
327

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Simulation and Test-Case Generation for PVS

Specifications of Control Logics

Cinzia Bernardeschi, Luca Cassano, Andrea Domenici

Department of Information Engineering

University of Pisa, Italy

{c.bernardeschi, l.cassano, a.domenici}@ing.unipi.it

Paolo Masci

School of Electronic Engineering and Computer Science

Queen Mary University of London, UK

paolo.masci@eecs.qmul.ac.uk

Abstract—We describe a framework for the simulation of
control logics specified in the higher-order logic of the Prototype
Verification System. The framework offers a library of prede-
fined modules, a method for the composition of more complex
modules, and an event-driven simulation engine. A developer
defines a system architecture by composing its model out of
library modules, possibly introducing new module definitions,
and simulates the behaviour of the system model by providing
its input waveforms, which are given as functions from time to
logic levels. The generation of simulation scenarios (test cases)
can be automated by using parametric waveforms that can be
instantiated through universal and existential quantifiers. We
demonstrate the simulation capabilities of our framework on two
simple case studies from a nuclear power plant application. The
main feature of this approach is that our formal specifications
are executable. Moreover, once the simulation experiments give
developers sufficient confidence in the correctness of the speci-
fication, the logic models can serve as the basis for its formal
verification.

Keywords-PVS; simulation; validation; test-case generation;
control logics.

I. INTRODUCTION AND MOTIVATION

Control systems combine real-time requirements and non-

trivial control tasks whose failure may compromise safety.

Subtle design faults, difficult to avoid and tolerate, and the

possibility of failures caused by the occurrence of non-obvious

combinations of events, make such systems hard to certify with

respect to safety requirements.

The use of formal methods is increasingly being required by

international standards and guidelines for the development of

safety critical digital control systems. Formal methods are in

fact recognised as a fault avoidance technique that can increase

dependability by removing errors at the requirements, speci-

fication and design stages of development. In this paper, we

present a methodology (introduced in [1]) for the simulation of

control logics, formally specified in the higher-order logic of

the Prototype Verification System (PVS) [2], a specification and

verification system that combines an expressive specification

language with an interactive theorem prover. Thus, the same

model can be used both for simulation and formal verification

of system properties.

Formal methods are highly recommended by such standards

as the EN 50128:2001 European Standard [3] in the require-

ments specification and in the design and the validation of

railway control and protection systems, and the IAEA NS-

G-1.1 Standard [4] in digitalised instrumentation and control

systems in nuclear power plants.

On the other hand, verification and validation (V&V) of

embedded systems relies heavily, and often exclusively, on

simulation and testing. In particular, simulation is often the

only V&V tool in the development of ASIC- and FPGA-based

hardware. A typical development process for such systems

involves creating a block-diagram model through a CAD tool

that generates a model of the hardware at successive levels

of detail, and each of these intermediate models is simulated.

Alternatively, the initial model may be expressed in a hardware

description language such as Verilog [5] or VHDL [6].

A rigorous development process would benefit from the

combined application of formal verification, simulation, and

testing. In particular, simulation would be a means to validate

specifications against requirements. However, verification tools

(such as theorem provers and model checkers) and simulation

tools use different languages, and few designers are versed in

the use of both kinds of tools.

The work presented in this paper is focused on the vali-

dation of high level specifications of control logics, relying

on executable formal specifications. We note that executable

specifications are more commonly based on process algebras

or state machine formalisms that are more amenable to com-

puter execution than logic-based formalisms, but they suffer

the problem of state explosion [7].

It is assumed that the development process of a control

system starts from a specification expressed as function block

diagrams. This specification can be translated into a high-

order logic theory that guides the execution of a simulator.

When the simulation results make developers confident that

their specifications express the intended system behaviour, a

more detailed and formal analysis of its properties may be

done by theorem proving.

In function block diagrams, each block represents some

operation on digital or analog signals. Such operations in-

clude, for example, Boolean functions, comparison, voting,

integration and differentiation. Functional blocks may be

implemented in many ways: a single functional block may

correspond to one or more hardware modules, a group of

blocks may be implemented in a single hardware module, and

a block or group may be implemented in software executed

328

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

by some programmable device. This work addresses systems

where only digital (i.e., discrete-valued) signals are present.

We have developed a library of purely logic specifications

for typical control system components, a methodology to

combine them into more complex systems, and a simulation

engine capable of animating the formal specifications with

the PVS ground evaluator. The library comprises definitions

for basic concepts, such as time, signals, and events. The

simulation framework also enables test cases (input data to the

simulations) to be automatically generated by using parametric

waveforms that can be instantiated through universal and

existential quantifiers.

The paper is organised as follows. Section II reports related

work on formal verification of digital control systems. We

introduce the PVS system in Section III, then we describe

the theories for the logical specification of signals and control

components (Section IV) and the theory defining the simu-

lator including a theory for the events associated to signals

(Section V). In Section VI, we describe two simple case

studies from the field of control logics for nuclear power plants

(NPPs), and, finally, the conclusion is found in Section VII.

II. RELATED WORK

The last few years have seen a continuous increase in

usage of digital components in safety critical control systems.

Digital control systems are flexible and enable sophisticated

control schemas to be realized. However, these systems are

complex and call for advanced tools and techniques to ensure

compliance with safety requirements. A few examples in the

literature point out to the difficulties in anticipating all risk

situations and to the fact that apparently harmless events (such

as small unforeseen changes in a sequence of operations) may

lead to catastrophic consequences. These reasons motivate the

introduction of formal methods in the development process of

control systems as early as their first phases (as acknowledged

by international standards). Such methods afford a precise

representation of control schemas and make it possible to

reason on control systems properties in a rigorous manner.

The application of these methods, however, must deal with

the problem of complexity of the systems to be analysed

and is therefore an advanced research topic with interesting

theoretical implications and relevant practical advantages.

In many research works, digital control system specifica-

tions are analyzed with logical-mathematical methods. Two

lines of research emerge from these works, addressing meth-

ods based on model checking [8] and theorem proving [9],

respectively. Model checking relies on generating a state

model of system behavior. Properties expressed in temporal

logic are automatically verified by model-checking algorithms.

Theorem proving relies on a logic language and a collection of

inference rules specific of each language. Verification is done

by proofs assisted by a theorem proving tool that can apply

inference rules in an entirely or partially automatic manner.

Several works have explored the use of model checkers

and theorem provers in the field of instrumentation and con-

trol. For instance, Krämer et al. [10] used the Isabelle/HOL

theorem prover for modelling and verifying programs for

programmable logic controllers. They demonstrated the utility

of using formal methods on such systems, and in particular

they argued that the sheer exercise of formalising system

descriptions given with graphical languages, such as function

block diagrams, is able to point out incomplete information

about functionalities, ambiguities, contradictions and design

flaws.

Wan et al. [11] used the Coq theorem prover for modelling

and verifying programs for programmable logic controllers

with timers. They addressed the problem of reasoning on

specifications that involve timers, and they propose a set of

axioms suitable to ease the modelling of timers at different

levels of abstraction.

Jee et al. [12] translated function block diagrams into

semantically equivalent Verilog programs that can be checked

with the SMV model checker, and they implemented also a

visualisation tool for animating the specifications.

Various works, like Vyatkin and Hanisch [13], and Missal

et al. [14], translated function block diagrams into Signal Net

Systems, a generalisation of Petri Nets, and then used ad hoc

analysis tools for analysing properties of interest on the Signal

Net System specification, such as reachability of dangerous

states and validation of arbitrary input/output specifications.

VHDL and Verilog are commonly used for logical circuits

design. Their key advantage is that they allow the behaviour of

a system to be modeled and simulated before synthesis tools

translate the design into real hardware. The problem of formal

verification of VHDL designs is dealt with in [15] where the

behaviour of a VHDL design is specified with temporal logic

formulas and a model checker is applied for the verification

of the design. In [16], a language to design circuits and prove

properties in the Nqthm theorem prover [17] is shown. The

language can be translated to a subset of VHDL.

Jain et al. [18] verified circuits described in Verilog with

a model checking and predicate abstraction technique, and

developed a model checking tool, VCEGAR, suitable to verify

safety requirements of control system specified in Verilog [19].

The model checking analysis of complex control systems

suffers of the state-space explosion problem, thus requiring

abstraction techniques where verification is performed on a

set of abstract states. Theorem provers are fundamental in this

application field, even if this kind of tools requires specific

competence of the control designer and verification is semi-

automatic.

In our work, on the other hand, we have investigated the pos-

sibility of integrating an event-based simulation environment

into a theorem proving system: simulations give designers an

intuitive and effective way for investigating the behaviour of

a system through test cases; theorem proving enables analysts

to explore all possible behaviours of the system, which is

essential in safety critical domains for detecting design errors

in advance.

PVS is currently one of the most popular and powerful

theorem provers, that has been used for formal reasoning in

several application domains [20]. In particular, it has been

329

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

used in various works to specify and verify hardware systems,

e.g., in [21][22][23]. Other application fields include fault

tolerant systems [24], wireless sensor network protocols [25],

and distributed cognition systems [26].

With our approach, the formal specifications are executable

and they can be simulated with the ground evaluator of PVS.

This way, once the simulation experiments give developers

sufficient confidence in the correctness of the specification,

the same PVS models can serve as the basis for the formal

verification of properties in the theorem prover of PVS. It is

known that a large share of defects in computing systems stem

from errors in the formulation of specifications [27].

III. PVS AND PVSIO

The distinguishing characteristics of PVS [2] are its expres-

sive specification language and its powerful theorem prover.

The PVS specification language builds on classical typed

higher-order logic with the usual base types, bool, nat,

integer, real, among others, and the function type con-

structor (e.g., type [A -> B] is the set of functions from set

A to set B). Predicates are functions with range type bool.

The type system of PVS also includes record types, dependent

types, and abstract data types.

PVS specifications are packaged as theories that can be

parametric in types and constants. A collection of built-

in (prelude) theories and loadable libraries provide standard

specifications and proved facts for a large number of theories.

A theory can use the definitions and theorems of another

theory by importing it.

For instance, consider the following theory execution:

execution: THEORY

BEGIN
State: TYPE
tf : VAR [State -> State]
execute(n_steps: nat)(tf):

RECURSIVE [State -> State] =

LAMBDA (s: State):

IF n_steps = 0

THEN s

ELSE

LET s_prime = tf(s) IN

execute(n_steps - 1)(tf)(s_prime)

ENDIF

MEASURE n

END execution

The theory defines a State and a (higher-order) function

execute that recursively applies n_steps of a state-

transition function tf, that is provided as a parameter. As

all functions in PVS must be total, the termination of the

recursion has to be demonstrated; the MEASURE part provides

the information to the typechecker and prover to ensure this.

Thus, the execution theory provides a generic mechanism

to describe the execution of a system, that can subsequently

be used for simulation.

The PVS environment has an automated theorem prover

that provides a collection of powerful primitive inference

procedures that are applied interactively under user guidance

within a sequent calculus framework. The primitive inferences

include propositional and quantifier rules, induction, rewriting,

simplification using decision procedures for equality and linear

arithmetic, data and predicate abstraction [28].

Although PVS offers a very expressive specification lan-

guage, a large subset of the language is actually executable:

all ground expressions of ground type are executable; the

only fragments of the language that are not executable are

uninterpreted functions, quantification over infinite domains,

free variables, and equalities between higher-order terms.

However, the evaluation is nonstrict, and expressions may be

executed even if they contain unexecutable subexpressions.

PVS includes a ground evaluator [29] that can be used to

evaluate, test, and animate PVS specifications by executing

them on concrete data. The core of the ground evaluator is

a translator that compiles executable PVS expressions into

Common Lisp code. The translation is performed lazily, i.e.,

the translation of an expression happens only when its value

is actually required. The ground evaluator also consists of an

evaluation environment, which is an interactive read-eval-print

loop that allows the user to input expressions, and returns the

result of their evaluation.

The techniques used in the ground evaluator to associate

Lisp programs with PVS functions are also available to the

PVS user, who can provide pieces of Lisp code (called

semantic attachments) and attach them to PVS symbols.

This mechanism is useful to allow expressions that involve

unexecutable constructs, such as uninterpreted functions, to be

handled by the evaluator, by associating them with a suitable

implementation.

Using this mechanism, the PVSio package [30] extends the

ground evaluator with a predefined library of imperative pro-

gramming language features such as side effects, unbounded

loops, and input/output operations, and also provides a high-

level interface for writing user-defined semantic attachments.

Thus, PVS specifications can be conveniently animated within

the read-eval-print-loop of the ground evaluator.

In our framework, we exploit the expressiveness of the

PVS specification language for enabling a natural mapping

between higher order logic specifications and systems models

described as function block diagrams. We employ the mech-

anisms provided by PVSio for implementing a customisable

simulation environment suitable to animate the model of the

system expressed in higher order logic.

IV. MODELLING CONTROL LOGICS

In this section, we describe the PVS theories developed

to formally model control logics. We start with the PVS

theories that model time, logic levels, signals, and basic

operations on signals. Then, we introduce samples of the

library for the basic digital modules of a system, such as

logic gates and timers. Finally, we show how to build complex

components out of basic elements. The developed theories

are executable: definitions always use interpreted types and

quantification is always performed over bounded types. In the

following sections, only the time_th theory will be shown in

a syntactically complete form; only some relevant fragments

330

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of PVS code will be shown in the rest of the paper for the

other theories.

A. Time

Time is modelled as a variable ranging over the continuous

domain of real numbers. Theory time_th (shown below)

contains the type definition of time (modelled as ranging over

the continuous domain of real numbers) and time interval.

In the theory, time represents the relative time with respect

to an initial time. The initial time is the zero reference

point: negative time values represent time instants preceding

the initial time, while positive time values represent time

instants following the initial time. Type interval models

time intervals with a non-negative real number (instantaneous

time intervals have duration zero).

time_th: THEORY

BEGIN

time: TYPE = real

interval: TYPE = {t: time | t >= 0}
END time_th

B. Logic Levels

The logic levels of hardware circuits correspond, in the

real world, to voltage or current levels. Besides the classical

zero and one values, additional levels are needed to model

unknown values and high impedance. Unknown values are

useful to model the logic level when the digital circuit is

powered up, while high impedance is useful to represent open

circuits or mis-wiring situations (e.g., the designer forgets to

wire a port of the digital circuit).

Theory logic_levels_th provides the definitions of the

logic levels and of the logical operators over the four-valued

logic. In the theory, logic levels are modelled with natural

numbers (each level is associated with a unique number),

and each level is associated with a mnemonic name and a

recogniser predicate (denoted by the mnemonic name followed

by a question mark symbol). In the following fragment, we

show the definitions of types and constants, and the definition

of the basic logical operator lAND over the four-valued logic.

Other definitions are in Appendix A.

logic_levels_th: THEORY

BEGIN

%-- logic level (type definition)

logic_level: TYPE = below(4)

%-- names of logic levels

zero: logic_level = 0

one: logic_level = 1

Z: logic_level = 2 %-- high impedance

U: logic_level = 3 %-- unknown

%-- logical AND in a four-valued logic

lAND(v1, v2: logic_level): logic_level =

IF one?(v1) AND one?(v2) THEN one

ELSIF zero?(v1) OR zero?(v2) THEN zero

ELSE U ENDIF

% ...

END logic_levels_th

C. Signals

A signal describes the variation of a logic level over time,

and we represent signals as functions from the domain of time

to logic levels. Signal transitions are specified pointwise, by

comparing the logical level of the signals at two closely spaced

time points. The spacing between time points corresponds to

the time resolution of the digital circuit, i.e., the minimum

amount of time required by the components in the circuit for

detecting two observable variations of a signal. This allows

us to simplify the definition of signals transitions, and also

to define executable functions for detecting signals transitions

over the continuous time domain. Note that the generality of

properties proved on specifications involving the concept of

time resolution does not affected the generality of the proof,

because the actual value of the time resolution can be left

unspecified (i.e., any value is possible) when doing the proof.

Theory signals_th contains, besides the definition of

signal, the symbolic constant for time resolution, tres,

which models the minimum time between two observable

variations of a signal, and the definitions of utility functions

to shift a signal in time (time_shift) and to build periodic

signals (periodic).

Basic signals provided in the theory are: constval, a

constant logical level; step, a signal that goes from zero to

one at time τ ; pulse, a signal that is one only in the time

interval [τ, τ + d), where d is the interval size.

Some useful predicates on signals are defined, such as

rising_edge?, used to detect if a signal s has a rising

edge at time tau. Logical operations on signals are defined

(sOR, sAND, sNOT), that apply the operator to the values of

signals at each given time. Sample definitions of this theory

follow. More definitions are in Appendix A.

signals_th: THEORY

BEGIN

IMPORTING time_th, logic_levels_th

%-- signal (type definition)

signal: TYPE = [time -> logic_level]

%-- symbolic constant of the minimum time

% between two observable variations in a signal

tres: posreal

%-- definition of basic waveforms

step(tau: time): signal =

LAMBDA (t: time):

IF t >= tau THEN one ELSE zero ENDIF

% ...

%-- time shift of the signal

time_shift(s: signal, offset: time): signal =

LAMBDA (t: time): s(t - offset)

%-- logical operators in a four-valued logic

sAND(s1, s2: signal): signal =

LAMBDA (t: time):

IF one?(s1(t)) AND one?(s2(t))

THEN one

ELSIF zero?(s1(t)) OR zero?(s2(t))

THEN zero

ELSE U ENDIF

% ...

END signals_th

331

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

q

q’

r

s

(a) (b)

r

s q’

q

SR

y
0

x
00

x
01

G
0

y
1x

10

x
11

G
1

Fig. 1. An SR flip-flop.

D. Digital Modules

In our framework, a control logic is a composite digital

module, obtained by connecting basic digital modules. Digital

modules are characterised by a set of ports, a state, and a

transition function.

Ports are abstractions of the terminals of physical devices.

Each port is identified by its category (one of input, output,

internal) and its port number within the category. Basic

modules have only input and output ports, whereas composite

modules also have internal ports. In a composite module, the

input and output ports are its externally visible terminals,

and its internal ports are the ports of the (basic) component

modules that are not externally visible. For example, a NOR

gate is modelled as a module with two input ports, one output

port, and no internal ports. Another example is an SR flip-flop,

which can be modelled either as a basic module (Figure 1(a))

with two input ports, two output ports and no internal ports,

or as a composite module built from two NOR gates. In this

case, the resulting system is shown in Figure 1(b), where ports

x00 of gate G0 and x11 of gate G1 are input ports, ports y0
of G0 and y1 of G1 are output ports, and ports x01 and x10

are internal ports.

The state of a module is defined as the set of signals

(i.e., functions of time modelling waveforms) applied to, or

generated by, the module at a given time. Defining the state

as a set of time functions instead of instantaneous values

makes it possible to define the behaviour of some modules

in terms of properties of such functions, thus allowing for

better expressiveness. As an example, we may consider the

specification of a timer, whose output depends on the shape

(namely, the presence of a rising edge) of its input signal,

along with the current value of the output:

timerM(d: posreal): basic_digital_module(1, 1) =

LAMBDA (t: time):

LAMBDA (s: state(1, 1)):

IF rising_edge?(port0(input(s)), t) AND

zero?(port0(output(s)), t)

THEN s

WITH [output := ports(pulse(t + delay, d))]

ELSE s

ENDIF

With this approach, a state transition occurs when a signal

on a port is replaced by a different one. For example, let us

consider the timer defined above, timerM. Let us suppose that

the initial signals on the output port of the timer is a constant

logical zero (constval(zero)) and that the input signal is

a step, with rising edge at t = t∗ (step(t_star)). As long

as t < t∗, the output signal remains a constant logical zero,

because the condition expressed in timerM is false. When

t = t∗, the condition in timerM becomes true, and the state

changes: the constant logical zero signal on the output port

is replaced with a pulse signal of duration d starting after a

propagation latency (pulse(t + delay, d)). As a signal

is formally defined over the whole time axis, all signals in the

context of a given state are meant to be ‘sliced’ to the time

interval in which the state holds. In the previous example,

the temporal evolution of the timer defines two states, each

of which is associated to a validity interval: the first state

is characterised by a step(t_star) on the input port, a

constval(zero) on the output port, and is valid in the

time interval [0, t∗); the second state has step(t_star)

on the input port, pulse(t_star + delay, d) on the

output port, and is valid in the time interval [t∗,+∞).
The transition function specifies how the state

changes according to a module’s functionality. Theory

digital_modules_th contains type definitions for the

state of a digital module (state) and for transition functions

(digital_module). Type state is a record that maintains

the lists of signals applied at any time on its ports. It has

one list of signals for each of the three port categories, and

a port of the system is identified by its position in the list

of the corresponding category. In the rest of this paper the

term signal will sometimes be used instead of port, so that

‘signal x’ means ‘the signal present at port x.’ The transition

function type digital_module is time-dependent and has

the signature [time → [state → state]]. The theory includes

also a number of auxiliary functions to build lists of ports

(i.e., of signals) and to select a specific port of a module,

such as ports(n), ports(s, n), etc. The first definitions

of the theory follow.

digital_modules_th THEORY

BEGIN

IMPORTING signals_th

%-- type definitions

ports: TYPE = list[signal]

state: TYPE = [# input: ports, output: ports,

internal: ports #]

digital_module: TYPE = [time -> [state -> state]

%-- port contructors

ports(n: nat): RECURSIVE

{p: ports | length(p) = n} =

IF n = 0 THEN null

ELSE cons(constval(U), ports(n - 1)) ENDIF

MEASURE n

ports(s: signal, n: nat): RECURSIVE

{p: ports | length(p) = n} =

IF n = 0 THEN null

ELSE cons(s, ports(s, n - 1)) ENDIF

MEASURE n

332

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

%-- port selectors

port(p: ports, i: below(length(p))): signal =

nth(p,i)

% ...

END digital_modules_th

Types state and digital_module are very general,

and they are refined by subtyping in the theories for basic

digital modules and composite digital modules, discussed

below.

E. Basic Digital Modules

Basic digital modules are elements without a visible internal

structure, defined only by their input and output ports and by

their transition function. The state of a basic module has an

empty list of internal signals, and the lists of input and output

signals have a predefined length.

Basic modules are classified into two categories, combi-

natorial and sequential. The output signals in the next state

of combinatorial modules (i.e., logic gates) depend only on

the output signals of the current state, whereas in sequential

modules (such as timers and flipflops) the output signals in

the next state depend on both the input and the output signals

of the current state.

The theory is parametric with respect to a delay parameter,

representing the time needed by the component to change its

outputs when its inputs change.

In addition to the parameterized definitions for the state and

transition function types, the theory contains a state constructor

(new_state). Part of the theory is shown below.

basic_digital_modules_th[delay: nonneg_real]: THEORY

BEGIN IMPORTING digital_modules_th

state(nIN, nOUT: nat): TYPE =

{s: state | length(input(s)) = nIN AND

length(output(s)) = nOUT AND

length(internal(s)) = 0 }

basic_digital_module(nIN, nOUT: nat): TYPE =

[time -> [state(nIN, nOUT) -> state(nIN, nOUT)]]

% ...

END basic_digital_modules_th

This theory is imported by other theories that define various

classes of basic blocks, such as logic gates, timers, and flip-

flops, presented in the following.

1) Logic gates: The logic_gates_th theory defines

the transition functions of the basic combinatorial gates. The

theory is parameterized by the propagation delay of the gates.

As the state is defined by the signals at the ports (and not

the instantaneous values), the new state will normally be equal

to the previous one, unless the environment applies different

signals to the inputs (e.g., a pulse replaces a constant level).

The definition for the NOR gate is shown below.

logic_gates_th[delay: nonneg_real]: THEORY

BEGIN IMPORTING basic_digital_modules_th

gateNOR: basic_digital_module(2, 1) =

LAMBDA (t: time): LAMBDA (s: state(2, 1)):

s WITH [output := ports(time_shift(

sNOR(port0(input(s)), port1(input(s))),

delay))]

% ...

END basic_digital_modules_th

2) Timers: The timers_th theory defines devices that

generate a single pulse when they receive a rising edge on their

input port. The pulse duration is a parameter of the device.

Their response to the input depends on previous values of the

output and possibly of the input(s). The theory defines also

resettable timers, whose output drops to zero on receiving a

rising edge at the reset port. An excerpt of the PVS theory

follows. More definitions in Appendix A.

timers_th[delay: nonneg_real]: THEORY

BEGIN

IMPORTING basic_digital_modules_th

%--timer

timerM(d: posreal): basic_digital_module(1, 1) =

LAMBDA (t: time):

LAMBDA (s: state(1, 1)):

IF rising_edge?(port0(input(s)), t) AND

zero?(port0(output(s)), t)

THEN s

WITH [output := ports(pulse(t + delay, d))]

ELSE s ENDIF

% ...

END timers_th

3) Flip-flops: The flipflop_th theory defines 1-bit

memory registers. Let us consider the SR flip-flop (Fig-

ure 1(a)). Ports s and r are the set and reset terminals, the

stored bit is on the output marked q, and q′ is its complement.

Ports q and q′ hold their previous value when s and r are both

zero. If s becomes one while r is zero, then q is one, and stays

at one even after s returns zero. Similarly, if r becomes one

while s is zero, then q is zero, and stays at zero even after

r returns zero. The PVS specification of the SR flip-flop is

shown in Appendix A.

F. Composite Digital Modules

Basic digital modules can be connected together to create

composite digital modules. The corresponding theory contains

only the high-level definition for the state and the transition

function, and for a state constructor (not shown).

state(nIN, nOUT, nINT: nat): TYPE =

{s: state | length(input(s)) = nIN AND

length(output(s)) = nOUT AND

length(internal(s)) = nINT}

composite_digital_module(nIN, nOUT, nINT: nat):

TYPE = [time -> [state(nIN, nOUT, nINT)

-> state(nIN, nOUT, nINT)]]

A composite module is modelled by the composition of the

transition functions of its components, whose form depends

on the interconnections of the components.

In order to build the composite module, one must first

define the system state, i.e., the union of its input, output,

and internal ports. Then the subsets of the composite system

state relative to the components (component substates) must

be identified. Then a composite transition function is defined

along the following lines: (i) Each port of the composite

module is assigned a unique name by equating the port to

a variable of type signal in a LET expression (e.g., r =

333

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

port0(input(st)) gives the name r to the first input

port of state st); (ii) for each basic component, we define its

current substate by selecting its input and output signals from

the current system state; (iii) for each basic component, we

define its next substate as a variable of type state, and we

equate it to the basic component’s transition function applied

to the current substate defined in the previous step; (iv) the

output signals of the new system state are the union of the

output signals of the new substates of the basic components

connected to the system output; (v) the internal signals of the

next system state are the union of the internal signals of the

new substates of the basic components.

The composite transition function applies the transition

functions of the basic components to the respective substates,

obtaining a set of new substates that may not be consistent.

Suppose, for example, that a composite module M is made

of two inverters m1 and m2 in cascade, and that in the initial

state there is a constant zero at the input of m1, a constant one

between m1 and m2, and a constant zero at the output of m2.

If, at time t, the input signal to m1 becomes a step function,

the evaluation of the composite transition function places an

inverted step between m1 and m2, but leaves a constant zero at

the output of m2, since its transition function is computed with

the previous substate. Therefore, the final state of a transition

is computed by an iterative process (similar to a fixed-point

computation) that repeatedly applies the transition function

until a consistent state is reached, i.e., a state s such that

s = fT (s), where fT is the composite transition function.

As an example, we show the composite module of the SR

flip-flop built from a pair of cross-coupled NOR logic gates.

With reference to Figure 1(b), in this example port x01 is

renamed as r1, and x10 as s1.

flipflopSR: composite_digital_module(2, 2, 2) =

LAMBDA (t: time):

LAMBDA (st: state(2, 2, 2)):

LET r = port0(input(st)),

s = port1(input(st)),

q = port0(output(st)),

q_prime = port1(output(st)),

r1 = port0(internal(st)),

s1 = port1(internal(st)),

nor0 = gateNOR[tres](t)(new_state(2, 1)

WITH [input := ports(r, r1),

output := ports(q)]),

nor1 = gateNOR[tres](t)(new_state(2, 1)

WITH [input := ports(s, s1),

output := ports(q_prime)])

IN st WITH [output := ports(port0(output(nor0)),

port0(output(nor1))),

internal := ports(port0(output(nor1)),

port0(output(nor0)))]

In the system transition function flipflopSR, we let

signal r be the signal on the first input port (port0) of the

current system state st, and similarly for s, q, q_prime,

s1, and r1. Then, substate nor0 of gate G0 is the result of

transition function gateNOR. The argument of this function

is a state with input signals r and r1, and output signal q. A

similar description applies to nor1.

The state returned by flipflopSR is the current state

st with the output signals set equal to the output signals

of the next substates of the two NOR gates. Similarly, the

internal ports are set equal to the output signals due to the

cross-coupling of NOR gates.

V. THE EVENT-DRIVEN SIMULATOR

This section describes an event-driven simulator of digital

modules. First, we introduce events, i.e., instants when a signal

may change its value. Second, we extend the specification of

the system with events. Third, we present the event-driven

simulation engine, which uses the extended specification to

evaluate the system only at specific instants, instead of at

periodic steps as in time-driven approaches [31].

A. Events

Theory events_th defines the type event as a record

with fields t, the instant of a single event or of the first of

a series of periodic events, and T, the period of the series

(single events have T=0). The theory includes the ordering

relation between events and operations on list of events. Some

definitions are shown below.

BEGIN IMPORTING time_th

event: TYPE = [# t: time, T: interval #];

<(e1, e2: event): bool =

(t(e1) < t(e2)) OR

(t(e1) = t(e2) AND T(e1) < T(e2))

B. Annotated Signals

In theory annotated_signals_th we annotate the

formal specification of signals with the list of events associated

with each signal. We redefine the type signal as a record

with the fields val, the functional specification of the signal,

and evts, the set of instants when the waveform changes

value. For example, the set of events associated with a constant

level generator is empty, while the set of events associated with

a pulse generator at time τ and duration d contains events τ
and τ + d, both with period T = 0.
The basic operators on signals are re-defined to calculate

the events of the resulting signal, whose events are the union

of events of the operator parameters.

Some events in the resulting signal may not affect the

signal value. For example, in the case of sOR, if initially

one of the inputs is a constant one, no set of events on the

other input causes any change in the output. Such redundant

events, however, do not affect the simulation results. The event

annotation is therefore correct as the application of operators

to signals yields a signal whose annotation contains all the

instants when the signal changes according to its definition.

An informal justification of this statement follows in the next

paragraphs.

First, we consider the basic signals, having a finite number

of events: constval, which has a given constant logic level at all

instants; step, which has logic level zero at all instants before

a given time t, and one for all other instants; pulse, which has

logic level one at all instants in a given interval [t, t+ d], and
zero for all other instants. Therefore, the annotated versions

334

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
OPERATOR EVENT ANNOTATIONS.

Operator Events

NOT(s1) events(s1)
AND(s1,s2) events(s1) ∪ events(s2)
OR(s1,s2) events(s1) ∪ events(s2)
timeshift(s1,D) add D to the time of each e ∈ events(s1)
periodic(s1,T) make each non-periodic e ∈ events(s1) periodic

with period T , keep periodic ones unchanged

of constval has no events, step has one event at the instant of

the rising edge of the signal, and pulse has two events, one at

the instants of the rising edge and one at the falling edge of

the signal. The definitions for these signals are as follows:

constval(v: logic_level): signal =

(# val := LAMBDA (t: time): v,

evts := new_event(0) #)

step(tau: time): signal =

(# val := LAMBDA (t: time):

IF t >= tau

THEN one ELSE zero ENDIF,

evts := new_event(tau) #)

pulse(tau: time, d: posreal): signal =

(# val := LAMBDA (t: time):

IF t >= tau AND t < tau + d

THEN one ELSE zero ENDIF,

evts := new_event(tau) + new_event(tau + d) #)

We now consider the signal operators, whose behaviour

with respect to signal annotation is shown in Table I. As an

example, the following fragment shows the definition of the

sNOR operator:

BEGIN IMPORTING events_th, logic_levels_th

sNOR(s1a, s2a: signal): signal =

LET s1 = val(s1a), s2 = val(s2a),

f = LAMBDA (t: time):

IF one?(s1(t)) OR one?(s2(t)) THEN zero

ELSIF zero?(s1(t)) AND zero?(s2(t)) THEN one

ELSE U ENDIF,

e = evts(s1a) + evts(s2a)

IN (# val := f, evts := e #)

Let si be a correctly annotated signal occurring as the i-th
operand of an operator. Let s be the signal generated by the

operator, and let Es be the set of events that annotate signal

s. Let τ(e) be the time value (i.e., the value of the t field) of

an event e, and let ω(e, i) be the time of the only occurrence

of event e, if i = 0, or of its i-th occurrence otherwise. We

finally define a non-periodic signal s as alive in an interval I
if I is the shortest time interval containing all events of s.

The logical operators annotate s with the union of the events
of si. The annotation is correct because the signal generated

by any logical operators may change level only at the instants

in which at least one of the signals occurring as an operand

changes level.

The timeshift operator annotates s with a set of events Es

where ∀e′ ∈ Es, ∃e ∈ Es1 such that τ(e′) = τ(e) + D,

where D is the offset that delays (positive offset) or advances

(negative offset) the signal waveform. The annotation is correct

because a signal delayed by D has all its original events

posticipated of D, and a signal advanced by D has all its

original events anticipated by D.

The periodic operator annotates s with a set of periodic

events Es where ∀e′ ∈ Es, ∀i ∈ IN, ∃e ∈ Es1 such that

ω(e′, i) = τ(e) + iT , where T is the period parameter of

the operator. The annotation is correct because the periodic

extension of a signal alive in an interval I has all events

repeated with a period T , where T is greater than the length

of I .
Annotated signals carry all the information needed by the

simulator to handle events, so the specification of the digital

modules remains unchanged.

C. Simulator

The simulator maintains a list of events (worklist), initialised

with the starting time of the simulation. The events are listed

in ascending order without duplicates. At each simulation step,

the simulator extracts the first event (current event) from the

worklist, and then it computes the next state by applying the

system transition function at the time specified by the event.

Then, the events associated with the signals in the generated

state are inserted in the working list, provided that they are

not earlier than the current event.

1) Worklist: Theory worklist_th defines the type

worklist as a list of events, provides the function

get_first that, given a current time, returns the first

event associated with a set of signals and greater than the

current time, and the function update_wl that updates the

worklist. Function update_wl finds the new events in the

next state and inserts them in the worklist. Note that, since the

model of the system may contain ideal modules that update

instantaneously their output ports, function update_wl must

not remove the current event from the worklist as long as the

generated state is not consistent (Section IV-F). For this reason,

if the next state is different from the current state, then also

the current event is inserted in the worklist.

The PVS specifications of these simple worklist manipula-

tions are not shown.

2) Simulation Engine: The simulation engine applies the

system transition function and returns the state of the system

after a certain number of steps. It uses a customisable dump

function to output a simulation trace.

The input parameters are the maximum number of steps, the

system transition function, the worklist, the output stream for

the trace, and the names of the signals. The function is called

with an initial worklist containing all events of the initial state

and an event for the initial time.

At each step, the function (i) gets the simulation time from

the first event in the worklist, (ii) generates the next system

state, (iii) updates the worklist, and (iv) outputs the system

state.

The simulation terminates when either the new worklist is

empty, or the maximum number of steps is reached. The PVS

specification of the function follows.

335

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

simulate_system(n_steps: nat)

(f: [time -> [state -> state]])

(wl: worklist) (outf: OStream, pn: port_names):

RECURSIVE [state -> state] =

LAMBDA (s: state):

IF n_steps > 0 AND length(wl) > 0

THEN

LET curr_t = t(get_first(wl)),

s_prime = update_state(s)(curr_t, f),

wl_prime = update_wl(wl)(curr_t, s, s_prime),

dbg = dump(outf, pn, s, s_prime,

wl, wl_prime, curr_t)

IN simulate_system(n_steps - 1)(f)(wl_prime)

(outf, pn)(s_prime)

ELSE s ENDIF

The following excerpt shows how the digital module

flipflopSR is simulated. In function sim_flipflopSR,

the initial state is constructed from the signals at the ports, the

worklist is initialised, and simulate_system is invoked

with the transition function as an argument. The reset port is

initially fed with a constant zero signal, the set port with a

pulse of 4s at time 0.3, and q (q′) holds a constant zero (one).

sim_flipflopSR(N_STEPS: nat): bool =

LET r = constval(zero), s = pulse(0.3, 4),

q = constval(zero), q_prime = constval(one),

r1 = q_prime, s1 = q,

initial_st = new_state(2, 2, 2)

WITH [input := ports(r, s),

output := ports(q, q_prime),

internal := ports(r1, s1)],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(N_STEPS)(flipflopSR)

(initial_wl)(outf, pn)(initial_st)

IN TRUE

The simulation trace can be a list of event times, signal

values and worklist contents at each step, or a Value Change

Dump [5] output, readable by a visualisation tool.

D. Automated Execution of Test-Cases

In this section we show how PVS constructs can be con-

veniently used to execute test cases, relying on the PVS

ground evaluator. The ground evaluator interprets a universal

quantifier by generating all possible values for the quantified

variable (provided it has a discrete type) and evaluating the

formula for each value. Universal quantifiers may then be

used much like for instructions in imperative programming

languages.

In the following example, the test_flipflopSR func-

tion uses the FORALL quantifier to generate all possible

combinations of logical levels. Each combination defines an

initial state for an SR flip-flop, and each state is used to com-

pute a next state. The ground evaluator implicitly transforms

the universally quantified formula into a loop that, at each

iteration, applies the transition function and prints out the

values at the ports in the initial and in the next state.

test_flipflop_th: THEORY

BEGIN %--imports omitted

% ...

discrete_time: TYPE = below(2)

test_flipflopSR: bool =

FORALL (t_set, t_reset: discrete_time):

FORALL (v1, v2: logic_level):

v1 /= v2 IMPLIES

(LET initial_st = new_state(2, 2, 2)

WITH [input := ports(pulse(t_reset, 1),

pulse(t_set, 1)),

output := ports(constval(v1),

constval(v2)),

internal := ports(constval(v2),

constval(v1))],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(5)(flipflopSR)

(initial_wl)(outf,pn)(initial_st)

IN TRUE)

% ...

END test_flipflop_th

In Appendix B, we show an excerpt of the output generated

by the above function, where each test case shows the signal

values at the initial state (generated by the variable quantifiers)

and the values at successive steps of the simulation.

VI. CASE STUDIES: A STEPWISE SHUTDOWN LOGIC

As an illustration of the practical applicability of the frame-

work presented in this paper, we report on a simple case

study from the field of Instrumentation and Control for NPPs.

Two high-level descriptions of a control logic, expressed as

Function Block Diagrams [32], have been manually translated

into PVS specifications using the presented framework, and

the specifications have been animated to simulate the control

logic. Simulated test cases have been automatically generated,

allowing a possible malfunction to be detected at this early

stage of development.

A. Description of a Stepwise Shutdown Logic

A stepwise shutdown process keeps process variables (such

as, e.g., temperature or neutron flux) within prescribed thresh-

olds by applying a corrective action (e.g., inserting control

rods) not immediately to its full extent, but gradually, in a

series of discrete steps separated by settling periods.

A Stepwise Shutdown Logic (SSL) was analysed in [33]

with a model checking approach. The framework proposed in

this paper is used to analyse the same system.

The requirements of the SSL, as described in [33], can

be informally stated as follows: if an alarm signal (e.g.,

overpressure in a pipe) is asserted, the system must assert a

control signal to drive a corrective action for three seconds

(active period), then the control signal is reset for twelve

seconds (wait period) and the cycle is repeated until either

the alarm signal is reset or a complete shutdown is reached.

An operator, however, by activating a manual trip signal, may

force the wait periods to be shortened in order to accelerate

the process.

B. Design A

Figure 2 shows the main part of design A, where m is the

manual trip, p is an alarm signal, and out is the control signal.

When all signals are low, the output t2_out of timer T2 is

low, and the AND gate is enabled. When p is asserted, its

rising edge passes through the AND gate to the input of the

T1 timer that sends a 3 s pulse to the output. The output is fed

back to the input of T2, a resettable timer with a pulse duration

336

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

systemA: composite_digital_module(nIN, nOUT, nINT) =

LAMBDA (t: time):

LAMBDA (st: state(nIN, nOUT, nINT)):

LET m = port0(input(st)), p = port1(input(st)), out = port0(output(st)),

t2_in = port0(internal(st)), t2_out = port1(internal(st)),

%... similar definitions for or1_in, and_en, and_out

rtimer = rtimerM[T1](D2)(t)(new_state(2,1)

WITH [input:=ports(t2_in,m), output:=ports(t2_out)]),

or1 = gateOR[T0](t)(new_state(2,1) WITH [input:=ports(or1_in,p), output:=ports(or1_out)]),

inh_and = gateANDH[T0](t)(new_state(2,1) WITH [input:=ports(and_en,and_in), output:=ports(and_out)]),

timer = timerM[T2](D1)(t)(new_state(2,1) WITH [input:=ports(t1_in), output:=ports(out)])

IN st WITH [input := ports(m, p),

output := ports(port0(output(timer))),

internal := ports(port0(output(timer)), port0(output(rtimer)), m,

port0(output(or1)), port0(output(rtimer)), port0(output(or1)),

port0(output(inh_and)), port0(output(inh_and)))]

Fig. 3. PVS model of the Stepwise Shutdown Logic.

15 s

3 s

R
t2_out

rtimer

T2m

OR ANDp

t1_in

timer

T1

outor_out

Fig. 2. A simplified view of a stepwise shutdown logic, design A.

of 15 s. The output pulse of T2 disables the AND gate that

in turn resets the input of T1. Since T1 is not resettable, its

output pulse lasts for three seconds, then returns to low for

the remaining 12 s of the T2 pulse. After this wait period, the

output of T2 goes low, the AND gate is enabled, and T1 starts

a new pulse if an input signal is still asserted.

If p is high, and m is asserted during a wait period, T2 is

reset and its output enables the AND gate, allowing the trip

signal to reach T1 and restart it at the end of the 3 s pulse.

The SSL is modelled by the systemA transition function

(see Figure 3), according to the guidelines in Section IV. All

components are assumed to introduce a delay of 1 ms.

In the rest of this section we show some simulated situ-

ations. First we examine a few scenarios generated with the

procedure described in Section V-D.

1) Automated Execution of Test-Cases: Assuming that an

overpressure (say) signal p is asserted at time t = 1 s and

remains constant thereafter, we study the possible effects of a

manual trip request by letting the time of occurrence of the

request vary over a given interval. More precisely, we model

the request as a 1 s pulse on the m line, with an initial instant t0
varying between 1 and N seconds, with steps of one second.

This is done by the following code:

sim_systemA_test(N:nat): bool =

FORALL(t0: below(N)):

LET

initial_st = new_state(nIN, nOUT, nINT)

WITH [input := ports(pulse(t0,1), step(1)),

output := ports(constval(zero)),

internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(NSTEPS)(systemA)

(initial_wl)(outf, pn)(initial_st)

IN TRUE

The maximum number of simulation steps for each run

(NSTEPS) was set at one hundred.

The simulator outputs of the initial four test cases (t ∈
{1, 2, 3, 4}) are summarised in Tables II, III, IV, and V.

Examining the data recorded in these tables, we notice that

two different behaviours are exhibited by the system, as shown

by Tables II and V on one hand, and Tables III and IV on the

other hand. With the manual trip signal activated at t0 = 1 s

(Table II) and at t0 = 4 s (Table V), the simulation executes

the maximum requested number of steps, up to a simulated

time of 271.039 s and 259.037 s, respectively.

TABLE II
AUTOMATED TESTS FOR DESIGN A (t0 = 1).

t0 = 1

time m p out worklist

0. 0 0 0 [0 001 1 2]
0.001 0 0 0 [0.002 1 2]
0.002 0 0 0 [1 2]
1. 1 1 0 [1 001 2]
1.001 1 1 0 [1.002 2]
1.002 1 1 1 [1.003 2]
1.003 1 1 1 [1.004 2]
1.004 1 1 1 [2]
2. 0 1 1 [2 001]
.

256.035 0 1 0 [256.036]
256.036 0 1 1 [256.037]
256.037 0 1 1 [256.038]
256.038 0 1 1 [259.036]
259.036 0 1 0 [271.037]
271.037 0 1 0 [271.038]
271.038 0 1 1 [271.039]
271.039 0 1 1 [271.04]

We observe that the worklist is not empty at the last step,

and deduce that the simulation could proceed for a greater

(possibly unbounded) number of steps. This is supported by

the periodic pattern shown by the values of the out signal.

This is the expected behaviour, where the output signal skips a

wait period when the manual trip button is depressed and, after

337

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III
AUTOMATED TESTS FOR DESIGN A (t0 = 2).

t0 = 2

time m p out worklist

0. 0 0 0 [0.001 1 2 3]
0.001 0 0 0 [0.002 1 2 3]
0.002 0 0 0 [1 2 3]
1. 0 1 0 [1.001 2 3]
1.001 0 1 0 [1.002 2 3]
1.002 0 1 1 [1.003 2 3]
1.003 0 1 1 [1.004 2 3]
1.004 0 1 1 [2 3]
2. 1 1 1 [2.001 3]
2.001 1 1 1 [2.002 3]
2.002 1 1 1 [3]
3. 0 1 1 [3.001]
3.001 0 1 1 [3.002]
3.002 0 1 1 [4.002]
4.002 0 1 0 []

TABLE IV
AUTOMATED TESTS FOR DESIGN A (t0 = 3).

t0 = 3

time m p out worklist

0. 0 0 0 [0.001 1 3 4]
0.001 0 0 0 [0.002 1 3 4]
0.002 0 0 0 [1 3 4]
1. 0 1 0 [1.001 3 4]
1.001 0 1 0 [1.002 3 4]
1.002 0 1 1 [1.003 3 4]
1.003 0 1 1 [1.004 3 4]
1.004 0 1 1 [3 4]
3. 1 1 1 [3.001 4]
3.001 1 1 1 [3.002 4]
3.002 1 1 1 [4]
4. 0 1 1 [4.001]
4.001 0 1 1 [4.002]
4.002 0 1 0 []

the button is released, produces a series of regularly spaced

pulses as long as the overpressure signal is active.

The other two tables (Tables III and IV), instead, show that

the simulation stopped early, with an empty worklist at the

last step. This proves that the system ‘freezes’ with the output

stuck at zero, whereas it should produce periodic pulses.

Comparing these cases, and other cases not shown, we may

formulate the hypothesis that the logic malfunctions when a

manual trip is issued during the active period of the output

pulse, as in the situations illustrated by Tables III and IV. To

test this hypothesis, we explore some hand-crafted scenarios,

discussed in the rest of the section.

2) No manual trip: Signal p is a step function with the

rising edge at t = 1 s, and signal m is a constant zero (no

manual intervention). The control logic produces a series of

pulses that drive the plant towards a shutdown, as expected

(Figure 4).

3) Manual trip in the wait period: Signal p is a step

function with the rising edge at t = 1 s and signal m is a

step function with the rising edge at t0 = 5 s. This means

TABLE V
AUTOMATED TESTS FOR DESIGN A (t0 = 4).

t0 = 4

time m p out worklist

0. 0 0 0 [0.001 1 4 5]
0.001 0 0 0 [0.002 1 4 5]
0.002 0 0 0 [1 4 5]
1. 0 1 0 [1.001 4 5]
1.001 0 1 0 [1.002 4 5]
1.002 0 1 1 [1.003 4 5]
1.003 0 1 1 [1.004 4 5]
1.004 0 1 1 [4 5]
4. 1 1 1 [4.001 5]
.

244.037 0 1 1 [247.035]
247.035 0 1 0 [259.036]
259.036 0 1 0 [259.037]
259.037 0 1 1 [259.038]

0 10 sec 20 sec 30 sec 40 sec

p

m
or_out
t2_out
t1_in
out

Time

Fig. 4. Simulation of design A, no manual trip.

that the trip switch is pushed during the first wait period. As

expected, that wait period is interrupted, a new 3 s output

pulse is generated, and the subsequent pulses are generated

with the normal 15 s cycle, since the trip switch has not been

released and the resettable timer responds only to a rising edge

(Figure 5).

4) Manual trip in the active period: In this instance, signal

p is a step function with the rising edge at t = 1 s and signal

m is a pulse of duration 1 s starting at t0 = 2 s, followed

by another pulse of duration 3 s at t1 = 10 s. In this case,

the manual intervention occurs during the active period of

the first output pulse. Contrary to the requirements, after the

end of this output pulse, the output is stuck at zero and no

further corrective action takes place, even if the alarm (high

pressure) persists and the manual trip switch is pressed again.

A fundamental safety requirement is thus violated (Figure 6).

The PVS code for this critical case follows.

sim_system3A: bool =

LET initial_st =

new_state(nIN, nOUT, nINT)

WITH [input := ports(pulse(2,1)+pulse(10,3),

step(1)),

output := ports(constval(zero)),

internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(NSTEPS)(systemA)

(initial_wl)(outf, pn)(initial_st)

IN TRUE

338

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 10 sec 20 sec 30 sec 40 sec 50 sec 60 sec
Time
p
m
or_out
t2_out
t1_in
out

Fig. 5. Simulation of design A, manual trip in the wait period.

0 10 secTime
m

p

or_out

t2_out

t1_in

out

Fig. 6. Simulation of design A, manual trip in the active period.

C. Design B

Figure 7 shows the main part of design B. This design is

identical to design A except for the management of the manual

trip: in design B, the manual trip signal is fed to a 3 s timer

whose output is ORed with the overpressure signal and with

the output of the other 3 s timer, and the 15 s timer is not

resettable. We translated this schema into a PVS specification

and simulated it under the same scenarios used for checking

design A. The simulation experiments did not detect any

malfunctions. In particular, Figure 8 shows the output for the

problematic scenario of Section VI-B4 that caused a safety

violation for design A. With design B, the logic honours the

two manual interventions, then it keeps issuing 3 s pulses, thus

fulfilling the safety requirement.

The safety of Design B in the situation considered can be

proved along the lines of the following proof sketch.

1) As explained in Section IV-F, the transition function of

the compound module must be applied repeatedly until

the actual successor state is computed. We define a micro

step as a single application of the transition function, and

a macro step as a sequence of micro steps leading from

a consistent state to its consistent successor.

2) Starting from an initial state where signalm is a constant

zero, p is a step function at t = 1, and all internal

signals are assumed to be constant zeroes, we prove

the existence of a sequence of micro steps leading to

a consistent state at t = 1. This part of the proof is a

set of simple lemmas, one for each n-th micro step, of

the form:

init = s(n− 1) ∧ next = f(t)(init) ⇒ next = s(n)

where f is the transition function, and s(n − 1) and

3 s

timer

T3

15 s

3 s

timer

T2

T1

timer

m

p

t3_out

t2_out

or_out

t1_in out
OR AND OR

t1_out

Fig. 7. A simplified view of a stepwise shutdown logic, design B.

Fig. 8. Simulation of design B, manual trip in the active period.

s(n), i.e., the initial and final states of the micro step,

are given.

3) Then we prove, in the same way, that consistent states

are reached at time t = 4 (after the 3 s pulse) and t =
16 (after the 15 s pulse).

4) We prove that the state at t = 16 is equivalent (modulo

a 15 s translation) to the state at t = 1.
Therefore, with the given signals at the input (in par-

ticular, without manual trip), the system has a periodic

behavior, as it returns to the same conditions every 15 s.

More precisely, it produces 3 s pulses (generated by

timer T1, see Figure 7) with a 15 s period.

5) Since signal m is fed to a 3 s timer whose output is

ORed with the output of T1, this signal cannot suppress

the control signal, therefore Design B is safe for any

possible timing of signal m.

A small sample of the lemmas used in the proof are in

Appendix C.

VII. CONCLUSION AND FUTURE WORK

In the present work, a framework for the simulation of

control logics specified in the higher-order logic of the PVS

has been introduced. The framework is based on a library of

purely logic specifications for typical control system compo-

nents, and an approach to define an event-driven simulator

capable of executing the logic specifications is shown. The

library includes theories to model logic signals over time,

where time is a variable in the domain of real numbers. The

simulator is based on the paradigm of event-driven-simulation,

and its core component is defined as a function in the higher-

order logic language of the PVS theorem proving environment.

The approach has been applied to a simple case study in the

field of nuclear power plants. The same case study had been

339

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

previously studied by other researchers with a model checking

approach [33]. Further, compliance of one of the designs with a

safety requirement has been demonstrated by theorem proving.

This work is part of our current research activity aiming at

developing a simulation and analysis framework for control

logics that enables developers to rely both on simulation and

theorem proving to assess the correctness of specifications and

designs.

REFERENCES

[1] C. Bernardeschi, L. Cassano, A. Domenici, and P. Masci, “Debugging
PVS specifications of control logics via event-driven simulation,” in
First International Conference on Computational Logics, Algebras, Pro-

gramming, Tools, and Benchmarking (COMPUTATION TOOLS 2010).
Lisbon, Portugal: IARIA, November 21–26 2010.

[2] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal Verification
for Fault-Tolerant Architectures: Prolegomena to the Design of PVS,”
IEEE Trans. on Software Engineering, vol. 21, no. 2, pp. 107–125, 1995.

[3] “Railway applications – Software for railway control and protection
systems,” CENELEC, European Committee for Electrotechnical Stan-
dardization, Tech. Rep. EN 50128:2001 E, 2001, european standard.

[4] “Software for Computer Based Systems Important to Safety in Nuclear
Power plants,” IAEA, International Atomic Energy Agency, Tech. Rep.
NS-G-1.1, 2000.

[5] “IEEE Standard Verilog Hardware Description Language,” IEEE, Tech.
Rep. IEEE Std 1076-2000, 2000.

[6] “IEEE Standard VHDL Language Reference Manual,” IEEE, Tech. Rep.
IEEE Std 1076-2000, 2000.

[7] E. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
1999.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Transactions on Programming Languages and Systems, vol. 8, pp.
244–263, 1986.

[9] J. McCarthy, “Checking mathematical proofs by computer,” in Sympo-

sium on Recursive Function Theory. American Mathematical Society,
1961.

[10] B. J. Krämer and N. Völker, “A highly dependable computing archi-
tecture for safety-critical control applications,” Real-Time Syst., vol. 13,
pp. 237–251, November 1997.

[11] H. Wan, G. Chen, X. Song, and M. Gu, “Formalisation and verification
of programmable logic controllers timers in Coq,” Software, IET, vol. 5,
no. 1, pp. 32–42, February 2011.

[12] E. Jee, S. Jeon, S. Cha, K. Koh, J. Yoo, G. Park, and P. Seong,
“FBDVerifier: Interactive and visual analysis of counter-example in
formal verification of function block diagram,” Journal of Research and

Practice in Information Technology, vol. 42, no. 3, pp. 171–189, 2010.

[13] V. Vyatkin and H.-M. Hanisch, “Modelling of IEC 61499 function
blocks a clue to their verification,” in XI Workshop on Supervising and

Diagnostics of Machining Systems, no. 35, 2000, pp. 59–68.

[14] D. Missal, M. Hirsch, and H.-M. Hanisch, “Hierarchical distributed
controllers - design and verification,” in IEEE Conference on Emerging

Technologies and Factory Automation (ETFA 2007), Sept. 2007, pp.
657–664.

[15] D. Deharbe, S. Shankar, and E. Clarke, “Formal verification of VHDL:
the model checker CV,” in XI Brazilian Symposium on Integrated Circuit

Design, 1998, pp. 95 –98.

[16] D. Russinoff, “ A Formalization of a Subset of VHDL in the Boyer-
Moore Logic,” Formal Methods in System Design, vol. 7, no. 1/2, pp.
7–26, 1994.

[17] R. Boyer and J. Moore, A Computational Logic Handbook. Academic
Press, 1988.

[18] H. Jain, D. Kroening, N. Sharygina, and E. Clarke, “Word-level
predicate-abstraction and refinement techniques for verifying RTL Ver-
ilog,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems,, vol. 27, no. 2, pp. 366 –379, feb. 2008.

[19] H. Jain, N. Sharygina, and E. Clarke, “VCEGAR: Verilog counterex-
ample guided abstraction refinement,” in Tools and Algorithms for the

Construction and Analysis of Systems (TACAS07), 2007.

[20] S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert, “PVS: an
experience report,” in Applied Formal Methods, ser. LNCS. Springer-
Verlag, 1998, no. 531, pp. 338–345.

[21] S. Owre, J. Rushby, N. Shankar, and M. Srivas, “A tutorial on using
PVS for hardware verification,” in Theorem Provers in Circuit Design

(TPCD ’94), ser. LNCS, R. Kumar and T. Kropf, Eds. Springer-Verlag,
1997, no. 901, pp. 258–279.

[22] M. Srivas, H. Rueß, and D. Cyrluk, “Hardware verification using PVS,”
in Formal Hardware Verification: Methods and Systems in Comparison,
ser. LNCS, T. Kropf, Ed. Springer-Verlag, 1997, no. 1287, pp. 156–205.

[23] C. Berg, C. Jacobi, and D. Kroening, “Formal verification of a basic
circuits library,” in Proc. of IASTED Int. Conf. on Applied Informatics,

Innsbruck (AI 2001. ACTA Press, 2001.

[24] H. Pfeifer, “Formal verification of the TTP group membership algo-
rithm,” in Formal Methods for Distributed System Development Pro-

ceedings of FORTE XIII/PSTV XX 2000, T. Bolognesi and D. Latella,
Eds. Pisa, Italy: Kluwer Academic Publishers, October 2000, pp. 3–18.

[25] C. Bernardeschi, P. Masci, and H. Pfeifer, “Analysis of wireless sensor
network protocols in dynamic scenarios,” in 11th International Sym-

posium on Stabilization, Safety, and Security of Distributed Systems

(SSS09), ser. Lecture Notes in Computer Science, vol. 5873. Springer,
2009, pp. 105–119.

[26] P. Masci, P. Curzon, A. Blandford, and D. Furniss, “Modelling dis-
tributed cognition systems in PVS,” in 4th Intl. Workshop on Formal

Methods for Interactive Systems (FMIS2011), 2011.

[27] R. R. Lutz, “Analyzing software requirements errors in safety-critical,
embedded systems,” in Proceedings of the IEEE International Sympo-

sium on Requirements Engineering, 1993, pp. 126–133.

[28] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas, “PVS: com-
bining specification, proof checking, and model checking,” in Computer-

Aided Verification, CAV ’96, ser. LNCS, R. Alur and T. Henzinger, Eds.
Springer-Verlag, 1996, no. 1102, pp. 411–414.

[29] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert, “Eval-
uating, testing, and animating PVS specifications,” Computer Science
Laboratory, SRI International, Tech. Rep., 2001.

[30] C. Muñoz, “Rapid prototyping in PVS,” National Institute of Aerospace,
Hampton, VA, USA, Tech. Rep. NIA 2003-03, NASA/CR-2003-212418,
2003.

[31] A. M. Law and D. Kelton, Simulation Modeling and Analysis. McGraw-
Hill, 2000.

[32] “Programmable controllers - Part 3: Programming languages, ed2.0,”
IEC, International Electrotechnical Commission, Tech. Rep. IEC 61131-
3, 2003.

[33] K. Björkman, J. Frits, J. Valkonen, J. Lahtinen, K. Heljanko, I. Niemelä,
and J. J. Hämäläinen, “Verification of Safety Logic Designs by Model
Checking,” in Sixth American Nuclear Society International Topical

Meeting on Nuclear Plant Instrumentation, Control, and Human-

Machine Interface Technologies (NPIC&HMIT 2009). Knoxville,
Tennessee, USA: American Nuclear Society, LaGrange Park, IL, USA,
2009, on CD-ROM.

APPENDIX A

SAMPLE PVS DEFINITIONS

In this appendix we show more extensive samples from the

PVS theories discussed in this paper.

A. Logic Levels

logic_levels_th: THEORY

BEGIN

%-- logic level (type definition)

logic_level: TYPE = below(4)

%-- names of logic levels

zero: logic_level = 0

one: logic_level = 1

Z: logic_level = 2 %-- high impedance

U: logic_level = 3 %-- unknown

%-- logical AND in a four-valued logic

lAND(v1, v2: logic_level): logic_level =

IF one?(v1) AND one?(v2) THEN one

ELSIF zero?(v1) OR zero?(v2) THEN zero

340

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ELSE U ENDIF

%-- logical OR in a four-valued logic

lOR(v1, v2: Logic_level): Logic_level =

IF one?(v1) OR one?(v2) THEN one

ELSIF zero?(v1) AND zero?(v2) THEN zero

ELSE U ENDIF

%-- logical NOT in a four-valued logic

lNOT(v: Logic_level): Logic_level =

IF one?(v) THEN zero

ELSIF zero?(v) THEN one

ELSE U ENDIF

% ...

END logic_levels_th

B. Signals

signals_th: THEORY

BEGIN

IMPORTING time_th, logic_levels_th

%-- signal (type definition)

signal: TYPE = [time -> logic_level]

%-- symbolic constant of the minimum time

% between two observable variations in a signal

tres: posreal

%-- definition of basic waveforms

constval(v: logic_level): signal =

LAMBDA (t: time): v

step(tau: time): signal =

LAMBDA (t: time):

IF t >= tau THEN one ELSE zero ENDIF

pulse(tau: time, d: posreal): signal =

LAMBDA (t: time):

IF t >= tau AND t < tau + d

THEN one

ELSE zero

ENDIF

%-- periodic signal constructor

periodic(s: signal, T: interval): signal =

LAMBDA (t: time):

LET tmod =

IF T > 0

THEN t - T * floor(t / T)

ELSE t

ENDIF

IN s(tmod)

%-- time shift of the signal

time_shift(s: signal, offset: time): signal =

LAMBDA (t: time): s(t - offset)

%-- logical operators in a four-valued logic

sAND(s1, s2: signal): signal =

LAMBDA (t: time):

IF one?(s1(t)) AND one?(s2(t))

THEN one

ELSIF zero?(s1(t)) OR zero?(s2(t))

THEN zero

ELSE U ENDIF

sOR(s1, s2: signal): signal =

LAMBDA (t: time):

IF one?(s1(t)) OR one?(s2(t))

THEN one

ELSIF zero?(s1(t)) AND zero?(s2(t))

THEN zero

ELSE U ENDIF

sNOT(s: signal): signal =

LAMBDA (t: time):

IF one?(s(t)) THEN zero

ELSIF zero?(s(t)) THEN one

ELSE U ENDIF

% ...

END signals_th

The function for building periodic signals needs some ex-

planation. The function has two arguments —the specification

of a signal s in a base interval [0, T), and the duration of

the interval T— and generates a periodic signal by using

modulo arithmetic on time instants, i.e., given a time instant

t, the signal value at t is obtained by evaluating the signal at

t− T × ⌊t/T ⌋.

C. Basic Digital Modules

logic_gates_th[delay: nonneg_real]: THEORY

BEGIN IMPORTING basic_digital_modules_th

gateNOR: basic_digital_module(2, 1) =

LAMBDA (t: time): LAMBDA (s: state(2, 1)):

s WITH [output := ports(time_shift(

sNOR(port0(input(s)), port1(input(s))),

delay))]

% ...

END basic_digital_modules_th

timers_th[delay: nonneg_real]: THEORY

BEGIN

IMPORTING basic_digital_modules_th

%--timer

timerM(d: posreal): basic_digital_module(1, 1) =

LAMBDA (t: time):

LAMBDA (s: state(1, 1)):

IF rising_edge?(port0(input(s)), t) AND

zero?(port0(output(s)), t)

THEN s

WITH [output := ports(pulse(t + delay, d))]

ELSE s ENDIF

%--resettable timer (reset is input port1)

rtimerM(d: posreal): basic_digital_module(2, 1) =

LAMBDA (t: time):

LAMBDA (s: state(2, 1)):

IF rising_edge?(port1(input(s)), t)

THEN

IF one?(port0(output(s)), t)

THEN s WITH

[output := ports(sNOT(step(t + delay)))]

ELSE s

ENDIF

ELSIF rising_edge?(port0(input(s)), t)

THEN

IF zero?(port0(output(s)), t)

THEN s WITH

[output := ports(pulse(t + delay, d))]

ELSE s

ENDIF

ELSE s ENDIF

% ...

END timers_th

flipflopSR: basic_digital_module(2, 2) =

LAMBDA (t: time):

LAMBDA (st: state(2, 2)):

LET r = port0(input(st)),

s = port1(input(st)),

q = port0(output(st)),

q_prime = port1(output(st))

IN IF zero?(s, t) AND zero?(r, t) THEN st

ELSIF one?(s, t) AND zero?(r, t)

THEN IF zero?(q, t) AND one?(q_prime, t)

THEN st WITH [output := ports

341

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<PVSio> test_flipflopSR;

TEST 0001

<r:1, s:1, q:0, q’:1, r1:1, s1:0> WL:[0 1]

t=0

<r:1, s:1, q:0, q’:1, r1:1, s1:0> WL:[0.001 1]

t=0.001

<r:1, s:1, q:0, q’:0, r1:0, s1:0> WL:[1 1.001]

t=1

<r:0, s:0, q:0, q’:0, r1:0, s1:0> WL:[1.001]

t=1.001

<r:0, s:0, q:1, q’:1, r1:1, s1:1> WL:[1.002]

t=1.002

<r:0, s:0, q:0, q’:0, r1:0, s1:0> WL:[1.003]

TEST 0010

<r:1, s:1, q:1, q’:0, r1:0, s1:1> WL:[0 1]

t=0

<r:1, s:1, q:1, q’:0, r1:0, s1:1> WL:[0.001 1]

t=0.001

<r:1, s:1, q:0, q’:0, r1:0, s1:0> WL:[1 1.001]

t=1

<r:0, s:0, q:0, q’:0, r1:0, s1:0> WL:[1.001]

t=1.001

<r:0, s:0, q:1, q’:1, r1:1, s1:1> WL:[1.002]

...

Fig. 9. Test output for SR flip-flop

(step(t+delay), sNOT(step(t+delay)))]

ELSE st ENDIF

ELSIF zero?(s, t) AND one?(r, t)

THEN IF one?(q, t) AND zero?(q_prime, t)

THEN st WITH [output := ports

(sNOT(step(t+delay)), step(t+delay))]

ELSE st ENDIF

ELSE st WITH [output := ports(2)]

ENDIF

APPENDIX B

THE EVENT-DRIVEN SIMULATOR

This appendix contains supplementary material on the

event-driven simulator.

A. Automated Execution of Test-Cases

In Figure 9 we show an excerpt of the output generated

by function test_flipflopSR V-D. As an example, test

TEST 0001 represents the case when there is a pulse on set

and reset at time 0, and therefore the value of r and s is 1 in

the initial state; q and q_prime have values 0 and 1. In this

example, each test simulates up to five events of the system,

and it can be noticed that they are not sufficient to reach a

final system state (the final worklist is not empty).

APPENDIX C

PROOF SKETCH

As reported in Section VI-C, the proof of the safety re-

quirement for Design B relies on a sequence of lemmas, each

defining the state resulting from a micro-step, i.e., a single

application of the composite transition function.
As an example, the following PVS code is the lemma for

the first micro-step, with the transition function computed at
time t = 1:

sys_B_lemma1: LEMMA

FORALL (init, nxt: state(nIN, nOUT, nINT)):

init =

(# input := ports(constval(zero), step(1)),

output := ports(constval(zero)),

internal := rep_ports(constval(zero), nINT) #)

AND nxt = systemB(1)(init)

=>

port0(internal(nxt)) =

constval(zero) % t2_in

AND port1(internal(nxt)) =

constval(zero) % t2_out

AND port2(internal(nxt)) =

constval(zero) % or1_in_1

AND port3(internal(nxt)) =

step(1) % or1_in_2

AND port4(internal(nxt)) =

step(1) % or1_out

AND port5(internal(nxt)) =

constval(zero) % and_en

AND port6(internal(nxt)) =

step(1) % and_in

AND port7(internal(nxt)) =

constval(zero) % and_out

AND port8(internal(nxt)) =

constval(zero) % t1_in

AND port9(internal(nxt)) =

constval(zero) % t1_out

AND port10(internal(nxt)) =

constval(zero) % t3_out

AND port0(output(nxt)) =

constval(zero) % or2_out

After a few micro-steps, a consistent state is reached. A state
is proved to be consistent by a lemma such as the following:

sys_B_lemma6: LEMMA

FORALL (init, nxt: state(nIN, nOUT, nINT)):

init =

(# input :=

ports(constval(zero), step(1)),

output := ports(pulse(1, 3)),

internal :=

cons(pulse(1, 3), % (0) t2_in

cons(pulse(1, 15), % (1) t2_out

cons(constval(zero), % (2) or1_in_1

cons(step(1), % (3) or1_in_2

cons(step(1), % (4) or1_out

cons(pulse(1, 15), % (5) and_en

cons(step(1), % (6) and_in

cons(spike(1), % (7) and_out

cons(spike(1), % (8) t1_in

cons(pulse(1, 3), % (9) t1_out

cons(constval(zero),

null))))))))))) % (10) t3_out

#)

AND nxt = systemB(1)(init)

=>

nxt = init

Each lemma is proved by asserting a few simple axioms

on the properties of signals and basic gates, then using the

automatic PVS proof strategies assert and grind, thus requiring

minimal human effort.

