
521

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Block Matching Motion Estimation with Variable Search Window Size
Ionuţ Pirnog and Claudia Cristina Oprea

Telecommunications Department
“Politehnica” University of Bucharest

313, Splaiul Independentei, Sector 6, 060042
Bucharest, Romania

ionut@comm.pub.ro, cristina@comm.pub.ro

Abstract— Block matching algorithms for motion estimation
were developed in order to obtain reasonable motion
estimation efficiency with minimum computational cost.
Although the gain in the computational complexity is
significant these algorithms have less precision in estimation
than the basic block matching motion estimation algorithm,
i.e., the Full Search algorithm. The proposed motion estimation
method can be used with any of the existing block matching
algorithms and brings an increase of estimation precision with
small increase of the global computational cost. This
improvement is achieved by choosing the search window size
depending of the ration between the frame size and the motion
area size.

Keywords – motion estimation, block matching, variable
search window

I. INTRODUCTION

Motion information is very useful in the video
compression process [2] since the development of video
content retrieval applications [3]. In the video compression
systems, the motion vectors are used for the representation of
a video frame based on the previous frames. In the content
retrieval systems, the video content can be found based on
the video motion properties expressed by motion descriptors
[4]. The extraction of motion vectors from a video frame
based on the previous frame is known as motion estimation.
There are many motion estimation methods, e.g., parametric
methods, stochastic methods. The simplest and most used
motion estimation method is the one based on block
matching. The block matching algorithms split the current
video frame into blocks and for each block a motion vector is
extracted by finding the best matching block in the previous
frame. The best matching block is found using a cost
function that measures the similarity between two blocks.
Since the best block is usually in the vicinity of the position
of the current block, but in the previous frame, the search for
the best matching block is not performed in the entire frame
but in an area called the search window. The dimension of
the search window defines the computational cost of the
algorithm but also the precision of the estimation. The best
block matching algorithms use a fixed dimension for the
search window and show good results [5].

In this paper we present i) a group of fast block matching
algorithms for motion estimation, ii) the importance of the
search windows size in the precision of the estimation, iii)
the algorithms that show increase in precision, and iv) a
method for selecting the search windows dimensions in order

to obtain the best estimation precision without an increase of
computational cost. The fast block matching algorithms gain
a significant decrease of the computational cost by selecting
only a small set of blocks in the search windows. The current
block, or the reference block, is compared only to these
blocks and the best matching block is selected from this set.
This means less comparisons, so small computational cost,
but also the possibility that the best block is not found
between the block in the search set. The main difference
between the existing block matching algorithms is the search
pattern, i.e., the method for selecting the blocks in the search
set. We can classify these algorithms into two categories:
fixed number of steps and variable number of steps. The
ones in the first category have fixed number of steps and the
estimation precision does not depend on the search window
dimensions. The ones in the second category usually start
with a search step, i.e., half the search window parameter, so
the precision of the estimation depends on the search
window size. The method proposed in this paper uses a
variable size search window in order to obtain better motion
estimation with no increase in the overall computational cost.
The selection of the search window size is done in relation to
the ratio between the frame size and the motion area size.

The rest of the paper is organized as follows. In Section
II, we briefly describe the block matching motion estimation
method; then, we present four of the best fast block
algorithms, one with fixed number of steps and three with
variable number of steps. In Section III, we present the
proposed search windows’ dimensions selection method. The
comparative experimental results of the presented algorithms
for different window sizes are shown in Section IV. Finally,
the conclusions are provided in Section V.

II. BLOCK MATCHING MOTION ESTIMATION

Motion information is the most significant information of
videos. A video can be regarded as a group of successive
frames or images that together convey a specific message.
Therefore, extracting features of videos can be accomplished
using existing methods for extracting image features. There
is a very important feature of the video that does not exist for
images, namely the motion.

The concept of motion refers to the variation in time of
the spatial position and applies to existing objects or the
entire frame, in the case of camera motion. In the first case
the background is not changing position and only the objects
in the video have a variation of position over time. In the
second case the whole frame changes over time due to the
camera motion.

522

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Schematic representation of block matching motion estimation.

There is also the case in which there is both camera
motion and moving objects. Extracting video motion
information is called motion estimation. This operation is
done by comparing two by two successive video frames
using different methods.

Motion estimation is used in the processes of video
compression/decompression. In the compression phase the
motion is estimated by comparing the current frame with the
previous frame. Then, using the motion information and the
previous frame, a motion compensated image of the current
frame is build and the difference between the current frame
and the motion compensated frame is computed. Also,
instead of compressing the current frame, the motion
information and the error frame is compressed. In this way
higher rates of compression are achieved.

There are two classes of motion estimation methods:
• Motion flow estimation: for each pixel of the frame a

motion vector is determined. The advantages of the
methods in this class are high accuracy and high
resolution of estimation. The main disadvantage is
the computational complexity.

• Motion estimation based on blocks of pixels, known
as block matching motion estimation. The basic idea
of block matching algorithms is dividing the current
frame is a matrix of non-overlapping macro blocks
and determining motion vectors for each block of
video frame (Figure 1).

The main advantage of the methods of the second class is
that the size of pixel blocks can be chosen depending on the
particular application. So for applications requiring high
precision of motion vector estimation the size of the pixel
blocks can be smaller and the computational complexity will
increase, while for applications where speed is more
important than the accuracy the blocks of pixels can be
larger. If the size of the blocks is chosen 1x1 we obtain the
motion flow estimation.

After the splitting of the frame into pixel blocks the
motion of each block is estimated as follows: the block in the
current frame is compared to all overlapping blocks in the
search window. The search window is an area in the previous
frame obtained by selecting the corresponding block, the
block with the same spatial position as the current block, and
adding pixels in each direction. The parameter is called the
search window parameter. Its value determines the
estimation precision and the computational complexity.
Higher value implies higher chances of correct estimation
and high number of blocks in the search window.

Determining the best block is made based on a cost
function. For each block in the current frame a set of cost
function values is determined by comparing it to all
overlapping block in the search window. The block with the
minimum cost is the best matching block. The most used
cost functions are the Mean Absolute Difference (MAD) and
the Mean Squared Error (MSE) given by (1) and (2),
respectively:

1 1

2
0 0

1 N N

ij ij
i j

MAD C P
N

− −

= =

= −∑∑ , (1)

 ()
21 1

2
0 0

1 N N

ij ij
i j

MSE C P
N

− −

= =
= −∑∑ , (2)

where N is the block size, ijC are the pixels values of the

block in the current frame, and ijP are the pixels values of

the block in the previous frame.

523

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Example of blocks selected at every step for the New Three Step Search algorithm.

After the best matching block is determined the motion
vector is computed as the difference between the spatial
position of the current block and the spatial position of the
best block. The resulting motion vector has two components
for each direction, horizontal and vertical.

Based on the motion vectors of all blocks from the
current frame and blocks in the previous frame the motion
compensated frame is computed. The estimation precision or
accuracy is determined using the Peak Signal to Noise Ratio
(PSNR) between the current frame and the motion
compensated frame, i.e.,

2

10lg
Vpp

PSNR
MSE

 
=  

 
, (3)

where Vpp is the peak to peak value of the original data and
MSE is the mean square error between the original data and
the motion compensated data.

A. Full Search Algorithm

The first block matching motion estimation algorithm is
called the Full Search (FS) algorithm, where all the
overlapping blocks in the search window are used for
determining the best matching block. Although this
algorithm is the best in terms of prediction quality and
simplicity, it is also the most inefficient in terms of
arithmetic complexity. To assess the computational
complexity of the FS algorithm we needed to determine the
number of blocks in the search window compared with each
reference block. For example, for 16x16 blocks and a search
parameter we have 225 blocks in the search window.

To reduce the computational complexity new algorithms
were developed with a higher quality complexity ratio. These
algorithms are called suboptimal because they offer lower
prediction quality than the algorithm above and are also
called fast algorithms because they have lower
computational complexity. These algorithms use only a set
of blocks from the search window to determine the best
matching block.

There are two classes of fast algorithms:
• Search Window Independent algorithms;
• Search Window Dependent algorithms.

B. Search Window Independent Algorithms

In order to properly classify the fast block matching
algorithms it is important to explain the way these algorithms
function and to identify the parameters that determine the
affiliation of a certain algorithm to one of the classes defined
earlier.

All of the fast block matching algorithms have an initial
step in which a block from the current frame is compared to
the correspondent block in the previous frame and a number
of blocks at a distance S from the correspondent block. The
number of blocks and their position is chosen different for
every algorithm. The distance is defined in terms of number
of pixels.

The algorithms in the first class start with an initial
distance 4S = and after one step the distance is halved. The
algorithms stop when the distance reaches 1.

For this category of algorithms the size of the search
window is 7 pixels in each direction, meaning that if we have
block of dimension N N× then the size of the search
window will be () ()7 7N N+ × + . We recall that the search

window parameter is denoted with p . The value 7p = is
chosen so that the algorithms go through all their steps
without reaching a block outside the search window limits.

The window independent algorithms have two important
properties:

• The maximum number of verified blocks is known.
• The precision of estimation is independent of the

search window dimensions, so that if the motion has
a high amplitude the increase of the search window
dimensions will have no effect on the estimation.

The most efficient fast block matching algorithm in this
category is the New Three Step Search (NTSS) algorithm. It
has good precision of estimation and low computational
complexity. It does not fall into the category of interest for
the proposed method but for comparison reasons we present
it in the following.

C. New Three Step Search Algorithm

The NTSS algorithm compares the block in the current
frame to the center block, eight blocks at distance 4S = and
eight blocks at a distance 1S = on the horizontal and vertical
axes, in the previous frame [6].

524

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Example of blocks selected at every step for the Two Dimensional Logarithmic Search algorithm.

The best block from these initial 17 blocks is determined
based on the cost function values. Depending on the
positions of the best block we have three situations:

1) If the best block is the one in the centre of the search
window, then the algorithm stops.

2) If the best block is one of the blocks located at a
distance 1S = , then its neighbors are compared with the
current block and the best block is determined as the block
with the minimum cost function value.

3) If the best block is one of the blocks located at a
distance 4S = , then the block is set as the new center, the
distance is halved and all eight blocks at distance S are
verified. The algorithm stops when the distance is one.

To decrease the number of blocks compared and to
eliminate the re-evaluation of some blocks, the neighbors
selected in the second case (when the best block is one of
the blocks located at distance 1S =) depend on the position
of the best block as shown in Figure 2.

D. Search Window Dependent Algorithms

As compared to the algorithms in the first class the
algorithm in this class start with an initial search distance
equal to half the search window parameter p . The selection
of the blocks that are used for computing the cost values
depends on the algorithm.

It is obvious that compared to the first class the
algorithms in the second class have a maximum number of
verified blocks that depends on the search window
dimensions. Also, if the search window size increases the
precision of estimation will increase in the case with high
amplitude motion.

In the following, we present the most important
algorithms in this class.

E. Two Dimensional Logarithmic Search Algorithm

Two Dimensional Logarithmic Search (TDLS) algorithm
selects at every step the center block and four blocks at a
distance S on the horizontal and vertical axes. The initial
distance is chosen as half the search window parameter

7p = . If the search parameter is an odd number then S is

chosen as the rounded value of 2p .
After the selection of the initial distance, the block from

the current frame is compared to the center block, i.e., the
corresponding block in the previous frame, and the four
blocks at distance S on the horizontal and vertical axes. The
comparison is done by computing the cost functions. The
block that gives the lowest cost function is selected for the
next step.

If the block selected at the first step is the center block
then the search distance S is halved, else the selected block
is set as the new center and the first step is repeated.

When the search distance becomes equal to one the
center block and all its neighbors are compared to the block
in the current frame and the best matching block is selected
as the block with the minimum cost function value.

F. Orthogonal Search Algorithm

The Orthogonal Search (OS) algorithm is a combination
of the TDLS algorithm and the Three Step Search (TSS)
algorithm. The TSS algorithm is the first fast block matching
algorithm and is independent of the search window
dimensions, so it belongs to the first class of algorithms. The
similarity between OS and TSS algorithms is the number of
steps.

The initial search distance is chosen as half the search
window parameter. The OS algorithm has the following 3
steps:

1) The block from the current frame is compared to the
center block and the two blocks at distance S on the
horizontal axis. The block with the minimum cost function
value is set as the new center.

2) The center block and the two blocks at distance S on
the vertical axis are verified, and the new center is selected
as the block with the lowes cost.

3) If the distance parameter S is bigger than one then
the distance is halved and steps 1 and 2 are repeated. Else,
the last center block is the best matching block.

525

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

G. Adaptive Rood Pattern Search Algorithm

The Adaptive Rood Pattern Search (ARPS) algorithm
uses the motion information of the neighboring block in the
left. This is helpful if the current block and its neighbor on
the left belong to the same object in the frame; in this case,
their motion is similar [7]. The steps of the ARPS algorithm
are:

1) The block from the current frame is compared to the
center block, four blocks at distance S on the horizontal
and vertical axes, and the block indicated by the motion
vector of the neighbor block in the left. The initial search
distance S is selected as the maximum between the
absolute values of the neighboring motion vector.

2) The block with the minimum cost function value is
set as the new center. The search distance is set to 1 and the
centre block together with its four axis neighbors are
evaluated.

3) If the block with the minimum cost is in the centre,
then the algorithm stops; consequently, this is the best
block. Else, step 2 is repeated.

III. PROPOSED SEARCH WINDOW SELECTION

The proposed method is based on the simulation results
that showed, as the theory stated, that by increasing the size
of the search window the precision of estimation increases.
The increase of the search window dimensions has an
unwanted effect, i.e., an increase of the number of verified
blocks.

To highlight these observations we present in Table I the
PSNR between the current frame and the motion
compensated frame for all, of the above presented, fast block
matching algorithms. Also, in Table II we present the total
number of blocks verified. The simulations were done for
different search window dimensions, 8x8 pixel blocks and
the computer generated video sequence “Motion.”

From Table I it can be observed that for the search
window dependent algorithms the estimation precision
increases with the increase of the search window.

In Table II it can be seen that along with the increase of
the PSNR there is also on increase of the number of verified
blocks.

Based on the results presented in both tables we make
two observations:

1) First of all, for the search window dependent
algoritms the estimation precision parameter for larger
search windows exceeds both the FS algoritm and the
NTSS.

2) Second, although for all the search window
dependent algoritms the number of verified blocks
increases, the computational complexity remains
significantly smaller than for the FS algoritms, and in some
cases, like ARPS, even smaller than for the NTSS
algorithm.

TABLE I. PSNR VALUES FOR DIFFERENT WINDOW SIZES

Search Window Parameter
Algorithm

p=7 p=15 p=31 p=63

FS

30.78

-

-

-

NTSS

30.49

30.49

30.49

30.49

TDLS

29.3

32.49

33.8

34.69

OS

28.88

31.54

32.18

33.45

ARPS

29.47

31.8

32.73

33.21

TABLE II. OVEROALL NUMBER OF VERIFIED BLOCKS FOR
DIFFERENT WINDOW SIZES

Search Window Parameter
Algorithm

p=7 p=15 p=31 p=63

FS

921600

-

-

-

NTSS

79898

79898

79898

79898

TDLS

74349

93676

111607

128330

OS

53248

69632

85988

102300

ARPS

28548

30038

30462

30642

There is also one disadvantage in increasing the search

window. For sequences with low motion amplitude there is
small or even zero increase in the estimation precision but
the increase of the number of verified blocks remains. So the
primary concern is determining a way of obtaining the best
estimation precision with the lowest computational cost.

The goal of proposed method is the optimum search
window size selection. This is done in three simple steps:

1) Motion area detection.
2) Search window parameter computation.
3) Motion estimation.
The detection of the area where motion exists is done by

simple difference between the current frame and the previous
frame and two morphological operations to eliminate the
misdetection of motion due to variations of pixel intensity.

The search window parameter is computed based on the
ratio between the entire frame and the motion area, as:

 12 1rp += − , (4)

 x y

x y

A A
r

F F

 ×
=  

×  
, (5)

where []⋅ is the round operator, xA and yA are the motion

area dimension, xF and yF are the frame dimensions, and

p is the search window parameter. The parameter p is

526

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

chosen as a power of 2, minus one, so that when computing
the search parameter S (as half the search window
dimension) it will be also a power of 2.

By selecting the search window size this way we obtain
the best PSNR with the lowest computational complexity.
This means that if the ratio r is high the PSNR will be
higher without increasing to much the computational
complexity. If the ratio is close to one the window size will
be low, with 7p = , the usual value for the window size
independent fast block matching algorithms.

Also by applying the motion estimation algorithms only
to the area where motion exists there will be a significant
decrease of the computational complexity with small loss of
estimation precision.

IV. SIMULATION RESULTS

In this section we present the comparative results of the
presented fast block matching algorithms for fixed search
window size and variable search window size selected with
the proposed method.

The fast block matching algorithms presented in section
II were implemented using Matlab and we used a set of
video sequences containing monochrome videos and color
videos of different sizes, some of the videos artificially
generated and some from the real life. All the videos were
obtained from test sequences databases commonly used for
motion estimation.

We present the results for the test sequence “Motion:” a
computer generated monochrome sequence with 10 frames,
512x512 pixels and high amplitude motion.

In concordance with step 3 of the proposed search
window selection method presented in Section III, in this
section the comparative results are split into two distinct
scenarios: one to compare the results for the estimation when
the improved method is applied to the entire frame, i.e.,
Variable Search Window – Full Frame (VSW-FF), and one
to compare the results for the estimation when the improved
method is applied only to the area where motion is detected,
i.e., Variable Search Window – Motion Area (VSW-MA).
The results for the two scenarios are compared to the results
of the original segmentation method with fixed search
window dimensions, i.e., Fixed Search Window (FSW).

For the first scenario, after the detection of the area with
motion and the selection of the search window dimension,
the algorithms are applied only to the area where motion is
present. In this case, if the ratio between the entire frame and
the area with motion is one then the PSNR will be slightly
smaller than the one obtained with the initial motion
estimation method but the overall number of blocks verified
decreases. If the search window is bigger then the PSNR
increases if the motion has high amplitude and or decreases
if the motion has low amplitude. The decrease of the PSNR
is due to the small intensity differences of the pixels from the
areas of the frame where the algorithms are not applied.

Also, along with the decrease of the PSNR we obtain a
decrease of the overall number of blocks verified. For this
reason it is important to see the comparative result of the
PSNR and Nb ratio.

For the second scenario the modified motion estimation
method uses the selection of the search window dimension
by detecting the area where motion is present. If the ratio
between the entire frame and the area with motion is high
then the search window size is bigger, according to equation
(4). In this case, the precision of estimation will increase and
also the overall number of verified blocks will increase.

To compare the results we present the PSNR between the
current frame and the motion compensated frame of the
initial motion estimation method using the FS, NTSS, TDLS,
OS, and ARPS block matching algorithms, and of the
proposed estimation method with variable search window
size. We also present the overall number of blocks verified
all the algorithms in the two situations.

For the first scenario, VSW-MA, and the computer
generated sequence “Motion” we observe the following:

• First of all, as expected the NTSS algorithm results
are independent of the search window size so the
PSNR between the current frame and the motion
compensated frame decreases for the proposed
method. This happens because the algorithm is
applied only to the motion area and due to small
changes in the frames that are not determined by
motion. The overall number of blocks verified
decreases for the same reason above.

• For the other three algorithms if we compare the
results presented in Figure 4, for the fixed size
search window and for the variable size search
window and motion area, we observe that there are
two situations depending of the existence of camera
motion or the occlusion of objects.

• In the first case, for frames 2-7 and 9, there is no
camera motion and no occlusion. We see from
Figure 4a-c that the PSNR between the current frame
and the motion compensated frame obtained from
the previous frame and the motion vectors increases
for all of the search window dependent algorithms,
TDLS, OS, and ARPS.

• From Figure 4d we observe that the highest increase
in PSNR is obtained for the TDLS algorithm and
that the precision of estimation for TDLS and ARPS
exceeds the results of the FS algorithm. For the OS
algorithm, although there is an increase of the
PSNR, for some frames the precision of the motion
estimation is lower that the one of the FS algorithm.
In terms of PSNR between the current frame and the
motion compensated frame we can conclude that the
best results are obtained by the TDLS algorithm.

• Regarding the computational complexity, evaluated
through the overall number of blocks verified, we
observe from Figure 5a that for frames 1-7 and 9
there is a decrease in computational complexity
because all the algorithms are applied only to the
area where the motion is detected. For a better
observation of the results regarding the
computational complexity we have not represented
the results for the FS algorithm, results that are
constant for all the frames and are equal to 510 .

527

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• In Figure 5b is represented the computational
complexity for the three search window dependent
algorithms. We can observe that the TDLS
algorithm, that has the highest PSNR, has also the
highest number of verified blocks. The OS and
ARPS algorithms have lower computational
complexity. In terms of the overall number of
verified blocks we can conclude that both OS and
ARPS algorithms have good results.

• So in the first discussed case, for the frames without
camera motion, we can conclude that all of the three
algorithms show good results with increase of the
PSNR and a decrease of the overall number of
verified blocks and that the windows parameter
selection method has good results.

• In the second case, for frame 1, the existence of
occlusion leads to smaller PSNR even if the search
window increases. For frame 8 the existence of
camera motion leads to the detection of a motion
area almost equal to the entire frame. In this case the
ratio between the motion area and the entire frame is
close to 1 and the search window parameter is set to

7p = . In this case there is no increase in the PSNR
for none of the algorithms and a small decrease in
computational complexity due to the fact that the
detected motion area is smaller than the entire frame.

• In this case the TDLS and ARPS algorithms have
similar results in terms of PSNR but the ARPS
algorithm has lower computational complexity.

As a conclusion for this scenario of the proposed motion
estimation method we can state that:

• The computational complexity, evaluated through
the overall number of blocks verified, decreases.

• The estimation precision, evaluated through the
PSNR, increases in case of large amplitude motion
or decreases slightly in case of small amplitude
motion.

In the second scenario, i.e., VSW-FF, the results are
presented in Figures 6 and 7. Based on these results we make
the following observations:

• The NTSS algorithm has the same results for the
proposed method as the initial method both in terms
of PSNR and number of blocks verified. This was
expected because the NTSS algorithm is
independent of the search window.

• All of the three search window dependent algorithms
show an increase in PSNR, Figure 6a-c, and also an
increase in the overall number of verified blocks,
Figure 7a. From the same figures we observe that for
the proposed method in the case of the TDLS and
ARPS algorithms the PSNR is higher than the PSNR
for the FS algorithm. Also, even if the number of
verified blocks increases is significant smaller that
the number of verified blocks for the FS algorithm.

• From Figure 6d we observe that in terms of PSNR
between the current frame and the motion
compensated frame the algorithm with the best

results is the TDLS algorithm, followed by ARPS
and OS.

• From Figure 7b it can be seen that in terms of the
overall number of verified blocks the ARPS
algorithm has the best results, followed by OS and
TDLS.

In conclusion, for the variable search window parameter
method applied to the entire frame, the results show that all
of the algorithms have an increase of PSNR, when there is
no camera motion and the motion area is at least two times
smaller than the entire frame. If there is camera motion then
the value for the search window parameter will be equal to
the value for the original method and the results the same.

For applications that require high precision of estimation
and no constraints in computational complexity the proposed
method can be applied to the entire frame. For applications
that require low computational complexity the method can
be applied only to the area where motion is detected with
little loss or significant gain in PSNR.

In Tables III and IV, we represented the mean value of
the PSNR and the total number of verified blocks, for the
video sequence “Motion,” for the initial motion estimation
method with fixed search window parameter and the two
variations of the proposed variable search window method.

TABLE III. MEAN PSNR VALUES FOR SEQUENCE “MOTION”

Search Window Dimension Type
Algorithm

FSW VSW – MA VSW – FF

FS

31.34 - -

NTSS 31.06 30,67 31.06

TDLS 30.05 32,59 32.69

OS 29.74 31,24 31.39

ARPS 30.32 31,84 31.96

TABLE IV. OVEROALL NUMBER OF VERIFIED BLOCKS FOR
SEQUENCE “M OTION”

Search Window Dimension Type
Algorithm

FSW VSW – MA VSW – FF

FS 921600 - -

NTSS 87817 27399 87817

TDLS 79923 31154 100573

OS 53248 19363 69629

ARPS 34547 16851 35256

The second set of results is for the video sequence

“Hall Monitor,” a real life color video sequence with
144x176 pixels. In Tables V and VI, we presented the
results for the original motion estimation method with fixed
search window and the two variations of the proposed

528

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

method. Based on these results we can make the following
observations:

• In the first case, when the variable search window
method is applied to the area where motion is
detected, the PSNR between the current frame and
the motion compensated frame decreases for all the
presented algorithms but also the overall number of
verified blocks decreases.

• In the second case, when the variable search window
method is applied to the entire frame, the PSNR also
decreases for all of the algorithm and the overall
number of verified blocks increases.

• The results can be explained by the existence of low
amplitude motion, this means that a good precision
can be obtained using a small search window, and by
the existence of illumination variations, which lead
to an increase of the MSE and a decrease of PSNR.

TABLE V. MEAN PSNR VALUES FOR SEQUENCE “HALL MONITOR”

Search Window Dimension Type
Algorithm

FSW VSW – MA VSW – FF

FS

31.01 - -

NTSS 30.82 29.89 30.82

TDLS 30.25 29.35 30.11

OS 29.88 28.99 29.66

ARPS 29.85 28.01 28.64

TABLE VI. OVEROALL NUMBER OF VERIFIED BLOCKS FOR
SEQUENCE “HALL MONITOR”

Search Window Dimension Type
Algorithm

FSW VSW – MA VSW – FF

FS 89100 - -

NTSS 8403 2804 8403

TDLS 7424 3031 9642

OS 5148 2177 7084

ARPS 2956 951 2628

V. CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated the importance of the
search window dimensions for fast block matching
algorithms for motion estimation and a method for selecting
the search window parameter depending of the area where
motion is detected.

By evaluating twelve fast block matching algorithms for
motion estimation, with different block sizes and search
window dimensions, we concluded in [1] that the existing
fast block matching algorithms can be split into two
categories: fixed number of steps and thus independent of the

search window dimensions, and variable number of steps and
thus dependent on the search window dimensions. The
results presented in [1] showed that for increased search
windows some of the algorithms in the second category
show an increase of the PSNR between the current frame and
the motion compensated frame obtained from the previous
frame and the estimated motion vectors.

We presented four fast block matching algorithms for
motion estimation, one with fixed number of steps, and thus
independent of the search window dimensions, and three
with variable number of steps that depend of the search
window dimensions. As shown in Tables I and II for the
three algorithms with variable number of steps by increasing
the search window parameter we obtain an increase of the
motion estimation precision but also an increase of the
computational complexity.

The basic idea behind the method proposed in this paper
is to select the search window dimensions in such a manner
that lead to good precision of estimation and low
computational complexity.

The proposed motion estimation method uses a variable
search window dimension depending on the detection of the
area where motion is present. The detection of motion is
done by simple differencing between the current frame and
the previous frame and two morphological operations. The
search window parameter, that defines how many pixels the
search window is extended around the current block, is
computed according to the ratio between the size of the
entire frame and the size of the area with motion, as shown
in equations 4 and 5.

We have evaluated the proposed method in two cases:
when the algorithms are applied only to the area where
motion is present and when the algorithms are applied to the
entire frame. The first set of simulation results were obtained
for a computer generated video sequence with high
amplitude motion.

In the first case we observed that, although for some
frames a small decrease of the PSNR may occur, the mean
PSNR for the entire sequence increases and the overall
number of verified blocks decrease significantly. The
simulation results show that some algorithms have better
results in estimation precisions, the TDLS algorithm, while
others show a more significant decrease in computational
complexity, the ARPS algorithm. Depending of the
application we can use one or another.

In the second case we observed that the PSNR increases
for all the frames, when the search window parameter
increases, but also the overall number of verified blocks
increases. Similar to the result in the first case, the TDLS
algorithm shows higher increase in PSNR compared to the
OS and the ARPS algorithms, and the ARPS algorithm
shows lower increase of computational complexity compared
to the TDLS and the OS algorithms. A very important
observation is that all of the three window size dependent
algorithms obtain better precision of estimation that the first
block matching motion estimation algorithm, the FS
algorithm, and with significant lower computational
complexity.

529

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The algorithms using the proposed search window
selection method we were also applied to real life video test
sequences. The simulation for these test sequences also
included the two variations described above.

From this case of our simulation results we drew the
following conclusion:

• The search window parameter chosen by detection
of the motion area leads to two situation.

• First, when the sequences contain camera motion of
significant illumination variations, the value of the
search parameter is low and equal to the value
recommended for the fast block matching
algorithms. In this case there the results are the ones
from which we started.

• Second, when there is no camera motion, the
illumination variations are low enough and the
objects in motion occupy an area much smaller than
the entire frame, the search window parameter value
is higher than the one in the first case.

• In this case, for the first scenario, when the
algorithms are applied to the entire frame, the results
for the real life test sequences show a small decrease
in estimation precision and an increase in
computational complexity. This is explainable by the
existence of low amplitude motion that means no
increase in estimation precision when the search
window parameter increases, by the fact that in the
areas without motion there are changes in pixel
values due to illumination, changes that can be
compensated by motion estimation with a low search
parameter, and also by the search pattern used by the
algorithms. The computational complexity increases
because in the areas without motion many blocks are
verified even if is not necessary.

• For the second scenario, when the algorithms are
applied only to the motion area, the estimation
precision decreases slightly but the computational
complexity decreases significantly. The decrease in
estimation precision is explainable by the
illumination variations in the areas not used,
variations that can compensated by motion
estimation with a low search window parameter. The
decrease in computational complexity is high and it
is a very important aspect that can be exploited.

• As an overall conclusion of the presented method we
can definitely say that the proposed search window
parameter method show good results in estimation
precision when the test sequences contain objects
with high amplitude motion and also good results in
computational complexity for the second scenario
presented.

For future work we consider the idea of using the motion
area detection for selecting the search window parameter
value, by applying the algorithms with the selected
parameter value only to the motion area and by applying the
algorithms with the lowest parameter value for the areas
without motion. Also we consider evaluating the results for
the proposed method and the presented algorithms for
different block dimensions.

ACKNOWLEDGMENT

This work was supported by the UEFISCDI Romania
under the Grant PN-II-RU-TE no. 7/05.08.2010.

REFERENCES
[1] I. Pirnog, C. Anghel, A. A. Enescu, and C. Paleologu,

“Evaluation of Fast Algorithms for Motion Estimation,”
AICT 2011, The Seventh Advanced International Conference
on Telecommunications, pp. 107-111, Mar. 2011.

[2] Z. Chen, “Efficient Block Matching Algorithm for Motion
Estimation,” International Journal of Signal Processing,
5(2):133-137, 2009.

[3] ISO/MPEG N4358, “Text of ISO/IEC Final Draft
International Standard 15938-3 Information Technology -
Multimedia Content Description Interface - Part 3 Visual,”
MPEG Video Group, Sydney, July 2001.

[4] A. Barjatya, “Block Matching Algorithms For Motion
Estimation,” Final Project Paper, 2004.

[5] Y. C. Lin and S. C. Tai, “Fast Full-Search Block-Matching
Algorithm for Motion-Compensated Video Compression,”
IEEE Transactions on Communications, 45(5):527-531, 1997.

[6] R. Li, B. Zeng, and M. L. Liou, “A New Three-Step Search
Algorithm for Block Motion Estimation,” IEEE Trans.
Circuits and Systems for Video Technology, vol 4., no. 4, pp.
438-442, Aug. 1994.

[7] S. Jamkar, S. Belhe, S. Dravid, and M. S. Sutaone, “A
comparison of block-matching search algorithms in motion
estimation,” Proceedings of the 15th International Conference
on Computer Communication, pp. 730 – 739, Mumbai, India,
2002.

530

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 a) b)

 c) d)

Figure 4. Comparative simulation results for video sequence “Motion” for 8x8 pixel blocks with fixed and variable search window
size and motion area. a) Two-Dimensional Logarithmic Search. b) Orthogonal Search. c) Adaptive Rood Pattern Search. d)

Comparative results of the three algorithms with variable search window size.

Figure 5. Overall number of verified blocks for block matching motion estimation for the video sequence “Motion” with 8x8 pixel
blocks. a) Comparative results for fixed and variable search window size. b) Comparative results for the three algorithms in the case

of variable search window size.

531

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 a) b)

 c) d)

Figure 6. Comparative simulation results for video sequence “Motion” for 8x8 pixel blocks with fixed and variable search window
size and full frame. a) Two-Dimensional Logarithmic Search. b) Orthogonal Search. c) Adaptive Rood Pattern Search. d) Comparative

results of the three algorithms with variable search window size.

Figure 7. Overall number of verified blocks for block matching motion estimation for the video sequence “Motion” with 8x8 pixel

blocks and full frame. a) Comparative results for fixed and variable search window size. b) Comparative results for the three
algorithms in the case of variable search window size.

