbA. 

We can also observe that the results obtained when using 
COSMIC measures are very similar to those obtained using 
FPA measures. 

C. Estimation by Analogy using Use Case Measures 

In this subsection, we present the results of estimation by 
analogy based on Use Case measures: we used UUCP as a 
size measure and Path/UUCP as complexity density 
measure.  

Effort estimates and the differences with respect to actual 
efforts are illustrated in Table XIII. 
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TABLE XIII.  ANALOGY-BASED ESTIMATES OBTAINED USING USE CASE 

MEASURES 

PID 
Actual 
Effort 

CA 
est. 

CA est. 
 (2 var) 

Error CA 
Error CA (2 

var) 

1 410 723 474 313 (76%) 64 (15%) 

2 474 723 723 249 (53%) 249 (53%) 

3 382 296 323 -86 (-23%) -59 (-15%) 

4 285 305 341 20 (7%) 56 (20%) 

5 328 298 273 -30 (-9%) -55 (-17%) 

6 198 263 314 65 (33%) 116 (59%) 

7 442 282 291 -160 (-36%) -151 (-34%) 

8 723 442 474 -281 (-39%) -249 (-34%) 

9 392 257 243 -135 (-34%) -150 (-38%) 

10 272 317 401 45 (17%) 129 (47%) 

11 131 317 268 186 (142%) 137 (105%) 

12 348 295 328 -53 (-15%) -20 (-6%) 

13 243 387 387 145 (60%) 145 (60%) 

14 300 201 270 -99 (-33%) -30 (-10%) 

15 147 246 195 99 (67%) 48 (32%) 

16 169 305 305 136 (80%) 136 (80%) 

17 121 251 208 130 (107%) 87 (71%) 

18 342 209 210 -133 (-39%) -132 (-38%) 

19 268 227 147 -41 (-15%) -121 (-45%) 

 
 
For ten projects, considering also the complexity density 

in the selection of analogous projects leads to smaller 
absolute relative errors. For six projects the relative absolute 
error is smaller when the estimate is based only on size 
analogy. 

The MMRE, MdMRE and Pred(25) are reported in Table 
XIV. Table XIV shows that considering complexity density 
allows for better accuracy than considering size alone to 
identify analogous projects only as far as is concerned. 

The distributions of relative errors (illustrated by the 
boxplot inFig. 9) and absolute relative errors (illustrated by 
the boxplot in Fig. 10) show that taking into account 
complexity density when selecting analogue projects causes 
marginal improvements in estimation accuracy. 

TABLE XIV.  ANALOGY-BASED ESTIMATES OBTAINED USING USE CASE 

MEASURES: MMRE, MDMRE AND PRED(25)  

 CA CA (2 var) 

MMRE 46.6% 41.1% 

MdMRE 36.3% 38.1% 

Pred(25) 31.6% 31.6% 

 
 

  
Figure 9.  Estimation by analogy based on Use Case measures: relative 

errors. 

 
 

Figure 10.  Estimation by analogy based on Use Case measures 

As a final observation, we note that using both size and 
complexity density in the selection of analogue projects 
generally results in more accurate estimates. Only when the 
size measures are based on use cases, considering 
complexity density does not lead to a clear improvement in 
estimation accuracy. 

We can conclude that complexity density appears to be a 
relevant factor to be considered when EbA is adopted. 

VII. DISCUSSION 

Table XV summarizes the accuracy of the effort models 
described in Section V. These models are all those 
statistically significant and featuring R

2
 > 0.6. 
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TABLE XV.  ACCURACY OF EFFORT MODELS 

Model MMRE Pred(25) Error range 

Effort  = -29.9 + 139.1× 

Path/FPr 
34% 63% -46%−162% 

Effort = 120.6 × FPAtrans0.654 
× 

(Path/UFP)0.958 
71% 53% -40%−543% 

Effort = 12.2 × FPAtrans0.816 × 

(Path/FPAtrans)0.976 
25% 63% -60%−108% 

Effort = 112.2 × CFP0.391 × 

(Path/CFP)1.298 
22% 68% -30%−77% 

Effort = 231.8 × FPr0.377  × 

(Path/CFP)
1.468

 
23% 68% -27%−97% 

Effort = 21.9 × UC0.68 × 

(Path/UC)0.728 
24% 63% -45%−73% 

Effort = 24.9 × UUCP0.679  × 

(Path/UUCP)0.775 
24% 63% -45%−74% 

 
It is easy to see that all models in Table XV have at least 

one parameter that accounts for functional complexity per 
size unit. 

It should be noted that we found also a model based 
exclusively on complexity density. This model was rather 
unexpected, as it says that the size of the programs is not 
important at all. This result is probably due to the fact that 
the variation of size is relatively little in the set of projects 
that we analysed. Additional research is needed to explore 
this point. 

Having shown that functional complexity per size unit is 
essential for regression models, we looked at the role that 
functional complexity per size unit can play in EbA. To this 
end, EbA was applied using two criteria for determining 
analogues projects: 

− According to size only; 

− According to both size and functional complexity 
per size unit. 

Table XVI illustrates the results of EbA concerning the 
accuracy of estimates via MMRE, MdMRE and Pred(25). 

TABLE XVI.  ACCURACY OF ANALOGY-BASED ESTIMATES  

Variables used to 
identify analogue 

projects 
MMRE MdMRE Pred(25) 

UFP 39.2% 23.3% 52.6% 

UFP, Path/UFP 28.8% 21.6% 52.6% 

CFP 43.8% 36.9% 31.6% 

CFP, Path/CFP 28.8% 23.1% 57.9% 

UUCP 46.6% 36.3% 31.6% 

UUCP, Path/UUCP 41.1% 38.1% 31.6% 

 
Table XVI confirms the relevance of functional 

complexity per size unit, as it helps increasing accuracy. 
Actually it can be noted that EbA’s accuracy is generally 
worse than regression models’. However, using functional 
complexity per size unit for determining analogues projects 
tends to make estimation accuracy closer to regression 
models’. 

VIII. THREATS TO VALIDITY 

As in any software engineering empirical study, several 
issues threaten the validity of the results. Here we discuss 
such factors and the actions that have been undertaken to 
mitigate them. 

The limited size of the available dataset can be regarded 
as a first threat to internal validity. The used dataset is 
sufficiently large to support statistically significant analysis; 
however, the fact that our dataset is representative of most 
software systems is doubtful. To this end, we note that the 
projects from which the data used in the paper were derived 
are all real development projects, as those in best known 
datasets, like the PROMISE [39] and ISBSG [22] datasets. 
Some of our projects are rather small, but the majority of our 

projects (namely 11 out of 19) have size in the 100−340 
UFP, thus they can be considered medium-sized projects 

(40% of the projects in the ISBSG dataset are in the 100−340 
UFP range, while more than half have size smaller than 340 
UFP). 

Another possible threat to the validity of the study 
derives from part of the projects being academic projects. 
However, the projects that were carried out at the Austral 
University were developed using techniques, tools and 
methodologies similar to those used in the industrial projects. 
Accordingly, we do not expect that these projects required 
substantially different effort than other projects. 

IX. CONCLUSION 

The work reported here moves from the consideration 
that development effort depends (also) on the complexity or 
the amount of computation required, but no suitable measure 
has emerged as a reliable way for capturing such complexity. 
In fact, very popular methods like COCOMO II [11][15] still 
use just an ordinal scale measure for complexity, based on 
the subjective evaluation performed by the user. 

We approached the problem of measuring the required 
functional complexity by considering the most relevant 
approaches presented in the literature, and testing them on a 
set of projects that were measured according to FPA, 
COSMIC and Use Case-based functional size measurement 
methods. 

The results of our analysis do not allow us to draw 
definite conclusions, since our observations are based on a 
specific set of data (see Table I). However, we observed that 
all the models obtained were based on a notion of 
computation density, which is based on the measure of Paths 
[43], i.e., the number of distinct computation flows in 
functional processes. Similarly, Estimation by Analogy 
appears to benefit from the possibility of using the notion of 
computation (or complexity) density in identifying analogue 
projects. 

Since Paths are quite easy to measure [33] and appear as 
good effort predictors, we suggest that future research on 
effort estimation takes into consideration the possibility of 
involving a Path based measure of functional complexity. 

An important results for practitioners is that functional 
complexity appears as a factor that affects development 
effort; accordingly, whatever method is used for effort 
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estimation, it is advisable to take functional complexity into 
due consideration. 

We plan to continue experimenting with measures of 
functional complexity. Since in this type of experimentations 
a critical point is the difficulty to get measures, we kindly 
invite all interested readers that are involved in effort 
estimations to perform functional complexity measurement 
and share the data with us and the research community.  
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