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Abstract -- While content-based image retrieval has been 

researched for more than two decades, retrieving 3D datasets has 

been progressing considerably slower, especially in the application 

to the medical domain. This is in part due to the limitation of 

processing speed while trying to retrieve high-resolution datasets 

in real-time. Another barrier is that most existing methods have 

been developed based on 2D images instead of 3D, leaving a gap to 

be filled. At present, a significant number of exploitations are 

focusing on the extraction of 3D shapes. As it happens, it appears 

that, to a large extent, the remaining information tends to be 

equally important in the task of clinical decision making. With this 

in mind, in this paper, a texture-based online system, MIRAGE, 

has been developed to facilitate CBIR for 3D images. Specifically, 

four texture-based approaches stemming from 2D forms are 

studied extensively through the application to 3D images using a 

collection of MR brain images and are implemented, which include 

3D Local Binary Pattern (LBP), 3D Grey Level Co-occurrence 

Matrices (GLCM), 3D Wavelet Transforms (WT) and 3D Gabor 

Transforms (GT).  Based on the nature of the content, each 

approach has its own advantages and disadvantages. For example, 

in terms of retrieval precision of tumours and processing speed, 

LBP not only achieves precision rate of up to 78% but also can 

perform retrieval in real time with sub-second processing speeds, 

outperforming the others. 

 
Keywords – CBIR; 3D image retrieval; 3D texture extraction; 

MIRAGE system; 3D visualization. 

 

I. INTRODUCTION 

 

Due to the advances of medical imaging techniques, more 

and more images are in three (or higher) dimensional forms, 

allowing a coherent and collective view. Since many of these 

images are comprised of 2D slices, most current databases 

archive and index them in 2D form, especially for the systems 

that are indexed by their content. As a result, a number of 

limitations have arisen with the most significant one being that 

the information extracted from a single 2D slice cannot be 

representative due to the fact that slices are getting thinner and 

thereafter resolutions are getting higher.  

 

On the other hand, at present, content-based retrieval for 

three dimensional (3D) images has been researched primarily to 

meet the demand for 3D pictures available over the internet. In 

this way, the main challenge facing the extraction of features 

from 3D images is that these features have to be invariant of 

viewing angles, i.e., invariant of rotation, in order to achieve 

higher retrieval hit of similar objects, even though sometimes 

they may not be visible from all the viewing angles. For 

example, if a query image is a 3D rabbit with a head facing the 

view, a good retrieval system should bring back relevant objects 

including those showing only its tails as an exact match. In 

other words, even if the view angle is at the back of the object, 

the matched objects can still be found. In addition, in 2D cases, 

the viewing angle is always at 0
o
, being normal to the computer 

screen, by which most existing algorithms can fulfill this 

request. Also, many of the other characteristics of content-based 

image retrieval (CBIR) are shared between 2D and 3D, 

including scaling and translation of regions of interest. This has 

led to the shift of many current studies to focusing on the 

invariance of transformations (including rotation, scaling and 

translation) of objects, which has more to do with shapes.  

 

A. 3D CBIR for Non-medical Images 
 

Since the emerging of the internet in 1990, coupled with the 

advance of computer hardware, vast amounts of textual and 

imagery data are available online, prompting the creation of an 

array of text-based search engines, such as Google and Yahoo, 

in an attempt to filter the relevant data. For image data, 

however, thanks to their embedded information being inside the 

pictures, a text-based approach has its limitations, especially for 

those images that are not properly, if not at all, labelled. 

Consequently, CBIR has been researched both horizontally and 

vertically. As the trend continues, the progress in the last 

century (1994-2000) has been very well documented in [1], 

whereas the state of the art in the last decade (2001-2008) was 

reviewed by [2] with a number of future directions being 

identified. Generally, a CBIR system follows the procedures of 

development as shown next. Firstly, it extracts features of 

images in terms of their global visual information, such as 

colour, texture, and shape. Then, these features are represented 

using mathematical vectors that, in turn, are employed to index 

each image. Finally, when a query image is submitted, the 

system needs to extract these features from the query image and 

to perform the comparison with the feature database that has 

been stored in advance. In this way, the retrieval process of an 

image can be as fast as that in a text-based system since the 

similarity calculation is based on numerical data. 

 

For 3D online images, the majority of approaches concerns 

with the features of shapes as an indexing key. For example, in 

[3], 3D Zernike descriptors have been developed to describe 
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shapes of objects, by taking advantages of polynomial 

representations, on which these descriptors are based, being 

invariant of transformations. To this end, a database has to 

constitute objects differentiated by shapes, such as airplanes, 

chairs, etc.. Similarly, in order to achieve transformation 

invariance, a graph-based shape descriptor is created in [4] in an 

effort to determine the way to calculate a similarity between 3D 

objects. Recently, the retrieval of 3D objects has been attempted 

using impact descriptors [5] attempting to capture the 

surrounding areas of a 3D shape in order to offer a histogram of 

time-space curvature, which are invariant of rotation and  

translation.  Elsewhere, other shape-based 3D models are 

included in [6-9]. Because shape-based approaches only 

describe the surface of a 3D object, they tend to ignore the 

content inside that object. Depth based descriptors therefore 

have been developed as demonstrated in [10], which is however 

in principle, still capture the outliner of a shape at each depth (z-

buffer).  

 

More recently, the approach of scale invariant feature 

transformation, commonly known as SIFT, has attracted 

substantial attention. Originally developed for 2D images [11], 

SIFT has been extended to 3D spaces in an attempt to perform 

action recognition [12] in a video sequence and object 

recognition for an airport security checking [13]. 

 

B. 3D CBIR for Medical Images 

 
Progress on CBIR for 3D images have been reviewed by many 

researchers [14] with several developed systems demonstrated, which 

are summarized in Table 1 and described in details below. 

TABLE 1:  3D CBIR SYSTEMS OF MEDICAL IMAGES 

Name/ Feature Imaging 

Modality 

Domain Reference 

 

QBISM / 

intensity-based 

MRI/PET Brain Arya [15]  

Pre-defined-

semantic-based 

CT Brain Liu [16]  

MIMS / ontology-

based 

All All Chbeir [17]  

Knowledge-based All All Chu [18]  

ILive – modality-

based 

All All 

organs 

Mojsilovic 

[19]  

2D Texture-based MR Heart Glatard [20]  

FICBDS / 

Physiological  

information –

based 

Functional 

PET 

Brain Cai [21]  

3D PET / lesion-

based 

PET Brain Batty [22]  

MIRAGE / 3D 

texture-based 

MR Brain Gao [23], 

Qian[24] 

 

In the system of QBISM, 3D functional brain images are 

queried and visualized [15], by which intensity-based volume 

data are stored for spatial references, whereas Talairach brain 

atlas [25] is employed to construct a region-based retrieval. The 

key to this system is the application of volumetric data type, i.e., 

the Region or Volume being expressed as <x, y, z, value>, in 

the representation of image data, which in some cases, might be 

prone to noise. 

In other cases, the retrieval task of 3D images can work well 

based on feature extraction [16] from 2D slices, whose success 

to a great extent, is dependent on the application fields of the 

created databases.  

On the other hand, semantics based retrieval remains 

acceptable to images of all dimensions as evidenced by [19]. 

The strength of this work therefore lies in the approaches 

employed for categorization of images that bear semantically 

well-defined data sets. This task itself however in most cases 

poses greater challenges than semantic representation itself. 

Nevertheless, semantics based retrieval of medical images 

offers one of the current trends. Likewise, ontology-based [17] 

and knowledge-based approaches [18] can shorten the semantic 

gap to a certain extent between low level features and high level 

semantics, which in turn requires skilful expertise, i.e., in-depth 

knowledge, to interpret images and convert contents into textual 

descriptions. 

For subject-based images that bear centralised 

characteristics, local features can play an important part in 

indexing and retrieving images. For example, the system of 

FICNDS [21] employs physiological kinetic features for 

retrieving images. Similarly, Batty and Gao [22] have employed 

binding potential (BP) values to index functional PET images. 

Although effective, this method is very discipline-defined and 

relies heavily on the additional supply of extra information. For 

example, in FICNDS, to define a tracer kinetic model, plasma 

time activity (PTA) curves should be obtained from a series of 

blood samples, which are not easily available for most of the 

images in a database. Although PTA can still be modeled by the 

application of control regions as applied by Gao et al, a 

sequence of images acquired over a period of time, say 90 

minutes, are still needed, which again is not readily available in 

most of image repositories. Additionally, in essence, the 

establishment of kinetic models stems from the data of 2D 

slices, which may lose information in between slices. For a 

system that warehousing images of variety of domains, more 

general approach appears to be in demand in order to be 

sustainable. 

A texture-based approach for retrieving of 3D+ cardiac 

images has been applied by Glatard [20] with the employment 

of a 2D Gabor filter. While working on 4D (3D + time) heart 

images, their adoption of a Gabor filter is again, in essence, a 

2D form based on regions coupled with an extra parameter 

dedicated to myocardium features. 

For application to medical images, a Volume of Interest 

(VOI) consists of not only boundary shapes, but also inside 

textures representing tissue properties of the VOI. The 

information extracted from these textures equally plays an 

important role in describing the VOI and is important to medical 

doctors at most of the time. Therefore these texture features 

should be taken into consideration in the representation of an 

object as well.  

 

Apparently, it is possible to represent texture in 2D-based 

form, since a 3D dataset constitutes a stack of 2D slices. 
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However, using a slice-by-slice 2D approach suffers from the 

disappointment that some important information inter-laced 

within the volumetric data is missing. Thus, in terms of a 3D 

form of texture, this spatial structural information should be 

extracted from a cube instead of a surface or a square. Towards 

this end, while working on images of 3D brain, Gao et al [23] 

and Qian et al [24] have furthered four texture-based 

approaches into 3D form to the domain of medical image 

retrieval to extracting texture information that is subsequently 

utilized for indexing them in their developed system MIRAGE 

[26].  

 

Specifically, in this study, the approach of Local Binary 

Pattern (LBP) [27] is addressed first because of its 

discriminative power and computational simplicity, and applied 

to a collection of 3D MR brain images for extracting texture 

information that is subsequently utilized for indexing them. 

Three other well-known methods in texture representation are 

also investigated, including Grey Level Co-occurrence Matrices 

(GLCM), Wavelet Transforms (WT) and Gabor Transforms 

(GT). The novelty of this work demonstrates the feasibility of 

3D texture-based approaches for image retrieval while 

maintaining real time operation. This is achieved by the 

introduction of a pre-processing stage of a selection of potential 

VOIs into query datasets; by which, through the use of 

statistically analysis of the bilateral symmetry of a brain MR 

image, a potential VOI of a query can be detected in real time, 

preceding the extraction of 3D texture features and the 

calculation of similarities.  

 

The remaining of the paper is hence structured in the 

following pattern. Section II explains the methods employed in 

the study, which is followed by Section III that shows the 

experimental results. The interface design is detailed in Section 

IV, which is succeeded by Section V providing conclusion and 

discussion. The last two sections give acknowledgment and 

references respectively. 

 

II. METHODOLOGY 

 

The development of a repository requires two main phases, 

which are ingestion and retrieval. In this investigation, at the 

phase of ingestion of the data, the collected data firstly undergo 

a pre-processing stage to normalize them into the same 

resolution before the indexing stage, as shown in the flow chart 

in Figure 1. As illustrated in the diagram, after spatial 

normalization of volumetric brain data into a standard template, 

the data are then divided into 64 non-overlapping equally sized 

blocks, from which, 3D texture features can be extracted to 

create a feature database. On the query side, a pre-processing 

stage is introduced to detect a potential VOI after spatial 

normalization from a query image. As a result, 3D texture 

features from a query can only extracted from these potential 

sub-blocks of VOIs, which, in the retrieval stage, are compared 

with the corresponding features in the feature database to obtain 

retrieval results. Details are elaborated in the following sub-

sections. 

 

 
 

Figure 1. Framework of 3D MR image retrieval. 

A.  Spatial Normalization 

 

By nature, data are collected from different sources, leading 

to the fact that brain images vary in both shape and size. In 

order to make inter-brains comparable, it is necessary to 

transform the dataset of each individual brain into a standard 

brain template. In this regard, the software of Statistical 

Parametric Mapping (SPM5) [28] is employed to spatially 

normalize a brain image into a template of either MNI T1 or T2 

[29] depending on whether an image is acquired by an MR 

scanner of either T1 or T2 type. In this way, all the images in 

the database are of the same size with 15718969 voxels. 

 

B. Extraction of Volumetric Textures 
 

In order to describe local features from different parts of a 

brain, a 3D volumetric brain is divided into 64 non-overlapping 

equally sized blocks, giving 4 blocks along each of x, y, z axes 

respectively, as shown in Figure 1. Texture features are then 

extracted using 3D LBP to create a feature database, upon 

which image searching and retrieval are performed.  

 

C. 3D Local Binary Pattern  

 

The Local Binary Pattern (LBP) operator is derived from a 

general definition of texture in a local neighborhood (e.g., 8  8 

pixels). In a 2D form, for each pixel in an image, a binary code 

is produced by thresholding its value with the value of a centre 

pixel. A histogram is then generated to calculate the occurrences 

of different binary patterns. To extend this approach to 3D 

images, similarly to [30], a 3D dynamic texture is recognized by 

concatenating three histograms obtained from the LBP on three 

orthogonal planes. When applied to our normalized brain 

images, they are in the plane of Left-Right (LR), Anterior-

Posterior (AP), and Superior-Inferior (SI) respectively, as 

depicted in Figure 2. 
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Figure 2.An example of three orthogonal planes in a 3D brain. 

 These three orthogonal planes intersect in a centre voxel. 

By selecting 8 neighbours as a local neighbourhood with the 

radius length being one voxel, fifty-nine uniformed LBP codes 

are subsequently extracted from the planes of SI, LR and AP 

respectively, again as illustrated in Figure 2, producing a 59 bin 

histogram for each plane by accumulating 59 binary patterns. 

Finally, the three histograms are concatenated to generate a 3D 

texture representation, giving the size of a feature vector being 

177 ( =593) elements. 

 
D. Lesion Detection  

 

The initial goal of the development of this 3D CBIR system 

is to search images with lesions of similar location, size or 

shape (all the collections of images are with lesions). Although 

a feature database has been implemented in advance, the 

processing of a query has to be conducted in real time. In other 

words, after a query is submitted to the system, 3D texture 

features should be extracted from its 64 sub-volumetric spaces 

together with the calculation of similarity distances. To this end, 

while maintaining the overall performance of retrieval, the 

detection of candidate lesions from sub blocks is carried out 

first to highlight the abnormalities, such as tumours, with an 

intension to speed up the retrieval process. 

 

To do this, the characteristics of bilateral symmetry of a 

brain along its mid-plane (parallel to SI direction as shown in 

Figure 2) remain assumed. Similarly to [31], by comparing the 

left half with the right counterpart of a hemisphere along this 

middle symmetry plane, the abnormality can be envisaged to be 

singled out. Since a normalized brain image has been divided 

into 64 blocks, statistical features (e.g., mean, standard 

deviation, etc.) of each sub-block together with its mirror block 

are then calculated and compared to establish potentially 

abnormal sub-blocks. 

 

 
 

Figure 3.Potential VOI selection 

As demonstrated in Figure 3, a normalized brain is divided 

into left (L) and right (R) parts by a sagittal plane, leading to 32 

sub-blocks each, within which a grey level histogram is 

obtained. The Bhattacharya Coefficient (BC) [32] is thereafter 

computed between two normalized histograms 
LH and RH

, 

which are obtained from two mirror symmetric sub-blocks as 

defined in Eq. (1). 

 

  
i

RLRL iHiHHHBC )(*)(,           (1)
 

The more similar 
LH and RH are, the closer to 1 the BC 

value is. On the other hand, less similar histograms tend to have 

smaller BC values. In total, 32 BC values are calculated from 32 

paired mirrored symmetric sub-blocks that are plotted at the 

bottom of Figure 3. The horizontal axis points to the index 

numbers of sub-block pairs, whereas the vertical axis represents 

the corresponding BC values. Also shown in the figure are the 

BC values presenting the top normal sub-block pair marked 

with a black ‘x’, whereas the bottom abnormal sub-block pair 

marked with a red cross. Therefore, the mean value of the BC 

range works as a threshold to be applied to detect the potentially 

abnormal sub-block, i.e., where BC < Threshold. 

 

After the affirmation of a lesioned VOI from a query is 

established, 3D texture features are extracted exclusively from 

this VOI of the query, and are later compared with the features 

from similar blocks of those images in the feature database in an 

attempt to search images with similar lesions in terms of 

textures.  

 

E. Similarity Measurement 

 

To measure the degree of similarity between two images Q 

and I, a distance function should usually be in place calculating 

the distance between features of the two images. For a 3D LBP, 

the histogram intersection is applied to measure features of 

histograms and is given in Eq. (2), 

 
   

i

ii IQIQD ,min,

                  (2)
 

where i represents each bin in a histogram. The more similar 

they are between a query (Q) and an image (I), the bigger the 

value of the D is. Therefore, the retrieved results are ranked in 

descending order based on the value of D.  

 

III. EXPERIMENTAL RESULTS 

 

A. Data Collection 

 

In this study, the database contains over 100 3D MR brain 

images with lesions (e.g., tumour, biopsy) and detailed 

diagnosis. Each dataset has a resolution in a range between 256 

 256  22 mm
3
 and 256  256  44 mm

3
, and is in DICOM 

(Digital Imaging and Communications in Medicine) format with 

16 bit grey-level resolution. 

 

B. Results on Detection of Lesions 
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Since the location of a lesion region plays an important part 

in retrieving relevant datasets, the evaluation on the detection of 

lesion positions is carried out first. In Table 2, the first row is 

the labelling number of the location of a VOI assigned by the 

authors for the convenience of calculations, e.g., ‘1’ refers to the 

abnormal part in the front top left part of the brain. The second 

row is the total number of images containing VOIs in the same 

positions in the database, whilst the number of correctly 

detected images by the approach of lesion detection as 

explained in Section II.D is given on the third row. Therefore, 

the overall performance in terms of VOI locations is calculated 

as the number of detected positive VOIs divided by the total 

positive VOIs and  is 91.3% (=168/184). 

 
TABLE 2  VOI DETECTION RATE 

 

VOI 

Location 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 
 

Total 

Number 

of images  

 
24 

 
46 

 
18 

 
38 

 
24 

 
12 

 
14 

 
8 

 

184 

Correctly 

detected 

images 

 

24 

 

42 

 

16 

 

34 

 

24 

 

8 

 

12 

 

8 
 

168 

Correct 

Detection 

Rate (%) 

         

91.3 

 

C. Comparison with the Other Texture-based Approaches 

 

The other three methods widely employed in texture 

representations are also exploited in this investigation by the 

extension to 3D, including Grey Level Co-occurrence Matrices 

(GLCM), Wavelet Transforms (WT), Gabor Transforms (GT), 

which are summarized next. 

In 3D form, GLCM [33, 34] are defined as three 

dimensional matrices of a joint probability of occurrence of a 

pair of grey values separated by a displacement d = (dx, dy, dz).   

 
 

Figure 4.Thirteen directions in 3D GLCM. 

For example, four distances with 1, 2, 4, and 8 voxels 

respectively and thirteen directions, as depicted in Figure 4, 

which are chosen in this study, will produce 52 (=413) 

displacement vectors, and thereafter 52 co-occurrence matrices. 

As a result, four Haralick texture features [35], being energy, 

entropy, contrast and homogeneity, are computed from each 

matrix, generating a feature vector of 208 components (=4 

(measures)  52 (matrices)). 

 

On the other hand, the 3D WT provides a spatial and 

frequency representation of a volumetric image, which can be 

achieved by applying both high-pass (H) and low-pass (L) 

filters along all three dimensions. This is then followed by a 2 to 

1 sub-sampling of each output volumetric image [36], giving 

rise to eight wavelet coefficients sub-bands (one low frequency 

sub-band and seven high frequency sub-bands) at each scale, as 

schematically presented in Figure 5(a). The process is 

subsequently repeated in the lowest frequency sub-band (LLL1), 

generating a 3D wavelet transform of two scales as shown in 

Figure 5(b).                     

 

 
Figure 5.One scale and two scales of 3D WT. 

       In this investigation, 2 scales of 3D WT, as shown in Figure 

5(b) are chosen. The measurement of mean  and standard 

deviation   are then extracted for each sub-band. So that there 

are 30 features, i.e., 2 (scales) *7 (sub-bands in each scale) *2 

(measures) +2 (measures in the lowest resolution) =30, derived 

from a Wavelet transform of 2 scales, yielding the dimension of 

a vector being 30.  
 

With respect to Gabor Transforms, in order to extend GT 

into three dimension, a set of 3D Gabor filters are generated 

similar to [37, 38] to detect spatial orientations and scale 

tunable edges and lines (bar), which can be formulated as Eq. 

(3).  
 

                

                                                 
   (3)

 
where  zyxg ,,

^

 is a 3D Gaussian function, together with 

radial centre frequency F and orientation parameters ( and ), 

determining a Gabor filter in three dimensions. 

 

       In this study, the following parameters are defined, 

including four centre frequencies with F = {0.0442, 0.0625, 

0.0884, 0.125} circle/voxel respectively, six orientation angles, 

i.e..,  000000 150,120,90,60,30,0  
and six values of , 

i.e.,  000000 150,120,90,60,30,0 , which leads to the 

number of 144 (= 4*6*6) Gabor filters that are employed to 

extract texture features. Given a 3D volumetric texture

 zyxf ,, , its 3D Gabor transform iGT  is defined by  

 

   iiii FzyxgzyxfGT  ,,,,,*,,
 

144...3,2,1i                           (4)
 

The mean  and standard deviation  of GT coefficients are 

then calculated which act as a representation of texture features 

from 144 Gabor transforms respectively. Therefore a feature 

vector includes 288 elements (= 4 (scales) *36 (orientations) *2 

(measures)).  

 

To calculate similarity distances from these three methods, a 

normalized Euclidean distance is employed to compare two 3D 

patterns in a feature space, as defined by Eq. (5). 
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 
2

,  






 


i i

ii IQ
IQD


           (5)

 

where i refers to the standard deviation of a set of 

representative features over the entire database and is therefore 

utilized to normalize each individual feature component. The 

retrieved 3D images are ranked in an ascending order of feature 

distances.  

In summary, the above three 3D texture approaches together 

with LBP are applied to extract texture features from each sub-

volumetric block. Furthermore, the dimension of a feature 

vector for a 3D brain remains to be the size of local features 

multiplied by 64, the number of the blocks each volumetric 

image is divided into, yielding 13312, 1920, 9216 and 11328 

components for the approaches of 3D GLCM, 3D WT, 3D GT 

and 3D LBP respectively.  

Subsequently, the performance of image retrieval is 

evaluated based on the measures of Precision (P) and Recall 

(R).  Precision is defined as the fraction of retrieved images 

relevant to a query whilst recall is the fraction of relevant 

images retrieved. Precision and recall values are usually 

presented together in a Precision-Recall (P-R) graph that 

demonstrates the retrieval performance at each point in the 

ranking. In a P-R graph, the horizontal axis refers to a recall 

whereas the vertical axis shows the corresponding precision at 

each of the usual recall points, i.e., 10%, 20%,…,100% or 0.1, 

0.2, …, 1. A single value, usually, the Mean Average Precision 

(MAP) value is employed to assess the overall performance for 

all queries and is calculated as 

 





M

i

iAP
M 1

1
(MAP)Precision  AverageMean 

      (6) 

where M  is the total number of the queries, iAP  is the average 

precision for the i
th 

query that is formulated as Eq. (6), 

 





rN

j

j

r

P
N 1

1
(AP)Precision  Average  

       (7)                    

where rN  is the total number of relevant images in a dataset for 

a query, jp  is the precision when retrieving the j
th

 relevant 

image. 

 

Figures 6 and 7 depict the average Precision Recall Graph 

for ten queries across the whole datasets with Figure 6 showing 

the results without a pre-processing stage of VOI selection 

whilst Figure 7 with the pre-processing stage. 

 

 
 
Figure 6. Average precision recall graph for ten queries without VOI selection. 

 

 
 

Figure 7. Average precision recall graph for ten queries with VOI selection. 

 

Overall, the mean average precision (MAP) at 0.5 recall rate 

for ten queries cross the whole database by using the approaches 

of 3D GLCM, 3D WT, 3D GT and 3D LBP are shown in the 

following table. 

 
TABLE 3 VALUE OF MEAN AVERAGE PRECISION 

 
Methods Without VOI selection  With VOI selection 

3D GLCM 0.677 0.690 

3D WT 0.731 0.749 

3D GT 0.714 0.691 

3D LBP 0.774 0.786 

 

Comparing the value of MAP with and without potential 

VOI selection, the methods of 3D GLCM, 3D WT and 3D LBP 

with potential VOI selection show a slightly improved 

performance with bigger MAPs.  

Figure 8 visualizes the retrieved results by using the four 

approaches with a pre-processing stage of VOI selection. The 

query image with a tumour in the middle is displayed in 3D 

fashion and 3 slices appearing in 3 orthogonal planes on the top 

row, i.e., in axial, sagittal, and coronal directions. The retrieval 

results are visualized by using an open source software 3D 

Slicer [39]. 
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Figure 8. Retrieved results in top 5 ranking from  
3D GLCM (row 1), 3D WT(row 2), 3D GT (row 3), and 3D LBP (row 4). 

 

D. Query Time 
 

It is understandable that retrieving images in 3D form might 

not be performed in real time, one of the drawbacks in the 

development of CBIR systems for images of higher dimensions. 

Table 4 demonstrates the average querying time, amounting to 

the period spent on both feature extraction and retrieval. The 

second column is the averaged querying time without a pre-

processing stage while the third column is with VOI selection, 

i.e., with a pre-processing stage. All methods are programmed 

in software of Matlab R2009a running with an Intel P8600 

1.58GHz CPU and 3.45GByte RAM.  

 
TABLE 4 QUERY TIME 

 

Methods Without VOI selection  With VOI selection 

3D GLCM 43.37s 10.96s 

3D WT 4.46s 1.22s 

3D GT 38.79m 10.77m 

3D LBP 0.74s 0.21s 

 

As can be seen in Table 4, the query time with VOI selection 

offers 4 times faster operation than that without. In particular, 

the query time for 3D GT takes much longer than for the other 

methods spending 38 minutes, due to the employment of 144 

times of 3D convolutions for each block, whereas the query 

time for the other methods are completed in the space of few 

seconds. The table also illustrates that the 3D LBP approach 

outperforms the other three with sub-second retrieval time and 

the highest precision rate of 78%, as given in Table 3. However, 

this conclusion is very much content-based. In this case, the 

retrieval performance is based on the retrieval of images with 

similar lesion positions. Further studies are in need to explore 

whether any other contents, such as tumour shape, might be in 

favour of any of the other methods. All in all, all these four 

methods are implemented in the developed CBIR system that is 

addressed below. 

 

IV. INTERFACE DESIGN 

 

        An online CBIR system, MIRAGE, acronym for 

Middlesex medical Image Repository with CBIR ArchivinG 

Environment, for both 2D and 3D images has been developed 

and is online at [26]. Figure 9 demonstrates the interface of the 

system, whist Figure 10 illustrates the flowchart of the 

architecture of interface. It consists of three modules with 

components of image classification, 2D image retrieval and 3D 

image retrieval respectively.  

 

In Figure 9, the top picture displays a random selection of 

ten images from the collection of ‘dateset_3’ chosen from the 

dropdown menu of Collection Category, which can be achieved 

by simply pressing the ‘Random’ button. The last button on this 

figure gives the choice of the number of images to be displayed, 

which can be up to 140. Obviously more images will take 

longer to show up. Upon these shown images, users can pick 

one or more as query image or images by changing the status of 

each one from ‘neutral’ to ‘rel’ that refers to relevant, or ‘non-

rel’ to eliminate the like of that image. By clicking the ‘Query’ 

button, the screen will show the retrieved images that are 

similar to the chosen query image or images. 
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Figure 9. The interface of MIRAGE. Top: 2D images; Middle: 3D images; 
Bottom: retrieved results for 3D query. 

 

The novelty of this work is the implementation of retrieval 

for 3D images which are demonstrated in the middle and bottom 

figures of Figure 9. The middle picture illustrates the 

implementation of the four aforementioned algorithms that can 

be applied to the retrieval process. There are four ways to view 

each 3D dataset. Among the 5 columns in the figure, on the 

second left (the leftmost column lists the name of the data), 3D 

data are shown in 2D form. By clicking the ‘-‘ or ‘+’ button at 

the bottom, users can view the 3D brain images slice by slice 

from the top of the head to the neck. In order to refer each slice 

to the 3D brain, the three columns on the right hand side 

showcase the mapping from 2D to 3D in the direction of back-

front (coronal, column 3), left-right (sagittal, column 4), and 

top-bottom (axial, column 5). Similar to the 2D form of the top 

figure, a query image can be selected by ticking the image name 

and then pressing the ‘Query’ button. The retrieved images are 

then given as demonstrated in the bottom figure of Figure 9. 

Again, with the consideration of speed, only 5 datasets are 

shown at each time. 

 
Figure 10. The framework for MIRAGE. 

 

     Built on the open source GNU Image Finding Tool (GIFT 

[40]), the online database is based on the Query-by-Example 

(QBE) paradigm coupled with a facility of user-relevance 

feedback whereby retrieved images most closely resemble a 

query image in appearance (i.e., the content that an image is 

carrying).  

 

For 2D images, two algorithms have been implemented for 

indexing image collections, which are IDF (Inverse Document 

Frequency) and Separate Normalisation. The IDF is a classical 

method and is based on counting the number of documents in 

the collection being searched, which contain (or are indexed by) 

the terms in question [41], and has been applied in text retrieval 

systems, giving rise to the efficiency when employed in an 

image system.  Conversely, feature normalisation refers to the 

compensation of scale disparity between the feature components 

that are defined in different domains.  

On the client side, a web page based interface is given. 

Whilst the client-server communication is achieved using the 

XML-based Multimedia Retrieval Markup Language (MRML). 

All client-server communication, including queries from the 

client or results returned by the server, is realized through 

message passing. Consequently, the client can be implemented 

in any programming language. The current MIRAGE client is 

implemented using PHP (Personal Home Programming) 

language to generate dynamic web pages for the client web 

browser.  
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     With respect to 3D interface, Figure 11 schematically 

illustrates a flowchart of the development. 

 

 
 

Figure 11. Framework of 3D brain retrieval system. 

 

As illustrated in Figure 11, the visualization of 3D images relies 

on a Client-Sever architecture with MySQL communication 

protocol.   

In order to display 3D brain as a whole instead of a pile of 

2D slices, the skull of a brain is generated first from 3D volume 

data by using the method of iso-surface extraction, which is 

then followed by setting the step forward or backward with end-

caps in three directions (i.e., X, Y, Z) respectively to show the 

inside structure of a brain from bottom to top, back to front and 

left to right, as schematically illustrated in Figure 12.  All 

processing procedures including the step of images of 3D inter-

section (to be controlled by ‘-‘ and ‘+’ buttons in Figure 9) and 

the extraction of texture features from aforementioned four 

approaches can be performed offline in advance.  In this way, 

the created 3D inter-sections of brains with its original 3D brain 

image are then stored in the image database in a server, whilst 

texture features are stored in a feature database.   

 

 
 

Figure 12 Creation of iso-surface and inter-sections of 3D volume data. 
 

On the client side, interface relies on HTML, which is 

dynamically generated by means of hypertext preprocessor and 

therefore can be displayed in any internet browser. As shown in 

Figure 9, the user can view not only the original 3D brain image 

shown in first column of each row but also its cutaway in three 

different directions on the basis of slice by slice.   

 

V. CONCLUSION 

 

This paper is an extended version of [24], which introduces an 

online image retrieval system, MIRAGE, with a facility of 

CBIR for 3D images. Four texture based approaches that draw 

on the techniques of Local Binary Pattern, Grey Level Co-

occurrence Matrices, Wavelet Transforms and Gabor 

Transforms have been exploited through the extension into 3D 

format, to retrieve lesioned MR brain images in this system. The 

results are very encouraging showing that not only higher 

precision rates can be achieved, but also that can it be done in 

real time. In comparison with each other, LPB outperforms the 

other three to a great extent whereas the 3D wavelet approach 

also performs well with similar retrieval accuracy, although 

slightly under-performed in terms of time. In terms of 

processing speed, it appears the pre-processing stage of 

detection of potential VOIs is essential to highlight lesions, the 

regions of interest that retrieved images should contain.  

Because of the time required in the establishment of a 

feature database in 3D form, i.e., normalization, feature 

extraction, etc., in particular by using the approach of 3D GT 

(up to several minutes are needed for each brain), only ~100 

datasets are included in this study. The very next step is to 

process more datasets. In addition, although the precision rate of 

78% is very promising, a better rate may be possible by the 

combination of a few of these texture descriptors, while 

maintaining the short processing time. Comparison with shape 

based approaches is also in the pipeline, with the aim of 

developing CBIR systems for higher dimensional datasets. 
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