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Abstract— Block matching algorithms for motion estimation 
were developed in order to obtain reasonable motion 
estimation efficiency with minimum computational cost. 
Although the gain in the computational complexity is 
significant these algorithms have less precision in estimation 
than the basic block matching motion estimation algorithm, 
i.e., the Full Search algorithm. The proposed motion estimation 
method can be used with any of the existing block matching 
algorithms and brings an increase of estimation precision with 
small increase of the global computational cost. This 
improvement is achieved by choosing the search window size 
depending of the ration between the frame size and the motion 
area size. 
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I.  INTRODUCTION 

Motion information is very useful in the video 
compression process [2] since the development of video 
content retrieval applications [3]. In the video compression 
systems, the motion vectors are used for the representation of 
a video frame based on the previous frames. In the content 
retrieval systems, the video content can be found based on 
the video motion properties expressed by motion descriptors 
[4]. The extraction of motion vectors from a video frame 
based on the previous frame is known as motion estimation. 
There are many motion estimation methods, e.g., parametric 
methods, stochastic methods. The simplest and most used 
motion estimation method is the one based on block 
matching. The block matching algorithms split the current 
video frame into blocks and for each block a motion vector is 
extracted by finding the best matching block in the previous 
frame. The best matching block is found using a cost 
function that measures the similarity between two blocks. 
Since the best block is usually in the vicinity of the position 
of the current block, but in the previous frame, the search for 
the best matching block is not performed in the entire frame 
but in an area called the search window. The dimension of 
the search window defines the computational cost of the 
algorithm but also the precision of the estimation. The best 
block matching algorithms use a fixed dimension for the 
search window and show good results [5].  

In this paper we present i) a group of fast block matching 
algorithms for motion estimation, ii) the importance of the 
search windows size in the precision of the estimation, iii) 
the algorithms that show increase in precision, and iv) a 
method for selecting the search windows dimensions in order 

to obtain the best estimation precision without an increase of 
computational cost. The fast block matching algorithms gain 
a significant decrease of the computational cost by selecting 
only a small set of blocks in the search windows. The current 
block, or the reference block, is compared only to these 
blocks and the best matching block is selected from this set. 
This means less comparisons, so small computational cost, 
but also the possibility that the best block is not found 
between the block in the search set. The main difference 
between the existing block matching algorithms is the search 
pattern, i.e., the method for selecting the blocks in the search 
set. We can classify these algorithms into two categories: 
fixed number of steps and variable number of steps. The 
ones in the first category have fixed number of steps and the 
estimation precision does not depend on the search window 
dimensions. The ones in the second category usually start 
with a search step, i.e., half the search window parameter, so 
the precision of the estimation depends on the search 
window size. The method proposed in this paper uses a 
variable size search window in order to obtain better motion 
estimation with no increase in the overall computational cost. 
The selection of the search window size is done in relation to 
the ratio between the frame size and the motion area size. 

The rest of the paper is organized as follows. In Section 
II, we briefly describe the block matching motion estimation 
method; then, we present four of the best fast block 
algorithms, one with fixed number of steps and three with 
variable number of steps. In Section III, we present the 
proposed search windows’ dimensions selection method. The 
comparative experimental results of the presented algorithms 
for different window sizes are shown in Section IV. Finally, 
the conclusions are provided in Section V. 

II. BLOCK MATCHING MOTION ESTIMATION 

Motion information is the most significant information of 
videos. A video can be regarded as a group of successive 
frames or images that together convey a specific message. 
Therefore, extracting features of videos can be accomplished 
using existing methods for extracting image features. There 
is a very important feature of the video that does not exist for 
images, namely the motion. 

The concept of motion refers to the variation in time of 
the spatial position and applies to existing objects or the 
entire frame, in the case of camera motion. In the first case 
the background is not changing position and only the objects 
in the video have a variation of position over time. In the 
second case the whole frame changes over time due to the 
camera motion.  
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Figure 1.  Schematic representation of block matching motion estimation. 

There is also the case in which there is both camera 
motion and moving objects. Extracting video motion 
information is called motion estimation. This operation is 
done by comparing two by two successive video frames 
using different methods. 

Motion estimation is used in the processes of video 
compression/decompression. In the compression phase the 
motion is estimated by comparing the current frame with the 
previous frame. Then, using the motion information and the 
previous frame, a motion compensated image of the current 
frame is build and the difference between the current frame 
and the motion compensated frame is computed. Also, 
instead of compressing the current frame, the motion 
information and the error frame is compressed. In this way 
higher rates of compression are achieved. 

There are two classes of motion estimation methods: 
• Motion flow estimation: for each pixel of the frame a 

motion vector is determined. The advantages of the 
methods in this class are high accuracy and high 
resolution of estimation. The main disadvantage is 
the computational complexity. 

• Motion estimation based on blocks of pixels, known 
as block matching motion estimation. The basic idea 
of block matching algorithms is dividing the current 
frame is a matrix of non-overlapping macro blocks 
and determining motion vectors for each block of 
video frame (Figure 1). 

The main advantage of the methods of the second class is 
that the size of pixel blocks can be chosen depending on the 
particular application. So for applications requiring high 
precision of motion vector estimation the size of the pixel 
blocks can be smaller and the computational complexity will 
increase, while for applications where speed is more 
important than the accuracy the blocks of pixels can be 
larger. If the size of the blocks is chosen 1x1 we obtain the 
motion flow estimation. 

After the splitting of the frame into pixel blocks the 
motion of each block is estimated as follows: the block in the 
current frame is compared to all overlapping blocks in the 
search window. The search window is an area in the previous 
frame obtained by selecting the corresponding block, the 
block with the same spatial position as the current block, and 
adding   pixels in each direction. The parameter is called the 
search window parameter. Its value determines the 
estimation precision and the computational complexity. 
Higher value implies higher chances of correct estimation 
and high number of blocks in the search window.  

Determining the best block is made based on a cost 
function. For each block in the current frame a set of cost 
function values is determined by comparing it to all 
overlapping block in the search window. The block with the 
minimum cost is the best matching block. The most used 
cost functions are the Mean Absolute Difference (MAD) and 
the Mean Squared Error (MSE) given by (1) and (2), 
respectively: 
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where N  is the block size, ijC  are the pixels values of the 

block in the current frame, and ijP  are the pixels values of 

the block in the previous frame. 
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Figure 2.  Example of blocks selected at every step for the New Three Step Search algorithm. 

After the best matching block is determined the motion 
vector is computed as the difference between the spatial 
position of the current block and the spatial position of the 
best block. The resulting motion vector has two components 
for each direction, horizontal and vertical. 

Based on the motion vectors of all blocks from the 
current frame and blocks in the previous frame the motion 
compensated frame is computed. The estimation precision or 
accuracy is determined using the Peak Signal to Noise Ratio 
(PSNR) between the current frame and the motion 
compensated frame, i.e., 

 
2

10lg
Vpp

PSNR
MSE

 
=  

 
, (3) 

where Vpp  is the peak to peak value of the original data and 
MSE  is the mean square error between the original data and 
the motion compensated data. 

A. Full Search Algorithm 

The first block matching motion estimation algorithm is 
called the Full Search (FS) algorithm, where all the 
overlapping blocks in the search window are used for 
determining the best matching block. Although this 
algorithm is the best in terms of prediction quality and 
simplicity, it is also the most inefficient in terms of 
arithmetic complexity. To assess the computational 
complexity of the FS algorithm we needed to determine the 
number of blocks in the search window compared with each 
reference block. For example, for 16x16 blocks and a search 
parameter we have 225 blocks in the search window. 

To reduce the computational complexity new algorithms 
were developed with a higher quality complexity ratio. These 
algorithms are called suboptimal because they offer lower 
prediction quality than the algorithm above and are also 
called fast algorithms because they have lower 
computational complexity. These algorithms use only a set 
of blocks from the search window to determine the best 
matching block. 

There are two classes of fast algorithms: 
• Search Window Independent algorithms; 
• Search Window Dependent algorithms. 
 

B. Search Window Independent Algorithms 

In order to properly classify the fast block matching 
algorithms it is important to explain the way these algorithms 
function and to identify the parameters that determine the 
affiliation of a certain algorithm to one of the classes defined 
earlier. 

All of the fast block matching algorithms have an initial 
step in which a block from the current frame is compared to 
the correspondent block in the previous frame and a number 
of blocks at a distance S  from the correspondent block. The 
number of blocks and their position is chosen different for 
every algorithm. The distance is defined in terms of number 
of pixels. 

The algorithms in the first class start with an initial 
distance 4S =  and after one step the distance is halved. The 
algorithms stop when the distance reaches 1. 

For this category of algorithms the size of the search 
window is 7 pixels in each direction, meaning that if we have 
block of dimension N N×  then the size of the search 
window will be ( ) ( )7 7N N+ × + . We recall that the search 

window parameter is denoted with p . The value 7p =  is 
chosen so that the algorithms go through all their steps 
without reaching a block outside the search window limits. 

The window independent algorithms have two important 
properties: 

• The maximum number of verified blocks is known. 
• The precision of estimation is independent of the 

search window dimensions, so that if the motion has 
a high amplitude the increase of the search window 
dimensions will have no effect on the estimation. 

The most efficient fast block matching algorithm in this 
category is the New Three Step Search (NTSS) algorithm. It 
has good precision of estimation and low computational 
complexity. It does not fall into the category of interest for 
the proposed method but for comparison reasons we present 
it in the following. 

C. New Three Step Search Algorithm 

The NTSS algorithm compares the block in the current 
frame to the center block, eight blocks at distance 4S =  and 
eight blocks at a distance 1S =  on the horizontal and vertical 
axes, in the previous frame [6].  
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Figure 3.  Example of blocks selected at every step for the Two Dimensional Logarithmic Search algorithm. 

The best block from these initial 17 blocks is determined 
based on the cost function values. Depending on the 
positions of the best block we have three situations: 

1) If the best block is the one in the centre of the search 
window, then the algorithm stops. 

2) If the best block is one of the blocks located at a 
distance 1S =  , then its neighbors are compared with the 
current block and the best block is determined as the block 
with the minimum cost function value. 

3) If the best block is one of the blocks located at a 
distance 4S = , then the block is set as the new center, the 
distance is halved and all eight blocks at distance S  are 
verified. The algorithm stops when the distance is one. 

To decrease the number of blocks compared and to 
eliminate the re-evaluation of some blocks, the neighbors 
selected in the second case (when the best block is one of 
the blocks located at distance 1S = ) depend on the position 
of the best block as shown in Figure 2. 

D. Search Window Dependent Algorithms 

As compared to the algorithms in the first class the 
algorithm in this class start with an initial search distance   
equal to half the search window parameter p . The selection 
of the blocks that are used for computing the cost values 
depends on the algorithm.  

It is obvious that compared to the first class the 
algorithms in the second class have a maximum number of 
verified blocks that depends on the search window 
dimensions. Also, if the search window size increases the 
precision of estimation will increase in the case with high 
amplitude motion. 

In the following, we present the most important 
algorithms in this class. 

E. Two Dimensional Logarithmic Search Algorithm 

Two Dimensional Logarithmic Search (TDLS) algorithm 
selects at every step the center block and four blocks at a 
distance S  on the horizontal and vertical axes. The initial 
distance is chosen as half the search window parameter 

7p = . If the search parameter is an odd number then S  is 

chosen as the rounded value of 2p . 
After the selection of the initial distance, the block from 

the current frame is compared to the center block, i.e., the 
corresponding block in the previous frame, and the four 
blocks at distance S  on the horizontal and vertical axes. The 
comparison is done by computing the cost functions. The 
block that gives the lowest cost function is selected for the 
next step. 

If the block selected at the first step is the center block 
then the search distance S  is halved, else the selected block 
is set as the new center and the first step is repeated. 

When the search distance becomes equal to one the 
center block and all its neighbors are compared to the block 
in the current frame and the best matching block is selected 
as the block with the minimum cost function value.  

F. Orthogonal Search Algorithm 

The Orthogonal Search (OS) algorithm is a combination 
of the TDLS algorithm and the Three Step Search (TSS) 
algorithm. The TSS algorithm is the first fast block matching 
algorithm and is independent of the search window 
dimensions, so it belongs to the first class of algorithms. The 
similarity between OS and TSS algorithms is the number of 
steps. 

The initial search distance is chosen as half the search 
window parameter. The OS algorithm has the following 3 
steps:  

1) The block from the current frame is compared to the 
center block and the two blocks at distance S  on the 
horizontal axis. The block with the minimum cost function 
value is set as the new center. 

2) The center block and the two blocks at distance S  on 
the vertical axis are verified, and the new center is selected 
as the block with the lowes cost. 

3) If the distance parameter S  is bigger than one then 
the distance is halved and steps 1 and 2 are repeated. Else, 
the last center block is the best matching block. 
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G. Adaptive Rood Pattern Search Algorithm 

The Adaptive Rood Pattern Search (ARPS) algorithm 
uses the motion information of the neighboring block in the 
left. This is helpful if the current block and its neighbor on 
the left belong to the same object in the frame; in this case, 
their motion is similar [7]. The steps of the ARPS algorithm 
are: 

1) The block from the current frame is compared to the 
center block, four blocks at distance S  on the horizontal 
and vertical axes, and the block indicated by the motion 
vector of the neighbor block in the left. The initial search 
distance S  is selected as the maximum between the 
absolute values of the neighboring motion vector. 

2) The block with the minimum cost function value is 
set as the new center. The search distance is set to 1 and the 
centre block together with its four axis neighbors are 
evaluated. 

3) If the block with the minimum cost is in the centre, 
then the algorithm stops; consequently, this is the best 
block. Else, step 2 is repeated. 

III.  PROPOSED SEARCH WINDOW SELECTION 

The proposed method is based on the simulation results 
that showed, as the theory stated, that by increasing the size 
of the search window the precision of estimation increases. 
The increase of the search window dimensions has an 
unwanted effect, i.e., an increase of the number of verified 
blocks.  

To highlight these observations we present in Table I the 
PSNR between the current frame and the motion 
compensated frame for all, of the above presented, fast block 
matching algorithms. Also, in Table II we present the total 
number of blocks verified. The simulations were done for 
different search window dimensions, 8x8 pixel blocks and 
the computer generated video sequence “Motion.” 

From Table I it can be observed that for the search 
window dependent algorithms the estimation precision 
increases with the increase of the search window. 

In Table II it can be seen that along with the increase of 
the PSNR there is also on increase of the number of verified 
blocks. 

Based on the results presented in both tables we make 
two observations: 

1) First of all, for the search window dependent 
algoritms the estimation precision parameter for larger 
search windows exceeds both the FS algoritm and the 
NTSS.  

2) Second, although for all the search window 
dependent algoritms the number of verified blocks 
increases, the computational complexity remains 
significantly smaller than for the FS algoritms, and in some 
cases, like ARPS, even smaller than for the NTSS 
algorithm. 

 
 
 

TABLE I.  PSNR VALUES FOR DIFFERENT WINDOW SIZES  

Search Window Parameter 
Algorithm  

p=7 p=15 p=31 p=63 

 
FS 

 
30.78 

 
- 

 
- 

 
- 

 
NTSS 

 
30.49 

 
30.49 

 
30.49 

 
30.49 

 
TDLS 

 
29.3 

 
32.49 

 
33.8 

 
34.69 

 
OS 

 
28.88 

 
31.54 

 
32.18 

 
33.45 

 
ARPS 

 
29.47 

 
31.8 

 
32.73 

 
33.21 

 

TABLE II.  OVEROALL NUMBER  OF VERIFIED BLOCKS FOR 
DIFFERENT WINDOW SIZES  

Search Window Parameter 
Algorithm  

p=7 p=15 p=31 p=63 

 
FS 

 
921600 

 
- 

 
- 

 
- 

 
NTSS 

 
79898 

 
79898 

 
79898 

 
79898 

 
TDLS 

 
74349 

 
93676 

 
111607 

 
128330 

 
OS 

 
53248 

 
69632 

 
85988 

 
102300 

 
ARPS 

 
28548 

 
30038 

 
30462 

 
30642 

 
There is also one disadvantage in increasing the search 

window. For sequences with low motion amplitude there is 
small or even zero increase in the estimation precision but 
the increase of the number of verified blocks remains. So the 
primary concern is determining a way of obtaining the best 
estimation precision with the lowest computational cost. 

The goal of proposed method is the optimum search 
window size selection. This is done in three simple steps: 

1) Motion area detection.  
2) Search window parameter computation. 
3) Motion estimation. 
The detection of the area where motion exists is done by 

simple difference between the current frame and the previous 
frame and two morphological operations to eliminate the 
misdetection of motion due to variations of pixel intensity. 

The search window parameter is computed based on the 
ratio between the entire frame and the motion area, as: 

 12 1rp += − , (4) 

 x y

x y

A A
r

F F

 ×
=  

×  
, (5) 

where [ ]⋅  is the round operator, xA  and yA  are the motion 

area dimension, xF  and yF  are the frame dimensions, and 

p  is the search window parameter. The parameter p  is 
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chosen as a power of 2, minus one, so that when computing 
the search parameter S  (as half the search window 
dimension) it will be also a power of 2. 

By selecting the search window size this way we obtain 
the best PSNR with the lowest computational complexity. 
This means that if the ratio r  is high the PSNR will be 
higher without increasing to much the computational 
complexity. If the ratio is close to one the window size will 
be low, with 7p = , the usual value for the window size 
independent fast block matching algorithms. 

Also by applying the motion estimation algorithms only 
to the area where motion exists there will be a significant 
decrease of the computational complexity with small loss of 
estimation precision. 

IV. SIMULATION RESULTS 

In this section we present the comparative results of the 
presented fast block matching algorithms for fixed search 
window size and variable search window size selected with 
the proposed method. 

The fast block matching algorithms presented in section 
II were implemented using Matlab and we used a set of 
video sequences containing monochrome videos and color 
videos of different sizes, some of the videos artificially 
generated and some from the real life. All the videos were 
obtained from test sequences databases commonly used for 
motion estimation. 

We present the results for the test sequence “Motion:” a 
computer generated monochrome sequence with 10 frames, 
512x512 pixels and high amplitude motion.  

In concordance with step 3 of the proposed search 
window selection method presented in Section III, in this 
section the comparative results are split into two distinct 
scenarios: one to compare the results for the estimation when 
the improved method is applied to the entire frame, i.e., 
Variable Search Window – Full Frame (VSW-FF), and one 
to compare the results for the estimation when the improved 
method is applied only to the area where motion is detected, 
i.e., Variable Search Window – Motion Area (VSW-MA). 
The results for the two scenarios are compared to the results 
of the original segmentation method with fixed search 
window dimensions, i.e., Fixed Search Window (FSW). 

For the first scenario, after the detection of the area with 
motion and the selection of the search window dimension, 
the algorithms are applied only to the area where motion is 
present. In this case, if the ratio between the entire frame and 
the area with motion is one then the PSNR will be slightly 
smaller than the one obtained with the initial motion 
estimation method but the overall number of blocks verified 
decreases. If the search window is bigger then the PSNR 
increases if the motion has high amplitude and or decreases 
if the motion has low amplitude. The decrease of the PSNR 
is due to the small intensity differences of the pixels from the 
areas of the frame where the algorithms are not applied. 

Also, along with the decrease of the PSNR we obtain a 
decrease of the overall number of blocks verified. For this 
reason it is important to see the comparative result of the 
PSNR and Nb ratio. 

For the second scenario the modified motion estimation 
method uses the selection of the search window dimension 
by detecting the area where motion is present. If the ratio 
between the entire frame and the area with motion is high 
then the search window size is bigger, according to equation 
(4). In this case, the precision of estimation will increase and 
also the overall number of verified blocks will increase. 

To compare the results we present the PSNR between the 
current frame and the motion compensated frame of the 
initial motion estimation method using the FS, NTSS, TDLS, 
OS, and ARPS block matching algorithms, and of the 
proposed estimation method with variable search window 
size. We also present the overall number of blocks verified 
all the algorithms in the two situations.  

For the first scenario, VSW-MA, and the computer 
generated sequence “Motion” we observe the following: 

• First of all, as expected the NTSS algorithm results 
are independent of the search window size so the 
PSNR between the current frame and the motion 
compensated frame decreases for the proposed 
method. This happens because the algorithm is 
applied only to the motion area and due to small 
changes in the frames that are not determined by 
motion. The overall number of blocks verified 
decreases for the same reason above. 

• For the other three algorithms if we compare the 
results presented in Figure 4, for the fixed size 
search window and for the variable size search 
window and motion area, we observe that there are 
two situations depending of the existence of camera 
motion or the occlusion of objects. 

• In the first case, for frames 2-7 and 9, there is no 
camera motion and no occlusion. We see from 
Figure 4a-c that the PSNR between the current frame 
and the motion compensated frame obtained from 
the previous frame and the motion vectors increases 
for all of the search window dependent algorithms, 
TDLS, OS, and ARPS. 

• From Figure 4d we observe that the highest increase 
in PSNR is obtained for the TDLS algorithm and 
that the precision of estimation for TDLS and ARPS 
exceeds the results of the FS algorithm. For the OS 
algorithm, although there is an increase of the 
PSNR, for some frames the precision of the motion 
estimation is lower that the one of the FS algorithm. 
In terms of PSNR between the current frame and the 
motion compensated frame we can conclude that the 
best results are obtained by the TDLS algorithm. 

• Regarding the computational complexity, evaluated 
through the overall number of blocks verified, we 
observe from Figure 5a that for frames 1-7 and 9 
there is a decrease in computational complexity 
because all the algorithms are applied only to the 
area where the motion is detected. For a better 
observation of the results regarding the 
computational complexity we have not represented 
the results for the FS algorithm, results that are 
constant for all the frames and are equal to 510 . 
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• In Figure 5b is represented the computational 
complexity for the three search window dependent 
algorithms. We can observe that the TDLS 
algorithm, that has the highest PSNR, has also the 
highest number of verified blocks. The OS and 
ARPS algorithms have lower computational 
complexity. In terms of the overall number of 
verified blocks we can conclude that both OS and 
ARPS algorithms have good results. 

• So in the first discussed case, for the frames without 
camera motion, we can conclude that all of the three 
algorithms show good results with increase of the 
PSNR and a decrease of the overall number of 
verified blocks and that the windows parameter 
selection method has good results. 

• In the second case, for frame 1, the existence of 
occlusion leads to smaller PSNR even if the search 
window increases. For frame 8 the existence of 
camera motion leads to the detection of a motion 
area almost equal to the entire frame. In this case the 
ratio between the motion area and the entire frame is 
close to 1 and the search window parameter is set to 

7p = . In this case there is no increase in the PSNR 
for none of the algorithms and a small decrease in 
computational complexity due to the fact that the 
detected motion area is smaller than the entire frame. 

• In this case the TDLS and ARPS algorithms have 
similar results in terms of PSNR but the ARPS 
algorithm has lower computational complexity. 

As a conclusion for this scenario of the proposed motion 
estimation method we can state that:  

• The computational complexity, evaluated through 
the overall number of blocks verified, decreases. 

• The estimation precision, evaluated through the 
PSNR, increases in case of large amplitude motion 
or decreases slightly in case of small amplitude 
motion. 

In the second scenario, i.e., VSW-FF, the results are 
presented in Figures 6 and 7. Based on these results we make 
the following observations: 

• The NTSS algorithm has the same results for the 
proposed method as the initial method both in terms 
of PSNR and number of blocks verified. This was 
expected because the NTSS algorithm is 
independent of the search window.  

• All of the three search window dependent algorithms 
show an increase in PSNR, Figure 6a-c, and also an 
increase in the overall number of verified blocks, 
Figure 7a. From the same figures we observe that for 
the proposed method in the case of the TDLS and 
ARPS algorithms the PSNR is higher than the PSNR 
for the FS algorithm. Also, even if the number of 
verified blocks increases is significant smaller that 
the number of verified blocks for the FS algorithm. 

• From Figure 6d we observe that in terms of PSNR 
between the current frame and the motion 
compensated frame the algorithm with the best 

results is the TDLS algorithm, followed by ARPS 
and OS.  

• From Figure 7b it can be seen that in terms of the 
overall number of verified blocks the ARPS 
algorithm has the best results, followed by OS and 
TDLS.  

In conclusion, for the variable search window parameter 
method applied to the entire frame, the results show that all 
of the algorithms have an increase of PSNR, when there is 
no camera motion and the motion area is at least two times 
smaller than the entire frame. If there is camera motion then 
the value for the search window parameter will be equal to 
the value for the original method and the results the same. 

For applications that require high precision of estimation 
and no constraints in computational complexity the proposed 
method can be applied to the entire frame. For applications 
that require low computational complexity the method can 
be applied only to the area where motion is detected with 
little loss or significant gain in PSNR. 

In Tables III and IV, we represented the mean value of 
the PSNR and the total number of verified blocks, for the 
video sequence “Motion,” for the initial motion estimation 
method with fixed search window parameter and the two 
variations of the proposed variable search window method. 

TABLE III.  MEAN PSNR VALUES FOR SEQUENCE “MOTION”   

Search Window Dimension Type 
Algorithm  

FSW VSW – MA VSW – FF 

 
FS 

 
31.34 - - 

 
NTSS 31.06 30,67 31.06 

 
TDLS 30.05 32,59 32.69 

 
OS 29.74 31,24 31.39 

 
ARPS 30.32 31,84 31.96 

TABLE IV.  OVEROALL NUMBER  OF VERIFIED BLOCKS FOR 
SEQUENCE “M OTION”   

Search Window Dimension Type 
Algorithm  

FSW VSW – MA VSW – FF 

 
FS 921600 - - 

 
NTSS 87817 27399 87817 

 
TDLS 79923 31154 100573 

 
OS 53248 19363 69629 

 
ARPS 34547 16851 35256 

 
 
The second set of results is for the video sequence 

“Hall Monitor,” a real life color video sequence with 
144x176 pixels. In Tables V and VI, we presented the 
results for the original motion estimation method with fixed 
search window and the two variations of the proposed 
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method. Based on these results we can make the following 
observations: 

• In the first case, when the variable search window 
method is applied to the area where motion is 
detected, the PSNR between the current frame and 
the motion compensated frame decreases for all the 
presented algorithms but also the overall number of 
verified blocks decreases.  

• In the second case, when the variable search window 
method is applied to the entire frame, the PSNR also 
decreases for all of the algorithm and the overall 
number of verified blocks increases. 

• The results can be explained by the existence of low 
amplitude motion, this means that a good precision 
can be obtained using a small search window, and by 
the existence of illumination variations, which lead 
to an increase of the MSE and a decrease of PSNR.  

 

TABLE V.  MEAN PSNR VALUES FOR SEQUENCE “HALL MONITOR”   

Search Window Dimension Type 
Algorithm  

FSW VSW – MA VSW – FF 

 
FS 

 
31.01 - - 

 
NTSS 30.82 29.89 30.82 

 
TDLS 30.25 29.35 30.11 

 
OS 29.88 28.99 29.66 

 
ARPS 29.85 28.01 28.64 

TABLE VI.  OVEROALL NUMBER  OF VERIFIED BLOCKS FOR 
SEQUENCE “HALL MONITOR”   

Search Window Dimension Type 
Algorithm  

FSW VSW – MA VSW – FF 

 
FS 89100 - - 

 
NTSS 8403 2804 8403 

 
TDLS 7424 3031 9642 

 
OS 5148 2177 7084 

 
ARPS 2956 951 2628 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have evaluated the importance of the 
search window dimensions for fast block matching 
algorithms for motion estimation and a method for selecting 
the search window parameter depending of the area where 
motion is detected. 

By evaluating twelve fast block matching algorithms for 
motion estimation, with different block sizes and search 
window dimensions, we concluded in [1] that the existing 
fast block matching algorithms can be split into two 
categories: fixed number of steps and thus independent of the 

search window dimensions, and variable number of steps and 
thus dependent on the search window dimensions. The 
results presented in [1] showed that for increased search 
windows some of the algorithms in the second category 
show an increase of the PSNR between the current frame and 
the motion compensated frame obtained from the previous 
frame and the estimated motion vectors.  

We presented four fast block matching algorithms for 
motion estimation, one with fixed number of steps, and thus 
independent of the search window dimensions, and three 
with variable number of steps that depend of the search 
window dimensions. As shown in Tables I and II for the 
three algorithms with variable number of steps by increasing 
the search window parameter we obtain an increase of the 
motion estimation precision but also an increase of the 
computational complexity. 

The basic idea behind the method proposed in this paper 
is to select the search window dimensions in such a manner 
that lead to good precision of estimation and low 
computational complexity. 

The proposed motion estimation method uses a variable 
search window dimension depending on the detection of the 
area where motion is present. The detection of motion is 
done by simple differencing between the current frame and 
the previous frame and two morphological operations. The 
search window parameter, that defines how many pixels the 
search window is extended around the current block, is 
computed according to the ratio between the size of the 
entire frame and the size of the area with motion, as shown 
in equations 4 and 5.  

We have evaluated the proposed method in two cases: 
when the algorithms are applied only to the area where 
motion is present and when the algorithms are applied to the 
entire frame. The first set of simulation results were obtained 
for a computer generated video sequence with high 
amplitude motion. 

In the first case we observed that, although for some 
frames a small decrease of the PSNR may occur, the mean 
PSNR for the entire sequence increases and the overall 
number of verified blocks decrease significantly. The 
simulation results show that some algorithms have better 
results in estimation precisions, the TDLS algorithm, while 
others show a more significant decrease in computational 
complexity, the ARPS algorithm. Depending of the 
application we can use one or another. 

In the second case we observed that the PSNR increases 
for all the frames, when the search window parameter 
increases, but also the overall number of verified blocks 
increases. Similar to the result in the first case, the TDLS 
algorithm shows higher increase in PSNR compared to the 
OS and the ARPS algorithms, and the ARPS algorithm 
shows lower increase of computational complexity compared 
to the TDLS and the OS algorithms. A very important 
observation is that all of the three window size dependent 
algorithms obtain better precision of estimation that the first 
block matching motion estimation algorithm, the FS 
algorithm, and with significant lower computational 
complexity. 
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The algorithms using the proposed search window 
selection method we were also applied to real life video test 
sequences. The simulation for these test sequences also 
included the two variations described above. 

From this case of our simulation results we drew the 
following conclusion: 

• The search window parameter chosen by detection 
of the motion area leads to two situation.  

• First, when the sequences contain camera motion of 
significant illumination variations, the value of the 
search parameter is low and equal to the value 
recommended for the fast block matching 
algorithms. In this case there the results are the ones 
from which we started. 

• Second, when there is no camera motion, the 
illumination variations are low enough and the 
objects in motion occupy an area much smaller than 
the entire frame, the search window parameter value 
is higher than the one in the first case.  

• In this case, for the first scenario, when the 
algorithms are applied to the entire frame, the results 
for the real life test sequences show a small decrease 
in estimation precision and an increase in 
computational complexity. This is explainable by the 
existence of low amplitude motion that means no 
increase in estimation precision when the search 
window parameter increases, by the fact that in the 
areas without motion there are changes in pixel 
values due to illumination, changes that can be 
compensated by motion estimation with a low search 
parameter, and also by the search pattern used by the 
algorithms. The computational complexity increases 
because in the areas without motion many blocks are 
verified even if is not necessary.  

• For the second scenario, when the algorithms are 
applied only to the motion area, the estimation 
precision decreases slightly but the computational 
complexity decreases significantly. The decrease in 
estimation precision is explainable by the 
illumination variations in the areas not used, 
variations that can compensated by motion 
estimation with a low search window parameter. The 
decrease in computational complexity is high and it 
is a very important aspect that can be exploited. 

• As an overall conclusion of the presented method we 
can definitely say that the proposed search window 
parameter method show good results in estimation 
precision when the test sequences contain objects 
with high amplitude motion and also good results in 
computational complexity for the second scenario 
presented. 

For future work we consider the idea of using the motion 
area detection for selecting the search window parameter 
value, by applying the algorithms with the selected 
parameter value only to the motion area and by applying the 
algorithms with the lowest parameter value for the areas 
without motion. Also we consider evaluating the results for 
the proposed method and the presented algorithms for 
different block dimensions. 
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 a) b) 

 
 c) d) 

Figure 4.  Comparative simulation results for video sequence “Motion” for 8x8 pixel blocks with fixed and variable search window 
size and motion area. a) Two-Dimensional Logarithmic Search. b) Orthogonal Search. c) Adaptive Rood Pattern Search. d) 

Comparative results of the three algorithms with variable search window size. 

 
Figure 5.  Overall number of verified blocks for block matching motion estimation for the video sequence “Motion” with 8x8 pixel              
blocks.  a) Comparative results for fixed and variable search window size. b) Comparative results for the three algorithms in the case 

of variable search window size. 
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 a) b) 

 
 c) d) 

Figure 6.  Comparative simulation results for video sequence “Motion” for 8x8 pixel blocks with fixed and variable search window 
size and full frame. a) Two-Dimensional Logarithmic Search. b) Orthogonal Search. c) Adaptive Rood Pattern Search. d) Comparative 

results of the three algorithms with variable search window size. 

 
Figure 7.  Overall number of verified blocks for block matching motion estimation for the video sequence “Motion” with 8x8 pixel 

blocks and full frame. a) Comparative results for fixed and variable search window size. b) Comparative results for the three 
algorithms in the case of variable search window size. 


