
389

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using Statistical Information for Efficient

Design and Evaluation of Hybrid XML Storage

Lena Strömbäck
Swedish Meterological and Hydrological Institute

Folkborgsvägen 1, 601 76 Norrköping

lena.stromback@smhi.se

Valentina Ivanova, David Hall

Department of Computer and Information Science

Linköpings Universitet

S-581 83 Linköping, Sweden

valentina.ivanova@liu.se, david@dpg.se

Abstract — Modern relational database management systems

provide hybrid XML storage, combining relational and native

technologies. Hybrid storage offers many design alternatives

for XML data. In this paper we explore how to aid the user in

effective design of hybrid storage. In particular we investigate

how the XML schema and statistical information about the

data can support the storage design process. In our previous

work, we presented our tool HShreX that uses statistical

information about a data set to enable fast evaluation of

alternative hybrid design solutions. In this paper, we extend

this work by presenting more details about the tool and results

of an extended evaluation. In particular, this paper gives a

detailed presentation on how the tool aids in the storage design

and evaluation process.

Keywords – XML, Hybrid XML management, indexing, storage

design.

I. INTRODUCTION

The rapid increase in web based applications yields an
increasing interest in using XML (eXtensible Markup
Language) for representation of data. XML is able to
represent all kinds of data ranging from marked-up text,
through so called semi-structured data to traditional, well-
structured datasets. Supporting the flexibility that makes
XML appealing is challenging from data management and
technical perspectives. Several approaches have been used
including native databases and shredding XML documents
into relations. In practice, hybrid storage that combines
native and relational solutions is of large interest. Hybrid
storage is provided by the major relational database vendors
(Oracle, IBM DB2 and Microsoft SQL Server). They offer
interesting options for storage design where native and
relational storage can be used side by side. In our previous
work [1], we present our tool HShreX that uses statistical
information about a data set to aid in hybrid storage design.

Several studies evaluate different solutions for XML
management. As an example, [2] and [3] provide general
benchmarks for XML data while [4] and [5] gives a case
study of XML data within bioinformatics. For shredding, a
number of different strategies are available [6]. It is well
known that the choice of translation strategy affects the
efficiency [7][8][9] and that the translation can be optimized
in many ways. However, comparisons of different storage
strategies [10] and hybrid XML storage [11] [12] [13] has, so

far, only been studied in a few cases. The above studies
discuss a number of features that may have an impact on
how to achieve efficient storage; the complexity and
regularity of the XML structure; how the data is queried, i.e.,
the access patterns for different entities in the data set; and
the frequency of references to other sources.

In this paper, we further explore these issues by

investigating the impact of the application on the
performance of the database. The properties we are focusing
on are the XML schema structure and statistical properties of
the data set. In Section II, we motivate and discuss the goals
of our work that extends the discussion from [1]. This is
followed by a discussion of properties and measurements
relevant for storage design in Section III. We present our tool
that enables fast evaluation and exploration of storage
solutions in Section IV. Here, we extend the presentation
from [1], which give a better understanding on how the tool
can be used for a fast analyze of properties for a dataset.
Statistical analysis of the data sets used for the tool
evaluation is presented in Section V. In Section VI, we
further extend the previous evaluation to show the feasibility
of the tool. Related work is presented in Section VII. The
paper is summarized by presenting our future vision in
Section VIII. Our long term goal with the work is to present
a method that can suggest a set of plausible hybrid storage
models for an application.

II. MOTIVATION AND GOALS

Previous work [5][7][14][15][16] has defined efficient
shredding methods for XML data into relational databases
that result in fast query times. For hybrid storage, the
situation is more complex where an inappropriate choice of
storage design can lead to poor performance [17]. In general,
automatically shredded relational XML mappings can lead to
a rather large and complicated structure of relations. On the
other hand, storing entire XML documents natively in XML
keeps the structure completely intact to the cost of slow
access to the data. For hybrid XML storage, we have the
choice to store parts of the XML structure as relations and
other parts as XML and can gain from the benefit of a good
data model and relatively fast performance. The design of a
good hybrid storage model is complex and dependent on the
requirements for the specific application [17].

390

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is important to determine, which properties are relevant
for designing efficient hybrid storage. Previous work
[12][17] discusses a number of guidelines to take into
account during the design process. These guidelines give
general advices on how to store data, and we summarize the
guidelines from [17] as they provide general goals for this
paper.

Guidelines for hybrid XML storage:

1. Keep together what naturally belongs together. Parts of

the data that corresponds to a semantic entity is likely to

be used together. Therefore it is in many cases a good

idea to keep it stored as XML and not shredded into

many relations or different representations.

2. Do not shred parts of the XML where the schema

allows large variation. As a relational representation is

less flexible than XML it is usually preferred to store

parts where the schema allows variation as XML.

3. Analyze the data to decide actual variation. The XML

schema gives a good intuition of the possible variation

of data but it does not give the full picture.

4. Prefer relational representation for elements that are

critical for performance. Here, the intuition is to

identify the XML elements that are critical for query

performance and common queries for the application.

5. Prefer the representation that is required for query

results. For the case where the application requires that

the result from the query should be returned as XML

and not as a relational table shredding is not beneficial.

6. Avoid shredding where new versions of the schema are

likely to change.

The above guidelines are easy to use and help the user to

design fairly efficient hybrid XML storage for many
applications. It should be noted, though, that there are many
cases where the different guidelines points in different
directions and where the best tradeoff is given by the need of
the application. Therefore there is a need for further
evaluations and studies.

Exploration and evaluation of alternative solutions is a
time consuming task. Methods and tools, to aid the user in

design of hybrid storage, and measurements, that could give
hints on how to make choices, are of high importance. Based
on the guidelines we can conclude that in order to refine the
design guidelines we need to explore properties of the XML
structure, the XML schema or DTD and the structure of
actual data.

In a preliminary evaluation, we compared the query
efficiency with the amount of data stored as XML in the
hybrid solution. In our tests, we adopt the shredding
principles used in ShreX [14][18] as these principles give a
mapping that captures the semantics of a given XML schema
for the XML data. To explore hybrid storage we used the
extended system HShreX [10][19], which also allows hybrid
XML mappings. The general principle behind the mappings
of these systems is that complex elements are translated to
relational tables. Simple elements and attributes are shredded
to a column in their parent table if they occur at maximum
once in its parent element. HShreX extends this basic
shredding by providing hybrid XML storage, i.e., to allow
parts of the structure to be kept as XML in the final database
representation. In our study the complexity of the created
models varies between one or two relations for the models
stored in pure XML to over 100 relations for the fully
shredded data models.

The results of these tests are illustrated in Figure 1. The
first two graphs show the results for two real data sets from
the IntAct [20] and UniProt [21] databases. In this case we
can see that the amount of data stored as XML gives a good
estimation of the expected query time. For the Michigan
Benchmark data [22] the estimation is not as good as for the
two other datasets. This means that the amount of data is a
good indicator for the performance, but also that further
statistics about the data could give us better indicators and
aid in effective storage design.

III. AVAILABLE INFORMATION

The general guidelines presented in the previous section
show that there are three sources of information that are
important to understand storage requirements for a computer
application. These are: the general data schema, i.e., the data
model (guidelines 1 and 2), samples of data to determine
how the data model is used and what parts of the data model
are in most common use (guideline 3), and samples of

Figure 1. Run times [ms] (black) and data size [bytes] (grey) for PSI-MI (left), UniProt (middle) and Michigan Benchmark (right)

391

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

queries to determine what kind of queries are often
performed for the data (guideline 4 and 5). In this work, we
will examine how to use the data model and statistical
information for a particular dataset.

As shown in the previous section, the amount of data
stored as XML is related to the query performance.
However, the prediction we get from simply measuring the
amount of data is not enough, we also need to collect more
detailed information about the structure of the data. In
practice, different parts of the XML schema are populated
differently in different data sets. The XML schema carries
information about the general structure, but, as for relational
databases, the schema does not give a full picture of how this
structure is instantiated for a particular dataset. We want to
capture this information to create an effective hybrid storage
model. In previous work [23], where we worked with
generated data, we could see that also the amount of data at
various positions in the XML file and the structure of this
data had an impact on query performance. We wanted to
explore this further and collected the following information:

 Overall statistics for the dataset. With this we mean
characterizing the general structure of the dataset. For
this purpose we use simple measures, such as, the total
number of attributes, elements, and levels in the XML.
We also collect the number of elements at each level of
the dataset to determine the fan out of the data.

 Diversity of the dataset. To get estimations of diversity
we collect the number of elements and attributes for
each element or attribute string, at which depths they
occur and compare those to the number of overall
elements. We also collect information on how many
unique search paths occur within the data set and the
number of their occurrence.

 Detailed information at each position in the file. This is
collected by counting the occurrence of element names
at each level in the file. For each combination of
parent/child node we count how common the child node
is for this parent and collect the minimum, maximum
and mean number of times this child occurs for the
parent.

Our previous work on generated data has shown that
parent/child statistics were of particular interest since this
had a large impact on query performance.

IV. A TOOL FOR EVALUATION

To allow easy access to the statistics and aid in
evaluating storage alternatives we extended our tool HShreX
to include this new information. The new version of the tool
can be used to create and evaluate different XML storage
models. We start with a description of the general
functionality of the system.

The general architecture of HShreX is shown in Figure 2.
The system analyses an XML schema and represents it as a
tree structure, which facilitates its visual perception. The tree
structure helps to easily understand and navigate the schema
components as well. The relational schema is likewise
created during the schema analyses. Once the database
structures are created, large datasets, which corresponds to
the currently parsed schema, can be quickly shredded in the
database. Each step starting from the XML schema parsing
and ending in datasets loading is logged and available for
review in a panel under the main work area.

The relational schema is created following the shredding
strategy, mentioned above. The actual XML structure is kept
by foreign key relations between the created relational tables.
These shredding rules are described in [10] and include the
following behavior:

 Complex elements are shredded into tables. All tables

will get a primary key field named shrex_id. If the

complex element is not a root element it will also get a

foreign key field named shrex_pid that points to its

parent. This preserves the tree structure in the original

XML data. If the complex element can have simple

content (i.e., text content), a special field is created in

the table to hold any such content.

 Simple elements are shredded into columns in their

parent table if they can occur at most once under their

parent. If a simple element can occur more than once

under its parent it will be outlined to a separate table.

 Attributes are shredded into columns in their parent

table.

The user can alter the data shredding rules using HShreX

annotations [10]. In this way, the XML data can be
represented in purely native, mixed and shredded storage
models. The HShreX annotations provide the opportunity to
switch rapidly and flexibly between different storage models,
create them in a database and evaluate their performance
features.

HShrex‟s user interface provides three panels, which give
more details of the schema elements and their mappings.
Figure 4 gives an overview of the information on these
panels. In the figure we show details for the element model.
The first panel (top) lists specific details, such as currently
applied HShreX annotations, children elements and attributes
and their occurrences, for the model element in the XML
schema tree. In this case the model element has three
attributes and no annotations have been applied. The second
(middle) shows HShreX mapping of the selected element or
attribute in the tree. Following our translation rules, model is
translated into a relational table, with its three XML

Figure 2. The general architecture of HShreX

392

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attributes translated to attributes in the relational table. Note,
in particular, the attributes shrex_id and shrex_pid used to
keep the relational structure. The full relational schema and
their relations are available in the third panel (bottom of
Figure 4).

In this work, the user interface was extended in two
directions – to provide more convenient work with HShreX
annotations and to visualize more information for a particular
dataset.

A. Annotating the data

Important for allowing fast evaluations is easy change of
the shredded representation of the data. Therefore, HShreX
allows the default shredding rules to be influenced via
annotations. The supported annotations were originally
developed for relational shredding of XML [14] and
extended to allow hybrid XML representation [19]. To get a
better understanding of the functionality we give an
overview of the most important annotations:

maptoxml – makes this part of the XML tree to be stored

natively. The annotation can be used on both complex

and simple elements.

ignore – this part of the XML tree will be ignored, i.e., it

will not be represented in the resulting data model.

outline – used on simple elements (or attributes) where it is

desired that they should be stored in a separate table.

 withparenttable – used to merge a child with its parent in

order to reduce the number of tables in the model. This

annotation can be used only for children with a single

occurrence in the parent.

 tablename – can be used to simply rename a table but a

more powerful use is to merge two tables that do not

have a parent/child relationship (in those cases the

annotation described above, withparenttable, is used).

These annotations allow a rapid change of shredded

hybrid storage model. However, in the original system the
user had to open and edit the XML schema textually. This
was rather complicated and slowed down the process.
Therefore we extended the system with a dialog, allowing
the user to alter annotations directly from the schema tree,
which is shown in the left pane of HShreX.

Figure 3 shows the dialog that facilitates manipulation of
HShreX annotations. While navigating in the schema tree,
we can open the dialog for the element or the attribute of
interest and process its annotations. The dialog provides
functionality for adding annotations, updating, i.e., changing
values of available annotations and deleting annotations.
Since some combinations of annotations for an element or an
attribute are not valid, we validate each annotation regarding

Figure 4. HshreX main panels, XML schema (top), relational

mapping (middle) and relational schema (bottom)

Figure 3. Add/remove annotations dialogue

393

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the already available annotations prior to adding. A useful
feature is provided through the “Apply all changes to all
elements of this type” button, i.e., the currently
added/removed annotations will be applied to all elements of
this type in the XML schema with a single action. The basic
data and the annotations, which apply to the element or the
attribute of interest, are listed in the right side of the dialog.

B. Statistical analysis of the dataset.

The second improvement in the user interface is
orientated towards the statistical information available for a
particular dataset. HShreX obtains this information by
analyzing a set of sample XML files representing the dataset.
We collect the information described in Section III above.
However, for designing the interface it was important to
make the statistics easy available for the user at the time
when it was needed. Therefore we wanted to integrate
statistical information into the HShreX user interface as far
as possible.

In HshreX detailed information, for the element or the
attribute of interest and its children elements and attributes,
is presented in the schema tree when a particular dataset is
loaded to the database in use. The resulting interface is
shown in Figure 6. When data is loaded into the tool,
statistical information is shown in the XML Schema Tree
(left part of the figure) and additional information is
presented in the XML Schema pane (right part of the figure).
To start with the statistics show how common the selected
element is (in this case the element model). The first three
lines in the pane show that there are 251 occurrences of the
elements model, all of them on the second level in the XML
file and in this particular position (path) of the files. As a
contrast the same value for the element speciesReference is
shown in Figure 5. From this statistics we can derive that this
elements is very common, all occurrences are on level 6 in

the file, but only a bit more than half of them in this
particular path.

The remainder of the figures in the XML Schema panel
shows for each occurrence of child element or attribute
occurring in the selected element the total number of
occurrences on the document.

The XML Schema Tree (left in Figure 6) gives more
information on the structure of the data. For each child
element of model it shows how common these are as
children to model. For instance, listOfCompartments occurs
in all occurrences of model while listOfRules only occurs in
129 occurrences of model. This information is of particular
interest when designing the hybrid model as common
elements are often beneficial to shred into relations. Three
different colors are used to facilitate user‟s perception and to
show how many times a particular child node appears under
its parent element, i.e., different children nodes are colored
depending on their frequency of appearance. Thus, the user
gets fast and highly useful overview of child nodes and can
prioritize his next studies based on this information.

In addition, the figures within parenthesis show how the
minimal, mean and maximum number of occurrences for
each child elements occurs for this element. For model, we
can see that each of the child elements occurs exactly once
(when they are available). For our second example the

Figure 6. Statistics for the Biomodels dataset as used in the HShreX tool.

Figure 5. Statistics for the speciesReference element.

394

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

statistics in Figure 5 shows that each occurrence of
listOfReactants has one to four child elements
(speciesReference), the mean number of occurrences is 1.3.
The amount of statistical data visualized in the schema tree is
small, however, our experience have shown that it is the
most useful part of the information available for the dataset.
The schema tree representation of statistical information aids
the user decision on what annotations are appropriate to be
used for a particular dataset and helps to construct proper
queries with higher efficiency. Further, the statistics can help
the user to create indexes and optimize queries. The other
part of the statistical data described in the previous section
can be found in “Open Main Statistics” and “Open All
Statistics” dialogs under the “File” menu. In addition
HShreX can give a summary of all statistics. This summary

also contains some general facts about the file collection,
such as, total number of elements attributes and characters,
the maximum and mean depth of the XML data, the total
number of unique elements and paths in the data. This data
gives a very quick overview of the dataset before designing
the storage solution.

V. STATISTICAL ANALYSIS OF DATA

In this section, we show how the statistics can be used to
explore two selected datasets. For the study we have selected
two datasets represented in the SBML 2.1 (Systems Biology
markup Language version 2.1) XML schema [24] XML
standard. To explore the benefit of our tool and the statistical
information, we used it for designing hybrid shredding and
evaluate its performance on the Homo Sapiens dataset from
the Reactome database [25] and on the BioModels dataset.
Reactome dataset contains an export of data from the
Reactome dataset and while the BioModels dataset contains
simulation models for pathways.

It turns out that the overall structure of the two datasets is
very different. A quick overview of the statistical
information provided by HShreX is given in Table 1. From
the table we can see that the BioModels data is about three
times as large as the Reactome data in terms of number of
attributes and elements. It is also clear that the Reactome
data have less depth and higher fan out than the BioModels
data. This means that the data in the first dataset is spread in
depth (the data is stored on many levels) and the data in the
second dataset is spread in width (the data is populated
almost equally within the dataset).

More interesting is, however, that the number of unique
elements and especially unique paths is much larger in the
BioModels data, this hints that there is much more variety in
the BioModels data than in the Reactome data. We can use
the user interface to further investigate the differences.

The statistics available directly in the HShreX schema
tree for the two datasets are available in Figures 6 and 8.
This pane gives detailed information for the occurrence of

 Reactome BioModels

Files 1 251

Levels 6 8

Total elements 31502 93673

Total Attributes 38062 124756

Elements on each
level

1
1
3

9144
8358

13995

250
254

1814
20008
32375
31020
7951

1

Total depth 6 8

Mean depth 5,15 5,2

Unique elements 13 35

Unique paths 14 70

Table 1: Statistical overview of two our selected datasets

Figure 8. Analysis for the Homo Sapiens dataset.

Figure 7. Statistical data for the reaction element. Reactome (top)

and BioModels (bottom).

395

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the nodes and their parents and presents a clear view of data

distribution in the particular dataset. For Reactome dataset
all data are collected in the listOfCompartments,
listOfSpecies and listOfReactants elements. For the
BioModels dataset, the data is much more spread over
different parts of the XML schema. Figure 7 shows a further
analysis of some part of the data, in this case the reaction,
and shows that the same relation holds, BioModels data is
more diversified than Reactome data.This analysis shows us
that a hybrid model for Reactome data can be very simplified
as only parts of the XML structure needs to be represented. It
also shows that for both datasets reaction is one element
critical for performance and thus important for further
studies.

VI. EVALUATING THE APPROACH

Examining the mentioned datasets, using the HShreX
interface, we noticed that some of the elements and their
parents occur more often than others, thus our research will
be more productive if we concentrate on them. In this
section, we will discuss how we work with HShreX in two
different application domains.

A. Bioinformatics data

Our discussion in the previous section showed that
reaction and model are important elements in our SBML
datasets. Therefore in our examples we have applied the
HShreX annotation maptoxml to the reaction and to the

model elements in the XML schema. This particular
annotation/value combination has been selected in order to
force the HShreX application to store these parts of the data
as pure XML in the corresponding database. If we do not
apply any HShreX annotations, the data in the datasets is
represented in a shredded storage model. HShreX has been
forced to represent the data in a hybrid and in a pure native
storage models applying the maptoxml annotation to the
reaction and model elements respectively.

We have chosen two of the major database servers
available on the market and set up their options related to the
XML data representation in various configurations. Using
the database servers XML storage capabilities we are able to
store the XML data with or without associating it with
corresponding XML schema. The database servers run on
HP Proliant DL380 G6 Server with two Intel Xeon E5530
Quad Core HT Enabled processors running at 2.4 GHz (in
total 16 logical processors) and 30 GB RAM.

We have created different SQL queries (exemplified in
Listing 1 and Listing 2) and executed them against the three
storage models and different database configurations. In
Query 1, the simpler among both, we retrieve details for a
reaction where one of its participants is specified. In the
second query, we join details for reactions and reactions to
extract participants and products for all reactions. First we
executed the two queries using only the homo sapiens

Figure 9. Performance [ms] for Query 1 (left) and Query 2 (right) where: ■ homo sapiens dataset with index, ■ homo sapiens dataset without index,

■ homo sapiens and biomodels datasets with index and ■ homo sapiens and biomodels datasets without index

Shredded:
SELECT d."species", b."shrex_pid", e."species
FROM sbml_model_listOfReactions_reaction_listOfReactants b,

 sbml_model_listOfReactions_reaction_listOfProducts c,
 sbml_model_listOfReactions_reaction_listOfReactants_speciesReference d,
 sbml_model_listOfReactions_reaction_listOfProducts_speciesReference e

WHERE c."shrex_pid" = b."shrex_pid"
 AND b."shrex_id" = d."shrex_pid"
 AND c."shrex_id" = e."shrex_pid"

 AND d."species" = 'REACT_5251_1_Oxygen';

Native:
SELECT reaction.query('for $react in //reaction,

 $rtant in $react/listOfReactants/speciesReference,
 $prod in $react/listOfProducts/speciesReference
 return <path> {data($rtant/@species)} {data($react/@id)}
 {data($prod/@species)} </path>') "test"

FROM sbml_model_listOfReactions_reaction
WHERE reaction.exist('//reaction/listOfReactants/speciesReference
 [@species="REACT_5251_1_Oxygen"]') = 1;

Listing 2. Sample query for SBML – Query 2

Shredded:
SELECT a."id", a."name"
FROM sbml_model_listOfReactions_reaction a,

 sbml_model_listOfReactions_reaction_listOfReactants b,
 sbml_model_listOfReactions_reaction_listOfReactants_speciesReference c

WHERE a."shrex_id" = b."shrex_pid"
 AND b."shrex_id" = c."shrex_pid"

 AND c."species" = 'REACT_5251_1_Oxygen';

Native:
SELECT reaction.query('for $i in /reaction/listOfReactants/speciesReference

 where $i/@species = "REACT_5251_1_Oxygen"
 return <Details> {$i/../../@id} {$i/../../@name} </Details>') "data"

FROM sbml_model_listOfReactions_reaction
WHERE reaction.exist('/reaction/listOfReactants/speciesReference
 [@species="REACT_5251_1_Oxygen"]') = 1;

Listing 1. Sample query for SBML – Query 1

396

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dataset. After that we loaded both datasets at the same time
and evaluated how the response time changes when the size
of the data stored in the database increases. The measured
performance can be influenced by other processes running
on the server. To reduce this influence, the queries from the
figures were executed ten times per condition set, and the
averages of the results are presented.

First runs were made without any additional
optimization. Based on the statistics, proper XML indices,
for each variation of database storage options, were created
and the same queries were executed again. Thus, we benefit
from the statistical information available for a particular
dataset in three ways: we can use the statistics to choose the
best place for the HShreX annotations regarding our interests
and in this way switch flexibly and rapidly between different
storage models. We are as well able to create proper, for
each storage model, indices based on the view of the data
distribution in the particular dataset. A final advantage is that
we can optimize our SQL queries not only creating indices
but rewriting them based on the data distribution and
complexity.

The results from the two different query executions are
shown in Figure 9. The equivalent positions on the „X‟
coordinate in both of the charts correspond to equivalent
condition sets of database storage options. The results from
positions 1 and 2 correspond to a fully shredded storage,
positions 4 – 8 correspond to a hybrid storage and positions
10 – 14 correspond to a pure native XML storage. Positions
4 – 8 use the same conditions sets of database storage
options as positions 10 – 14, however the HShreX annotation
is applied to different elements. As we expected, there is a
clear relation between the storage model and the query
performance, i.e., the execution times are fastest in the
shredded storage and slowest in the pure native storage.

Examining the positions 4 – 14 in both result sets we can
clearly see that the query performance varies with a different
amount for the different database storage options when the
size of the data in the database increases. The performance is
usually improved when the XML indices are created. It is
worth noting that this is not true for position 11 in Query 2
where the performance drops considerably when the index is
used. While positions 4 – 8 in the two results sets are
comparable, positions 10 – 14 have a lot of differences.
Positions 13 and 14 in the first results set have the worst
performance among the results for pure native storage while
in the second results set they have the best performance.
Analyzing positions 13 and 14 in the first result set shows
that indices have excellent performance when the size of the
data is relatively small and their performance decrease when
the data size increases. It is worth noting as well the
differences between positions 7, 8 and respectively 13, 14 in
the results for Query 1. Positions 7, 13 and 8, 14 respectively
have the same database storage options – positions 7 and 8
give the best results while positions 13 and 14 give the worst.

Analyzing the two result sets we can conclude that
indices provide better results when used with the hybrid
storage than with the pure XML storage. The indices
efficiency increases when the size of the data in the hybrid
storage increases. During results analysis, we need to

consider that the results are also affected from the database
servers XML storage capabilities and created indices. The
benchmark results are influenced from the data distribution
in the datasets as well as the SQL queries construction. The
statistical data available in HShreX facilitates and aids our
decision where to put HShreX annotations and SQL indices
and thus HShreX assists us in fast storage construction.

B. Provenance data

Scientists in the natural sciences use workflow
management systems to facilitate their work in development,
management and execution of data and computation
intensive experiments. These experiments can be described
as a sequence of connected activities, where the output of
one activity is an input to the following. The experiments are
run multiple times with different configurations of
parameters where results are produced by each execution.
The results obtained from different configurations as well as
the configurations itself are highly important for the
scientists. They are used for further analysis of the results, as
well as sharing and reusing experimental data. The scientific
workflow management systems offer tools for describing
experiments (workflows), keep track at each step of their
evolution and execution and store the resulting data products
in an easily reproducible format. Efficient methods for
searching and retrieving large amounts of data are essential
for the scientists in their everyday work, in this context.

Each workflow system stores the relevant information in
its own internal format; however most of them can export the
workflows and execution data as XML. Hence usually the
workflows are shared in the community in the XML format
corresponding to a particular vendor XML schema. Using
our tool HShreX and the particular schema the user can
obtain a fast overview of the data and to create a storage
corresponding to its requirements.

Shredded:
 SELECT WDDDSO.processor, WDP.shrex_pid
 FROM workflow_dataflow_processors WDP,

 workflow_dataflow_datalinks WDD,
 workflow_dataflow_datalinks_datalink WDDD,
workflow_dataflow_datalinks_datalink_sink WDDDSI,
workflow_dataflow_datalinks_datalink_source WDDDSO,
workflow_dataflow_processors_processor WDPP

 WHERE WDP.shrex_pid = WDD.shrex_pid
AND WDPP.shrex_pid = WDP.shrex_id
AND WDDD.shrex_pid = WDD.shrex_id

 AND WDDDSI.shrex_pid = WDDD.shrex_id
AND WDDDSO.shrex_pid = WDDD.shrex_id
AND WDDDSI.processor = WDPP.name
AND WDPP.name = module_name;

Native:
 SELECT dataflow.COLUMN_VALUE
 FROM workflow_dataflow,
 XMLTable('for $i in //dataflow,

 $p in $i/processors/processor/name,
 $d in $i/datalinks/datalink
 where $p = $d/sink/processor
 and $p = $name
 return if(exists($d/source/processor))
 then < Details >{$d/source/processor}{$i}</ Details >
 else< Details ><processor>null</processor></ Details >'
 PASSING module_name AS "name", "dataflow") dataflow;

Listing 3. Input query

397

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There is a set of specific queries that are highly important
for scientists in this domain. These are the input and output
queries [26] (discover the activities immediately before and
after a particular activity), the upstream and downstream
queries [26] (discover the activities before and after a
particular activity in the whole workflow), activity details
query [26] (shows all parameters for an activity), different
version queries [27] (show permanent and temporary
changes in the workflows structures). Since the input and
upstream queries are foundations for more complex queries
in this area, they were chosen to show the capabilities and
benefits from our tool.

 In this experiment, we use a set with approximately 600
files generated by the Taverna [28] workflow management
system. Each file contains at least one workflow. So the total
dataset contains around 1100 workflows, since an activity
can be a workflow on its own. Studying the corresponding
schema and the dataset (guideline 3), and taking into account

an additional knowledge for the selected queries (guideline
5), we selected the dataflow and the processors elements to
apply the HShreX annotation maptoxml. The structure of
the dataset is shown in Figure 10. The dataflow element
represents the whole experiment (workflow) and the
processors element represents the activities in it. The
datalinks element is another important element – it shows
how the activities are connected and it has a significant place
in the domain specific queries. As described in the previous
section, the maptoxml annotation will force our tool to store
the corresponding parts of the XML as pure XML. When the
annotation is applied to the elements the data is represented
in pure native and respectively in hybrid storage models.

We have implemented the input and upstream queries
(Listing 3 and 4) as SQL functions and executed them
against the three storage models. The input query retrieves
the activities that immediately precede a given activity. First
each workflow is checked for presence of the activity
(identified by its name) and when the activity is available the
datalink elements are explored in order to find the
immediately preceding activities. In the upstream query, all
activities that precede a given activity in a workflow are
retrieved. In order to find all preceding activities in the
workflow the input query is executed for every previously
selected activity until the beginning of the workflow is
reached. Since the upstream query is highly dependent on the
structure of the workflow we select and evaluate the query
performance for two different activities, which are at

Figure 11. Performance [ms] for the input query (left) and the upstream query (right) where: ■ short path (to the activity regarding the workflow beginning)

with index, ■ short path without index, ■ long path (to the activity regarding the workflow beginning) with index and ■ long path without index

Figure 10. Statistical data for the dataflow element

Shredded:
UPSTREAM_QUERY (module_name)
SELECT WDDDSO.processor AS preceeding_name, WDP.shrex_pid
FROM workflow_dataflow_processors WDP,

 workflow_dataflow_datalinks WDD,
 workflow_dataflow_datalinks_datalink WDDD,
 workflow_dataflow_datalinks_datalink_sink WDDDSI,
 workflow_dataflow_datalinks_datalink_source WDDDSO,

 workflow_dataflow_processors_processor WDPP
WHERE WDP.shrex_pid = WDD.shrex_pid

 AND WDPP.shrex_pid = WDP.shrex_id
 AND WDDD.shrex_pid = WDD.shrex_id
 AND WDDDSI.shrex_pid = WDDD.shrex_id

 AND WDDDSO.shrex_pid = WDDD.shrex_id
 AND WDDDSI.processor = WDPP.name
 AND WDPP.name = module_name;
 RETURN UPSTREAM_QUERY (preceeding_name)

Native:

UPSTREAM_QUERY (module_name)
SELECT dataflow.COLUMN_VALUE AS preceeding_name
FROM workflow_dataflow,
XMLTable('for $i in //dataflow,

 $p in $i/processors/processor/name,
 $d in $i/datalinks/datalink
 where $p = $d/sink/processor
 and $p = $name
 return if(exists($d/source/processor))
 then <Details>{$d/source/processor}{$i}</Details>
 else <Details><processor>null</processor></Details>'
 PASSING module_name AS "name", "dataflow") dataflow;
 RETURN UPSTREAM_QUERY (preceeding_name)

Listing 4. Upstream query

398

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different distance from the first activity in the workflow. The
two queries were executed on the same database servers and
with similar XML storage options as the queries discussed
above. Initially, they were executed without any
optimizations and then using the statistics in our tool proper
indices was created.

The results from the executions of the input and the
upstream queries are shown on the left and respectively on
the right side in Figure 11. The results on the first two rows
(dark blue and red color) on both figures are obtained using
an activity close to the beginning of the workflow, while the
results on the other two rows are obtained using a distanced
(from the beginning) activity. Analogically to the
presentation of the bioinformatics data results, the equivalent
positions on the „X‟ coordinate in both of the charts
correspond to equivalent condition sets of database storage
options. The results from positions 1 and 2 correspond to a
fully shredded storage, positions 4 – 7 correspond to a hybrid
storage and positions 9 – 12 correspond to a pure native
XML storage. Positions 4 – 7 use the same conditions sets of
database storage options as positions 9 – 12, however the
HShreX annotation is applied to different elements.

Here, as well as in the bioinformatics data results, the
query execution times are fastest in the shredded storage
model. The queries performance for the hybrid storage
(positions 4 – 7 in both result sets) is very good, sometimes
even comparable with the performance in the fully shredded
storage. The structure of the queries, where the joins are
mainly between shredded relations, has a particular influence
on these results. It should be noted that the indices lead to
significant improvement in the input query execution time
for position 4. Nevertheless, some positions (for instance
position 7 on the left figure) in the hybrid storage show a
small loss of performance, when the indices are created. A
careful examination shows that the query execution times for
these positions, obtained in the first run after creating the
indices, are very slow. Each query was run ten times per
condition set (the average time is shown here) in order to
reduce the influence of other processes running on the server
at the same time. Although the other execution times for the
mentioned positions are very fast, these extreme values
influence the average of the results. The query performance,
in the pure native XML storage, is usually improved when
the indices are created, except the position 10 in both result
sets, where the indices lead to worse performance. As
expected, due to the upstream query definition, the execution
times are dependent on the distance to the selected activity
regarding the beginning of the workflow (first two rows on
the right figure against the next two rows).

Since each scientific workflows management system has
different internal representation of the data, the sharing and
reusing of already existing workflows is limited. Thus our
current work in the domain of the scientific workflows is
orientated towards development of common data
representation, optimized for domain specific queries (some
of them were mentioned earlier). Since the scientific
workflows are best described as directed acyclic graphs, our
data model is naturally based on a graph model. Most of the
domain specific queries are related to graph traversal and

other graph operations as well. In this context we have
implemented the input and upstream queries in our specially
designed model. A comparison between their performance in
the graph model and the shredded storage obtained with our
tool HShreX is presented in Table 2. Note that although the
HShreX shredded storage is not optimized according to the
requirements in the scientific workflows domain, it has
comparable performance with the storage specially designed
for the domain requirements.

VII. RELATED WORK

The work presented in this article combines ideas from
several different areas for XML storage. The first is the work
on automatic shredding of XML documents into relational
databases by capturing the XML structure or based on the
DTD or XML schema for the XML data [5][7][14][18]. The
intention with these approaches is to create efficient storage
for the XML data. The resulting data model is often hard to
understand and is usually hidden from the user via an
interface providing automatic query translation of XQuery
into the model.

The other related area is hybrid XML storage for
relational databases. The vendors offer different underlying
representation for the XML type, in some cases it is a byte
representation of the XML, in other cases it is some kind of
shredding of the XML data [8][16][29][30]. In addition,
database vendors provide a number of tools to import XML
natively or shred the data into the system. These tools are
intended for design of one database solution, thus generation
and evaluation of alternative solutions become time
consuming.

Interesting work [31] has addressed the question of
properties of XML data and generating statistical and
comparative measurements of XML datasets. However, this
work concentrates on overall measures of properties of the
dataset and does not consider the more detailed statistical
measurements that we have found most useful in our work.

Other related work is found within database optimization
[32][33]. Query optimization can rely on statistics of data
and query use for fine tuning their performance [9][34].
However, these statistics are often dependent on the internal
database representation instead of based on the original
dataset as is necessary for our work. It would be interesting
to include these measurements in our work to see whether
they could give added value to our indicators.

Query HShreX
storage

Special
storage

Input (short path) 43 50

Input (long path) 24 17

Upstream (short path) 183 81

Upstream (long path) 1463 330

Table 2: Comparison between query execution times [ms] in HshreX and

in our specially designed storage

399

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. CONCLUSION AND FUTURE DEVELOPMENT

The extended HShreX tool is very promising and our
tests confirms that our tool is very useful for aiding in
storage design. Using the tools and statistics improves the
evaluation process and makes it possible to compare a high
number of alternative hybrid database designs. The statistical
analysis gives powerful insight in the structure of data and
aids not only in how to shred the data but also in how to
construct indices. The added details and experiments, which
extend this paper from [1], verify these results.

In particular, we want to compare our set of
measurements with the more advanced statistical methods
used in [34]. The final goals would be to use the measure to
provide suggestions of beneficial hybrid data models for the
end user, to further automate the process of storage design.
To reach this goal it is crucial to have access to series of data
with specific properties to fine tune the indicators and tests.
Also for this issue we have made a first solution for
generating data with desired properties [23], which can be
integrated into our tool.

One bottleneck with our method is that hybrid data
models are very complex to query due to the mix of query
languages. We are currently using SQL/XML, however, if
we consider a user that want to work on the data as if it was
XML, this is not feasible. Options are automatic query
translations from XQuery to the defined model or to provide
a higher level query language for the user.

Another very interesting question is hybrid storage
solutions with several DB architectures as a backend, for
instance pure native XML databases or specialized databases
for graphs or RDF storage. This becomes particularly
important for applications where parts of the data contain
RDF code or represent graphs as is the case for many system
biology standards. We have previously evaluated different
combinations [10][13] and would like to include also these
options in the HShreX Framework.

ACKNOWLEDGMENT

We acknowledge the financial support from the Center
for Industrial Information Technology and the Swedish
Research Council. We are also grateful to Juliana Freire for
support and fruitful discussions regarding this work and for
Mikael Åsberg for implementation work on the HShreX tool.

REFERENCES

[1] L. Strömbäck, V. Ivanova, and D. Hall, Exploring Statistical
Information for Applications-Specific Design and Evaluation of
Hybrid XML storage., Proceedings of the International Conference
on Advances in Databases, Knowledge, and Data Applications
(DBKDA 2011), Jan. 2011, pp. 108-113.

[2] AR. Schmidt, F. Waas, M. Kersten, MJ. Carey, I. Manolescu, and R.
Busse, XMark: A Benchmark for XML Data Management,
Proceedings of the International Conference on Very Large
Databases (VLDB 2002), Aug. 2002, pp. 974–985.

[3] BB. Yao, MT. Özsu, and N. Khandelwal, XBench Benchmark and
Performance Testing of XML DBMSs, Proceedings of the IEEE
International Conference on Data Engineering (ICDE 2004), Mar.
2004, pp. 621-633.

[4] L. Strömbäck, Possibilities and Challenges Using XML Technology
for Storage and Integration of Molecular Interactions, Proceedings of

the International Workshop on Database and Expert Systems
Applications, Aug. 2005, pp. 575-579, doi:10.1109/DEXA.2005.154.

[5] Strömbäck, D. Hall, M. Åsberg, and S. Schmidt, Efficient XML data
management for systems biology: Problems, tools and future vision,
International Journal on Advances in Software, vol. 2(2-3), 2009, pp.
217-233, Invited contribution.

[6] D. Floresco and D. Kossmann, Storing and Querying XML Data
using an RDMBS, IEEE Data Engineering Bulletin, vol. 22(3), 1999,
pp. 27-34.

[7] B. Bohannon, J. Freire, P. Roy, and J. Siméon, From XML Schema to
Relations: A Cost-Based Approach to XML Storage, Proceedings of
the IEEE International Conference on Data Engineering (ICDE
2002), Feb.-Mar. 2002, pp. 64-75, doi:10.1109/ICDE.2002.994698.

[8] H. Georgiadis and V. Vassalos, XPath on steroids: Exploiting
relational engines for XPath performance, Proceedings of the ACM
SIGMOD International conference on Management of data
(SIGMOD 2007), Jun. 2007, pp. 317-328,
doi:10.1145/1247480.1247517.

[9] T. Grust, J. Rittinger, and J. Teubner, Why Off-the-Shelf RDMBMSs
are Better at Xpath Than You Might Expect, Proceedings of the ACM
SIGMOD International conference on Management of data
(SIGMOD 2007), Jun. 2007, pp. 949-958,
doi:10.1145/1247480/1247591.

[10] L. Strömbäck and D. Hall, An evaluation of the Use of XML for
Representation, Querying, and Analysis of Molecular Interactions, In:
T. Grust et. al. (Eds) Current Trends in Database Technology –
International Conference on Extending Database Technology 2006
Workshops PhD, DataX, IIDB, IIHA, ICSNW, QLQP, PIM, PaRMA,
and Reactivity on the Web, Mar. 2006, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 4254, 2006, pp. 220-233,
doi:10.1007/11896548_20.

[11] I. Mlynkova, Standing on the Shoulders of Ants: Towards More
Efficient XML-to-Relational Mapping Strategies, Proceedings of the
International Workshop on Database and Expert Systems
Applications, Sep. 2008, pp. 279-283, doi:10.1109/DEXA.2008.16.

[12] MM. Moro, L. Lim, and Y-C. Chang, Schema Advisor for Hybrid
Relational-XML DBMS, Proceedings of the ACM SIGMOD
International conference on Management of data (SIGMOD 2007),
Jun. 2007, pp. 959-970, doi:10.1145/1247480-1247592.

[13] L. Strömbäck and S. Schmidt, An Extension of XQuery for Graph
Analysis of Biological Pathways, Proceedings of the International
Conference on Advances in Databases, Knowledge, and Data
Applications (DBKDA 2009), Mar. 2009, pp. 22-27,
doi:10.1109/DBKDA.2009.16.

[14] S. Amer-Yahia, F. Du, and J. Freire, A Comprehensive Solution to
the XML-to-Relational Mapping Problem, Proceedings of the ACM
International Workshop on Web Information and Data Management,
Nov. 2004, pp. 31-38, doi:10.1145/1031453.1031461.

[15] D. Barbosa, J. Freire, and AO. Mendelzon, Designing Information-
Preserving Mapping Schemes for XML, Proceedings of the
International Conference on Very Large Databases (VLDB 2005),
Aug.-Sep. 2005, pp. 109-120.

[16] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J.
Naughton, Relational databases for querying XML documents:
Limitations and opportunities, Proceedings of the International
Conference on Very Large Databases (VLDB 1999), Sep. 1999, pp.
302-314.

[17] L. Strömbäck and J. Freire, XML Management for Bioinformatics
Applications, Computing in Science and Enineering, vol.13,
Sep./Oct., 2011, pp. 12-23,
http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.100.

[18] F. Du, S. Amer-Yahia, and J. Freire, ShreX: Managing XML
Documents in Relational Databases, Proceedings of the International
Conference on Very Large Databases (VLDB 2004), Aug.-Sep. 2004,
pp. 1297-1300.

[19] L. Strömbäck, M. Åsberg, and D. Hall, HShreX – A Tool for Design
and Evaluation of Hybrid XML storage, Proceedings of the

400

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Workshop on Database and Expert Systems
Applications, Aug.-Sep. 2009, pp. 417-421,
doi:10.1109/DEXA.2009.33.

[20] B. Aranda et al., The IntAct molecular interaction database in 2010,
Nucleic Acids Research, Oct. 2009, pp. 1-7, doi:10.1093/nar/gkp878.

[21] The UniProt Consortium The Universal Protein Resource (UniProt),
Nucleic Acids Research, vol. 36(1), 2008, pp. D190-D195,
doi:10.1093/nar/gkm895.

[22] L. Runapongsa, JM. Patel, HV. Jagadish, Y. Chen, and S. Al-Khalifa,
The Michigan Benchmark: Towards XML Query Performance
Diagnostics, Information Systems, vol. 31(2), Apr. 2006, pp. 73-97,
doi:10.1016/j.is.2004.09.004.

[23] D. Hall and L. Strömbäck, Generation of Synthetic XML for
Evaluation of Hybrid XML Systems, In: M. Yoshikawa et al. (Eds)
Database Systems for Advanced Applications 15th International
Conference, International Workshops: GDM, BenchmarX, MCIS,
SNSMW, DIEW, UDM, Apr. 2010, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 6193, 2010, pp. 191-202,
doi:10.1007/978-3-642-14589-6_20.

[24] M. Hucka et al., The systems biology markup language (SBML): a
medium for representation and exchange of biochemical network
models, Bioinformatics, vol. 19(4), 2003, pp. 524-531,
doi:10.1093/bioinformatics/btg015.

[25] Reactome – a curated knowledgebase of biological pathways
http://reactome.org 25.09.2010.

[26] L. Moreau et al., Special issue: the first provenance challenge,
Concurrency and Computation: Practice and Experience, vol. 20(5),
2007, pp. 409–418.

[27] C. Scheidegger, D. Koop, H. Vo, J. Freire, and C. Silva, Querying
and creating visualizations by analogy, IEEE Transactions on
Visualization and Computer Graphics 13(6), 2007, pp. 1560–1567.

[28] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li,
and T. Oinn, Taverna: a tool for building and running workflows of
services, Nucleic Acids Research, 2006, Volume 34, Issue Web
Server issue, pp. 729-732.

[29] K. Beyer, F. Özcan, S. Saiprasad, and B. Van der Linden,
DB2/XML:Designing for Evolution, Proceedings of the ACM
SIGMOD International conference on Management of data
(SIGMOD 2005), Jun. 2005, pp. 948-952,
doi:10.1145/1066157.1066299.

[30] M. Rys, XML and relational Management Systems: Inside Microsoft
SQL Server 2005, Proceedings of the ACM SIGMOD International
conference on Management of data (SIGMOD 2005), Jun. 2005, pp.
958-962, doi:10.1145/1066157.1066301.

[31] I. Sanz, M. Mesiti, G. Gurrini, and RB. Llavori, An entropy based
characterization of the heterogeneity of XML collections,
Proceedings of the International Workshop on Database and Expert
Systems Applications, Sep. 2008, pp. 238-242,
doi:10.1109/DEXA.2008.55.

[32] G. Gottlob, C. Koch, and R. Pichler, Efficient Algorithms for
processing Xpath Queries, ACM Transactions on Database Systems,
vol. 30, No 2, Jun. 2005, pp. 444-491, doi:10.1145/1071610.1071614.

[33] J. McHugh and J. Widom, Query optimization for XML, Proceedings
of the International Conference on Very Large Databases (VLDB
1999), Sep. 1999, pp. 315-326.

[34] J. Freire, JR. Haritsa, M. Ramanath, P.Roy, and J. Siméon, StatiX:
making XML count, Proceedings of the ACM SIGMOD International
conference on Management of data (SIGMOD 2002), Jun. 2002, pp.
181-191, doi:10.1145/564691.564713.

