
Compact and Efficient Modeling of GUI, Events and Behavior
Using UML and Extended OCL

Dong Liang, Bernd Steinbach
Institute of Computer Science

Freiberg University of Mining and Technology
Freiberg, Germany

email: liang@mailserver.tu-freiberg.de, steinb@informatik.tu-freiberg.de

Abstract—The model driven architecture (MDA) allows to
move the software development form the time consuming and
error-prone level of writing program code to the next higher
level of modeling. The MDA requires tools for modeling,
transformation of models, and code generation. In the past,
we have developed such tools successfully. Using these tools we
recognized serious problems preparing concise, uniform, and
complete models using the unified modeling language (UML).
In detail these problems concern first the specification and
parameterization of GUI elements, second the event handling,
and third the modeling of the required behavior. In this
paper we show efficient solutions for these problems using the
object constraint language (OCL) together with the UML for
modeling. While the parameterization of GUI elements can be
solved with the OCL directly, the last two problems were solved
by an extension of the OCL into an executable OCL, which we
call XOCL. We show the benefits of all three new approaches
by means of an example of a complete platform independent
model (PIM).

Keywords-OCL extension, action language, event handling,
platform independent model, class diagram

I. INTRODUCTION

Traditionally, developing software means writing code
in one of the programming languages. Recently, a novel
approach called MDA (Model Driven Architecture) [6],
which is proposed by OMG (Object Management Group),
has evoked more and more attentions in software devel-
opment. Instead of writing code directly, MDA suggests
that software developers model their software products in a
platform independent way. Such a software model is called
Platform Independent Model (PIM). Then an MDA-tool
is used to transform the PIM into one or more Platform
Specific Models (PSM). The PSMs have involved detailed
information for implementation. Hence, code generation
from a PSM is straightforward. In order to realize model
transformation, two different strategies are feasible. One of
them defines the model transformation process in a high
level specification language. The QVT (Query, View and
Transformation) language [7][8] supported by OMG is the
de facto standard for this strategy. The QVT allows to define
a transformation in an imperative approach. Then a QVT
compiler generates an implementation (e.g., in Java) of this
transformation specified in the QVT source file as a model

compiler, which is dedicated to this transformation. The
other strategy is to develop the model compiler itself as
an all-purpose model transformation framework as well as
to provide all necessary information about the underlying
target platform the PSM based on, in the form of Target
Platform Models (TPM). To prove the second strategy, the
model compiler MOCCA (Model Compiler for reConfig-
urable Architecture) [9][10] was developed in our institute.
According to the actual state of MOCCA, a PIM can be
transformed into C++ code, Java code for software design, as
well as C++/VHDL code for software hardware co-design.

For the both strategies, one issue is still challenging. That
is, how to create a PIM concisely, uniformly and completely.
In this paper, we assume that all the PIMs are modeled using
the Unified Modeling Language (UML) [5] and the Object
Constraint Language (OCL) [4]. Based on our experiences
with MOCCA, three sub-issues concerning creating PIMs
are found.

1) Modeling GUI-layout of a GUI-based application and
parameterize all the GUI elements in standard UML
is a serious problem, because the model must contain
the structural composition of GUI as well as all
the geometrical and visual information of the GUI
elements. There is no UML diagram type appropriate
for both of these aspects.

2) Modeling event handling for GUI-based application in
standard UML is time-consuming, because almost all
programming languages have their own GUI libraries
and the underlying event models and their details blow
up the UML-model in an unnecessary manner.

3) Modeling behaviors in PIM concisely is very difficult,
because on the one hand there is no standard universal
action language based on the UML Action Semantics
[5]; on the other hand, specifying behaviors using one
of the UML behavioral diagrams can result in a model
more complex than the target codes themselves.

In order to solve these problems, developing new mod-
eling approaches based on UML and OCL are the main
aims of this paper. In Section II, a new approach will be
introduced that uses UML Class Diagram and OCL-init-

100

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

expressions to model and to parameterize GUI elements. In
Section III, the OCL is extended by the ability to register
event handlers for an event source. This approach helps to
create real PIMs for MDA-technology. In Section IV, the
OCL is upgraded from a pure declarative language without
side effects into an action language, which can be used to
specify all kinds of operations in a concise and platform
independent manner. In Section V we summarize these three
new approaches in an example of a complete PIM.

II. OCL-INIT-EXPRESSIONS – OUR NEW APPROACH TO
PARAMETERIZE GUI ELEMENTS

In GUI-based application the user interacts usually with a
window containing different kinds of GUI elements, which
are typically menu items, icons, buttons, input fields etc.
According to different platforms, these GUI elements may
also be called GUI components or GUI controls. A GUI
element usually represents a certain graphical entity that
can be displayed on the screen. So they typically have
parameters, which concern displaying them on the screen
correctly. Such parameters are position, size, background-
and foreground-color etc. Most modern object-oriented pro-
gramming languages implement common GUI elements as
classes and their important properties as attributes of the
corresponding classes. They are deployed in libraries and
can be used in certain languages. Hence, the programmers
can use them directly. Figure 1 shows such a GUI-based
application implemented in both Java and C#. Both im-
plementations are similar in appearance, because for each
GUI element involved in Java implementation, there is a C#
counterpart. This analysis gives us a heuristic to model GUI
in a platform independent manner. Since there are so many
common points among GUI elements on different platforms,
we can abstract a platform independent GUI tool-kit with
most common GUI elements and their important properties
for the general usage to develop a PIM for an application.

In fact, MOCCA supports this principle inherently. A
Design Platform Model (DPM) [9][10] contains the most
basic design types for primitive data types, IO facilities
etc., has been used to establish PIMs. Such a GUI toolkit
is just another extension of MOCCA DPM, which is still
being developed. The class diagram in Figure 2 models
the GUI elements of the application in Figure 1 in a
completely platform independent manner. The types with
prefix DP, which means Design Platform, are the common
GUI elements involved in the GUI toolkit of MOCCA DPM.
For example, the design type DPWindow can be considered
as a common abstraction of both JFrame in Java and Form in
C#. The properties defined in DPWindow, such as length and
height, are used to model GUI elements exactly. The tool
used to create this model is our own CASE Tool called UML
2 Designer. However, modeling in this way shows neither
the composition structure nor the visualization of the GUI

(a) Java Implementation

(b) C# Implementation

Figure 1. A GUI-based application implemented in Java and C#

elements on the screen. The missing information has to be
involved in the design model in a reasonable way.

Implementing GUI-layout as source code using a modern
object-oriented programming languages is as complicated
as modeling it in a design model. The powerful modern
IDEs usually solve this problem by integrating an additional
software component, which supports visual manipulation of
GUI-elements. For C# the Form Editor of Visual Studio IDE
can be used for this purpose, whereas the Swing GUI Builder
integrated into the NetBeans IDE is the counterpart for Java.
Both of them support programmers in a similar way. For a
class implementing the GUI-layout of an application, e.g.,
the derived class of the Form base class in C#, there is a
design view associated with it. The programmer chooses the
required GUI elements from a Toolbox, which contains all
the supported GUI elements in this context, positions them
on the form, and edits them visually. Figure 3 shows how
to use the Form Editor to edit the GUI elements of the
application in Figure 1 (b) in a manner explained above.

After editing the GUI elements, all the geometrical and
visual information are stored in the Property Window, which
is visible on the right side of Figure 3. The Visual Studio
generates C# codes automatically, which reflect the visual
manipulation of the GUI elements done in the design view.
These generated program statements are displayed in the C#
source code view. Figure 4 shows the generated C# codes
initializing the first button in Figure 1 (b).

101

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Platform independent model for the main window of the
application in Figure 1

It is easy to understand that the Swing GUI Builder
generates Java codes to reflect the visual manipulation of the
Swing components. It is clear that both scenarios mentioned
above are platform specific. Based on the considerations
above, we suggest a solution to model the GUI-layout in the
phase of establishing the PIM of a GUI-based application,
which can be summarized as follows:
• A platform independent GUI toolkit is required that

contains common GUI elements and their properties
as the building blocks of a PIM. As explained, the
prototype of this GUI toolkit has been created for our
MOCCA DPM and can be used directly in our CASE
Tool UML 2 Designer.

• The logical structure of an application window con-
taining various GUI elements can be modeled in UML
class diagram, as shown in Figure 2.

• The GUI-layout of an application window can be visu-
ally manipulated in a view associated to the UML class,
which models the logical structure of an application
window. This additional view is an add-on software
component of the UML 2 Designer, whose prototype
has been developed in a bachelor thesis and its upgrade
version will be developed in another bachelor thesis.
We call this software component the Smart GUI Editor.
Figure 5 shows its usage. It is easy to understand that
the Smart GUI Editor shares the same principles as the
Form Editor and Swing GUI Builder.

Figure 3. The Form Editor of Visual Studio 2008 used to edit the GUI
elements of the application in Figure 1 (b)

Figure 4. C# code generated by Visual Studio Form Editor

• In contrast to the Form Editor in Visual Studio, which
can produce C# code to reflect the visual manipulation,
a platform independent manner is required for our
Smart GUI Editor, which can be transformed easily into
target code in the later phase of model transformation.
As solution, we suggest using OCL-init-expressions to
represent the information generated by our Smart GUI
Editor.

As explained in [3], the OCL-init-expressions can be
used to give the initial values of attributes or association
ends of a class at the moment that an instance of this
class is created. Hence, the original OCL-init-expressions
are usually attached to the properties of a class as their
context. In this paper, the syntax of the original OCL-init-
expressions have been slightly extended such that all the au-
tomatically generated OCL-init-expressions are attached to

102

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. The Smart GUI Editor used to visually manipulate the GUI
elements modeled in UML class diagram

the class directly, which is in our application a GUI window.
According to our code-generation strategy, for initializing
the properties of the GUI window itself, the Smart GUI
Editor will generate an OCL-init-expression concatenating
all the properties using OCL and operator. For each GUI-
element contained in this window, the Smart GUI Editor will
generate an additional OCL-init-expression specifying all its
properties, again, connecting them by OCL and operator.
The window instance can be retrieved by the OCL keyword
self. Hence, the OCL-init-expressions in Listing 1 can be
generated and attached to the class EventHandlingCom-
parisonWindow as constraints. These OCL-init-expressions
initialize the structural composition and geometrical infor-
mation of the application window and its contained GUI
elements m MainPanel, which is a split panel, as well as
the button m Button 1. Other used GUI elements can be
parameterized in the same way.

1 i n i t : s e l f . l e n g t h = 480
2 and s e l f . h e i g h t = 629
3 and s e l f . t i t l e = ’ Main Window ’
4

5 i n i t : s e l f . m MainPanel . s p l i t = t r u e
6 and s e l f . m MainPanel . h o r i z o n t a l = f a l s e
7 and s e l f . m MainPanel . owner = s e l f
8

9 i n i t : s e l f . m Button 1 . posX = 35
10 and s e l f . m Button 1 . poxY = 15
11 and s e l f . m Button 1 . l e n g t h = 93
12 and s e l f . m Button 1 . h e i g h t = 31
13 and s e l f . m Button 1 . t e x t = ’ B u t to n One ’
14 and s e l f . m Button 1 . owner = s e l f . m But tonPane l

Listing 1. OCL–init–expressions to parameterize GUI elements

One more question must be answered. How does the GUI-
layout modeled in a PIM as suggested above make sense
for the final GUI-layout mapped on a specific hardware
platform? In order to answer this question, we should make

a difference between the GUI-layout and GUI-look-and-
feel. For example, the both applications in Figure 1 do
have the same GUI-layout but slightly different look-and-
feels due to the underlying implementation platforms, say,
Java-Swing and C#-FCL. Hence, modeling GUI-layout as
suggested in this paper concentrates on the logical structure
of an application window. That means which GUI-elements
belong to which window, or to which panel etc. On the other
hand, geometrical information can be modeled in a device
independent coordinate system, which can be transformed
onto concrete platform in the phase of model transformation
by providing the model mapper with additional information
about the underlying implementation platform.

III. OCL-EVENT-EXPRESSION – OUR NEW APPROACH
TO MODEL EVENT HANDLING

Another important issue related to model GUI-based ap-
plication in PIM is to model event handling [1]. It is difficult
to deal with this modeling issue by using standard UML and
OCL.

At first view, it seems to be possible to use the OCL isSent
operator (denoted byˆ) to model the coupling of events to
their handling methods. However, the isSent operator can
only be used in the post condition [3] of an event sending
method, e.g., fireActionPerformed() operation of the class
JButton in Java. It is needlessly for application modelers to
specify post conditions of this type of operations, because
it does not belong to the application model, but to the used
GUI library. Hence, the isSent operator is not appropriate to
connect events of GUI elements to their handling methods.
To model the coupling of events to their handling methods
using class diagrams in a traditional way is a serious
problem, too. This will be illustrated by examples.

(a) Java Implementation (b) C# Implementation

Figure 6. A simple GUI-based application implemented in Java and C#

A very simple GUI-application, which has been imple-
mented in both Java and C#, is shown in Figure 6. There
is a single button in the main window of the application.
When this button is pressed, a message box will be launched
to confirm this operation. The same behavior occurs by
pressing the closing symbol of the main window. Even for a
simple application like this, the corresponding PSMs in Java
and C# are not the same. Figure 7 shows both models.

103

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Java and C# models for the application of Figure 6

At first glance, these UML-models are similar to each
other, because for each class and interface involved in the
Java model, a counterpart can be found in the C# model.
Only the number and types of the ”lines” between these
elements are different. These differences are caused by
the requirements of the languages. In Java, interfaces are
used to connect events with their handler [12] while in C#
delegates are used, which are in fact type safe callbacks
based on function pointer [13]. The concept delegate is not
supported by standard UML directly, so a stereotype must
be defined in order to allow marking a class as delegate.
In order to model the semantics of function pointers, two
additional dependencies are used between the delegates and
their pointed methods. The analysis of these UML models
achieves an important conclusion: the most complexities
were brought into these models by modeling event handling
in a too detailed manner.

Taking into account the increased complexity of real GUI
elements, modeling in such a way reduces the readability of
class diagrams dramatically. The PSM for the Java imple-
mentation of the application in Figure 1 is shown in Figure
8. Due to poor readability, the corresponding C# PSM with
increased complexity is not included in this paper. The Java

PSM explores another remarkable drawback of traditional
modeling of the event handling in class diagrams, which is:
only the three classes with colored background belong to the
classes to develop; the other classes with white background
are GUI-related library types.

Due to these findings, a novel approach of modeling event
handling in much simpler manner must be found. In this new
approach, the tedious details explored in the PSMs must be
hidden to the application modeler. The class diagram should
contain as few library types as possible.

In order to find a unified and tight model for event-
handling, a thorough understanding of the underlying event
handling mechanisms is required. An event enables an object
of a class (or a class itself) to publish changes of its state.
Other objects and classes can then react to this change.
This mechanism is usually called Publishing – Subscription
model. Despite different implementations of this model in
concrete programming languages, the entire event handling
process can be divided into four parts [14]:

• Static publishing requires, that some kinds of events can
be specified as members of their source. For example,
events such as Window Closing, Button Click must be
specified in GUI elements representing an application

104

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. The PSM for the Java implementation of Figure 1

window or a button, respectively. This part is only
important for customized events. The most significant
GUI events have been defined by GUI developers.

• Dynamic publishing allows the transmission of the
events. In both Java and C# this part is realized by a
method, which triggers the execution of one or several
dedicated event handling methods. Similar to static
publishing, this part has been again implemented by
GUI library designers.

• Static subscription requires the implementation of all
event-handling methods. In fact, exactly this part spec-

ifies what must be performed when an event occurs.
This part has to be modeled by application modeler.
Along with dynamic publishing, this part belongs to
behavioral specification of an application model and
should be modeled compactly using some kind of high
level action language, which will be addressed in next
section.

• Dynamic subscription is done by establishing the
connection between the event-source and the event-
handling method. Such a process is often called regis-
tration of event handlers. Based on the analysis above,

105

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modeling this part makes the class diagrams complex
and heterogeneous, because various listener interfaces
are used in Java to connect events with their handling
methods loosely while C# delegates set up these con-
nections directly. The new approach discussed in this
section is designed to simplify exactly this part of the
entire event handling process.

In order to develop a unified model for event-handler reg-
istration, a thorough comparison between Java and C# event
models is completed to extract the similarities from them and
to recognize the differences between them. The conclusion
of this comparison can be summarized as follows:

1) In Java, the signature of an event-handling method is
completely specified in one of the listener interfaces
while C# EventHandler delegate (and its subtypes)
determines only the parameter list and the type of the
return value of possible event-handling methods.

2) In Java, the individual event cannot be referenced as a
member of its source separately whereas C# supports
it by using event key word to define each event as a
separate member of its source object.

3) In both Java and C#, when an event occurs, certain ad-
ditional information can be passed to the correspond-
ing event-handling method. Subtypes of EventObject
are used in Java to represent such information whereas
there are EventArgs and its subtypes as counterparts
in C#.

4) In Java, each invocation of one of the addXXListener()
methods on an event-source can connect a group
of related events with their corresponding handling
methods implicitly, whereas the ”+=” operator of C#
connects one single event with its handling method,
explicitly.

Based on the comparisons above, the C# manner is
more flexible and clearer in terms of expressiveness and it
provides us a heuristic to develop a way, in which dynamic
subscription in event-handling can be modeled uniformly
for different platforms. All the essential elements involved
in the dynamic subscription are:
• the event-source object, which are usually the GUI

elements of a window or the window itself,
• different types of event of an event-source,
• event-handling methods, which are implemented in

event-handler classes, and
• a connection operator that allows to set up the connec-

tion of an event to its event-handling method.
As solution to the problems mentioned above we suggest

extending the OCL by a new expression, which is labeled by
the keyword event. In such an OCL-event-expression the new
registration operator ”∼” is used to establish the connection
between an event on the left hand side and an event-handling
method on the right hand side of this operator. We defined
that the new OCL-event-expression in the above form has

the type OclVoid and consequently no value.
Listing 2 shows the concrete syntax of the OCL-event-

expression. Its abstract syntax is shown in Figure 9. An
instance of OCLEventExp associates with two instances of
the abstract syntax type OCLFeatureCallExp representing
the event and its handling method respectively. The extended
OCL abstract syntax will be discussed in next section more
detailed.

1 <EventExpCS> : : = ’ even t ’ ’ : ’
2 <OCLFeatureCallExpCS >’˜’<OCLFeatureCallExpCS>

Listing 2. Grammar rule deriving OCL–event–expression

Figure 9. The abstract syntax of the OCL-event-expression

The class diagram in Figure 10 models the C# implemen-
tation in Figure 1. Compared with the Java PSM in Figure
8, this C# PSM is much simpler. Because the association
ends to GUI elements have been modeled as normal prop-
erties, most the cumbersome ”lines” could be removed. The
connections between the events and event-handling methods
are modeled in a tight and well understandable manner using
our new suggested OCL-event-expressions.

For example, to specify the method control Click() as
the handling method for the Click event of both the button
m Button 1 and the button m Button 2 in the derived Form
class, two expressions

event:
self.m Button 1.Click∼m EventHandler.control Click

event:
self.m Button 2.Click∼m EventHandler.control Click

can be written in the context EventHandlingComparison-
Form.

As part of our new approach the OCL-event-expression
allows to model dynamic subscription especially for GUI
elements in class diagrams. Figure 10 shows that OCL-
event-expressions lead to a very compact C# PSM.

The modified Java PSM is shown in Figure 11. Compared
to the Java PSM in Figure 8, this model is both very compact
and similar to the C# PSM in Figure 10. The two extended
OCL expressions mean that the event-handling methods
button 1 actionPerformed() and button 1 mouseClicked()
are connected to their corresponding events of the button

106

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. C# PSM using suggested OCL-event-expressions to model event-handler registration

Figure 11. The modified Java PSM with our new approach

m Button 1. Modeling in this way breaks the constraints in
the Java event model in the following way.

• The event-handling methods can be declared as flexibly
as in C#. Specifically, their names do not need to be
pre-coded. Hence, it is not required any more that the
event handler class implements the relevant listener
interfaces. This is the solution for point one in the
comparison given above.

• As solution of point two, an approach has to be found
to identify a single event on an event source. An
intuitive candidate may be a Java event object, e.g.,

WindowEvent, MouseEvent etc., but they are similar
to their corresponding listener interfaces, which group
several related events together. It requires an extra effort
to select a single event of such a event-collection. As
result of our detailed analysis, we found that it is
possible to adopt the method name defined in the event
listeners to identify a single event. If an event-source
can register several event listeners, the method names
in this set of listeners classify the events exactly.

Because the Java event-handling framework specifies that
event-handling methods must connect to events via methods

107

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

named addXXListener(), only methods registered in this way
can be used in the dynamic publishing phase of event han-
dling. In order to overcome this restriction of connecting the
event-handler with the event, a Java anonymous class [12]
can be created as a bridge between the fixed method-name
of a Java event-handling method and the free chosen name
of the event-handler in the UML-model. Both expressions in
Figure 11 can be transformed into the Java code as shown
in Figure 12 either automatically by a model compiler or
manually by Java programmer. For that, it is necessary to
choose a correct listener interface or adapter class to declare
the anonymous class. This is possible because the event-
handling methods used to identify events have been declared
or implemented in each listener interface or adapter class
clearly. The matching between them is unambiguous.

Figure 12. Java Code corresponding to the OCL-event-expressions of
Figure 11

Although the names of GUI elements, event objects and
even the concrete event-handling methods are different, the
underlying PSMs are similar to each other both logically
and visually. Even more, the reduced PSMs share the same
logical structure with the PIM in Figure 2. Hence, we can
extend the common GUI elements involved in the MOCCA
DPM with common events. Then the OCL-event-expressions
can be used the same way as OCL-init-expressions to
parameterize GUI elements in order to model the registration
of events to their handling methods platform independently.

IV. A SMALL SET OF ADDITIONAL OCL EXPRESSIONS
– OUR NEW APPROACH TO SPECIFY THE BEHAVIOR OF

PLATFORM INDEPENDENT MODELS

Generally speaking, there are two possibilities to model
behaviors platform independently. One of them is to use
UML behavioral diagrams, e.g., state chart, activity dia-
gram or sequence diagram. The other one means speci-
fying behaviors in high level action language. Based on
our experiences with MOCCA, in some circumstances, the
behaviors modeled by, e.g., activity diagrams become more
complex than the target code itself. So we suggest modeling

behaviors using an action language. The actual situation
seems a bit awkward, since the OMG has only specified the
Action Semantics [5] without one standard surface language.
Instead of defining a brand new OMG action-semantics-
compliant action language, we find that the widely spread
Object Constraint Language (OCL) seems closely to be a
good action language due to the following reasons:

• OCL is a standard part of the UML 2 Specification. It
has been widely used and proven its value.

• OCL covers large part of the entire Action Semantics
of UML. Only the semantics involving changing the
states in the model are missing. Such missing semantics
can be easily added to the standard OCL with new
syntax constructs. We introduce the required small set
of additional OCL Expressions in this section.

• The OCL collection types and their predefined op-
erations are powerful in terms of expressiveness and
concise in terms of syntax. Together with OCL-body
expression, very complex query operations in PIM can
be specified both concisely and exactly.

Before we get into the technical issues, an example
will be used to show the advantage of specifying complex
query operations in OCL. Figure 13 shows a piece of
class diagram modeling a payback management system. The
query operation selectPartnersHaveNoPointsInServ() of the
class Payback gathers all the program partners, which do not
provide services awarding points to the customers. Listing
3 shows the OCL expression specifying the complex logic
mentioned above, while Listing 4 shows its corresponding
Java implementation. Evidently, the standard OCL expres-
sion can be used to specify complex querying operation both
exactly and compactly. This is what needed in the modeling
phase.

1 body : s e l f . m Par tne r s−>s e l e c t (p : P r o g r a m P a r t n e r |
2 p . m D e l i v e r e d S e r v i c e s −> f o r A l l (s : S e r v i c e |
3 n o t s . m P o i n t s I n))

Listing 3. Specifying complex querying operation in OCL

1 A r r a y L i s t<P r o g r a m P a r t n e r> s e l e c t R e s u l t =
2 new A r r a y L i s t<P r o g r a m P a r t n e r >() ;
3 I t e r a t o r <P r o g r a m P a r t n e r> i t r 0 =
4 t h i s . m P a r t n e r s . i t e r a t o r () ;
5 w h i l e (i t r 0 . hasNext ()){
6 P r o g r a m P a r t n e r p= i t r 0 . n e x t () ;
7 b o o l e a n f o r A l l R e s u l t = t r u e ;
8 I t e r a t o r <S e r v i c e> i t r 1 = p . g e t D e l i v e r e d S e r v i c e s () .

i t e r a t o r () ;
9 w h i l e (i t r 1 . hasNext ()){

10 S e r v i c e s= i t r 1 . n e x t () ;
11 f o r A l l R e s u l t = f o r A l l R e s u l t && ! s . i s P o i n t s I n () ;
12 }
13 i f (f o r A l l R e s u l t)
14 s e l e c t R e s u l t . add (p) ;
15 }
16 r e t u r n s e l e c t R e s u l t ;

Listing 4. Java implementation of the OCL expression in Listing 3

108

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. A part of the PIM modeling the business objects of a payback management system

UML supports modeling behaviors in arbitrary action
languages inherently. Figure 14 (a) illustrates this support
in UML meta-model. Every operation associates with its
implementation represented by the abstract meta-class Be-
havior, which can be an activity, an interaction or an opaque
behavior concretely. The opaque behavior is a behavior,
whose semantics is determined by its body string, while the
body can be specified in any kind of action language. Hence
the opaque behavior can be used to carry (extended) OCL
expressions at the time of modeling behaviors in PIM. This
principle has been implemented in our UML 2 Designer.
The opaque behavior containing OCL expression is created
as a subordinate element of the operation, whose behavior
has been specified by this expression.

As yet, the benefits of using standard OCL expression and
its concrete usage in a tool have been illustrated. Towards
upgrading OCL to a real action language, the next task is to
select the important missing action semantics, add them to
the standard OCL by defining new syntax constructs and
extending the corresponding abstract syntax. We call the

extended OCL XOCL, X means executable. Based on the
achievement in [2] and the explanation in [5] as well as
our research, the following actions, whose semantics are
predefined in [5], are involved in the XOCL.

• AddStructuralFeatureValueAction,
• RemoveStructuralFeatureValueAction, and
• ClearStructuralFeatureValueAction:

These actions are important to update the state of an
object, e.g., to assign the attributes of a class with new
values. The syntax construct supporting them is specified
by the grammar rule in Listing 5.

1 <Proper tyAss ignExpCS> : : = ’ s e l f ’ ’ . ’ ID ’ : = ’ <OCLExpCS>

Listing 5. Grammar rule deriving a property assignment expression

The notations of GOLD Parsing System [11] are used
in this paper, because the GOLD Parsing System is used
to implement an XOCL compiler for these extensions. Ac-
cording to GOLD, non-terminals are delimited by the angle

109

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) UML meta-model of behavior (b) Supporting of opaque behavior in our own CASE tool - UML 2 Designer

Figure 14. Behavior as a meta-class in UML and its implementation in UML 2 Designer

brackets and terminals are delimited by single quotes or
not delimited at all. As suggested in [4], each non-terminal
has one synthesized attribute that holds the instance of the
XOCL Abstract Syntax returned by the rule. For this rule,
an instance of type PropertyAssignExp will be created with
all information needed. Figure 15 shows all the types of
XOCL Abstract Syntax. This inheritance hierarchy contains
also the standard part of OCL Abstract Syntax, which is
slightly different with the one specified in [4], in order to
make the implementation efficiently.
• AddVariableValueAction,
• RemoveVariableValueAction, and
• ClearVariableValueAction:
These actions are used to assign and update local vari-

ables. The syntax construct supporting them is specified by
the grammar rule in Listing 6. This rule returns an instance
of the type LocalVarAssignExp. In fact, this rule can be in-
volved in the rule of Listing 5. We make difference between
them in order to keep type checking more efficiently, due to
partition of symbol table into two parts.

1 <LocalVarAssignExpCS> : : = ID ’ : = ’ <OCLExpCS>

Listing 6. Grammar rule deriving a local variable assignment expression

• CreateObjectAction:
This action is used to create an instance of a class defined

in UML model. Listing 7 shows its concrete syntax. An
instance of the abstract syntax type CreateObjectExp will
be created by this rule.

1 <CreateObjec tExpCS> : : = ’new ’
2 <OCLFullNameExpCS> ’ (’ <OCLArgumentsCS> ’) ’

Listing 7. Grammar rule deriving a create object expression

• DestroyObjectAcion:
At the time of creating a PIM, the application logic cannot

trust in the garbage collection system of the later target
platform. So the feature of modeling destructing an object
explicitly is provided by this action. Similar to other actions,
Listing 8 shows its concrete syntax while DestroyObjectExp
represents the abstract syntax.

1 <DestroyObjectExpCS> : : = ’ d e l e t e ’ ID

Listing 8. Grammar rule deriving a destroy object expression

• ReplyAction:
The most imperative languages support this action with

return keyword. We use the same keyword in XOCL. An
instance of ReplyExp will be created to represent this action
in abstract syntax.

1 <ReplyExpCS> : : = ’ r e t u r n ’ ID

Listing 9. Grammar rule deriving a reply expression

In order to make XOCL a complete action language, three
elementary control flows, namely, sequential execution, con-
ditional execution and iterative execution must be supported.
In UML Action Semantics [5] they are represented by the
meta-class SequenceNode, ConditionalNode and LoopNode.
In OCL the conditional execution has been represented by
OCL-if-expression; iterative execution has been hidden in
the semantics of different loop operations, which are not
appropriate for all the situations where the iteration seman-
tics are needed; the explicit sequential execution are not
supported at all. The extended syntax constructs supporting
the elementary flow control semantics are added to the
XOCL as follows:

110

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. The inheritance relationships of XOCL abstract syntax

1 <BlockExpCS> : : = ’ begin ’ <I m p e r a t i v e E x p L i s t> ’ end ’
2 | ’ beg in ’ ’ end ’
3

4 <I m p e r a t i v e E x p L i s t> : : = <I m p e r a t i v e E x p L i s t>
5 <Impe ra t i veExp>
6 | <Impe ra t i veExp>
7

8 <Impe ra t i veExp> : : = <WhileExpCS>
9 | <IfExpCS>

10 | <OCLVarDeclarationExpCS> ’ ; ’
11 | <Proper tyAss ignExpCS> ’ ; ’
12 | <LocalVarAssignExpCS> ’ ; ’
13 | <DestroyObjectExpCS> ’ ; ’
14 | <ReplyExpCS> ’ ; ’
15 | ’ c a l l ’ <OCLFeatureCallExpCS > ’; ’

Listing 10. Grammar rules representing XOCL code block

• Sequential Execution is represented in XOCL by a
block consisting other XOCL-expressions between the
begin and end keywords. It can also be empty. List-
ing 10 shows all the grammar rules related to derive
XOCL-block-expression. The alternatives in the body

of the production for non-terminal ImperativeExp are
the possible expressions, which can be used in an
XOCL code block. The upper part of Figure 15 illus-
trates the corresponding abstract syntax of the concrete
syntax in Listing 10. An instance of the abstract syntax
type BlockExp serves as a container of other XOCL
expressions. This can be recognized by the composition
pattern in the class diagram of Figure 15.

1 <IfExpCS> : : = ’ i f ’ <OCLExpCS> ’ then ’ <BockExpCS> ’ e n d i f
’

2 | ’ i f ’ <OCLExpCS> ’ then ’ <BockExpCS> ’ e l s e ’
<BlockExpCS> ’ e n d i f ’

3 | ’ i f ’ <OCLExpCS> ’ then ’ <OCLExpCS> ’ e l s e ’
<OCLExpCS> ’ e n d i f ’

Listing 11. Grammar rules deriving XOCL conditional execution

• Conditional Execution can be specified in XOCL using
if -expression. Listing 11 shows its syntax. The third

111

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

alternative represents the standard OCL-if-expression,
the other two allow block expression to be used as body
of an XOCL-if-expression. In abstract syntax, IfExp
represents what is returned by these rules.

• Iterative Execution is represented by while-expression.
Listing 12 shows its concrete syntax. The type While-
Exp is used in the compilation to represent the abstract
syntax of iterative execution.

1 <WhileExpCS> : : = ’ whi le ’ <OCLExpCS> <BlockExpCS> ’
endwhi le ’

Listing 12. Grammar rule deriving XOCL iterative execution

The CallOperationAction has been involved in OCL.
However, as explained in [3], only the query operations can
be called in the normal OCL expressions. In XOCL non-
query operations can also be called within an XOCL code
block. The last alternative in the body of the production
for the non-terminal ImperativeExp in Listing 10 makes
difference between calling non-query operation in XOCL
and calling query operations in original OCL by using a new
keyword call. The non-query operation call is represented
in the abstract syntax by the type NonQueryOpCallExp that
functions as a wrapper of OCLFeatureCallExp.

Figure 15 illustrates the important inheritance relation-
ships between the abstract syntax types. There are also
important associations between these types as well as be-
tween them and the UML meta-classes. Instead of listing all
the class diagrams modeling these relationships, an abstract
syntax tree (AST) generated by our XOCL compiler after
parsing the XOCL expression in Listing 3 will be used to
illustrate both the associations between the types involved
in the XOCL abstract syntax and the working principle of
our XOCL compiler. Figure 16 shows this abstract syntax
tree in the form of a UML Object Diagram. The both sub-
trees rooting in a OCLLoopExp represent the OCL select()
and forAll() operation. At the runtime both instances of
OCLLoopExp hold the information to identify the individual
OCL loop operation. The OCLFeatureCallExp owns gen-
erally two branches; the one on the left-hand side is the
caller while the other one is the callee. The callee usually
uses the type information carried by the caller for type
checking and code generation. Each object in yellow color
represents a model element defined in the UML model.
At the time of constructing an AST, each token, which
may represent a model element, is type-checked against
the symbol table, which is created based on the underlying
UML model. If it is found, the corresponding model element
will be associated with the AST node representing the
actual token. For example, the AST node representing the
token m Partners has been linked with the association end
m Partners defined in the class diagram shown in Figure
13.

Since the abstract syntax tree stores all the type informa-
tion that an XOCL expression involves, code generators for
different platforms traverse each node in an AST, generate
implementation codes on target platform by consulting the
information modeled in the corresponding TPM. The con-
struction of an AST for an XOCL expression happens in the
phase of Model Validation, while code generation is done in
Model Transformation. For example, after traversal the AST
depicted in Figure 16, a Java Code Generator will emit the
Java code shown in Listing 4 for the XOCL expression in
Listing 3.

To conclude this section, we will use the extended lan-
guage constructs of XOCL to specify another complex
querying operation getPartnerHasMostPointsOutServ() of
the class Payback in Figure 13. This operation gives back the
program partner, who provides the most services that award
points to their customers. Listing 13 shows the specification
of this operation in XOCL. The new features of the XOCL
allow software modelers to design their own implementation
logics with the help of the existent OCL features on a higher
abstraction level. The way of using XOCL is more or less
similar to pseudo code used by mathematicians.

1 b e g i n
2 r e s u l t P a r t n e r : P r o g r a m P a r t n e r = s e l f . m P a r t n e r s . f i r s t () ;
3 numberOfPo in t sOu tSe rv : I n t e g e r = r e s u l t P a r t n e r .

m D e l i v e r e d S e r v i c e s−>s e l e c t (s : S e r v i c e | s .
m I s P o i n t s I n = f a l s e)−>s i z e () ;

4 i n d e x : I n t e g e r = 2 ;
5

6 w h i l e index<=s e l f . m P a r t n e r s . s i z e ()
7 b e g i n
8 num : I n t e g e r = s e l f . m P a r n t e r s . a t (i n d e x) .

m D e l i v e r e d S e r v i c e s−>s e l e c t (s : S e r v i c e | s .
m I s P o i n t s I n = f a l s e)−>s i z e () ;

9 i f num > numberOfPo in t sOu tSe rv t h e n
10 b e g i n
11 numberOfPo in t sOu tSe rv := num ;
12 r e s u l t P a r t n e r := s e l f . m P a r n t e r s . a t (i n d e x) ;
13 end
14 e n d i f
15 i n d e x := i n d e x +1;
16 end
17 e n d w h i l e
18 r e t u r n r e s u l t P a r t n e r ;
19 end

Listing 13. XOCL expression specifying an operation

There is one more issue, which must be clarified before
ending this section. Originally, the OCL was developed
as a declarative language without side effect, which was
primarily used in the UML models to specify constraints.
After extending OCL into XOCL, the ”purely declarative”
characteristic is gone. Is this a problem? The answer is no.
Firstly, the original OCL was completely contained in our
XOCL as a subset. That means the OCL expressions can be
used as usual to specify constraints as well as query opera-
tions. Secondly, the extended imperative language constructs
are only required to specify non-query operations, which are
excluded by the OCL. Finally, our language extensions are

112

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. The abstract syntax tree of the XOCL expression in Listing 3

based on the OCL style, making its usage relatively easy.
An alternative to the slightly extended OCL into XOCL

will be an extensive action language (AL), which must
be defined from the scratch and must repeat many of
the powerful data types and operations, which are already
defined in OCL. In this unfavorable scenario three languages
(UML + OCL + AL) are required to specify a complete
model so that one main issue of models namely simplicity
is not achieved.

V. EXAMPLE OF A COMPLETE PIM
As an important experimental result to show the benefits,

the platform independent model (PIM) of the GUI-based
application of Figure 1 has been created using all three new
approaches discussed in this paper. As Figure 1 illustrates,
this application reacts to the events by means of logging
them in the text area below the both buttons.

In the PIM created in this section, we concentrate on
illustrating principles. Hence, only the click-events of the
both buttons will be logged. The application will react to the
closing-event of the main application window and the click-
event of the menu item called Exit by means of disposing the
held system resources explicitly. Figure 17 shows the class
diagram of our example PIM. After manipulating the GUI
elements in Smart GUI Editor, the OCL-init-expressions that

parameterize them can be generated automatically and saved
in a constraint attached to the class EventHandlingCompar-
isonWindow. Listing 14 shows these generated OCL-init-
expressions.

To register the important GUI-events to their correspond-
ing handling methods, our OCL-event-expressions can be
used. Listing 15 shows four examples. The other important
events can be registered in the same manner. The abstract
event-objects, such as click, closing have been modeled as
properties of the corresponding GUI types in the MOCCA
DPM.

The OCL-event-expressions must be used in the same
constraint, which contains the OCL-init-expressions. After
model transformation, all these (extended) OCL-expressions
will be transformed into target language code and saved into
the body of a special method called initializeGUICompo-
nents(), which will be automatically generated and added to
the class representing EventHandlingComparisonWindow on
the target platform.

To model behaviors, or in other words, to specify the
implementation of methods the XOCL-expressions are used
as the body of an opaque behavior, which belongs to
the method to be specified. To specify the implementa-
tion logic of the handling method for the event Clos-

113

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. Platform independent model of the application of Figure 1

ing of the class EventHandlingComparisonWindow, XOCL-
destroy-expression in Listing 16 is a good choice.

In model transformation, the semantics of destroying an
application window will be translated into the target lan-
guage constructs, e.g., dispose() together with System.exit(0)
in Java. Listing 17 shows the same logic as Listing 16, be-
cause if the menu item exit is clicked, the entire application
will be finished.

Listing 18 specifies the event handling method but-
ton 1 Click(). The platform independent semantics of the
condition in if -expression can be understood as a test against
null pointer in Java.

Listing 19 specifies the similar event handling method
button 2 Click().

The XOCL-property-assignment-expressions in Listing 20
initialize the event handler as well as the logger string in the
constructor of the class EventHandlingComparisonWindow.
The identifier handler in Listing 20 is the formal parameter
of the constructor.

In model transformation they are translated into target
language constructs with the same semantics and addition-
ally, the generated initializeGUIComponents() method will
be appended in the transformed constructor to initialize the
GUI elements as well as to register GUI events to their
handling methods.

In Listing 21 the XOCL-create-expressions have been
used to construct the necessary instances. Instead of using
main method directly, we call such a unique method start-
up method. Because no matter what it is called in PIM, the
start-up method, which is identified by the stereotype main
will be always transformed into the corresponding language
construct on target platform.

As a review to the content discussed in Section IV, it
should be understood that all the XOCL-expressions will be

parsed into the abstract syntax trees like what is represented
in Figure 16 in the phase model validation. These XOCL
ASTs will be processed by consulting the corresponding
TPM in the phase model translation to generate language
construct on the target platform.

1 i n i t : s e l f . posX = 100 and s e l f . posY=100 and
2 s e l f . l e n g t h = 500 and s e l f . h e i g h t = 800 and
3 s e l f . t i t l e = ’ Main Window ’
4

5 i n i t : s e l f . m MenuBar . owner = s e l f
6

7 i n i t : s e l f . m Fi le . t e x t = ’ F i l e ’ and
8 s e l f . m Fi le . owner = s e l f . m MenuBar
9

10 i n i t : s e l f . m Exit . t e x t = ’ Ex i t ’ and
11 s e l f . m Exit . owner = s e l f . m Fi le
12

13 i n i t : s e l f . m MainPanel . s p l i t = t r u e and
14 s e l f . m MainPanel . h o r i z o n t a l = f a l s e and
15 s e l f . m MainPanel . owner = s e l f
16

17 i n i t : s e l f . m But tonPane l . s p l i t = f a l s e and
18 s e l f . m But tonPane l . owner = s e l f . m MainPanel
19

20 i n i t : s e l f . m Button 1 . posX = 35 and
21 s e l f . m Button 1 . posY = 15 and
22 s e l f . m Button 1 . l e n g t h = 93 and
23 s e l f . m Button 1 . h e i g h t = 31 and
24 s e l f . m Button 1 . t e x t = ’ Bu t to n One ’ and
25 s e l f . m Button 1 . owner = s e l f . m But tonPane l
26

27 i n i t : s e l f . m Button 2 . posX = 285 and
28 s e l f . m Button 2 . posY = 15 and
29 s e l f . m Button 2 . l e n g t h = 93 and
30 s e l f . m Button 2 . h e i g h t = 31 and
31 s e l f . m Button 2 . t e x t = ’ Bu t to n Two’ and
32 s e l f . m Button 2 . owner = s e l f . m But tonPane l
33

34 i n i t : s e l f . m LoggerPanel . s p l i t = f a l s e and
35 s e l f . m LoggerPanel . owner = s e l f . m MainPanel
36

37 i n i t : s e l f . m Logger . m u l t i L i n e s = t r u e and
38 s e l f . m Logger . owner = s e l f . m LoggerPanel

Listing 14. OCL–init–expressions parameterizing GUI elements in
Class EventHandlingComparisonWindow

114

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 e v e n t : s e l f . c l o s i n g ˜ s e l f . m Handler . mainWindow Closing
2 e v e n t : s e l f . m Exit . c l i c k ˜ s e l f . m Handler .

menuEx i t C l i ck
3 e v e n t : s e l f . m Button 1 . c l i c k ˜ s e l f . m Handler .

b u t t o n 1 C l i c k
4 e v e n t : s e l f . m Button 2 . c l i c k ˜ s e l f . m Handler .

b u t t o n 2 C l i c k

Listing 15. OCL–event–expressions registering events of the GUI
elements in Class EventHandlingComparisonWindow to their handling
methods

1 b e g i n
2 d e l e t e s e l f . m MainWindow ;
3 end

Listing 16. XOCL–expression specifying the event handling method
mainWindow Closing()

1 b e g i n
2 d e l e t e s e l f . m MainWindow ;
3 end

Listing 17. XOCL–expression specifying the event handling method
menuExit Click()

1 b e g i n
2 i f n o t s e l f . m MainWindow . o c l I s U n d e f i n e d () t h e n
3 b e g i n
4 c a l l s e l f . m MainWindow . s e t L o g g e r I n f o (’ Bu t ton 1 was

c l i c k e d ! ’) ;
5 end
6 e n d i f
7 end

Listing 18. XOCL–expression specifying the event handling method
button 1 Click()

1 b e g i n
2 i f n o t s e l f . m MainWindow . o c l I s U n d e f i n e d () t h e n
3 b e g i n
4 c a l l s e l f . m MainWindow . s e t L o g g e r I n f o (’ Bu t ton 2 was

c l i c k e d ! ’) ;
5 end
6 e n d i f
7 end

Listing 19. XOCL–expression specifying the event handling method
button 2 Click()

1 b e g i n
2 s e l f . m Handler := h a n d l e r ;
3 s e l f . m LoggerInfo := ’ Logging t h e u s e r a c t i o n s . . . ’ ;
4 end

Listing 20. XOCL–expressions specifying the constructor of the class
EventHandlingComparisonWindow

1 b e g i n
2 h a n d l e r : Even tHand l ingCompar i sonHand le r = new

Even tHand l ingCompar i sonHand le r () ;
3 window : EventHandl ingComparisonWindow = new

EventHandlingComparisonWindow (h a n d l e r) ;
4 h a n d l e r . m MainWindow := window ;
5 end

Listing 21. XOCL–expressions specifying the start–up method of the
entire application

VI. CONCLUSION

The UML is a powerful language for preparing models
of object oriented software. Such models can be used as
documentation of existing software for their maintenance,
and as source of new software to develop. In order to create
precise models the OCL is used to specify the UML meta-
model, and can be used for design models with the UML
commonly.

The aim of the MDA technology is the generation of
program code for a certain platform based on a complete
UML/OCL model. In order to gain benefit from this inno-
vative technology, it is necessary to create the basic platform
independent model (PIM) concisely, uniformly, completely,
and especially with low effort. Preparing such UML/OCL -
PIMs we recognized three serious problems. In this paper
we emphasize these problems and suggest efficient solutions,
which base on UML and OCL.

1) How it is possible to describe both structural compo-
sitions and visual parameters of GUI elements?
We suggest to use a normal UML-class of a win-
dow, to model the GUI elements as their attributes,
and to specify the parameter values in OCL-init-
expressions attached to their class-context. These
OCL-init-expressions can be generated from a Smart
GUI Editor based on the visual information.

2) How it is possible to model the connection between
an event source and an event handler in a platform
independent manner?
We suggest a simple OCL extension. This single new
OCL-event-expression allows to model the registration
of handling methods to event sources in a more
compact, well understandable, and uniform manner
independent from the implementation platform. This
new approach simplifies the class diagrams strongly
without loss completeness. The application of our
new OCL-event-expression leads to strong benefit in
models of many GUI elements.

3) How it is possible to model the behavior in PIM both
concisely, exactly, and compactly?
We suggest a restricted extension of the OCL. The
expressive, declarative OCL is upgraded into an imper-
ative action language, which we called XOCL. With
XOCL, complex query operations can be specified
as usual while non-query operation with complex
control flows can also be specified using the extended
language constructs.

Using our three new approaches it is possible to cre-
ate platform independent models efficiently, concisely, uni-
formly and completely.

REFERENCES

[1] D. Liang and B. Steinbach, A new General Approach to
Model Event Handling, ICSEA 2010, pp.14-19, 2010 Fifth

115

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Conference on Software Engineering Advances,
2010.

[2] K. Jiang, L. Zhang, and S. Miyake, Using OCL in Executable
UML, MoDELS 2007.

[3] J. Warmer and A. Kleppe, The Object Constraint Language,
Getting Your Models Ready For MDA, Addison-Wesley &
Pearson Education, Boston, MA, USA, 2003.

[4] OMG: Object Constraint Language Specification 2.0, 2006.
http://www.omg.org/spec/OCL/2.0/

[5] OMG: UML 2.4 Superstructure Specification, 2011.
http://www.omg.org/spec/UML/2.4/Superstructure/Beta2/PDF/

[6] J. Warmer, A. Kleppe, and W. Bast, MDA Explained: The
Model Driven Architecture: Practice and Promise, Addison-
Wesley, 2003.

[7] OMG: Meta Object Facility (MOF) 2.0 Query/View/Transfor-
mation Specification, 2008.
http://www.omg.org/spec/QVT/1.0/PDF/

[8] S. Nolte, QVT Operational Mappings, Springer, 2009.

[9] D. Fröhlich, Object-Oriented Development for Reconfiguralbe
Architectures, Dissertation of Dr. Fröhlich, TU Freiberg,
Germany, available July 2011.
http://www.qucosa.de/fileadmin/data/qucosa/documents/2209
/InformatikFrXXhlichDominik80246.pdf

[10] B. Steinbach, D. Fröhlich, and T. Beierlein, Hardware/Soft-
ware Codesign of Reconfigurable Architectures Using UML,
UML for SOC Design, chapter 5, Springer, 2005.

[11] GOLD Parsing System Online Documentation, available July
2011.
http://www.devincook.com/goldparser/index.htm

[12] C.S. Horstmann and G. Cornell, Core Java, 8th ed. Prentice
Hall, 2008.

[13] A. Troelsen, Pro C# 2008 and the .Net 3.5 Platform, 4th ed.
Apress, 2007.

[14] H. Keller and S. Krüger, ABAP Objects, 2nd ed. Galileo
Press, 2007.

116

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

