International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

15

Testing of an automatically generated compiler

Review of retargetable testing system

Ludek Dolihal

Department of Information systems
Faculty of information technology, Brno Universay
Technology
Brno, Czech Republic
idolihal@fit.vutbr.cz

Abstract— for testing automatically generated C compiler fo
embedded systems on simulator, it iS necessary toave
corresponding support in the simulator itself. Testhg programs
written in C very often use I/O operations. This furctionality can
not be achieved without support of the C library. Hence the
simulator must provide the interface for calling the functions of
the operation system it runs on. In this paper, weprovide a
method that enables running of programs, which usdunctions
from the standard C library. After the implementation of this
approach we are able to use the function providedybthe C
library with limitations given by the hardware. Mor eover we add
the overview of the testing system, which is used bur project.
The system allows testing hardware and also softwargart of the
project.

Keywords - Porting of a library, C library, compiler testing,
simulation, hardware/software codesign, Codasip.

|. INTRODUCTION

This article is closely related to the paper [1bimhed at
the ICCGI 2011. It will discuss the problematicteéting of
the automatically generated compiler more closeli},focus
on all major stages of compiler generation andegtirig of the
stages.
(commercialized under the
www.codasip.com) is hardware software codesign aeeho
test not just the software part but also the hardpart.

One goal of our research group is an automatiergdion
of C compilers for various architectures. Currenthg are
working on Microprocessor without Interlocked Pipel
Stages (MIPS). To minimize the number of errorsthie
automatically generated compilers, it is necessarput the
generated compilers under test. Because the vgnotess of
the compiler generation is highly automatic and aee not
have all the platforms, for which we develop, eaaalié for
testing, we use simulators for compiler testingead of the
chips or development kits. In order to test thednpiler
within any simulator, it is necessary to add thppsut for the
C library functions into the simulator, which isedsfor the
testing. The C programming language is still onehef most
used languages for programming of embedded systéemce
it is important to provide the reliable C compiley the
developers.

As the main aim of the Lissom project [2]
registrated mark Codasip

Tomas HrusSka, Karel Mak

Department of Information systems
Faculty of information technology, Brno Universad§
Technology
Brno, Czech Republic
{hruska, masarik}@fit.vutbr.cz

The support of the library is crucial in our prdje@e
need to use tests written in C for the compiletirigsand the
tests commonly use /O functions, functions for rogm
management etc. This paper presents the ideativigfithe
simulator, where the testing is performed, withpup of the
C library and later on the implementation of thisthod.

The paper is organized in the following way. Second
section provides the position of the testing in ttissom
project. After that we sketch the concept of reztaiple testing
system. Overview of the current stage of the tgssrprovided
in section four. Then the short overview of relatedrk is
given, section six discusses the reasons for chgotlie
library. Sections seven and eight discuss thealetand
practical side of adding the library support inte simulator.
Section nine describes the process of testing.iddeden
presents the results obtained from commercial ugst@nd
finally section eleven concludes the paper.

Il. RELATED WORK

As the core of the paper is dedicated to the tgsiinthe
compiler in the simulator we will focus mainly oelated work
in this area.

Simulators in general are one of the most popuhutions
as far as embedded systems development is concérhey
are very often used for testing. We tried to pigk several
examples that are connected to embedded systems
development, and were published in a form of atidhe
Unisim project is not aimed at embedded systempimvides
interesting idea.

Paper [6] presents a system that is very similahéoone
that is developed within our project. It is callegfast. The
article describes system that generates differ@ols tfrom a
description file such as we do. The article mergidimat C
libraries were developed, but no closer informat®given. It
seems that in the simulator of the Unisim projéet support
for C language library have been right from the ibeigg.
Unfortunately this is not our case. Porting of theary is
critical for us, because without the support itesy difficult to
test and evaluate the results of any tests.

Another interesting system including simulator éscribed
in [7]. The project is called Rsim and is focusedsamulation

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of shared memory multiprocessors. The Rsim projenks
under Solaris. The Rsim simulator can not use stahslystem
libraries. Unfortunately it is not explained whyistead the
Rsim provides commonly used libraries and functiohise
Rsim simulator was tested for support of C librakly.system
calls in the Rsim are only emulated, no simulatisn
performed. In our system we will simulate the calleen
necessary. The Rsim does not support dynamicatlged
libraries and our system also does not considerardjc
linking at the current state. Unfortunately in thidicle is not
mentioned how the support for C library functionaswadded
into the simulator.

Unisim project [8] was developed as an open sitiora
environment, which should deal with several crupiablems
of today simulators. One of the problems is a ladk
interoperability. This could be solved, accordinghte article,
by a library of compatible modules and also by albdity to
inter-operate with other simulators by wrappingnth@ato
modules. Though this may seem to be a little outoof
concern the idea of the interface within the sirarlahat
allows adding any library is quite interesting.dar case we
will have the possibility to add or remove modufesm the
library in a simple way. But the idea from the Umigproject
would make the import of any other library far eaghan it is
now.

The articles above are all related to simulatiofise C
programming language is not a new one and it isopossible
to list all the articles that are in any way retate any library
of C language. The different ways of compiler tagtof any
language are listed in [13]. The simulator is eittreated in a
way that it already contains the library or it lsdeast some
interface, which makes it easier to import thedilgrin case it
is wrapped in a module. Unfortunately our simulatoes not
contain such interface.

I1l. POSITION INLISSOM PROJECT

In the Lissom project we focus mainly on hardware

software codesign. In order to deliver the bestsjbs

services we want to provide the C compiler for aegi

platform as the C language is one of the main agveént

languages for embedded systems. The C compiler
automatically generated from the description fBesides the
C compiler there are a lot of tools that are alspegated from
the description file. The tools include mainly:

simulators,

assembler,

disassembler,

profiler,

hardware description.

The simulators can be generated either from aecycl
accurate or an instruction accurate model. Theilprofvas
thoroughly described in [3].

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

16

The description file is written in ISAC [4] langge. The
ISAC language is an architecture description laggu@DL).
It falls into the category of mixed ADL.

We would like to produce the whole integrated
development environment for hardware software csephe
This IDE should provide all the necessary toolsdevelopers
when designing embedded systems from the scratble. T
simulator is part of the IDE and C library suppsrpart of the
simulators (in the IDE can be more that one sinou)at

The tool for generating compilers is calleatkendgen and
is also embedded in the IDE. The quality of a cdenpis
crucial for the quality of software that is compileby
compiler. Hence it is very important to test thenpder that is
generated by thebackendgen. Via locating errors in the
compiler itself we can afterwards identify and fisoblems in
the generation tools and in the whole process eéldpment.

The backendgen closely cooperates with the semantic
extractor. The semantic extractor as the title satyy extracts
the semantics of the instructions specified inI8®C file and
after that thébackendgen creates backend of the compiler that
recognizes given instructions. Both these phadeshe
compiler generation will be discussed later on.

The primary role of the C library is to enlarge thege of
constructions that can be used during the procésssting.
Testing of basic constructions such as if-statemiefps or
function calls is important. On the other hand st highly
desirable to have a possibility of printing outpotsexiting
program with different exit values and this can bet done
without a C library support. The exit values are thasic
notification of program evaluation and debuggingngs are
also one of the core methods of debugging. Note atiahe
tests are designed for the given embedded systehtha tests
are run on the simulator. The tests are aimed meoml
robustness of the system.

Secondary role of the library in the whole proceds
development is providing additional functions foritimg
programs. One of the most used functions is a grolp
functions used for allocating memory, string congzar and
parsing, input/output methods etc.

As it is possible to generate several types of kitots in
ihe Lissom project, it will be necessary to add tibeary
support into all types of simulators. It should iatlude any
substantial changes to the process of generation.

IV. CONCEPT OF THE RETARGETABLE TESTING SYSTEM

Forget about the technical details for a while deidus
have a closer look at the concept of the testirgiesy. We
should define the goals we would like to achieveéhwaur
testing system. The Lissom project should have lauso
system of testing that is built modularly. As tlystem should
support hardware as well as software testing itulshde
composed of two main modules.

The very first question that should be answereavhst
parts of the project we need to test. The mainaichfocus of
this article is on the testing of the compiler berwd. But there

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are also other parts of the project that shouldelséed. The
hardware realization of the chip, that was mentibabove is
one of them. Also important is testing of toolsttiaae not
directly connected to the compilation toolchain; &xample
disassembler. This leads us to dividing the sofwaodule
into two separate modules.

The testing system should be multiplatform and lyigh
modular and also highly configurable. The additdrthe new
platform that should undergo the tests should heakr The
microprocessors that we are going to test can irampany
ways. We need to support all
microprocessors.

The task, for which the embedded system is goingeto
developed varies widely. On the other hand thesttiwt will
be used for the development will stay more or taessame in
all circumstances. This leads us also to the idethe core
system and many modules that should be optionalyected
into the process of testing via interfaces.

As it was mentioned in the section 2 we can hatleeei
cycle or instruction accurate model. For the felting we
should have both of them. Full testing here meassing
hardware as well as software part. Unfortunatelysitnot
always possible. The testing system must refleist dnd be
able to adjust the testing to the actual conditions

As far as the software testing is concerned we ldhiaike
into account the different levels of compiler oplimation as
certain errors can be sensitive to this.

It is crucial to work with the most up to date t®do
interface to any version system is a must. Theoelghbe also
other interfaces, mainly the output ones. The systkould be
able to automatically inform a user about the tesfilthe
testing. There should be the email interface talgbe result
of testing to the person that performs it. We cklo argue
about interface to a bug tracking system such agia or
Trac. Though this interface would allow us to répgbe bugs
automatically there is a risk of flood of false oeig (the
situation that one problem triggers others). Amotissue is
connected with the information that should be dillshen the
bug is created.

This problem could be solved by addition of a datzb
between the testing system and the bug reportioly ko the
database we could keep records about the bugs atieat
currently reported and not yet fixed, hence we @¢@void the
redundancy of the bugs. Once the bug is fixed weldco
invalidate the database entry and if the same proldccurs
again it could be reported again.

The notice about most up to date tools used fotdkeng
leads to one module. The core module should reggerfer
creation of all possible tools but not for testimfgany kind. It
should just verify that all the source code isdialihd that tools
can be created. Between the phase of creatidmedbbls and
the testing of the tools is clearly defined intefaThese two
parts can be run separately.

Right from the beginning we should take into acddbat
all our tools can be used under both UNIX and Wimslo

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

17

operation system. This is not a problem as farhashigh
programming languages are concerned (such as @vaj fbr
the programming of the devices. However the testiigch is
the same in this case as running the testsuitelgsladso be
possible on both operation systems. And as theuiéstis
created in Bash we must provide the basic suppbith®
UNIX tools also under Windows. The solution heren dze
either MinGW or some other support such as Cygwin.

This brings us to the choice implementation languay
the testing system. Unfortunately, the high lewelgpamming

these features of thies not suitable for this kind of project. The tagtinvolves an

editing of various files, creating (make-ing thel&) control of
return values and so on. Mainly for this reason,civese the
scripting in Bash as the best possibility. Thisugiat us some
difficulties as we will see later.

Our users will also use a different operation syssnd
also different distributions of the UNIX system® f8om the
beginning we must consider this. Not only differeperation
systems and also different releases must be takteraccount
as the there might be different versions of the GG@pilers
for example. The only way, we can sufficiently hienthis is
virtualization of the machines where the testingtam will
run.

At least some of the components of the testingesyst
should be usable separately. It would be witholutdalibts
useful to run just testing without the prior budd the tools.
The tools can be built via the graphical interfémeexample.
Dually, we can encounter a situation when the boiltbols is
sufficient and no testing should be performed. Atgy, the
likelihood of the first case is higher. It is algiven by the fact
that there are several ways of building developrwuis.

Hence the module for the testing itself should dtalone
and should have the clearly defined interface.tRerthorough

testing we should have as many tests as possible.

Unfortunately, this goes against the principle afbedded
systems. The microcontrollers often have very reduc
instruction set, so the chips are not capable eteting the
tests. Therefore, we need a system of the testteeighat will
ensure that just the clearly defined subset ofstestl be
compiled and executed for the given platform.

Hand in hand with the selection of the tests gdesrt
evaluation. The selection of the tests should berakzed as
much as possible. On the contrary, the evaluatfaine tests
can not be centralized thanks to the differenstéts we use
in our project. They have different formats of tha&put and
also exit codes differ in the meaning.

Together with the results and evaluation goes aneis
connected with the reporting of the errors. Oncesweounter
an error and we want to report it we should knowo vt
responsible for the error (or which tool generatieel error).
This could be determined via testing the tools spdy. In
case of testing all the tools together, we can judy on error
messages and on temporary files that could beexteBly the
temporary files we mean the files that are outgubree tool
and input of the very next tool.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. OVERVIEW OF THE TESTING SYSTEM INLISSOM
PROJECT

At this point, | would like to give an overview dhe
testing system in the Lissom project. It shouldegilre reader
more precise information about the whole systemtawd the
library fits into the whole. Our testing systemwidtten in the
Bash language. It consists of set of scripts. Eiséirtg system
was originally developed for the UNIX systems. SHadtialso
work under the Windows, it is necessary to suppottie form
of the MinGW. This approach brings on problemshsas
different paths on various systems or differenttirsgs of
environment variables that have to be dealt with.

The testing system or testsuite as it is calledunproject
performs four basic tasks:

. testing of the tools for the development,

. testing of the backend of the C compiler,

. hardware testing,

. creation of the releases and packages of the models

Now let us have a closer look at the parts of tiogegt one
by one.

A. Toolsfor the development

As far as the testing of the tools for the develepinis
concerned it consists of several phases, which ldhba
performed in given order.

As we always need to work with the most up to datds
the first thing that must be performed is the dmaul of all
necessary source code from repository.

The first phase is a build of all the tools. Evhough the

advanced IDE are used during the development vésno

happened that the source code can not be compiled.

Once the tools are created, the testing phase segie
perform the testing of each tool and also testidfigthe
toolchain to make sure that the cooperation isajeed.

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

18

of the compiler backend, where we use just one latmuand
generate minimal amount of profiling information.

Build of tools Assembly
¢ 1
Referential Linking
values
A
A
Simulation]
Disassembly |«

Figure 1. The scheme of testing of the development tools

We also perform tests that ensure the integrityhefwhole
system and a compatibility of the tools. In othesrds, we
must ensure that if we add some new features intoad the
tools the rest of them will be able to cope witesh changes.

Typically, we bring some testing input written im a
assembly language to the assembler and go throlighea
phases. In the end we should gain the executdblarid be
able to run it in the simulators with the correeturn value.
We also try to disassemble the executable. The ceele
receive should have the same functionality as dluece one.

It may seem that both mentioned approaches arsatine.
However, the crucial difference is that while ire tfirst case
the tested component can go through the testingepso
without errors, there can be some issues connegitbdthe
file formats and interfaces between the tools. fitse way of

Some of the tools such as assembler or simulater af€Sting is on the other hand used for experimeritis mew

platform dependent. So we have to keep in the repgshe

source codes for the testing for each platform. Huoe

architecture independent tools this costs can ledsaThe
same problem occurs for the reference output. @ettmls

can also have different levels of optimization and
generation of information for profiling. Thanks tlus fact the
number of reference results grows rapidly. Curgentle are
working on the new version of the testing systend ane of
the tasks is to lower the number of reference datpAnother
weakness is that we do need the reference outpatusually
gained manually.

As mentioned earlier,
simulators. We perform testing on all kinds of siators with
all possible levels of generation of profiling infieation. The
amount of generation of profiling information ca@ &pecified
during the simulator generation. This is in cortkgish testing

we have different kinds of

features of particular components that are notarupg by the
whole toolchain yet. Figure one shows the procésssting of
development tools. We have a simple program in @lys
This program goes through the whole toolchain. gt i

/ assembled, linked, simulated and in the end digdsse.

After each stage we compare the result and refatemtue.

The hardware testing is also performed in this nedu
However we automatically perform just the tests thé
syntactic correctness. No workbenches are executed.

B. C compiler backend

As far as testing of the compiler is concerned g heed
to create the compiler and compiler driver. Afteattwe can
start testing. Here we will describe the procesthefcompiler
generation and creation of compiler driver. Theitgsprocess
itself will be thoroughly described later.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The LLVM project [10] is used by our research graga
base we build on. LLVM stands for low level virtuahchine.
It is a project focused on creation of modular cenpthat
provides aggressive optimalization. In fact, thenfend and
the middlend part of the compiler are used withmaissive
changes. The part that is crucial from our pointiefv is the
compiler backend.

The backend part is responsible for printing theeasbler.
This part is generated automaticallytmckendgen. As we use
certain parts of the LLVM with no or small modifigans we
added the Lissom target into the LLVM project. Thigy we
build programs that are later used for compilatidrsource
code. Namely we create Clang this way. Clang aténd of
the compiler provided by the LLVM project.

Given that we have built the LLVM project, we caars
with the creation of compiler backend. This phlasgins with
the semantic extraction. As mentioned before tipaitimf the
whole process is file written in ISAC language. fiarthe file
that represents instruction accurate model of acoantroller
we extract semantics. After this phase, we gettliié¢ captures
meaning of the instructions. More precise informatabout
the semantic extraction phase can be found inrtieea[5].

The file with the extracted semantics is one ofitipaits of
the backend generator. Thackendgen generates source files
mainly in the C language that are later on compilsd
ordinary C compiler (ie. gcc). As it is generafiedm the
model it is clear that compiler backend is platfatependent.
The semantic extractor and backend generator vieisely
cooperate. After the successful generation of tbepiler
backend we can create the compiler driver. Therdtiods that
are required for the translation process are geswkifeom the
model before the backend is created. The briefiserof the
backend generation can be found in here [5].

While the generation of all the tools is a must thoe test
compilation, it is not compulsory to build the calep driver,
but it simplifies the translation process consitbraThe gcc
compiler is in fact also compiler driver. We usemgiler
driver provided by the LLVM project. It is calldtvmec. The
tools that are used, parameters that are acceptéigebtools
and also the order of execution are described bygiken

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

19

The main part of the library is composed around the

floating point arithmetic. The functions have dindloat
precision (which is denoted by the sf in the nanfiethe
function) and also double float precision (dendtgdhe df in
the name of the function). As our processors dousoally
have its own instructions for floating point aritbtic we very
often use this library to provide the floating po@mulation.

Build of tools LLVM build
Backend] (.)
. < Semantic
generation .
J extraction
v & J
Build of 4 . ~\
. Build and
compiler . .
. installation
driver
of Newlib
& J
VL

Testing

Figure 2. Scheme of testing of the compiler backend

The second figure shows in what order are the ghate
backend testing executed. The libraries are negial part of
testing. It is possible to run the testing systethout them.

The compiler-rt is for us just another library. Wiek it
statically during the test compilation togetherhaiewlib for
example. One of the issues is that this librargimsed at 32-

syntax. Thelvme description has three parts. The first part isPit Systems. We would like to use it in simulattrat simulate

the description of the tools that are going to bedu In the
second part, one must provide the languages (arsliffixes)
that are the input and the output of each toolallsin we
specify the relations between the tools. We camktbf it as a
graph. The tools became the nodes and we can diitke
relations as of edges. The input and output langsiaare
properties of the nodes.

We also use compiler-rt project of the LLVM. The

compiler-rt project provides implementations of the-level
code generator support routines. This routines caild are
generated when a target does not have a short res) e
native instructions to implement a core IR operatim fact,
when the compiler does not know how to achieveadgert
behavior with the given instruction set it has akicat the
compiler-rt library whether there is a call thatltbbe used.

behavior of 16-bit processors. This has not bestedeyet.

C. Packaging and releases

This module is a part of the testing system frore th
beginning. It was originally created for the builgi of the
packages. As we currently support rpm distributiassvell as
deb distributions and also the Windows, the paciggi/stem
must reflect that.

The packaging system automatically creates the gugsk
for the currently supported platforms. The packiagiides all
the tools that are needed for the development aivan
platform. Currently we support Ubuntu and Debialeases,
Fedora, CentOS, OpenSUSE and Windows 7. For theritya|
of the UNIX distributions, we maintain the curreatease and
previous one. All this systems run as virtual sesvelhe

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

created packages are automatically uploaded awelipages,
where can be downloaded by our co-developers agrd.us

Later also the packaging of the models and the mod

documentation were added. These are also availaitethe

web pages. We have also started with nightly buidsnsure,
that the committed changes do not affect the biilda

negative way. Yet another advantage of nightlydsuis that if
any package is needed with the changes that weile mighin

the last 24 hours the package was already createahight

and we do not have to wait for it to build. We d¢snuploaded
it at the server where it is available to the comsrs.

D. Sability of the system

For a long time, we had problems with the stabititythe
whole testing system. As it is composed purelyhaf Bash
scripts, we very often faced the problem, that pag of the
testing system broke down according to an errortheitbuild
went on and the error was lost deep in the logss Was
typical situation during the night build, when tkgstem is
unobserved. In the morning we realized, that thekpges
were not created and started to look for the remsés our
system creates a lot of logging information it wex always
easy to identify the reason.

To solve this problem we decided to create simpkgpper
and wrap all the commands except the calls of cocqrlures
and functions. The wrapper performs the command itha
given to it as a parameter and controls variousakbes.
Clearly one of the most important is the returnueabf the
command. If the return value is out of range wep$ncall
system exit and the whole process stops with tlearigl
specified error message.

Even more important is the fact that we know thacex
place where the error occurred. Unfortunately, ihiaot true
in case we apply parallel build. But the wrappeapplied on
the Bash commands so we at least know the commaedew
the error occurred hence we can narrow the aredcang on
the command more precisely. After the applicatidntre
wrapper the stability of the whole system improved.

VI. CHOOSINGTHE LIBRARY

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

20

All these conditions were satisfied by few libratie
Amongst those we chose Newlib [9]. This librarylasgely
minimalistic. 1t does not contain certain modulé&gcause,
%ccording to the authors, it would be against tfmalism.
In certain areas it sacrifices better performancdavor of
minimalism. For example functions for 1/0O could dygtimized
for different platforms, but there is just one vensfor all
platforms written in portable C that is optimizex §pace.

As far as the new releases are concerned, it canitighat
the library is alive. New version is released asteonce a
year. This is very important because we need tp beee with
the up to date versions of glibc. There are othimimalistic
libraries compatible with glibc, but quite a lot thlem are not
maintained sufficiently.

Another reason for choosing the newlib is
documentation that is provided with the library. Méhprocess
of porting the library to different platform is vielocumented
and thanks to the wide use of the library it is difficult to
find help.

The most important reason for choosing the nevdithe
fact, that it has already been ported to sevegtfqgrins. One
document is dedicated to the process of porting eveh
though we do not port the library to new architegtit can
provide us with very useful information. During theocess of
porting we will perform steps that are similar torging the
library to any new architecture.

Unfortunately this library is dependent on kernebhder
fles. But during the porting we will get rid of eke
dependencies. We will need to use this library aridiIX
systems as well as under Windows.

VIl. THEORY OF PORTING

The main reason for porting the library into simtatas the
fact that we need to add the support for C funetiono the
simulator itself. To be precise, we want to use fihe
functions such as printf, malloc, free etc. in flregrams that
will be used for testing of the compiler. And besawve do
not possess the development kits for all the platéowe use
simulators instead.

As we are focused mainly on embedded systems and we If one does not grant libc library support in theudated

design the whole process of compiler developmenttHem
we dedicated quite a lot of time to choosing therext library.
It was clear right from the beginning that glibcnisedlessly
large and therefore not suitable for use in embedystems.
We need library that satisfies following criteria:

. minimalism,

. support for porting on different architectures,
. well-documented,

. new release at least once a year,

. compatibility with glibc,

. modularity.

environment, the number of constructions we canamsktest
is very limited.

Consider the following simple example written in C:
int main(int argc, char **argv)
{
if(strcemp(“alpha”,”beta”)==0)
{return 1;}
else
{return 0;}

}

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

Even this simple program can not be executed, lsecdu
uses function strcmp that is part of the C librdryis program
can not be compiled unless the inclusion of sthingnd
possibly some other header files is included.

On the contrary the main aim of testing is to caa&mwide
area as possible and also try as many differenbgwations of
functions as we can. However, this goes againstidea of
embedded solutions. And because we focus espeaially
embedded systems, we do not even try to cover hal t
functions provided by glibc or in our case newlib.fact we
will use and hence test only functions that can woder the
simulated environment and are useful for the pnograhat
will be executed on the given platform. Moreoverbeaided

systems are not designed for use of vast number of | |

constructions that programming languages offer. idally

there is just one task, usually quite complicatduht is
launched repeatedly. As we will see the functidra tve will

use form just small part of newlib. The functiohattare not
important to us can be easily removed via confitjoma
interface or it is possible to remove them manudyllowing

categories are examples of unimportant functions:

21

There are several ways of building the library aiso
different methods of using it. There is a posdipitif building
a position independent code. Even though this iminesting
solution we decided against it. Instead of PIC itpws
independent code) we are going to compile the fjbrato
single object and then link it to the program stty. The
position of library in the whole process of testisgshown in
the figure 3. The library is linked to the programd after that
the program is loaded into the simulator.

Newlib

Program

Simulator

\ 4

Operation System

. threads, we assume that in simple programs for

embedded systems one will not use threads,

. locales, all the locales were removed from thealijpr Y

. math functions for computing sin, cos etc. Hardware

. inet module, even though networking plays important

part in modern embedded systems whole module was Fi 3. sch ¢ call it functi

removed, igure 3. Scheme of calling printf function

. files and operations with files, our application uiat Now return to the functions that remain in thedityr They

need interface for working with files.

Now we come to the important parts of the libr&8imply
spoken all that really has to remain from the liprare the
sysdeps, this is the core of the whole system (twoallocate
more memory etc.), then important modules suchdis §or
outputs, inputs) and other modules we wish to pwesén our
case we wished to preserve following parts of tlesvlit
library:

. stdio, this was the main reason for porting theali,
to get in human readable form output from the &atau,

. module for working with strings and memory, in our
applications we would like to use functions suchrasncpy,
strcpy, strcat etc.,

. memory functions, for example malloc, free, realloc
. abort, exit,

. support for wchar, but without support of different
encodings.

Some parts of the library could not be removed bseaf
the dependencies. According to our estimations lye&d
percent of the library was disabled or removed mnemk by
the size of the library.

can be divided into two groups. First group cossisf
functions that are completely serviced within thewdated
environment. For example function strcmp falls irntus
category. This function and its declaration remainshanged
within the simulator if it is written in portable .CThese
functions are not tied with kernel header filestsere is no
need to change them.

The second group of functions consists of functithrag are
translated to the call of system function. Funtpintf can
be used as an example of this group of functiohe dall of
printf function can be divided into three phrasésttare
illustrated at the following picture.

In the beginning the call of printf function is mgated on
the call of system function, with the highest probty it is
going to be the call of function Write. Write, bgithe POSIX
function, is offered by the operation system. Buine want to
use the simulator on UNIX platform as well as onndéws
systems we have to remove these dependencies. §o de
will use the special instruction principle.

A. Useof ported library of UNIX and Windows systems

Before we get to the principle of special instrontmethod
we should explain why we need to use this methde. ain
reason why we should remove the dependencies okethel
header files is the fact, that we must be ableswthe library

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

under UNIX systems and also under Windows like afien
systems.

As long as we use the library under UNIX systems

everything should be all right. Though even on UN§tems
there might be differences amongst the differemsioas of
the header files. But once we use the Windows bagstm
we can not use header file functions any more olild/ almost
certainly result in a crash of the system.

In our project we currently support several
distributions as well as Windows. Use of other afiag
systems is not considered.

B. Special instruction principle

The special instruction principle means, that wé uge
instruction with the opcode that is not used witthme
instruction set for the special purpose. So famethitectures
that were modeled within the Lissom project hadesavfree
opcodes. It is typical that the instruction setsmid use all
operation codes that are provided. But in case mffree
opcode this method can not be used. The specialdtisn
principle will be used for ousting the dependendaskernel
header files.

Functions provided by operation system are calledhl

UNIX

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

22

Program Newlib

Simulator

Figure 4. Scheme of calling the simulator via newlib layer

The syscall mechanism is in fact a wrapper of tfstesn
call. The call will be passed to the simulator thét do the
call and return the result.

C. Smulators
As was mentioned before, all the simulators areegad

syscall mechanism. The system calls can be quistlyea automatically. In the beginning all the source ilare
detected. Each library should have defined the alysc generated by specialized tools. When the genergti@se is

mechanism in special source file. This syscall raa@m
differs, as they usually are platform dependent. i386
architecture will have different syscall mechanisigin arm.

finished the simulator is build by a Makefile. ltillwbe
necessary to add into this process following infation:

information about which instruction (opcode) calls

Syscalls together with other code that is platformyne system function,

dependent are kept in a specific folder. When thealy is
compiled, the platform dependent code is kept ispacial
archive and is separated from the platform independode.
Figure 4 shows this situation. We must link twofetiént
archives to the program we wish to execute. Thibary and
the archive containing syscalls and other platfa@pendent
code such as runtime etc.

. the simulator will have to know the convention for
storing parameters,

the simulator will have to recognize which system
function is going to be called,

. the simulator will have to perform the call of the

We wish to preserve the mechanism. The syscalls wifforrect system function.

remain in the library, but with different meaninghe file
containing syscall will be changed in the followiwgy: in the
beginning the parameters of the syscall will becgthat the
given addresses in the memory and we will alsondefihere
the syscall return value will be placed. Afterwatts call of
the chosen instruction will be performed. It isoafssible to
put the parameters into registers, but some ptagohave
limited number of registers, hence this method d¢atduse
problems.

First three points will be solved within the debd of an
instruction set. The instruction with the opcodattis not used
will be declared. The instruction behavior will defined in
the following way: according to the parametersiit vall the
given system function. The simulator will haverezognize
the system it runs under and call the correct fanctFor
example on UNIX system it will be function write carn
Windows WriteFile. This should be solved by theclitbrary
of the given platform. The following figure demdnages the
call of special instruction.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Call of Special Instruction

L 4
Identify the System Function

v

Call the System Function

v V

Windows Unix

Figure 5. Calling sequence of specialized instruction

When the special instruction is called, we neeutlémtify,
which system function we need to execute. Thisrinégion
must be passed out of the simulator.

The parameters that were placed at the given positi the
simulated memory can remain unchanged. They willater
passed to the specific system call.

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

23

instruction set. In the future we would like to uke generated
compiler for building the library. This requiregghi quality of
backendgen and generated backend.

Because we are going to use the library in the Isitou
and the simulator can handle only instructionshef $pecified
instruction set, then the library must be translate the
instruction set that is recognized by the simuldtar building
the simulator we can use common gcc for Windows eiX,
because it runs under common system.

This may be the first big problem in the whole msx of
porting. It is not hard to find a compiler for giveplatform.
Nowadays there are specialized compilers for neaily
architectures used in embedded systems. The baoildoy
newlib contains more than dozen of different amsttitres
such as MIPS, arm, mipsel, sparc etc. There ane @erent
versions of the mircoarchitectures in case of MIRB
example.

Problem is that thanks to the aim of the whole diss
project, there we usually use specialized instomctets or we
use some generic instruction set and add certaniafred
instructions. After this customization it is usyathpossible to
use generic compiler for building the library.

We could use for building the library the compiteat we
want to test but currently it is not stable enodghbuilding

One important issue is connected with the simulatedgrge programs. The best solution of this problenusually

memory. As we would like to correctly simulate thgerations
with memory such as malloc, realloc etc. we neettliothe
simulator how many memory it can simulate. Thidl Wwe
done by the special file that will be passed tolihleer. This
file will contain symbols that will declare how nmuenemory
can be used.

We also considered completely different attitudethis
problem. Instead of monitoring calls of system fiort we
could monitor memory accesses. But it would slowvido
whole process of simulation.

VIII.

Before the whole process of porting begins we nied
download the newlib. There are two possibiliti¢ss Ipossible
to download only the library or there is a wholelthain for
development of embedded system for given architectso
called buildroot.

PROCESS OF PORTING

The main advantage of downloading the whole budtie
that once it is built you get whole set of devel@pitools
including various compilers, linkers, debugersipsfirograms
etc. You also get the build of newlib. These toats quite
useful in the beginning when you remove unwanted utes
from the library, because they can be used forildibg the
library.

One of the problems we faced is that we need te tiae
compiler for the architecture we are developing farother
words if we want to create a library for testing@npiler on a
given platform we need a compiler for the samef@iat that
is already created. The compiler will be used foilding the
newlib. Moreover the compiler must have exactly saene

building a specialized toolchain including GNU hiisiand
GNU compiler collection. As was mentioned once the
generated backend is stable enough it will be éseduilding
the library.

Several issues we faced during the process weselglo
related to the buildsystem of the library. Thedityrcontains a
system of makefiles. This system is hierarchical asually
the makefiles from the upper levels are included.ifSfor
example we would like to compile any test exampleg are
included in the newlib we switch to the given diceg and
call make. This will call all the makefiles fromethabove
directory. This is very effective, because only thakefile in
the root directory contains variables defining wheaompiler,
assembler, linker will be used. On the other harid very
difficult to modify this system in case we want lhoild the
different parts of the library using different teol

Currently we are using for the development theo$edur
tools containing archiver, linker, asembler and piben. The
currently used compiler is called mips-elf-gcc. i$t not
generated automatically but was created especfallythis
purpose as our generated compiler is not yet stabérigh.
Linker and archiver are not generated automatidalitywere
developed in Lissom project.

Our tools are not compatible with the tools thatreve
originally used for building the library. Our tooldo not
support so wide variety of parameters so somearhthad to
be erased from the configuration files and someewast
changed to suit our needs.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Currently we use set of scripts, which preprochssflags.
In the scripts we erase the flags we do not neetl dm
necessary substitutions.

The buildsystem of the library starts by parsing th

configuration file and accord to the content of fie are set
different macros and variables. When doing manbahges to
the buildsystem we have basically two possibilities

. change the configuration file or,
. do the changes later in the Makefiles.

The first possibility is cleaner but the Makefiledten
check if the option is present in the configuratiibm and ends
with error in case the option is missing. Hencésitmore
convenient to do the necessary changes in the lillekef
Thanks to the hierarchical structure it is in mastses
sufficient to do the change in just one place.

We also use different formats of the output fil@sitput of
our assembler is an object file .obj that is nanpatible with
.0 that is the usual output of gcc compiler. Culyewe use
mips-elf-gcc just for compilation from C to asseptblAfter

this phase we use automatically generated assentbler

compile the files from assembly language to obfées that
are later used by the archiver.

In the theoretical part we mentioned the need i i
special file containing information how much memagn be
used. The file will contain symbols defining thegbming and
the end of memory space that can be used. Ithaile the
following syntax:

#file defining memory boundaries
define start 256
define stop 768

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

24

simulator. Unfortunately there are steps that nemdbe
performed manually. For example we need to proviue
runtime for the simulators and the correspondingtices
needs to be specified in the ISAC file.

Runtime is also one of the files that are writtgrhland in
assembler. There are also other files written igemdbly
language and hence are platform dependent. InafasgPS
platform there were 8 files that contained assentdtguage.
For example syscalls or memcpy functions are
implemented in assembler. In order to minimize nembf
files written by hand we decided to provide as mditds
written in portable C as possible. We managed pdaoe all
but two files by C implementations. All that have be
provided is the runtime and syscall mechanism.

IX. PROCESS OF TESTING

Now when we have thoroughly gone through the Iyorar
porting, we can have a look at the test selecisunds.

A. Test selection phase

ale

As we have a large amount of tests from the differe

sources (gcc-testsuite, llvm-testsuite, etc.), eedna universal
approach that will define, which tests are suitafue the
compilation and execution on a given platform.

We have created a system of files that restriesntimber
of the tests that can be compiled on a given piaitfaccording
to the libraries that are available. The libra@ges just one of
the test selection criteria; also other charadtesisare taken
into account for example the size of the registerthe size of
stack.

The naming convention for these files is very senfihe
file bears same name as the test does but have suifistead
of .c. The system is hierarchical. We can havehieearchy

Given that the numbers are in kB the simulator carPecause we support a nesting of the directoriesaankieep .x
simulate up to 512 kB of memory. Character # denotefiles notjust for the tests, but also for the diceies. In case of

comment.

the directory the .x file has the same name aditieetory with
the .x suffix.

As far as the convention for storing parameters is

concerned, we have chosen following approach:

parameter says, which system function is goingetadiled. In
the newlib it is a list of system functions for UNkystems.
The rest of the parameters (2-7) are passed tutiedon call.

The parameters remain unchanged. They are passétk to

system function in the exactly same state, in wivehe saved
in the memory before calling the special instructio The

special instruction itself has no parameters. Whbe

instruction is called, all the parameters havedastored in the
memory at given addresses.

A Automation of the porting process

As for the first time all the steps were perfornmeanually.
In the future we would like to automatize this prss as much
as possible. Without doubts we could remove thelless
parts of the library automatically. The needlessspaould be
identified by the configuration file and also thgesial
instruction principle could be highly automatic. we have
spare instruction we will choose it and compostiv the

first

These files have minimal functionality. We try tedp
their size as small as possible. Their typical fiomality is
that according to some state of the flags the itesixcluded
from testing, because implicitly all the directariand all the
tests are selected for the testing. So, if we wamixclude the
tests or whole directories from testing we haviatticate this.

As the size of the files is kept minimal the fuoatlity and
flag settings must be done elsewhere. This is pedd
centrally in the main testing module. The functidimat check
the current state of the flags and control whataliies are
accessible for linking to the given platform areldesd here.
The centralization in this case has purely practiese. The
typical usage of the .x files is that we disablstitey of the
whole directories according to the libraries that accessible.
The .x files can also bear other functionality. \Wan for
example set different variables. We can specifgsflahat
should be added to the compilation or add soms fitethe
linker as in the following example.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if ["$C_LIB" == "0"]; then
FILE_DEPS+=crt0.0
fi

On the level of files we most often use the .xsfifer the
filtering the test that depend on the compileritdry for a
given platform. As usually only few tests of anyeditory
depend on the compiler-rt and the dependence datekave
to be same for all platforms, the best solutiotoisondition
the test execution by the platform and the comyptler
presence. This is demonstrated in the followingrga.

is_arch "mips_basic" $1
if ["$?" =="0"]; then
if ["SRUNTIME_LIB" == "0"]; then
RUN_TEST=0
fi
fi

The presence of certain libraries can be also riitior
testing because some tests have library dependenthe
biggest advantage of this approach and also tha neaison
for introduction of this system is its universalit)fe employ
the tests from the LLVM testsuite, the gcc testsuithe
Mibench [11] set of tests and we also have test$ were
created within our project. The system of the lesfican be
used for all these sources as long as we use ljestests
without the testing infrastructure that is providiedseveral
cases.

The only set of tests that we use together with th?he

infrastructure that is provided together with tlst$ is the
Perennial testsuite [12].

B. Test compilation and execution

The compilation of the tests is performed in thetcd
module. As we have the system of the .x files weereanly
those directories that are suitable for the testinghe given
platform. So before entering the directory withtdese check
the .x file for a given source and consult therresbns that
are defined by the .x file and set all the variabdenoted by
the file.

If the directory is feasible for testing we cycledugh the
tests in an order denoted by the test list. Thilexs always
checked first, and if nothing blocks the test itésnpiled. The
presence of the .x files is not compulsory. As ricered earlier
the default setting is to go through all directerand execute
all tests. But if the file is present it will be extked.

If there are any problems during the test compitathey
are logged. We keep the list of the tests that wetecompiled
successfully together with the output of the coempilhe logs
are kept for every platform that is tested to avad
overwriting. It is also possible to create unidpeg not just for
each platform but for every run of the testing sgst These
logs could be in the future stored in the datab@s&eep
precise testing history. The tests are compiled exetuted
several times with different levels of compiler iomlization.
Currently we support levels from 0 up to 4.

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

25

C. Logging information and test evaluation

The test evaluation is kept decentralized. As wplale
tests from different sources we need to keep thtestealuation
together with the tests. For some tests we evabratbe basis
of exit code, but there are the tests that prodacexample
text output and we have to compare the output it
referential values (this is where the library corntease).

The decentralization in this case means that we Kee
every directory a shell script that takes careest execution
and evaluation.

As in case of test compilation we keep detailedyilog
information. We keep the output of the simulatod after the
test evaluation we list it into the list of pasdedts or failed
tests according to the result of evaluation. Thys lare created
for every tested platform and can bear time refegen

X. RESULTS OFPERENNIAL TESTSUITE

For having a comparison with commercial compilees w
tested our automatically generated compiler witmmeercial
Perennial testsuite. The results described here \gained
from the generated MIPS compiler.

The testing was performed on our complete todtcha
The tests were compiled by our generated compite a
afterwards executed the tests on our simulator et also
automatically generated.
We have only part of the Perennial testsuite. sl usly
tests that examine the core of the compiler.&ktduded
some of the tests that can not be compiled dubecdcéader
files dependencies we do not support. The tediseirtestsuite
are divided into groups according to the chapter thud
standard that is tested. We use tests for theeddhisind 6. We
have mainly tests for the standard C90 and seves#$ for
C99 standard. Currently wa have no tests for Caddstrd.

The final number of tests that we execute is 796nF
796 tests are 794 tests compiled and executedatigrreéOnly
two tests fail either during the compilation oruret incorrect
value. The results are summarized in the followaige.

Table 1: Results of the Perennial testsuite

Compiler All Pass Fail Not Not
tests tests tests | compiled | executed

Lissom 796 794 2 2 0

Gcece 796 796 0 0 0

As the table shows, just 2 tests do not succeeter Af
closer look we realised that this two tests uggdphs, that are
not supported in the llvm frontend. This tests cait be
compiled by the current version of the llvm. Thetsewere
compiler with O2 optimalization.

The table also provides comparison with gcc compde
i386 platform. The gcc compiler in version 4.6.8mpiles all
the tests and the programs are executed corrébfttywere
also interested in how much time does the progrneemd by
syscall execution. We compiled for our platfornpragram
that accomplished MPEG decoding. The input and wutp

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

streams of the program were redirected into thesfilThe
profiing of the MPEG decoder showed, that executaf
syscalls took less than 2% of time.

XIl. CONCLUSION

In this paper, we gave the overview of the tessiygfem in
our project and sketched the idea of adding theaudor the
C library into the simulator. The motivation is tpiclear: to
be able to use the library functions in the tels& aire run on
the simulator of the given microcontroller. The cpé
instruction principle was proposed, which enables ta
forward the call of system function. It also allows to
identify, which system function is called. This miple is
quite universal and can be used for the majoritplafforms.
After implementation of this method, we are ableuo all the
functions that are commonly used such as I/O fonsti
memory management and string functions, etc. Maeowe
can adjust the library according to our needs. k&do the
modularity we can enable or disable any modulesThay
turn to be an advantage, because the completeylibcaupies
tens of megabytes and the compilation and linkinghsa
library can be time consuming.

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http.//www.iariajournals.org/software/

26

REFERENCES

[1] L Dolihal and T. Hruska,, “Porting of C library,eSting of
generated compiler”, In proceedings of ICCGI 20Lin. 2011, pp.125-130,

[2] Lissom Project. http://www.fit.vutbr.cz/research/groups/lissom
[online, accessed: 18.6.2012]

[3] Z. Fikryl, K. Masdik, T. HruSka, and A. Husar, “Generated
cycle-accurate profiler for C language”, 13th EURI@RRO Conference on
Digital System Design, DSD'2010, Lille, France, pp3—268.

[4] K. Masarik, T. Hruska, and D. Kolar, “Language and
development environment for microprocessor desigentbedded systems”,
In proceedings of IFAC workshop of programmableices and embedded
systems PDeS 2006, pp. 120-125, Faculty of elettramgineering and
communication BUT, 2006

[5] A. Husar, M. Trmac, J. Hranac, T. Hruska, and K.shf,
“Automatic C Compiler Generation from Architectubescription Language
ISAC”, Sixth Doctoral Workshop on Mathematical aBdgineering Methods
in Computer Science (MEMICS'10) -- Selected Pagmys47-53.

[6] S. Onder and R. Gupta, “"Automatic generation of
microarchitecture simulators,” Computer Languag&898. Proceedings.
1998 International Conference on , vol., no., pg88014-16 May 1998

[7] C.J. Hughes, V.S. Pai, P. Ranganathan, and S.Ve,AtRsim:
simulating shared-memory multiprocessors with ItBcpssors ," Computer ,
vol.35, no.2, pp.40-49, Feb 2002,

[8] D. August, J. Chang, S. Girbal, D. Gracia-PerezMBuchard,
D. Penry, O. Temam, and N. Vachharajani, "UNISIM1 @pen Simulation
Environment and Library for Complex Architecturedizzn and Collaborative

We also tested our generated compilers with theevelopment,” Computer Architecture Letters , voh®.2, pp.45-48, Feb.

commercial Perennial testsuite. We had only ch@ssnbset
of tests that should validate the core of the céenpiThe
compiler was tested against the C90 and C99 stdnah
good results when we take into account the fadt the
compiler is generated automatically. The fact thet can
easily compose new testing systems into our owathay with
the results we gained is encouraging.

ACKWNOWLEDGEMENTS

This research was supported by doctoral grant GA CRi2]

2007

[9] newlib. http://sourceware.org/newlib/ [online, accessed:
18.6.2012]

[10] C. Lattner and S.V. Adve, " LLVM: A Compilation &mework

for Lifelong Program Analysis & Transformation”, d&eedings of the 2004
International Symposium on Code Generation and pdtion (CGO'04),
Palo Alto, California, Mar. 2004

[11] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. tifysT.
Mudge, and R.B. Brown, “MiBench: A free, commerhjatepresentative
embedded benchmark suite”, Workload CharacteriatiBec. 2001, pp.3-
14, doi:10.1109/WWC.2001.990739

Perennial testsuite http://www.peren.com/ [online, accessed:

102/09/H042, by the grants of MPO Czech Republic FR18.6.2012]

T11/038, by the grant FIT-S-11-2 and by the redegians

[13] A.S. Kossatchev and M.A. Posypkin, “Survey of pier testing

MSMT no. MSM0021630528. This work was also suppbrte methods”, Programming and Computer Software, 2805, pp.10-19, doi:

by the IT4Innovations Centre of

SMECY.

Excellence Project
CZ.1.05/1.1.00/02.0070 and by the Artemis EU Piojec

10.1007/s11086-005-0008-6

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

