
275

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Interface Contracts for WCF Services with Code Contracts

Bernhard Hollunder
Department of Computer Science

Furtwangen University of Applied Sciences
Robert-Gerwig-Platz 1, D-78120 Furtwangen, Germany

Email: hollunder@hs-furtwangen.de

Abstract—Windows Communication Foundation (WCF) is
a widely used technology for the creation and deployment
of distributed services such as Web services. Code contracts
are another .NET technology allowing the specification of pre-
conditions, postconditions and invariants for .NET interfaces
and classes. The embedded constraints are exploited for static
analysis, runtime checking, and documentation generation.
Basically, WCF services can be equipped with code contracts.
However, it turns out that the WSDL interfaces generated for
deployed WCF services do not include expressions for code
contracts. Hence, the constraints imposed on WCF services are
not visible for a service consumer. Though a proper integration
of both technologies would bring additional expressive power
to WCF and Web services, there does not exist a solution
yet. In this paper, we present a novel approach that brings
code contracts to WCF. Our solution comprises the integration
of code contracts expressions at WSDL level as well as
the generation of contracts aware proxies. The feasibility of
the approach has been demonstrated by a proof of concept
implementation.

Keywords-Code Contracts, Windows Communication Foun-
dations, WCF, Web Services, WS-Policy, WSDL, Contracts
Aware Proxies.

I. INTRODUCTION

Code contracts [2] are a specific realization of the design
by contract concept proposed by Bertrand Meyer. With code
contracts, i) methods of .NET types can be enhanced by
preconditions and postconditions, and ii) .NET types can
be equipped with invariant expressions that each instance
of the type has to fulfill. While the application developer
specifies code contracts for interfaces and classes, it is the
responsibility of the runtime environment for checking the
constraints and signaling violations. Furthermore, following
tools are available for code contracts:

• Static code analysis;
• Documentation generation;
• Integration into VisualStudio IDE.

From a theoretical point of view, static code checking has its
limitations and cannot detect all possible contract violations.

This is a revisited and substantially augmented version of “Code Con-
tracts for Windows Communication Foundation (WCF)”, which appeared
in the Proceedings of the Second International Conferences on Advanced
Service Computing (Service Computation 2010) [1].

Nevertheless, it is a sophisticated instrument to help iden-
tifying common programming errors during compile time
thus improving code quality at an early stage.

With the Windows Communication Foundation (WCF),
service-oriented, distributed .NET applications can be devel-
oped and deployed on Windows. WCF provides a runtime
environment for hosting services and enables the exposition
of .NET types, i.e., Common Language Runtime (CLR)
types, as distributed services. WCF employs well-known
standards and specifications such as XML [3], WSDL [4],
SOAP [5], and WS-Policy [6]. The Web Services Interop-
erability Technology (WSIT) project [7] demonstrates how
to create Web services clients and implementations that
interoperate between the Java platform and WCF.

When developing a WCF service, one starts with the
definition of an interface (e.g., in C#) that is annotated with
the ServiceContract attribute. Without this attribute, the
interface would not be visible to a WCF client. To realize the
service, a class is created that implements the interface. Dur-
ing service deployment, WCF will automatically generate
an interface representation in the Web Services Description
Language (WSDL) for the service. WSDL is programming
language independent and allows the creation of client
applications written in other programming languages (e.g.,
in Java) and running on different platforms. With the help
of tools such as svcutil.exe and wsdl2java so-called
proxy classes for specific programming languages can be
generated. A proxy object takes a local service invocation
and forwards the request to the real service implementation
on server side by exchanging so-called SOAP documents.

In order to combine contracts with WCF, one may proceed
as follows: The methods in a WCF service implementation
class are equipped with code contracts expressions, that im-
pose preconditions, postconditions, as well as object invari-
ants. The C# compiler will not produce any errors and will
create executable intermediate code, which can be deployed
in a WCF environment. However, the constraints imposed by
code contracts are completely ignored when WCF generates
the WSDL for the service. As a consequence, a WCF client
application cannot profit from the code contracts attached to
the service implementation. This behavior has already been
observed elsewhere [8]; however, a generic solution has not
been elaborated yet.



276

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper presents a novel approach for deriving interface
contracts for WCF Services with code contracts. The strat-
egy is as follows. When deploying a WCF service, the code
contracts expressions contained in the service implementa-
tion class are extracted. Next, these expressions are encoded
as assertions of WS-Policy [6]. The obtained WS-Policy de-
scription will be attached to the service’s WSDL. On service
consumer side, the generation of the proxy classes will be
enhanced by including the code contracts expressions, which
are extracted from the WS-Policy description of the WSDL.

The approach has the following features:
• It combines standard technologies such as WSDL and

WS-Policy to bring code contracts to the interfaces of
WCF services.

• The approach is transparent from a WCF service
development point of view. The generation of both
the interface contracts and the contracts aware proxy
objects is completely automated.

• Code contracts will be already checked on client side,
including static code analysis. This may save resources
during runtime because invalid service requests will not
be transmitted to server side.

• The feasibility of the approach has been demonstrated
by a proof of concept implementation.

As indicated in [9, page 100], “software contracts play a
key role in the design of classes for testability.” Thus, with
our approach, a WCF developer has a further instrument for
improving the quality of distributed .NET components. This
is mainly due to the fact that additional constraints are now
visible at the interface level in a formalized manner.

The paper is structured as follows. The next section will
shortly introduce the underlying technologies. Section III
will recapitulate the problem description; the solution pro-
posed will be presented in Section IV. Section V will
show how to represent code contracts with WS-Policy and
how to attach a WS-Policy description to a WSDL file.
Then, in Section VI, an implementation strategy (proof of
concept) will be described. Section VII will give more details
on interface contracts creation, followed by related work.
Section IX concludes the paper.

II. FOUNDATIONS

This section will give a brief overview on the required
technologies. We start with introducing code contracts, fol-
lowed by WCF and WS-Policy.

A. Code Contracts

With code contracts [2] additional expressivity is brought
to .NET interfaces and classes by means of preconditions,
postconditions, and object invariants. A method can be
equipped with preconditions and postconditions. A precon-
dition is a contract on the state of the system when a
method is invoked and typically imposes constraints on
parameter values. Only if the precondition is satisfied, the

method is really executed; otherwise an exception is thrown.
In contrast, a postcondition is evaluated when the method
terminates, prior to exiting the method.

Code contracts provide a Contract class in the name-
space System.Diagnostics.Contracts. Static methods
of Contract are used to express preconditions and postcon-
ditions. To give an example, consider a method squareRoot

that should not accept negative numbers. This could be
encoded as follows:� �
using System.Diagnostics.Contracts;

class MyService {
double squareRoot(double d) {

Contract.Requires(d >= 0);
Contract.Ensures(Contract.Result<int>() >= 0);
return Math.Sqrt(d);

}
}� �

Defining a precondition and a postcondition for squareRoot.

The Contract.Requires statement defines a precon-
dition by means of a boolean expression. To specify the
postcondition that the return value of squareRoot is also
non-negative, we apply the Contract.Ensures method.
With help of the expression Contract.Result<int> the
return value of the method can be referred to.

Object invariants of code contracts are conditions that
should hold on each instance of a class whenever that object
is visible to a client. During runtime checking, invariants are
checked at the end of each public method. In order to specify
an invariant for a class, an extra method is introduced that is
annotated with the attribute ContractInvariantMethod.
Within this method, the conditions are defined with the
method Contract.Invariant.

To give an example, consider the type CustomerData

with members name, first name, identifier, and address. For
sake of simplicity, the following excerpt does not show the
complete class definition, but focuses on the specification
of an invariant. The invariant ensures that any instance of
CustomerData must have a name with a certain length, a
non-negative identifier, as well as a real address instance.� �
using System.Diagnostics.Contracts;

class CustomerData {
string name;
string firstName;
int identifier;
Address address;

[ContractInvariantMethod]
void ObjectInvariant(){

Contract.Invariant(
name.length() >= 2 && identifier > 0 &&
address != null);

}
}� �

Definition of an invariant.



277

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The expressions contained in code contracts may not
only be composed of standard operators (such as boolean,
arithmetic, and relational operators), but can also invoke pure
methods, i.e., methods that are side-effect free and hence
do not update any pre-existing state. Code contracts also
provide the universal quantifier Contract.ForAll and the
existential quantifier Contract.Exists.

Both quantifiers expect a collection and a predicate, i.e., a
unary method that returns a boolean. Universal quantification
yields true if the predicate returns true on all the elements in
the collection. Analogously, existential quantification checks
whether the predicate is fulfilled for at least one element in
the collection.

The above squareRoot example shows how precondi-
tions and postconditions can be specified for classes. As
a method in an interface is described only by its sig-
nature and does not have a body, Contract.Requires

and Contract.Ensures statements cannot be part of an
interface definition. Code contracts foresee a simple trick to
encode constraints for interface methods: the required con-
straints are specified in a separate class, which is associated
with the interface.

Suppose a class AContract should implement code con-
tracts for an interface IA. Then IA is annotated with the
attribute [ContractClass(typeof(AContract))], and
the class AContract is equipped with [ContractClass-

For(typeof(IA))]. Now the code contracts of ACon-

tract apply to the interface IA.
Note that most methods of the Contract class are

conditionally compiled. It can be configured via symbols
to which degree code contracts should be applied during
compilation. Code contracts can be completely turned on,
which means that a full checking is performed, and off,
i.e., all Contract methods are ignored. It is also possible
to check only selected code contracts constraints such as
preconditions (for details see [2]).

B. Windows Communication Foundation

According to [10], “WCF is a software development
kit for developing and deploying services on Windows.”
Services are autonomous, distributed and have well-defined
interfaces.

An important feature of a WCF service is its location
transparency: a consumer always uses a local proxy object
– regardless of the location (local vs. remote) of the service
implementation. The proxy object has the same interface as
the service and forwards a call to the service implemen-
tation by exchanging SOAP documents. As the messages
are independent of transport protocols, WCF services may
communicate over different protocols such as HTTP, TCP,
IPC and Web services.

The following listing shows the squareRoot functional-
ity from above as a WCF service.

� �
using System.ServiceModel;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot(double d);

}

public class IServiceImpl : IService {
public double squareRoot(double d) {

return Math.Sqrt(d);
}

}� �
squareRoot as a WCF service.

The ServiceContract attribute maps the interface to a
technology-neutral service contract in WSDL. To be part of
the service contract, a method must be explicitly annotated
with OperationContract. In order to implement the ser-
vice, a class is created that inherits the interface as shown
in the example.

Besides service contracts WCF also provides so-called
data contracts. Data contracts are types, which can be passed
to and from the service. There are built-in types such as
int and string. Custom types can be declared as data
contracts with help of the DataContract attribute. The
CustomerData from above can be published as a data
contract as follows:� �
using System.ServiceModel;

[DataContract]
class CustomerData {
[DataMember]
string name;
[DataMember]
string firstName;
[DataMember]
int identifier;
[DataMember]
Address address;

}� �
CustomerData as data contract.

In order to successfully deploy a WCF service, the WCF
runtime environment requires the definition of at least one
endpoint. An endpoint consists of

• an address,
• a binding defining a particular communication pattern,
• a contract that defines the exposed services.
Endpoints are typically defined in an XML configuration

file (external to the service implementation), but can also be
created programmatically.

During deployment, WCF generates a WSDL interface
description for the service. A WSDL description has an
interchangeable, XML-based format and comprises different
parts, each addressing a specific topic such as the abstract
interface and data types, the mapping onto a specific com-
munication protocol such as HTTP, and the location of a
specific WCF service implementation.



278

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There are tools that transform WSDL descriptions into
a programming language specific representation. Such a
representation comprises classes for the proxy objects used
by client applications. WCF delivers the tool svcutil.exe,
which generates proxy classes for, e.g., C# together with a
configuration file containing endpoint definitions. Basically,
a proxy object constructs a SOAP message, which is sent to
server side. A SOAP message consists of a body, containing
the payload of the message (including the current parameter
values of the request), and an optional header, containing
additional information such as addressing or security data.

C. WS-Policy

When taking a closer look to a generated WSDL file one
will find a couple of policy entries. These entries add further
information to the service such as security requirements,
reliable messaging, and arbitrary constraints. For example,
it can be formally described that the parameter values of a
request are to be encrypted during transmission.

WS-Policy is a widely used specification [6] to formulate
policies in an interoperable manner. Almost all application
servers including WCF support WS-Policy. In general, WS-
Policy is a framework for defining policies, which comprise
so-called (WS-Policy) assertions. A single assertion may
represent a domain-specific capability, constraint or require-
ment and has an XML representation.

The following XML fragment shows how to associate a
WS-Policy description to a service definition.� �
<definitions name="Service">
<Policy wsu:Id="SamplePolicy">
<ExactlyOne>

<All>
<IncludeTimestamp/>
<EncryptedParts>
<Body/>

</EncryptedParts>
</All>

</ExactlyOne>
</Policy>
...
<binding name="IService" type="IService">
<wsp:PolicyReference URI="#SamplePolicy"/>
<operation name="squareRoot"> ... </operation>

</binding>
...

</definitions>� �
WS-Policy attachment to a WSDL description.

In the example, a WS-Policy description is embedded
into the WSDL of the squareRoot service. To be pre-
cise, via the PolicyReference element (for details see
[6], [11]) a policy can be attached to a service. The
top-level Policy element of a policy description has the
child element ExactlyOne, which contains a set of so-
called policy alternatives. Each alternative is surrounded by
the All operator. The (single) alternative in the sample
policy contains two assertions: IncludeTimestamp and

EncryptedParts. This policy requires that the caller of
the service has to

• include a time stamp into the SOAP message
• encrypt the body of the SOAP message.

Note that an attached policy description is part of the
WSDL interface of the service and must be taken into
account by the service invoker. In the example, the WCF
server side runtime environment would immediately reject
the request (without performing squareRoot), if a client
does neither include a time stamp nor encrypt the message
body.

This example also demonstrates the declarative approach
of WS-Policy. Additional, non-functional requirements can
be formally described with corresponding assertions in a
policy. Policies are external to the service implementation
and can be simply combined. The WCF runtime environment
has the responsibility to obey the policy.

WS-Policy itself does not come with concrete assertions.
Instead, related specifications such as WS-SecurityPolicy
[12] and WS-ReliableMessaging [13] apply WS-Policy to
introduce specific assertions (e.g., IncludeTimestamp and
EncryptedParts from the example above) covering spe-
cific domains. The respective specifications do not only
define the syntax, but also the meaning of the assertions
and their impact on the Web services runtime behavior.

WS-Policy has been designed in such a way that further,
custom-designed assertions can be introduced. Our approach
exploits this features to encode contracts expressions and to
attach them to the service’s WSDL.

III. PROBLEM DESCRIPTION

Suppose we want to create a WCF service with code
contracts. A straightforward approach to combine both tech-
nologies would be as follows:� �
using System.ServiceModel;
using System.Diagnostics.Contracts;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot(double d);

}

public class IServiceImpl : IService {
public double squareRoot(double d) {

Contract.Requires(d >= 0);
Contract.Ensures(Contract.Result<int>() >= 0);
return Math.Sqrt(d);

}
}� �

WCF service with code contracts.

We define a WCF service interface as usual according to
the WCF programming model. In addition to the previous
implementation of Section II-B, the squareRoot service is
equipped with a precondition and a postcondition.



279

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We first note that this WCF service implementation will
be successfully compiled and deployed. However, we also
observe that the WSDL description created during the de-
ployment phase does not include any information about code
contracts contained in the service’s implementation. In other
words, code contracts expressions are completely ignored
and are not part of the WSDL interface.

There are two important consequences to stress here:
1) Code contracts imposed on the service implementation

will not be considered when generating the proxy
classes.

2) Clients of the WCF service are not aware of any code
contracts expressions. Hence, code contracts support
such as static analysis and runtime checking is not
available on client side.

Thus, if a client invokes the squareRoot service passing
a negative number as argument, the proxy object will for-
ward the request to the server. The server itself will delegate
the request to the service implementation. During the execu-
tion of the service, the code contracts runtime environment
will eventually detect the violation of the precondition. The
execution will be aborted and an exception will be returned
to the client.

In the following, we will elaborate a concept that brings
code contracts to the client side, thus enabling constraint
checking already before passing the request via a network
protocol to the server.

IV. CODE CONTRACTS AND WCF: THE CONCEPT

The overall concept of our solution for combining WCF
and code contracts is illustrated in Figure 1.

One starts with implementing a WCF service according
to both the WCF and the code contracts programming
models.The service may use methods of the Contract class
such as Requires and Ensures to specify preconditions
and postconditions. For WCF data contracts, invariants can
be defined.

During service deploying, the WCF infrastructure gener-
ates a WSDL for the service. Our approach will perform the
following additional activities:

1) The code contracts expressions are extracted from the
WCF service implementation class and are translated
into corresponding WS-Policy assertions (so-called
code contracts assertions).

2) A PolicyReference element is included into the
WSDL of the service according to the WS-Policy-
Attachment specification. The reference points to the
code contracts assertions from the previous step.

The right part of Figure 1 shows the strategy to create
proxy objects that are equipped with code contracts, so-
called contracts aware proxies. In a first step, we derive the
standard proxies from the WSDL by applying svcutil.exe

provided by WCF. Then, these proxies will be enhanced in
the following way:

1) Extraction of the code contracts assertions attached to
the service’s WSDL.

2) Creation of corresponding preconditions as well as
postconditions and their integration into the proxy
classes. Classes derived for data contracts are extended
by invariant methods.

Before we will discuss each of these steps in more
detail, we make some observations. First of all, the standard
programming models both for WCF and code contracts can
be applied when implementing a service. The enhanced de-
ployment infrastructure has the responsibility to perform the
above mentioned activities. By automating these activities,
our approach is transparent from a developer point of view.

Secondly, code contracts imposed on WCF services are
also available for client technologies other than .NET. In
fact, Web services technologies such as JAX-WS [14] ex-
tended by Java-based contract technologies can also profit
from the code contracts assertions attached to the WCF
service’s WSDL. In Section VII-B, we will elaborate this
feature in more detail.

Finally, we observe that our solution exploits and applies
widely used technologies and specifications such as WS-
Policy and WS-PolicyAttachment, which are supported by
WCF and almost all Java-based Web services infrastructures.
Thus, no proprietary frameworks must be installed to realize
our approach.

V. CODE CONTRACTS ASSERTIONS FOR WS-POLICY

To formally represent code contracts expressions with
WS-Policy, we introduce a WS-Policy assertion type, which
is called CodeContractsAssertion.

The XML schema is defined as follows. Note that we
omit, for sake of simplicity, some attributes such as target-
Namespace.� �
<xsd:schema ...>
<xsd:element name = "CodeContractsAssertion"/>
<xsd:complexType>
<xsd:sequence>

<xsd:element name = "requires"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "ensures"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "invariant"
type = "xsd:string"
maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "context"

type = "xs:anyURI"
use = "required"/>

<xsd:attribute name = "name"
type = "xs:anyURI"/>

</xsd:complexType>
</xsd:schema>� �

XML schema for CodeContractsAssertion.



280

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Combining code contracts and WCF.

A CodeContractsAssertion assertion has two at-
tributes: a mandatory context and an optional name.
The context attribute specifies the service to which the
constraint applies. To be precise, the value of the context
attribute is the (uniquely defined) name of a service as
specified in the binding section of the WSDL. In case
of an invariant, the context refers to a type defined in
the types section. The name attribute can be applied to
attach additional information to an assertion, which is not is
processed.

The body of a CodeContractsAssertion consists of a
set of requires, ensures, and invariant elements. The
values of these elements have the type xsd:string and
should be valid code contracts expressions. An expression
contained in a requires (resp. ensures) element repre-
sents a precondition (resp. postcondition) and typically refers
to parameter names of the service. Note that these names
are also part of the WSDL and can therefore be resolved
properly.

An invariant expression applies to instances of data
types used as service parameters. Such an expression may
impose restrictions on the public members of the type, which
are visible to a WCF client application.

Note that a code contracts expression contained in a
service implementation class may impose restrictions on
members, which are not visible – and hence are not mean-
ingful – at WSDL interface level. Section VII will discuss
this issue in more depth.

The created CodeContractAssertions are packaged
into a WS-Policy description, which is attached via a
PolicyReference to the service definition. The following
WS-Policy description is produced for the WCF square-

Root service from Section III.

� �
<definitions name="Service">
<Policy wsu:Id="CCPolicy">
<ExactlyOne>

<All>
<CodeContractsAssertion

name="squareRootAssertion"
context=
"IService.squareRoot(System.Double)">

<requires>
d >= 0

</requires>
<ensures>

Contract.Result<int>() >= 0
</ensures>

</CodeContractsAssertion>
</All>

</ExactlyOne>
</Policy>
...
<binding name="IService" type="IService">
<wsp:PolicyReference URI="#CCPolicy"/>
<operation name="squareRoot"> ... </operation>

</binding>
...

</definitions>� �
Code contracts policy for the squareRoot service.

In the following section, we will describe how to techni-
cally realize our concept.

VI. PROOF OF CONCEPT

We start with elaborating how to create and attach policies
for code contracts during the WCF deployment process.
Thereafter, we will focus on the activities at the service
consumer side, which especially covers the generation of
contracts aware proxies.



281

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Code Contracts Extraction

Given a WCF service implementation, we need some
mechanism to obtain its preconditions, postconditions and
invariants. API functions have been published to access
code contracts expressions. These functions are part of the
Common Compiler Infrastructure project [15]. We adapted
the proposed visitor pattern to obtain the methods’ code
contracts expressions and created a function getCode-

ContractsForAssembly that computes for a given assem-
bly a code contracts dictionary. This dictionary is organized
as follows:

• The key is the full qualified name of the method.
• The value is a list of strings each representing a code

contracts expression. Each expression has the prefix
requires:, ensures:, or invariant: to indicate its
type.

The function getCodeContractsForAssembly can be
implemented in straightforward manner by using types
defined directly or indirectly in the namespace Micro-

soft.Cci.

B. Creation of WS-Policy Code Contracts Assertions

In this step, we create an XML representation for the
code contracts expressions according to XML schema for
CodeContractsAssertion as defined in the previous sec-
tion.

We have realized a function createCodeContracts-

Assertions that takes a filled dictionary from the previous
step. It iterates on the keys and performs the following
actions:

• For each key, a CodeContractsAssertion is created.
The value of its context attribute will be the key’s name.

• For each expression contained in a key’s value, an
XML element is embedded into the CodeContracts-

Assertion. Depending on the well-defined prefix, the
XML element will be either requires, ensures, or
invariant.

The result of this step is a complete list of Code-

ContractsAssertions for the code contracts expressions
in the service’s implementation. How to embed a set of
CodeContractsAssertions as a WS-Policy description
into a WSDL file is described next.

C. WS-Policy Creation and Attachment

In WCF, additional policies can be attached to a WSDL
file via custom bindings [16]. We define a custom binding
that uses the PolicyExporter mechanism also provided
by WCF. To achieve this, we implement two classes:

• ExporterBindingElementConfigurationSection

• CCPolicyExporter.
The former class is derived from the abstract WCF

class BindingElementExtensionElement. The inherited
method CreateBindingElement is implemented in such

a way that an instance of the CCPolicyExporter class
is created. CCPolicyExporter has BindingElement as
super class and implements the ExportPolicy method,
which contains the specific logic for creating code contracts
policies. Figure 2 visualizes the class layout.

Figure 2. Class diagram for WS-Policy creation.

We have implemented the ExportPolicy method in the
following way. In a first step, getCodeContractsFor-

Assembly is invoked to obtain the filled dictionary. Next,
createCodeContractsAssertions produces an XML
representation for the code contracts expressions, which is
then embedded into a valid WS-Policy description. Finally,
a policyReference element pointing to this policy is
embedded into the WSDL. Thus, we end up with an enriched
WSDL description as shown at the end of the previous
section.

To publish the service, a so-called endpoint must be
configured (for details see, e.g., [10]). We have to change
the standard configuration file of the WCF service such that
the custom binding will be used:

1) In the definition of the service endpoint, the attribute
binding is changed to customBinding and the at-
tribute bindingConfiguration is set to exporter-
Binding.

2) In the bindings section, the customBinding ele-
ment declares exporterBinding.

3) The element bindingElementExtensions is in-
troduced in the extensions section. Its add ele-
ment specifies the assembly in which the Exporter-

BindingElementConfigurationSection class is
implemented.

During service deployment, WCF now uses the custom
binding. As a result, the generated WSDL file will contain
the code contracts policy.



282

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Importing Code Contracts Policies

In order to invoke a service, a WCF client application
requires a definition of a service endpoint. Typically, this
is declared in a configuration file, similar to the one used
on server side. In the metadata section of this file we
included the definition of a so-called policy importer. By
default, custom policies attached to a WSDL will not be
evaluated when importing a WSDL.

In order to process code contracts policies, the policy-

Importers element refers to the class CCPolicyImporter
of Figure 3.

Figure 3. Class diagram for accessing WS-Policy descriptions.

We have realized this class in the following way. It imple-
ments the WCF interface IPolicyImporterExtension,
which declares the ImportPolicy method. When process-
ing a WSDL interface description, the runtime environment
invokes this method and passes the attached policy descrip-
tion. CCPolicyImporter implements ImportPolicy in
such a way that a code contracts dictionary (similar to
the one on server side as described in Section VI-A) is
constructed. To achieve this, the private method Process-

CCAssertions iterates on the code contracts assertions of
the policy and adds corresponding entries to the dictionary.
This dictionary will be used to enhance the proxy classes,
which is shown next.

E. Enhanced Proxy Generation

The tool svcutil.exe does not process custom policies.
Hence, the standard proxy classes generated do not contain
any code contracts constraints.

In our proof of concept we have realized the following
approach. First, we apply svcutil.exe to create the stan-
dard proxy classes. In a second step, the following activities
are performed:

1) Create an additional source file that will contain all
constraints found in the code contracts policy. This
file is called contract file.

2) Link the contract file to the proxy class. Note that we
do not want to modify the proxy class generated by
svcutil.exe, because this would result in a strong
dependency to the concrete code structure of the proxy.

Before we discuss the structure of the contract file, we
observe that the generated proxy has a public interface (the
proxy interface) that describes the supported services. There
is also a public partial class (the proxy class) that implements
the proxy interface. A client application instantiates the
proxy class and invokes a provided service.

In the proof of concept, we apply the following strategy
to bring the code contracts to the proxy. We create a
new interface (the contract interface), that contains those
methods that must be equipped with preconditions and post-
conditions. We also introduce a further class (the contract
class) implementing the contract interface. The inherited
methods are implemented in the contract class in such a
way that they contain the required Contract.Requires

and Contract.Ensures statements. The contract class will
be annotated with ContractClassFor to indicate that the
constraints apply to the methods of the contract interface.
The details for linking a contract class to an interface can
be found at the end of Section II-A.

Next, we extend the partial proxy class in the contract
file by inheriting the proxy interface. As the contract class
is linked to the proxy interface, the preconditions and
postconditions are also applicable to the proxy class.

For an invariant expression contained in the code con-
tract policy we proceed as follows. The partial proxy
class to which the invariant applies will be extended in
the contract file by a new method that is annotated with
ContractInvariantMethod. This method contains the
required Contract.Invariant statements. This completes
the generation and linkage of the contract file with the proxy
generated by svcutil.exe.

F. Data Contracts

In WCF, data contracts are types that can be passed to and
from the service. In addition to built-in types such as int

and string, user defined data contracts can be introduced
be annotating a class with the DataContract attribute.
WCF will serialize all fields marked with DataMember. To
impose object invariants on data contracts, methods anno-
tated with ContractInvariantMethod will be introduced
in the class context. The Contract.Invariant statements
contained in these methods will then be managed by code
contracts runtime.

As an example consider a data contract CustomerData
(cf. Section II-A) with members such as name and ad-
dress and an object invariant method that imposes re-
strictions on possible values. Suppose a WCF service
createCustomer takes an instance of CustomerData. Be-
cause CustomerData is part of the service’s signature, it has
a representation as complexType in the WSDL. Therefore,
svcutil.exe will generate a corresponding partial C# class
CustomerData, which is used by the service consumer
to construct instances. This class provides public setters



283

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and getters for the members, but contains only a default
constructor to create “empty” instances.

In order to invoke the createCustomer service, a client
may proceed as follows:

1) Create an empty instance of CustomerData.
2) Set the specific values of the members with the public

setters.
3) Pass the instance to the service.
Unfortunately, the code contracts runtime environment on

client side will report an error after the first step. This is due
to the fact that the empty members will (probably) define
an invalid state of the instance, which is recognized by the
object invariant.

To overcome this problem, one needs on client side a
public constructor that takes all relevant customer data and
constructs a properly initialized instance, which conforms
to the object invariant. However, such a constructor is not
generated by the standard svcutil.exe tool.

Therefore, part of the enhanced proxy generation is also
the introduction of a suitable public constructor for a data
contract class. This constructor will be part of the partial
proxy class introduced in the contract file.

Observe that on WCF service provider side this is not
an issue, though. When introducing a data contract, specific
constructors can be implemented by the creator of the WCF
service. These constructors are available for general usage
on WCF provider side.

G. Exception Handling

There are two separated code contracts runtime environ-
ments: one on WCF service consumer side and one on WCF
service provider side.

As described in Section 7 of [2], code contracts support
several runtime behavior alternatives. By default, a contract
violation yields an “assert on contract failure”. Thereafter,
a user interaction is required to continue or abort program
execution. While this behavior may be acceptable on client
side during the development and testing phase, an analogous
behavior would not be helpful on WCF provider side. Each
time a violation occurs, the WCF service process requires a
user interaction, which means that the server process must be
observed the whole time. In general, this is not acceptable,
not even during development and testing.

To remedy this problem, we disable “assert on contract
failure” in the WCF service project. As a consequence, a
contract violation now leads to the creation of an exception,
which will be handled by the WCF runtime environment.
By default, WCF returns a FaultException to the client
indicating that something went wrong without giving de-
tailed information. In order to embed the real reason into
the exception (e.g., a “Precondition failed: d >= 0” mes-
sage) the IncludeExceptionDetailInFaults parameter
of the ServiceBehavior attribute in the WCF service

implementation class is set to true as shown in the following
listing:� �
using System.ServiceModel;
using System.Diagnostics.Contracts;

[ServiceBehavior
(IncludeExceptionDetailInFaults = true)]

public class IServiceImpl : IService {
public double squareRoot(double d) {

Contract.Requires(d >= 0);
Contract.Ensures(Contract.Result<int>() >= 0);
return Math.Sqrt(d);

}
}� �

Exception creation for a WCF service with code contracts.

On client side, standard exception handling can be applied
to inspect the exception’s reason.

H. Development Model

To sum up, the development model that brings code
contracts to WCF services is as follows:

1) Creation of a WCF service and an assembly with
VisualStudio as usual, e.g., as WCF Service Library
project.

2) Definition of a service endpoint that includes a mod-
ified configuration file with a custom binding as de-
scribed in Section VI-C.

3) Deployment of the WCF service by launching the
project. The published WSDL will contain a code
contracts policy.

4) Creation of a WCF client project with VisualStudio as
usual.

5) Invocation of the ClientConnectorTool, which is
part of the proof of concept. This tool has a graphical
user interface (see Figure 4) and generates for a
specified WSDL contracts aware proxies, which will
be included into a selected client project and assembly,
respectively.

6) Usage of the code contracts infrastructure on client
side.

Figure 4. Tool for generating contracts aware proxies.



284

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It should be noted that the code contracts processing
is transparent to the developer – with the exception that
the code contracts runtime environment and tools are now
available on client side.

Our approach has the following advantages for the client
developer. First, a static analysis of the code contracts can
be performed, which helps detecting invalid invocations of
WCF services during compile time. Second, during runtime
a validation of the constraints will already be performed
on client side. As a consequence, invalid service calls are
not transmitted to the service implementation thus saving
resources such as bandwidth and server consumption.

VII. CREATING CODE CONTRACTS POLICIES: A
CLOSER LOOK

Before discussing interoperability issues in VII-B, we will
observe that in general only a subset of the code contracts
expressions of the service implementation should be mapped
to code contracts policies.

A. Limitations

When specifying code contracts for a WCF implementa-
tion class, one may impose constraints on private members,
which are not visible at the WSDL interface level. As a
consequence, it is not helpful to map these constraints to
contracts policies. Therefore, the generated contract policies
should only contain constraints, which are meaningful to
service consumers and hence can be validated on client side.
To be precise, the code contracts policy should constrain
the parameter and return values of WCF services as well
as the public members of data contracts types. Constraints
in the service implementation, which are not mapped to
the code contracts policy, will be checked by the contracts
environment on server side.

As mentioned in Section II-B, code contracts expressions
may not only be composed of standard operators (such as
boolean, arithmetic and relational operators), but can also
invoke pure methods, i.e., methods that are side-effect free.
For example, suppose that a precondition checks whether a
parameter value of type int is a prime number. This can be
achieved by invoking a custom predicate isPrimeNumber

in the Contract.Requires statement. In order to check
this precondition during service invocation, the implementa-
tion of the predicate must be available on client side. Thus,
when importing code contracts policies on client side, only
those predicates should be included into the contracts aware
proxies, which are known on client side. Otherwise, the
compiler will report an error on client side.

B. Interoperability

So far we have assumed that both on client and server side
there is a .NET environment supporting the code contracts
technology. Due to the interoperability of the Web ser-
vices technology, Java based technologies may invoke WCF

services (see [14], Section 12). In our current approach,
the code contracts expressions are implemented in a .NET
language and must adhere to the specific syntax of C# or VB.

In order to use code contracts policies in a Java-based
client environment, the expressions must be translated into
equivalent Java expressions. As argued in [17], it is of
advantage to represent expressions in contracts policies in
a neutral, programming language independent format. In
fact, the Object Constraint Language (OCL) of the Object
Management Group [18] is a standardized language for
formalizing constraints. In [17], the mappings from C# and
Java, respectively, to OCL and vice versa are elaborated in
more detail.

VIII. RELATED WORK

There are two research areas, which are related to our
approach:

• Design by contract technologies;
• Constraints for policy languages.
While the former category comprises the realization of the

design by contract principle for programming languages, the
latter covers formalisms for specifying constraints for Web
services.

Recently, several language extensions for Java have been
proposed towards the specification of preconditions and
postconditions for methods as well as invariants. Two well-
known frameworks are Contracts for Java [19] and Java
Modeling Language [20]. Typically, annotations such as
@Requires and @Ensures are introduced by the frame-
works to impose additional constraints. These approaches
are targeting at the core Java programming language and do
not address the impact on Web services environments such
as JAX-WS. As in the case of WCF, these annotations are
completely ignored when generating a service’s WSDL. As
argued in [17], our concept is rather generic and can also
be applied to Java environments.

The formalization of non-functional requirements for Web
services is a hot topic since the early days of Web services.
Based on WS-Policy, WS-SecurityPolicy [12] is a well-
known specification for imposing security constraints for
Web services such as message integrity and confidentiality.
There are proposals for defining domain-independent asser-
tion languages such as WS-PolicyConstraints [21] and WS-
Policy4MASC [22], which can in principle be used to en-
code code contracts expressions. However, these and related
approaches do not address how to map constraints embedded
in the service implementation to these formalisms.

IX. CONCLUSION

In this paper, we have elaborated a concept that brings
code contracts to WCF. To be precise, we have shown how to
i) derive interface contracts for WCF services and ii) create
contracts aware proxy objects. As a consequence, WCF
application developers can now profit from the additional



285

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

expressive power of code contracts including runtime and
tool support. It has been stressed elsewhere that there did
not exist a solution to the problem.

Our approach exploits well-known standards such as
WSDL, WS-Policy, and WS-PolicyAttachment. We have
described how to represent code contracts expressions by
means of WS-Policy assertions. This representation will be
used to generate an enhanced client proxy infrastructure,
thus allowing the evaluation of the WCF service’s code
contracts already on client side. The developer of a WCF
client application now explicitly sees important constraints
imposed on the service implementation thus reducing the
number of service invocations with invalid parameter values.

As noted in the section on related work, there are design
by contracts approaches for Java. An interesting direction
for future work is concerned with the question how interface
contracts can be mapped to the Java environment. A solution
may map code contracts expressions into a programming-
language independent representation (e.g., in OCL). Af-
terwards, the OCL constraints will be translated into the
specific syntax of the design by contracts technology used
on service consumer side. Hence, a Java client application
can also profit from the code contracts embedded in the
WCF service implementation [17].

Currently, we are elaborating a tool that facilitates the
development of Web services with Quality of Service (QoS)
attributes such as security, performance and robustness [23].
As code contracts can be viewed as a sophisticated instru-
ment to produce more robust and fault-tolerant software
components, an interesting question is how to embed design
by contracts technologies into the more general setting of
tool support for arbitrary (QoS) attributes.

ACKNOWLEDGMENTS

I would like to thank the anonymous reviewers for giving
helpful comments. This work has been partly supported by
the German Ministry of Education and Research (BMBF)
under research contract 17N0709.

REFERENCES

[1] B. Hollunder, “Code contracts for Windows Communication
Foundation (WCF),” in Proceedings of the Second Interna-
tional Conferences on Advanced Service Computing (Service
Computation 2010). Xpert Publishing Services, 2010.

[2] Microsoft Corporation, “Code contracts user manual,” http://
research.microsoft.com/en-us/projects/contracts/userdoc.pdf,
last access Jan. 2012.

[3] Extensible Markup Language (XML) 1.1. http://www.w3.org/
TR/xml11/, last access Jan. 2012.

[4] Web Services Description Language (WSDL) 1.1. http://
www.w3.org/TR/wsdl/, last access Jan. 2012.

[5] SOAP Version 1.2. http://www.w3.org/TR/soap/, last access
Jan. 2012.

[6] Web Services Policy 1.5 - Framework. http://www.w3.org/
TR/ws-policy/, last access Jan. 2012.

[7] Web Services Interoperability Technology (WSIT). https://
wsit.dev.java.net, last access Jan. 2012.

[8] Writing rock solid code with Code Contracts. http://blog.
hexadecimal.se/2009/3/9, last access Dec. 2011.

[9] D. Esposito and A. Saltarello, Microsoft .NET: Architecting
Applications for the Enterprise. Microsoft Press, 2009.

[10] J. Löwy, Programming WCF Services. O’Reilly, 2007.

[11] Web Services Policy 1.5 - Attachment. http://www.w3.org/
TR/ws-policy-attach/, last access Jan. 2012.

[12] WS-SecurityPolicy 1.3. http://docs.oasis-open.org/ws-sx/
wssecuritypolicy/v1.3, last access Jan. 2012.

[13] WS-ReliableMessaging 1.2. http://docs.oasis-open.org/ws-rx/
wsrm/v1.2/, last access Jan. 2012

[14] E. Hewitt, Java SOA Cookbook. O’Reilly, 2009.

[15] Common Compiler Infrastructure: Code Model and AST API.
http://cciast.codeplex.com/, last access Jan. 2012.

[16] J. Smith, Inside Windows Communication Foundation. Mi-
crosoft Press, 2007.

[17] B. Hollunder, “Deriving interface contracts for distributed ser-
vices,” in Proceedings of the Third International Conferences
on Advanced Service Computing (Service Computation 2011).
Xpert Publishing Services, 2011.

[18] OMG, “Object constraint language specification, version 2.2,”
http://www.omg.org/spec/OCL/2.2, last access Jan. 2012.

[19] N. M. Le, “Contracts for java: A practical framework for
contract programming,” http://code.google.com/p/cofoja/, last
access Jan. 2012.

[20] Java Modeling Language. http://www.jmlspecs.org/, last ac-
cess Jan. 2012.

[21] A. H. Anderson, “Domain-independent, composable web
services policy assertions,” in POLICY ’06: Proceedings of
the Seventh IEEE International Workshop on Policies for
Distributed Systems and Networks. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 149–152.

[22] A. Erradi, P. Maheshwari, and V. Tosic, “WS-Policy based
monitoring of composite web services,” in Proceedings of
European Conference on Web Services. IEEE Computer
Society, 2007.

[23] B. Hollunder, A. Al-Moayed, and A. Wahl, “A tool chain for
constructing QoS-aware web services,” in Performance and
Dependability in Service Computing: Concepts, Techniques
and Research Directions. IGI Global, 2011.


