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Abstract—A new derivative-free optimization method for For an introduction to derivative free methods the reader is
unconstrained optimization of partially separable functions referred to [3].
is presented. Using average curvature information compuig Generating set search (GSS) methods are a subclass
from sampled function values the method generates an averag - . N
Hessian-like matrix and uses its eigenvectors as new search of derivative-free methods for unconstrained optlmlz.ratlo
directions. Numerical experiments demonstrate that this ew ~ These methods can be extended to handle constraints, but
derivative free optimization method has the very desirable we will focus on the unconstrained case where the domain
property of avoiding saddle points. This is illustrated on wo D in the problem (1) is equal t®™. A comprehensive
test functions and compared to other well known derivative 4y ction to these methods can be found in [14]. In their
free methods. Further, we compare the efficiency of the new - .
method with two classical derivative methods using a classfo most basic form thesej methoFis only use function values
testproblems. and do not collect any information such as average slope or
average curvature information. Computing this informatio
however, can significantly speed up convergence, and this is
done in the methods presented in [4], [6].

In addition, information about the structure of the funntio
known a priori can also be useful. Suppose that the objective
Continuous optimization is an important area of study,function f can be written as a sum of element functions,

with applications in statistical parameter estimationg-ec m
nomics, medicine, industry — simply put, anywhere a math- = Z fis
ematical model can be used to represent some real-world i=1

process or system which is to be optimized. Mathematicallyyhere each element function has the property that it is un-

Keywords-Generating Set Search, Derivative-Free Optimiza-
tion, Saddle points, Sparsity.

I. INTRODUCTION

we can express such a problem as affected when we move along one or more of the coordinate
) directions. For example, we might have
min - f(z), @)
rers f(x1, 20, 23) = f1(21,72) + fa(wa, T3). (2)

wheref is the objective function, based on the model which
is defined on the domaifv. These models can range from
simple analytic expressions to complex simulations. Well
known optimization methods such as Newton’s method us
derivatives to iteratively find a solution. These derivasiv
must somehow be provided, either through explicit formu- % aﬁQafxn
las/computer code, or, for instance, automatic diffeediun. V2 (z) = :1 :
Suppose, however, that the objective function is pro- : : ’
duced by some sort of non-differentiable simulation, or aigxl %
that |t.|nvolves expressions W.h'Ch can only _be comp_utedwi" be sparse. For the function (2) the Hessian element
numerically, such as the solution to differential equagion 52, * . . . .
~—1— will be zero. If the function (2) is not twice contin-

integrals, and so on. In this case derivatives might nottexis dz19zs " . X .
or they may be unavailable if the numerically Computeduously differentiable, then the matrix of the correspondin

function is subject to some kind of adaptive discretizationflnlte differences, that is, the matrix with

and truncation and therefore is non-differentiable, untite
underlying mathematical function. In these cases deveati
based methods are not directly applicable, which leadseto th
need of methods that do not explicitly require derivatives.

Then, the function is said to be partially separable [10] and
we say thatf; has a large null space. If is partially
separable and twice continuously differentiable, then its
Hessian matrix,
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[f(fﬂl +h,xe, 03 + k) — f(x1 + h, 12, 23)

—f(x1, w2, 23 + k) + f(21, 22, sz)} /(hk) =0, (3)

in position (¢,5) = (1,3) (and with similar expressions
for all other (4, j)-pairs) will be sparse for any, and any
nonzeroh and k, none of which have to be the same for
each(i, j)-pair. The sparsity structure is the same as for the
differentiable case, so that the expression (3) is idelhtica
zero. This result can be extended to any partially separable
function, as proved in [7].

In [23], a GSS method which exploits such structure
is presented, which is applicable to the case where these
element functions are individually available.

Given set of search direction@, step lengthy and an
initial guessz « .
While ¢ is larger than some tolerance
Repeat untik: has been updated or alle Q have
been used:
Get next search directiope Q.
It f(z+dq) < f(z)— p(d)
Updatex: = <+ x + dq.
Optionally increase.
End if
End repeat
If no search direction provided a better function
value, decreasé.
Optionally updateQ.

: . End while
In this paper, we present a GSS method which takes
advantage of the partially separable functions, without re
quiring the element functions (which may or may not be o o
Figure 1. Simplified framework for a sufficient decrease GSShad.

differentiable) to be available. It is an extension of thpgra
[6]. We use the concept of average curvature introduced in

[6]. . . . . As can be seen from the pseudo code in Figure 1, the
Th|s paper 15 organized as follows. In section I, W€ set of search directions can be periodically updated. In [6]
outline a basic framework_for GSS, as well as the PréVioU$he authors present a method that computes average curva-

work_ of the authors on which the present Paper 1S basgd, 'Yure information from previously sampled points, assesble
Sections Ill and IV, we present the handling of partially w5 jnformation in a Hessian-like matrix and uses the
sepgrable functlons and the convergence to sepond OrdSrgenvectors of this matrix as the search directions, which
stationary pomt_s. Section V pontams a dIS.CUSSIOI’l of ,theamounts to a rotation of the old search directions. Once this
methods used_ in the comparison and Se_ctlon Vi S‘_)ec'f'eﬁotation has been performed, the process restarts, and new
the_test functlons_. The main part of this paper I thecyrvature information is computed, periodically resugtin
testing presented_m section V”.‘ Here, we define region oo, search directions. It is shown that the efficiency of the
convergence and in thg two sections VIl and VIII we present . ~ihod can be greatly improved compared to just using the
the r?“me”ca' pr(_)pertles of the method.s.on the wo Stoordinate directions as the search directions throughout
functions. In Section IX, we show the efficiency of method 5 gimijar scheme, which aligns the basis to the average
derived in this paper compared to two classical methods fOBirection the search progresses, appeared as early as 1960
_derivati_ve free optimization. Concluding remarks are give in [24] and implemented in 1973 [16]. To illustrate the idea

In Section X. of curvature information we use a quadratic model function
by assuming we are minimizing, say,

o) = 6+ b7 (y 1)+ 3y — ) Cly — ),
We restrict ourselves to a subset of GSS methods, namely

sufficient decrease methods witn search directions, the WhereC'is a symmetric matrix. The search directions are
positive and negative ofi mutually orthogonal directions, POsitive and negative of the column vectors of the orthogona
of unit length. These directions will in generadtbe the co- Matrix @, that is,
ordinate directions. A simplified framework for the methods _

. L . . L . Q—[th q2 Qn]-
we consider is given in Figure 1. The univariate function ] ) )
p must be nondecreasing and Satigfmxw@ _— Sinceg is a quadratic function, we have
For simplicity, increasing the step length can be thought .  g(z+6iqi +,q45) — g(z + 8iqi) — g(x + 6;q;) + g(x)
of as multiplying it by 2, and decreasing it as dividing == ;0
by 2, although these rules may be more advanced. For
the formal requirements on these rules, see [14]. Given For a general functiorf the computation of curvature
mild requirements on the functiofi the step length will information can be done in the following way, which is
ultimately go to zero, and the common convergence criterioa slight modification of the methodology presented in [6].
for all GSS methods is thatis smaller than some tolerance. Consider Figure 2, and assume that the current point is the

Il. GENERATING SET SEARCH USING CURVATURE
INFORMATION
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@ © statement considers the directionsn one can obtain cur-
A vature information with respect to all thén—1)/2 possible
q2 different combinations of search directions, in a finite and

@ q1 >Q

uniformly bounded number of steps, which dependsnon
since there are)(n?) elements of curvature information
which must be assembled. (For this reason, the method is not

Figure 2. Location of sampled points used for curvature agatipn. suitable forn larger than abous0, but exploiting structure
can allow for much largen, as will be explained in Section
Outcome Notes )

S e Mo oo the. cumont ot The following lemma is a slightly modified version of [5,
point toc. The function value af must be computed Lemma 3.5] and can be found in calculus textbooks usually
separately. as a part of showing that the Hessian matrix is symmetric

SF The search along; moves the current best point if the functu?n is sufficiently S.m0.0th. . : .
to b, and the search along, computes the function Lemma 1:Suppose the objective functigh: R™ — R is
\#’;\]'Uf? atct,, but df’esag‘“ m?\t/)e the CUftfegt best PtOIInt- twice continuously differentiable, assume we have givem tw

© function value &t must be compulted separately. orthogonal search directions andg;, and have computed

FS The search along; computes the function value at
point b, but does not move the current best point. The f(@), f(x + hq), f(x + kq;), and f(x + hg; + kq;)
search along> computes the function value at point L .

d. The function value at point must be computed for somez and some scalars andk. Let elementiy, ¢ > j
separately. of the symmetric matrixCq be

FF Neither the search along nor g2 update the current (Co)ss = f(x + hgi + kq;) — f(z + hagi) — f(z + kq;) + f(z)
best point, but the function values at poibtand d QI = hk :
are obtained. The function value at poininust be Then

computed separately.

Table |

THE FOUR POSSIBLE OUTCOMES WHEN SEARCHING ALONG TWO
CONSECUTIVE DIRECTIONS SMEANS SUCCESS$F MEANS FAILURE.

(CQ)ij = qz-TVQf(f%)q]‘,

where@ = x + Thq; + okq; for somer, o € [0, 1].

The matrixCq containsg! V2 f(2)g; in positions(i, j) and
(4,1), which is curvature information with respect to the
coordinate system defined by thedirectionsqg, ..., g, in

Q. Note that the point is different for eacH, j)-pair. Also

point markeda, and that the next two search directions in ygte that bothy; € Q and —g; € Q. The diagonal elements
the repeat-loop in the pseudo code are the directions showg¢ Co must be computed separately, for instance when

q1 andgz. When searching along two directions in & row, the step length is reduced, since the preceding repeat-loop

there are four possible outcomes. Success-success (18oth s mpined with the current-value then gives the function
search along, andg, produce function values which satisfy \a1yes at three equally spaced points on a straight line for
the sufficient decrease condition), success-failure @aech 5| ,, search directions.

along ¢; produces a sufficiently _Iower function value_, but  once the matrixCg, is complete, it is subjected to the
the search along, does not), failure-success, and finally qtation
failure-failure. In all of these four cases, by computing th C = QCQQT7 (5)
function value at a fourth point, the function values at four
points in a rectangle can be obtained. The details are givewhere( is the matrix with then unique search directions
in Table 1. The function values at four such poinisb, ¢ as its columns, ordered so that they correspond to the
andd can be inserted into the formula ordering of the elements 6. C now contains curvature
information with respect to the standard coordinate system
f(e) = F(b) = /(d) + fla) (4) The search directions inQ are then replaced with the
16— all ||d - all positive and negative of the eigenvectorstaf
If the objective function is twice continuously differen-  To build upCq in a systematic fashion we need to specify
tiable, then the next lemma will show that (4) is equal toone way to choose the order. For instanceyfer 4 and one
qI V2 f(#)q, wherei is some point within the rectangle wants to computéCq)a1, (Cq)s1, (Cq)24, and (Cq)su,
abed. If the function is not twice continuously differentiable, then one can let the order of the directions be:
(4) captures the average curvature in the rectangle.
The rectangle lies in the plane spanned by the search
directionsq; andg, since these were used consecutively. ByHere, the search along and ¢> enables us to compute
successively reordering how the “get next search direttion(Cg)21. The directions-¢; andgs provide us with(Cg)s1,

q1, 42, —q1, 43, —q2, (44, —q3 —q4 .
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and so on. A discussion and analysis of ordering are fountflerevec(X) andvec(C) are vectors containing the entries
in Macklem [17]. of the matricesX andC stacked row-wise [13].

We now investigate the relationship betweéh and Using (10) and (11) the rotation (5) can be written
V2 f(x). The search directions are the orthogonal directionsmplicitly as
q,-.-,q, and assume that the elemerSy);; of the T T
symmetricm x m matrix Cg have been cor?]pijted at the (@ @ Q7)vec(C) = vec(Cq). (12)
points Since we impose a sparsity structure ¢h as well as
symmetry, all the entries in the upper triangle, as well as

(BT R N VDO T KV DY Y BTN X ¥ DU X oy
{2, @+ hqi, 2% + kg, ¥ + hVq + kg5, all the zero entries ofrec(C) can be removed from (12),

(6) resulting in the overdetermined equation system
for all (4,7), i > j and(Cg),; set to be equal t¢Cgp);;.
Let N be the union of all such points and let (QT ® QT)P.vee(C) = vec(Cp), (13)
d = max ||z —y|, (7)  where the vectoFec(C) contains ther elements ofC to
#yeN be determined, and the? x r 0-1 matrix P, adds together
and the columns corresponding to upper and lower diagonal
N = {L € R" | max ||z — y| < 5}. (8) elementsC;; and C;; for all off-diagonal elements, and
yeN deletes the columns corresponding to zero entrieS.ifror
Lemma 2:Assume thaif is twice continuously differen- example, ifC is to be tridiagonal and is of siz&x 3, that
tiable andV?2f is Lipschitz-continuous in\/ is,
X X
”sz(x)_va(y)” SLIIx—yII, for all x7y€N' C = X X X ,
Let then x n symmetric matrixCq be computed with the x X
points (6). Then any: € N satisfies then it has one zero element and five nonzero elements in
HQCQQT _ VQf(at)H < nLs. 9) the lower triangle, so_ thalP. has size9 >< 5 and reads:
100 00
. S 01 0 0 O
The proof can be found in [6] and we will in the next 0000 0
section prove a more general result. In case of a quadratic 0100 0
function L = 0, the exact Hessian matrix is recovered. The r—loo01 0 o0 14
second derivative is only required to be locally Lipschitz ¢ 000 1 0 (14)
ith respect taV.
with respect ta\ 00000
[1l. EXTENSION TO SEPARABLE FUNCTIONS 0 00 10
Suppose the functiorf is partially separable. As men- L0 0 0 0 1]
tioned in the introduction, the Hessian will be spars¢ it Since the equation system (13) is overdetermined, we can

twice continuously differentiable, and if the Hessian i4 no selectr rows from the coefficient matrix and the right-hand
defined, the matrix of average curvature information will side, resulting in the: x r equation system

be sparse [7]. Let be the number of nonzero elements in T e
the lower diagonal of these curvature matrices. Then, even Prow(@” ® Q") F.vec(C) = Frowvec(Cq),  (15)
though the matrixC' can be restricted to have this sparsity where Prow is anr x n2 0-1 matrix which selects rows.
pattern, the matrix’y cannot be assumed to be sparse, sincepgy, will be the first » rows of a permutedh? x n?
we cannot expect the finite differences (4) to be zero folidentity matrix. The resulting equation system (15) will be
arbitrary search direction@. However, sparsity can still be sjgnificantly smaller than its counterpart (12) when a spars
exploited. structure is imposed o, and the corresponding effort
Given two matricesA € R™*" and B € R"*%, the  required to compute the right-hand side is similarly snalle
Kronecker product @ B is amr x ns block matrix given  |f there are onlyO(n) elements to be determined, then the

as A B A B number of steps heeded to compute the entire right-hand side
ne An Prowvec(Cg) does not depend om, which does away with
A®B = : : : (10)  the practical limit on dimension discussed in the previous
A B - An.B section.

The Kronecker product is useful in the present context Exactly which rowsFrow should select in order to create
. a well-conditioned coefficient matrix is nontrivial, and is
because of the relation

sometimes called the subset selection problem in the liter-
AXB =C < (BT ® A)vec(X) = vec(O). (11) ature (see e.g., [9]). One suitable solution procedure is to
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determine these rows by computing a strong rank-revealingroof. Let us rewrite the contents dfowvec(Cop):
QR factorization of the transpose &fow(Q” ® QT) and

selecting the rows chosen by the theory and algorithms of (Prowvec(Cq))k

Gu and Eisenstat, presented in [11]. An implementation of PPV f ()™

this selection procedure can be found in [21]. = pT (V2f(z) + V2 f(2F) — V2 f(2)) ¢

k)T 72 k
IV. CONVERGENCE THEORY {P( Y f(ﬂ?)q( )} +

The method presented so far, being a sufficient decrease {p(k)T(sz(a?k) - VQf(x))q(k)} . (19)
method with 2n search directions which are the positive
and negative of. mutually orthogonal directions, adheres to Then, and in addition defining = vec(V?f(x)), equation
the algorithmic framework and convergence theory of Lucidi(18) can be written as
and Sciandlrone [15]. We can therefore state the following Avee(C) = Ah + €. (20)
theorem, without proof.
Theorem 3:Suppose f is continuously differentiable, Here(Ah); is the expression in the first parenthesis of (19),
bounded below and the level sé{z) = {y | f(y) < f(x)}  ande; is the expression in the last parenthesis of (19). If
is compact. Then, the method converges to a first-ordewe consider the norm of a single elementirthis is
stationary point. ,
We now prove that iff is twice continuously differen- lexl < P IV F ") = V2 F (@) g™l
tiable, then the computed curvature matéixconverges to Ln, (21)
the true Hessian in the limit.
Define

IN ]

using (16) and the fact thatand g have unit length. When

solving (18), we get
A= Pow(Q" ® Q")P..

Let f be twice continuously differentiable and Hessian

vec(C) = h+ A te.

Lipschitz-continuous in the sense that If we consider a single element &ec(C) and h we can
write
IV2f(2) = V2 f ()l < Lljz — y].- (16) |(F&e(C))r — hie| < [ A7 lew],
Definer pairs of vectorg®, ¢®) k. =1,...,r, all of unit  which can also be written
length, such that théth row of A is equal to _
|Cij = (V2 f(@)is] < A7 [ex] (22)
k)T k)T
(p( T@q® ) Pe. (A7) Using the property of the 2-norm that
This means some of these vectors will be equal, but the pairs | All2 < nmax |a;,
will be unique. In addition let pointsz®, k =1,...,r, be b
such that element of Prowvec(Cp), as well as (21) we can extend (22) to
(Prowvec(Co))e = pMTV2 £ (a*)g™). IC — V2 f(@)|| < A" |nLn,
Let n be such that which completes the proot]
4 4 We must now prove that there always exists a matriwith
max ||z° — 27| = 7. rankr, and that the termfA=!|| is uniformly bounded. Since
i A is made up of the rows of the matri)” ® QT)P., there
Let A/ be the neighborhood of points such that will be a choice of rows which imply full rank if the matrix
X (QT ® QT)P. has rankr.
N=Aa|llz—2"<n k=1,...,r}. Lemma 5: For any orthogonal matri¥) and any sparsity

structure to be imposed o€, the matrix (QT ® QT)P.
has full rankr, and its smallest singular valug. satisfies
Avec(C) = Prowvec(Cg). (18) or=1.
) (Co) Proof. Since @ is orthogonal, so isQ”, and also
Lemma 4:Assumed is invertible. LetC' be the symmet- (QT ® Q). For any sparsity structure, right-multiplying
ric n x n matrix constructed from the solution of (18). Then, (Q7 ® Q) with P, either adds together two columns, or

For convenience, let us restate (15), as

there exists am € A such that deletes columns. Consequently, the columns of the regultin
) . matrix (QT ® QT)P. are orthogonal (which implies full
[V=f(z) = C|| < |[A™ |InLn. rank), and have either length one or lengf®. It then
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follows that the singular values are equal to the length ofavoiding a nearby strict local minimizer. For visualizatio

the column vectors, either 1 ar2. O purposes we have chosen problems with two unknowns.

If we consider (14) and the correspondif@” @ Q7)P,, The first problem is a modification of a problem suggested
the norm of first column of Q7 ® QT)P. is 1 and the norm by Wolfe [26]. In its unmodified form this problem has been
of the second column is/2. used to show that gradient based methods tend to converge

Lemma 6: Prow can be chosen such that for a given to a saddle point. The modification will make the function
the smallest singular value gf is uniformly bounded below, bounded below and introduce a local minimizer but not
and consequently that4—|| is uniformly bounded. change the region where gradient based methods converge
Proof. This result follows from the theory and methods of to the saddle-point. The second example is a modification of
Gu and Eisenstat [11], which guarantee that the rowsl of a function presented in [1], which has a very narrow cone
(or equivalently the columns od”, as is done in [11]) can of negative curvature. Again the modification will make the
be selected from the rows ¢€)” ® QT)P. in such a way function bounded below and introduce local minimizers.
that the smallest singular value df is larger than or equal Generating set search methods described in the previous
to the smallest singular value 607 @ Q7)P., divided by  sections are shown to converge to stationary points and the
a low order polynomial im andr. Sincen andr are given set of search directions in the limit will be the eigenvalues
and the smallest singular value @@ ® QT)P. is always of the Hessian matrix at the solution. If the Hessian matrix

larger than or equal to 1, the result follows. at the stationary point has a negative eigenvalue, one of the
Finally, we show that) goes to zero as the GSS method search directions will be a descent direction. A generating
converges to a stationary point. set search should therefore not experience convergence to

Lemma 7:Assume that the step length expansion factorthe saddle points of the two test functions. A generating set
is uniformly bounded by, say)/. Then, as the step length search method is compared with two methods which do not
0 go to zero, so does. have the same property to generate descent at a saddle point.
Proof. That the step length goes to zero is an integral part  In the second part of the experiments we compare the
of the convergence theory of GSS methods and is provedfficiency of GSS-Cl with two classical derivative free
in e.g. [14].n is the diameter of neighborhood of points methods on a class of test problems.

N. Since all the points iV lie within the rectangles of
points used in the formula (4), it follows that must be A. The methods
smaller than maximum possible distance between the first Thea three methods primarily used in testing, are GSS-CI,

and the last points u_sed .for computiag(the corner points  \EWUOA and NMSMAX. We will briefly discuss two
of the rectangleibed in Figure 2). Suppose, that when the 4q4itional methods, MDSMAX and fminsearch.

computation_ofC Is sta_rted the step length 'ts“ax'_and 1) GSS-CI:This is the method presented in the previous
that the maximum pOS.S'bIe number of step length INCréas€ga ctions and [8], [2], and is based on the method of [6]. Since
beforeC' is computed is. Then we have the method gathers average slope information the method

t can consequently perform Newton-like steps at regular in-
n < Z Omax MF7L, tervals.
k=0 The initial search directions are chosen to be the pos-

The only variable in this expression #s,.x, and we know itive and negative coordinate vectors. Each pair of search

it goes to zero as the method converges. Consequently, $8rections (e.g+¢;, whereg; is a search direction) has a

mustz. O step lengthd; associated with it. In our experiments these

This allows us to state the following theorem: are initially set to the same value, 2|1, but they will
Theorem 8:Assume thatf is twice continuously differ- be increased or decreased individually depending on the

entiable, bounded below and that the level sétg) are  SUCCESS Or failure of the search along the corresponding

compact. Then, as the method converg@sconverges to pairs of search directions. A search is deemed successful

the true Hessian. it it produces sufficient decrease, that is, if

The proof follows from the preceding Lemmas. This result, . s

together with the preliminary numerical results in this @ap @+ 0ig:) < f(z) = p(3:),

allows us to conjecture that the method actually convergegherey : R — R is nondecreasing function satisfying a few
to second-order stationary points. technical requirements, outlined in [14]. In our implemen-

tation we use
V. TESTING DERIVATIVE FREE OPTIMIZATION METHODS

_ o p(6) = 107462
The purpose of the following sections is to report on
numerical experiments on two unconstrained optimizationThe termination criterion is that the product of all the step

problems where methods risk terminating at a saddle pointengths should be less than or equal to a tolerance. In our
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experiments this is

ﬁéi < (10*4||=’C0||1)n- |

=1
B. NEWUOA ol
NEWUOA [22] is an interpolation method, where the
number of interpolation points can be determined by the
user. The remaining degrees of freedom are taken up by o
minimizing the Frobenius norm of the difference between Lt
one Hessian approximation and the next.
An initial vectorzy € R™, the numbern of interpolation o
points, and the initial and final values of a trust region uadi H
namelypbeg and pgpng must be provided by the user. The
number of interpolation points: is a fixed integer from the
intervaln+2 < m < 1(n+1)(n+2). It is recommended to Figure 3. Level curves for the function (24).
usem = 2n+1 for efficiency. The initial interpolation points
2,0 =0,1,2,...,m, have the property thatr; — ||z = _ 3 _
pbegl — 1727 ce,m, unlessm > 2n + 1, in which case B. Function Il — Modified Wolfe Function
this distance is\/ipbeg The termination criterion is related ~ The second function (24) is a modified version of a test
to the radiuspeng function due to Wolfe [26]:
3 2
C. NMSMAX ) ) ) ) flx,y) = r + L 2(rnin[ac7 —1]+ 1),  (24)
NMSMAX [12] is an implementation by Nicholas J. 32 3
Higham of the classical Nelder-Mead simplex method [20].It has a saddle point at the origin and a minimunfzaty) =
The user can choose whether the initial simplex is right(—2 — v/2,0). Level curves for this function are shown in
angled or regular (with sides of equal length). The initial Figure 3. The original function (not bounded below) is given
simplex size is not input by the user, but taken to be the ordefsy flz,y) = %_3 + %
of max(||zo||, 1). The method terminates when either the

maximum number of function evaluations is reached, or VII. N UMERICAL EXPERIENCE
when the relative size of the simplex, is below a certain Region of Convergencefhe region of convergence of
threshold. That is, a stationary point is the set of starting points for which a
1 _ < tol given method terminates close to the stationary point. In
max(1, [lvoll1) ) lv: = o1 < tol. addition to the input parameters for the methods we need to
Herew, anduv;, i = 1,...,n are the vertices of the simplex. SPecify the tolerance (or distance between) the termigatin
In our experiments we use tel 106|zo||;. point and the stationary point. A globally convergent metho

. on a sufficiently smooth function is characterized by for all
D. The methods MDSMAX and fminsearch starting points, the method will for any > 0 generate an
We also included a brief test of the methods MDSMAX, iterate z;, so that ||V f(zx)|| < . However, the stopping
which is an implementation by Nicholas J. Higham of thecriteria of the implementation may be based on changes
multidirectional search method due to Virginia Torczon][25 in the function values or on the difference between two
and fminsearch [18], which is the Matlab implementation ofiterates. Even the casgv f(z;)|| < ¢ will in general not
the Nelder-Mead method. guarantee that the distance between the stationary paint an
VI. THE FUNCTIONS xr is small. We can thus expect that even if the methods
terminate successfully, the distance to a stationary point
will not be smaller than the tolerance for some starting
points. For simplicity we say that a method terminates at
A. Function | — A Narrow Positive Cone a stationary point when it terminates at a point that saisfie
The function (23) is a modification of a test function in the tolerance.

[1]:

The two functions are in two variables, are twice contin-
uously differentiable and bounded below.

4 A. Function |

7
fl@y) = Oz —y)(le —y) + 2 (23) For this function we generate starting points in the fourth

It has a saddle point at the origin, and two local minimizersquadrant{(z,y)|z < 0,y > 0}. The minimizers of the

at (z,y) = +(1,10). Level curves for this function can be function are in the first and third quadrants, so we expect

seen in Figure 8. the methods to terminate successfully at the minimizers
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if started in these quadrants. This is confirmed in the (559} 11x.)40 5" Basin of attraction for NEWUOA
preliminary numerical testing. Furthermore, because ef th
symmetry of the function we can choose either the secon
or fourth quadrants, at least for GSS-Cl and NEWUOA.
GSS-CI: We discretize the are@-8,0] x [0, 10], into a
201 x 201 grid of points, and start the method with initial
step lengthD.2||zo||; for all directions, and the termination
criterion is that the product of all the step lengths should
be less than or equal tol0~%||zo|1)". (If 2o = 0 then
nonzero values are used.) The results are given in Figure «
In the figure, a blue color means that the method terminate

$o(9x-y)(11x-y)+0.5x". Termination: Ellipsoid volume ~ 10°/|jx ||, Basin of attraction for GSS-CI

oll -

Figure 5. Plot of basins of attraction for NEWUOA on
f=09z1 —x2)(11z1 — z2) + %x‘ll, with Pbeg= 0.2||zoll1 and
Pend= 107®||zol|1. (The discretization i2001 x 1001.)

To check if the basins of attraction are sensitive to the
termination criterion we repeat the experiment, but thigeti
with pang= 107%|z0||1. The results are given in Figure 6.
As we can see in this figure, the starting points for which
the method terminates at the saddle point are still wedged
between the red and blue regions, but the green region is
now much smaller.

Figure 4. GSS-Cl on the functiofi = (91 —x2)(11z1 —z2)+2af. The
initial step length i90.2||zo]|1 for all directions, and the termination crite- (K1 T5cy)105x". o, = 10l Basinof atraction for NEWLIOA
rion that the volume of the ellipsoid defined by the scaledctedirections
should be proportional ta0~—*(|zo|1, that is, ], 6; < [10~*[lzo[l1]™.
(The discretization i201 x 201.)

close to(z,y) = (1, 10) for the corresponding starting point,
red color means termination close to,y) = (—1,—10).

As one can see, the method does not terminate close 1
the saddle point for any of these starting points. Wher
starting at the origin, setting a nonzero step length resalt
convergence to a minimizer.

NEWUOA: We generate starting points on1401 x
1001 discretization of the regiorf—8,0] x [0,10], and
run NEWUOA with parameterppeg = 0.2]ol1, and
pend = 107°|lzoll1. (Once again, ifzo = 0 then nonzero
values are used.) The results are visualized in Figure 5. A ’ ’ ’ ’ M
before, blue color means that the method terminated closc
to (x,y) = (1, 10) for the corresponding starting point, red
color means termination dlose ry) = (1 -10).In S0 8 e O e e
addition, green means termination close to the origin, an gion ofgconvergegce to the sad?ile—point gets smalleleezm; between
orange means none of the above. As one can see, the meth@él regions of convergence to the local minimizers. (Theretization is
does terminate close to the saddle point for some startingf01 x 1001.)
points, and these points make up a small region on the
border between the basins of attraction(efy) = (1,10) Similarly, we test what happens with a looser convergence
and (z,y) = (-1, —10). criterion, namelypgng = 107%||zo|l1. The results are in
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Figure 7. For this convergence criterion the green region is

f=(@x-y)X11xy)#0.5x". p, = 10|l Basin of attraction for NEWUOA

Figure 9. Level curves for the function (24) as well as staripoints for
which NEWUOA terminates at the saddle point at the originyked in
black.

the liney = —z.
Figure 7. Increasinggpqin NEWUOA to 10~ 4|z |1 will force many It is also interesting to note that in this case, the behavior

starting points not to be accepted as close to a stationany. dne regions in quadrants two and four amot the same
are basically the same, but the region of convergence fosaldele-point ’

is larger. (The discretization 5001 x 1001.) B. Function Il

For this function we discretize the regipn4, 2] x [—2, 2]
to a601 x 401 grid.
GSS-CI: Using the same parameter settings as for

NMSMAX: For NMSMAX, we discretize the region “nction I, GSS-CI once again terminates at the (single)
minimizer, so an attraction basin plot would simply be

[~10,10] x [-10, 10] into a 201 x 201 grid. We choose a the region filled with one color. (Whem, = 0, nonzero

right-angled initial simplex. The size of the initial sinepl
is not determined by the user, but we set the terminatioﬁSteP lengths are used, and the method converges to the

criterion to be a simplex size d0—%||zol/;. The results, as minimizer.) : .
well as level curves of the function are gi\./en in Figure,8 As NEWUOA: For this function we also use the same
one can see, for about half the fourth quadrant the methoB2rameter values as before, nampypg = 0.2||zo]l1 and

_ 10—6 P
terminates at the saddle point, even though the convergenéend = 10~ [lzo]l1. The results are in Figure 9. As one can
criterion is quite strict. In addition, termination at thedslle see, there is a relatively large collection of points in thetfi

point occurs for points close to the negativaxis, and along and second q_uadrants, fqr_whlch the method terminates at
the saddle point at the origin.

To see if the cause of this behavior was the number of
interpolation points n + 1 in this case), we also tried
a full quadratic model, by using six interpolation points.
The results for this case are in Figure 10. As one can see,
the black region now has a different shape, but is located
approximately in the same position, and is of similar size.

NMSMAX: For this function, NMSMAX terminates at

the saddle point for a few starting points on thaxis only.

much larger, and there are also large orange regions, which
correspond to termination no closer to any of the stationar)m
points than 0.2.

VIIl. TESTING THE METHODSMDSMAX AND
FMINSEARCH

MDSMAX: The results are reported in Figures 11 and
5 0 12 and Figures 13 and 14. For the function (24) termination
close to the saddle points rarely occurs, and when it does
the corresponding starting points lie along straight liroese

Figure 8. Level curves of the function (23), and startingnmmiior which  at the upper right corner of Figure 14, and one ongeis
NMSMAX terminates at the saddle point at the origin, markedblack. close to the bottom of the figure using right angled simplex.
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MDSMAX on AFS function. Right-angled simplex, termination 10'6||X

olls-

05

05

Figure 10. Level curves for the function (24) as well as stgrpoints
for which NEWUOA terminates at the saddle point at the origimarked
in black. Number of interpolation points: = 6.

Figure 12. MDSMAX on the functionf = (9z — y)(11lz — y) + %
Red means termination close (@, y) = (1, 10), blue means termination

However, MDSMAX has serious problems with stagnationclose to(z,y) = (-1, ~10), green termination close to the saddle point
on the function (23), as can be seen in Figures 11 and 126.it the origin, and orange means stagnation. Right-angfegle.

fminsearch: This method has few problems on these
functions, except when the starting points lie on one of
the axes. For the function (23), 208 of the 40401 starting
points result in termination close to the saddle point, 201 o
these 208 points being on theaxis. For the function (24),
890 of the 241001 starting points result in termination elos
to the saddle point, all of these on or immediately next to
the y-axis. These results were obtained using the standard
convergence tolerances. Tightening the convergenceiarite
gives an even more favorable result.

MDSMAX on Wolfe function. Regular simplex, termination 10'6||x0||1.

> 0

MDSMAX on AFS function. Regular simplex, termination 10'6||x0||1.

Figure 13. MDSMAX on the functiory = £ + % — 2 (min[z, —1] +
1)3. Blue means termination close to the minimum(aty) = (-2 —
v/2,0), red means termination close to the saddle point at the rorigi
Regular simplex.

IX. EFFICIENCY

Moré and Wild [19], benchmarked different derivative-
free optimization solvers on 53 smooth problems. In this
test we use the same set of problems and two of the
same solvers (NEWUOA and NMSMAX) as Moré and
Figure 11.  MDSMAX on the functionf = (9 — )(11z — g) + % Wild [19]. We run the three methods on each problem, an_d
Red means termination close (o, ) = (1, 10), blue means termination ~declare a success if a method uses less than 5000 function
close to(z,y) = (—1,—10), green termination close to the saddle point evaluations, and the gradient corresponding to the salutio
at the origin, and orange means stagnation. Regular simplex satisfies||V f(z)| < 10~2, where this gradient is computed
with finite differences. The corresponding data profile is
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MDSMAX on Wolfe function. Right-angled simplex, termination 10'6||x

ol

Figure 14, MDSMAX on the functiorf = Z- + £ — 2(minz, 1] +
1)3. Blue means termination close to the minimum(aty) = (-2 —
V/2,0), red means termination close to the saddle point at theromRjght-

angled simplex.

Fraction of problems solved

shown in Figure 15. The horizontal axis is number of
equivalent gradient evaluations, i.e. one equivalentigrad

is n function evaluations. As one can see from the figures
NEWUOA solves the most problems if one has a tight
computational budget, and GSS-CI solves the most problernr
if one has as moderate computational budget. NMSMAX
performs the weakest among the methods on these function

X. DISCUSSION
The simplex method [20] is one of the most used

254

Data profile for More-Wild test set

0.3

0.2F

o1 ) =i — NEWUOA
- - — - GSS-Cl
-~ — NMSMAX
1

1 1 1 J
0 50 100 150 200 250 300
Number of equivalent gradients

derivative free optimization methods. In this note we haverigure 15. Data profile for the smooth functions of the testa§eMorée
used the implementations NMSMAX and fminsearch ofand Wild [19].

the simplex method. The other three methods discussed
in the paper represents different approaches of derivative
free optimization. We have shown that GSS-CI solves the
most problems if one has as moderate computational bud{1]
get compared to NEWUOA and NMSMAX. The methods
NEWUOA, NMSMAX, and fminsearch may terminate close |2
to the saddle point while GSS-CI will not converge to
the saddle point for these two examples. This supports the
observed convergence properties of GSS-CI. The regions of[ ]
convergence are dependent on the input parameters and the
results presented are typical behavior of the methods.
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