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Abstract— Look-ahead Scheduling can be a difficult task, 

especially for non-repetitive, irregular work packages and 

activities such as occur in structural steel fabrication, where a 

variety of equipment, material and skilled work is required to 

manufacture unique steel pieces. Although punctual look-

ahead scheduling based on the most recent system analysis and 

project data can significantly improve productivity and project 

control, this technique has not been extensively used in the 

construction industry. This paper presents an intelligent and 

integrated simulation-based framework in which real-time as-

built data are captured and along with intelligently generated 

as-planned data are fed into the simulation model for look-

ahead scheduling. A distributed simulation system based on 

the High Level Architecture is proposed to enhance the 

performance of the system. The ability of the proposed system 

to incorporate real-time actual data along with different 

scenarios that represent the dynamic work environment and 

external factors opens new doors to improve the accuracy of 

look-ahead scheduling in the construction industry. To exhibit 

the feasibility of the proposed framework, a prototype system 

is developed and deployed in a steel fabrication company. 

Keywords: Construction Simulation; High Level Architecture 

(HLA); project monitoring and control; real-time data capture, 

Artificial Neural Networks.   

I.  INTRODUCTION 

This paper amplifies the work originally presented in [1]. 
Currently, industrial steel structures are popular for 
constructing a variety of buildings, from heavy industrial 
buildings and petrochemical refineries to sheds, shelters, and 
roofs. Reduced construction times, efficiency, and cost-
effectiveness can be considered as the major benefits of 
using industrial steel elements. Detailing, procurement, steel 
fabrication, shipment, and site erection are the five major 
phases in a typical industrial steel construction project [2]. 
Steel fabrication, one of the complex phases, refers to the 
production of steel pieces through a series of operations, 
including detailing, fitting, welding, and surface processing 
in a confined environment called a fabrication shop [3, 4]. 
Better control over quality, effective labor utilization, and 
reduction of waste are some advantages of manufacturing 
steel elements in a fabrication shop. Material handling and 
inspection activities occur frequently during the fabrication 
process. There are a large variety of steel pieces produced, in 
terms of both dimensions and processing requirements. Steel 
fabrication activities require an assortment of equipment, 

material and labor disciplines in order to produce steel 
pieces. 

The complexity and variety of products, and the large 
number of potential resources, activities, interactions, 
constraints and uncertainties, make the planning and control 
of ongoing and forthcoming steel fabrication projects a 
complicated task. Project planning involves several 
activities, including master scheduling and short-term or 
look-ahead scheduling, which are two key elements in 
successful delivery of the projects. Master scheduling refers 
to the overall view of the projects and general fabrication 
strategies. Such scheduling may be used for several reasons: 
forecasting demand, long-term coordination (e.g., regarding 
material requirements and staffing level) and rough 
budgeting. However, master scheduling suffers from a lack 
of information about actual durations and cannot be properly 
detailed far into the future. Conversely, a look-ahead 
schedule is a detailed plan for work packages to be 
completed in a relatively short time frame. Look-ahead 
scheduling helps project managers focus on the work 
packages that should be done at some time in the future and 
the corrective actions in the present that will lead to finishing 
those work packages on time, within budget and to a 
specified quality. These detailed schedules should be 
developed and updated in a timely manner based on the 
actual project performance data and the conditions in the 
construction environment, to precisely represent the tasks 
that have been done and the tasks that remain [5]. Such a 
detailed schedule is a solid foundation in terms of 
performance analysis and taking effective corrective actions. 

This paper proposes a steel fabrication shop modeling 
approach for efficient look-ahead scheduling of steel 
fabrication projects in the Construction Synthetic 
Environment (COSYE) based on the High Level 
Architecture (HLA) infrastructure. In this approach, real-
time, high-quality actual project data are captured and fed 
into a simulation model along with the uncertainties and the 
factors influencing the productivity of the fabrication shop. 
In this way, reliable updated look-ahead schedules are 
generated by the simulation model and “guesstimates” are 
rarely needed. Current practice and research carried out 
regarding look-ahead scheduling is discussed, and the 
conceptual framework of the integrated real-time simulation-
based scheduling system is then described. The feasibility of 
the proposed framework is demonstrated by developing a 
prototype system that was used for a case study in a steel 
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fabrication shop. The advantages and limitations of the 
proposed system are also discussed in this paper. 

 

II. BACKGROUND AND LITERATURE REVIEW 

The basis of Look-ahead Scheduling (LAS) is similar to 
regular scheduling. Usually, activities or work packages are 
regular and predictable. When that is not the case, work 
packages need to be appropriately classified and work 
packages that are considered similar may differ in terms of 
process duration and required resources. Similar to regular 
scheduling, standard data should be generated using time 
studies or expert judgment. Once these standards are 
established, work packages can be scheduled, allowing 
foremen and project managers to forecast and control 
projects over comparatively short time intervals. LAS 
usually refers to a foreman’s schedule, settled and tracked by 
foremen on a short-term basis. The foremen determine which 
work packages would be processed by their crew during the 
next few days, and the project managers monitor the 
accuracy of the schedule. This monitoring leads to 
identifying factors that affect the production rate. Once these 
factors are identified, the project managers can address the 
implicit causes and routinely enhance the accuracy of the 
LAS. LAS helps improve productivity by eliminating or 
reducing time spent that is not adding value to projects. It 
also helps ensure all the required resources and material are 
ready for ongoing projects at any time needed. Since LAS 
sets realistic and obtainable goals for a short time span, as a 
psychological effect, the workers tend to get the work done 
as soon as possible. 

Smith [6] argues that LAS has been successfully 
implemented in different domains such as material handling, 
quality assurance, manufacturing, maintenance, engineering, 
and assembly operations. LAS has been largely used for 
mass production systems where immediate follow-up and 
corrective actions are a must in the case of deviations [7]. As 
an example, combined with pairwise comparison LAS was 
utilized for scheduling random operations in job-shops [8] 

In spite of the fact that very little information on LAS is 
provided in the literature, effective LAS are crucial to the 
successful completion of construction projects [5]. 
Daneshgari and Moore [9] state that on average up to 70% of 
construction job schedules experience changes. They 
observed four projects over a four-month period, ranked the 
impact of the unscheduled activities on the lost productivity 
and concluded that implementation of LAS is a great tool to 
improve the productivity. Similarly, Hadavi and Krizek [10] 
concluded that short-term scheduling results in higher 
productivity compared to long-term scheduling. Studying 
decision support systems in manufacturing operations and 
determining the types of data required to plan and control 
effectively, Schmahl [11] concluded that LAS can be used to 
support continuous improvement efforts in production 
operations. Scheduling problems could be solved for either 
the next hour or the next few weeks by LAS [12]. Guidelines 
regarding developing work packages for effective utilization 
of LAS as well as the situations where LAS is more likely to 
succeed have been discussed by Ramireza-Valdivia et al. [7]. 

Finally, emphasizing the key role of LAS in enhancing 
production control, Ballard [13] proposed strategies for 
improving LAS.   

In construction, many operations are repetitive and 
involve uncertainty and resource constraints. This motivated 
researchers to deploy discrete-event simulation for LAS 
problems [14]. Simulation is a mathematical-logical model 
representing a real-world evolving system. Users can use the 
simulation model to analyze and forecast the performance of 
a system considering different scenarios. Actual data 
captured from ongoing projects along with the uncertainties 
of the construction environment can be fed into the 
simulation model to “tune it up” for generating better results 
[15, 16]. A proper updating process for simulation input 
modeling based on high quality data is necessary to achieve 
simulation accuracy. The emergence of new technologies has 
enhanced data acquisition systems by providing automated 
high-quality real-time data. For example, Radio Frequency 
Identification (RFID) has been used to track real-time 
locations of steel pieces in a steel fabrication shop [2] and 
monitor steel works in high-rise buildings [17]. The same 
data acquisition system based on RFID technology 
developed by the authors [2] is also used in the prototype 
system of this research to closely supervise the operations 
that lead to obtaining the benefits of LAS. 

Current studies focus on real-time data acquisition and 
improving simulation input modeling, which involves 
finding statistical distributions of the model input 
parameters, such as the durations of different activities [14]. 
For instance, Song et al. [14] used Global Positioning 
System (GPS) technology to capture required data, such as 
truck hauling time, and update a simulation input model for 
LAS of asphalt hauling and paving projects. These 
simulation systems commonly have two characteristics: first, 
they usually model repetitive operations, and second, the 
final output of these operations is one or (rarely) a few 
limited products. This paper deals with simulating a steel 
fabrication shop, in which the operations are repetitive while 
each product (i.e., steel piece) is typically unique. This 
uniqueness means the time required for processing each steel 
piece varies. Estimating processing duration is dependent on 
productivity; the degree of precision depends on the nature 
of the work and is influenced by several factors. The 
relationship between these factors and the processing 
duration/productivity cannot be demonstrated in an accurate 
and clear manner, increasing the difficulty of estimating the 
steel piece processing activity durations which are used for 
updating the simulation input model. A well-structured 
Artificial Neural Network (ANN) model, which has an 
optimal structure regarding layers and nodes, is capable of 
learning from data sets and reliably approximates any 
complicated relationships between dependent and 
independent variables [18]. ANN models can also handle 
moderate amounts of noise, which is common in the 
historical data, and can generate knowledge from defective 
or noisy data [19]. ANNs have been widely used for 
modeling productivity in construction; for example, concrete 
construction productivity [20], formwork production rates 
[21] and pipe spool fabrication productivity [22]. ANNs have 
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also been exploited in this research to intelligently generate 
process durations for each steel piece to be manufactured, 
considering influencing factors. A framework is proposed to 
integrate a real-time actual data collection system for steel 
fabrication projects with an intelligent input data generation 
system and with simulation models, which utilizes the as-
built data for updating input models and improving the 
simulation results for LAS.  

 

III. LOOK-AHEAD SCHEDULING USING SIMULATION 

TECHNIQUE 

In steel fabrication projects, LAS involves a number of 
uncertain factors and constraints. No project can be started 
earlier than a given date due to the limitations regarding the 
availability of required material, space and equipment. Each 
project should be delivered by a certain date depending on 
client demand and the conditions of the erection site. The 
scheduler should also take into account the limits on other 
resources such as skilled workers, cranes and active stations 
in the steel fabrication shop.  

A typical steel fabrication project may contain a few 
hundred steel pieces, which makes using traditional 
techniques such as the Critical Path Method (CPM) a time-
consuming and tedious exercise. Moreover, in the case of 
any deviation from the baseline or changes in resource 
availability, adjusting the schedule would be very difficult. 
Computer simulation is a powerful technique to efficiently 
react to system changes and generate updated schedules. 
Simulation is used here as the underlying technique to model 
the fabrication shop and resources and activities required to 

process steel pieces. To be effective, the simulation model 
should be updated based on the most recent system changes. 
Then, the impacts of these changes need to be observed by 
the model for modifying the LAS. To address this, this paper 
presents an intelligent and integrated simulation system 
based on the framework previously developed by the authors 
for automated and integrated project monitoring and control 
[2]. Several components of the framework established using 
the HLA infrastructure have been modified and the whole 
system is enhanced by adding intelligence for reliable look-
ahead scheduling purposes. An as-planned database, as-built 
data acquisition, discrete event simulation, a steel fabrication 
process knowledge base, a calendar, and an intelligent 
adjuster are the major components of the proposed system 
(Fig. 1). HLA provides a reliable infrastructure for efficient 
integration of all the components of the LAS system. 
Interoperability, reusability, flexibility, and system speedup 
[2] are some advantages of utilizing HLA as the backbone 
for the proposed LAS system. 

To have an effective LAS system, the following steps 
must be taken. First, the process of the steel fabrication 
should be well investigated and a simulation model based on 
that is established. For each project a baseline schedule is 
defined by a scheduler. During the execution course of the 
project, real-time data is collected from the fabrication shop 
and utilized to update the simulation model so that it reflects 
the dynamic nature of the project environment. Once the 
initial state of the simulation model is set, it can be used for 
experimenting with different scenarios and an updated LAS 
can be generated based on the simulation results. 

 

Figure 1.  Integrated LAS system- a modified version of the model originally proposed by the authors[2] 
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A brief review of the steel fabrication process as well as 
the components of the proposed system is presented in the 
following sections to provide the reader with an overview of 
the research topic. 

A. Steel Fabrication Process 

A typical steel project consists of a number of steel 
pieces, such as beams, columns, or trusses, with different 
dimensions and specifications. Fabrication of steel pieces 
starts with the detailing area. In this area, the components of 
a steel piece are cut and/or punched according to the 
engineering design. Cut components are transferred to the 
fitting area to be fitted. Fitters bring the components together 
using tack welds to form the steel piece. Once inspected, the 
fitted piece is sent to the welding area where the welders 
weld the piece according to the provided specifications. 
Another inspection happens once the welding is done. If 
required, the piece is sent to the painting area, otherwise the 
piece is ready to be shipped to the erection site (Fig. 2).  

Each area in the fabrication shop is composed of several 
stations which makes it possible to have several pieces 
processed in each area simultaneously. Steel pieces are 
transferred by rail carts or cranes depending on the situation. 
If a piece must be processed in a working area but there are 
not enough resources available to process that piece, it is 
piled in a certain storage area and waits until the required 
resources are available.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Steel fabrication process 

Rework will be necessary if a piece is rejected by an 

inspector. 

B. Components of the Proposed System 

The backbone of the proposed system is the High Level 
Architecture (HLA) which has been discussed in more detail 
in the next section (i.e., System Implementation). 

Some components of the proposed system such as 
Discrete Event Simulation, the calendar, and real-time data 
capturing have already been developed and detailed 
information about these components can be found in [2]. A 

brief explanation of those components is also provided 
below. 

 

B1. Real-Time Data Capturing 
As in [2], Radio Frequency Identification (RFID) 

technology has also been used in this research to collect real-
time data. RFID tags are put on steel pieces and the locations 
of the tagged pieces are tracked using portable RFID tag 
readers. The location tracking also captures the time a piece 
enters each area and the time it leaves that area. These data 
are then interpreted to provide project performance data, 
project progress, and activity duration in the steel fabrication 
process knowledge base component. Inter-process 
communication between the tag readers and the as-built 
database occurs via Transmission Control Protocol over 
Internet Protocol (TCP/IP).  

 

B2. Steel Fabrication Process Knowledge Base 
The real-time data acquisition system generates raw data. 

Useful performance data, such as man-hours spent on fitting 
or welding each piece, project percent complete, production 
rate and so on need to be extracted from these raw data to be 
used for updating LAS. Interpretation of these raw data can 
be automated by correlating the location of a steel piece with 
fabrication events and activities based on the experts’ 
knowledge regarding the process of fabrication. A 
comparison between the location of a steel piece and pre-
defined areas discloses meaningful information about the 
fabrication operation. For example, the entrance of the steel 
piece into the fitting area is recorded as a start-fitting event 
and exiting the fitting area is considered as an event called 
end-fitting. Once done, it is time to extract activity 
information from the event data. Generally speaking, each 
activity is begun by an event and is finished by another 
event. So, for the previous example, the duration of fitting 
activity for each steel piece can be calculated considering the 
start- and end-fitting events. To be effective, the gained 
knowledge should be managed properly in terms of capture, 
arrangement and retrieval of knowledge. To enforce that, 
knowledge bases are frequently used by the practitioners and 
researchers. As an example a process knowledge base for 
asphalt hauling is developed in [14]. A sample hierarchical 
structure of the required knowledge for structural steel 
fabrication data interpretation is presented in Table I. 

TABLE I.  SAMPLE ELEMENTS OF THE STEEL FABRICATION PROCESS 

KNOWLEDGE BASE 

Area Action Event Activity 

Fitting Area Enter Start fitting Fitting steel piece 

Fitting Area Leave End fitting 

Welding Area Enter Start welding 
Welding steel piece 

Welding Area Leave End welding 

… …  …. 

 
Different techniques can also be used to calculate other 

performance data. For example, the progress of each piece is 
determined by translating piece location to percent complete 
using the rule of credit based on expert knowledge [2]. For 
instance, the experts may consider piece fitting as 40% 

Waiting (storage area) 

Inspection 

Inspection 

Shipment 

Painting Area 

Storage Area 

Storage Area 
Fitting Area 

Welding Area 

Cutting Area 
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progress in the fabrication phase. Project percent complete 
can thus be calculated by summing up the weight of each 
piece times its progress, all divided by the weight of the 
project. 

 

B3. Discrete Event Simulation 
This component is a modified and improved version of 

the discrete event simulation (DES) model of steel 
fabrication shops developed earlier [2]. Modeling the 
fabrication shop and prediction of the behavior of the 
fabrication shop is not based on mathematical models and 
analytical solutions. Discrete event simulation was utilized 
for this purpose due to the fact that simple closed form 
analytical solutions are not available for the modeling steel 
fabrication process. However, the DES federate has the 
capability to incorporate any available mathematical or 
analytical solutions. 

To be effective, the DES component of the proposed 
LAS system should be updated in a timely manner to reflect 
changes in the fabrication shop’s environment. The proposed 
DES is a self-adjustive component that exploits the captured 
actual real-time data to update its input models. The initial 
state of the simulation model is set based on the most recent 
data. The actual data can also be used to generate updated 
distributions that are substituted with the earlier input model. 
The intelligent adjuster is a component that takes care of this 
responsibility. It automates the input-model update 
procedure with no slow and error-prone human involvement.  

Scheduling is performed in DES model based on the 
earliest-due-date (EDD) dispatching rule, such that the 
project with the earliest due date is selected and processed 
first. The scheduling engine of the DES model enables 
automated project schedule updates to be generated and 
stored in an MS Access database. The DES model is also 
capable of performing earned value analysis, and cost and 
schedule performance indices can be calculated for all the 
steel pieces. 

 

B4. Intelligent Adjuster 
Updating input models can be carried out by external 

prediction models [23]. The proposed intelligent adjuster is 
an autonomous Artificial Neural Network (ANN) component 
that is trained with the actual data available in the 
aforementioned steel fabrication process knowledge base to 
generate updated distributions, e.g., regarding duration of 
different activities required to process each piece of steel for 
the simulation input model. While it is difficult and 
sometimes not feasible for estimators to consider in their 
estimations all the influencing factors for a huge number of 
steel pieces with different dimensions and specifications, 
artificial intelligence has the capability to overcome this 
issue and forecast and update the distributions to be used in 
the steel fabrication simulation model. In this way, the 
accuracy of the simulation model is enhanced by explicitly 
modeling uncertainty variables and their impacts on the 
performance of the fabrication shop and ongoing projects. 

 
 

B5. Calendar 
Schedules are highly influenced by day shift hours, night 

shift hours, overtime hours, and holidays. The user defines 
these parameters within the calendar federate which sets 
related initial values for the DES model [2]. 

 

IV. SYSTEM IMPLEMENTATION 

A) Infrastructure  

A prototype system has been developed for look-ahead 
scheduling of steel fabrication projects. The proposed system 
implements the Construction Synthetic Environment 
(COSYE) software environment [24], an HLA-based 
simulation environment developed at the University of 
Alberta. HLA is a reliable infrastructure for integrating 
different components of a simulation model, called federates, 
into a single distributed simulation model, referred to as a 
federation [25]. HLA promotes interoperability between 
simulations and aids the reuse of models in different 
domains, which leads to reduced time, cost and efforts to 
create a synthetic environment for a new purpose [25]. 
Development of simulation models of different construction 
applications significantly benefits from these features of 
HLA because these simulation models usually share a 
number of common components [2]. HLA can be 
characterized by three main components [26]: HLA rules, the 
HLA interface specification, and the Object Model Template 
(OMT). The OMT provides a common framework for data 
exchange between different federates. The run-time 
infrastructure (RTI) is a piece of software that complies with 
the HLA specifications and provides services such as 
synchronization, communication, and data exchange between 
federates.  

COSYE is composed of an RTI, an environment that is 
optimized for development of federations in different 
construction domains, and a suite of generic modeling 
elements. During run time, COSYE provides necessary 
communication, information exchange, and data sharing 
protocols using an RTI that assures synchronization, 
coordination and consistency between different federates. 

In this prototype system, the primary project LAS 
(baseline) is prepared by a scheduler and is stored in a MS 
Access database. Captured real-time actual data are also 
stored in a MS Access database. The base model of the DES 
component (federate) was developed within the 
Simphony.NET simulation environment [27] for modeling 
steel fabrication operations. Figure 3 depicts the interface for 
the DES federate [28].  

 

B) Factors affecting the intelligent adjuster’s forecasting 

The process knowledge base, demonstrated in Table 1, is 
used to extract fabrication activity information from the 
actual data and feed the intelligent adjuster component. 

Fitting and welding operations are the critical operations 
in the structural steel fabrication and usually take more than 
80% of the available resources on average. In the proposed 
system the intelligent adjuster is composed of two Artificial 
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Figure 3.  The DES federate [28]

Neural Network (ANN) models and predicts the steel fitting 
and welding productivity/durations based on the complexity 
of each steel element and other influencing factors. 
Influencing factors can be divided into two major categories: 
the steel piece itself and the fabrication shop environment. 
Song et al. [29] proposed four piece-oriented influencing 
factors, such as number of fittings, number of cutouts, piece 
length, piece weight, and two influencing factors regarding 
the fabrication shop environment for the fitting operation, 
such as worker rank and work shift. There are two concerns 
regarding the proposed piece oriented factors. Firstly, 
although it is clear for beams and columns, piece length is a 
vague concept for other steel pieces such as frames and 
stairs. As an example, for a square steel frame, one person 
may consider the side length as the piece length while 
another person may use the diagonal of the square as the 
piece length. Piece dimension is an important factor because 
piece movement and piece flipping in each operation are 
highly affected by this property of steel pieces. However, 
piece weight commonly has a close and positive correlation 
with piece dimension (i.e., the bigger the piece, the greater 
its weight). This means that by considering piece weight as 
an influencing factor the piece dimensions are implicitly 
addressed. Secondly, the number of fittings and cutouts are 
two influencing factors in the fitting operation but not 
necessarily for the welding operation. Two different 
approaches can be taken considering the influencing factors. 
One approach is to define the factors for each specific 
operation, while the other approach is to define general 
influencing factors that can be used for different operations 
in steel fabrication. Within this research the second approach 
has been taken because of its universality and usage in the 
whole fabrication process. Therefore, the influencing factors 
considered in this research that are related to the 

characteristics of the steel piece include piece complexity –
replacing the number of fittings and cutouts – and piece 
weight; the ones that are related to the shop environment are 
the rank of the workers and the working shift in which the 
pieces are manufactured.   

Having said that, the inputs of the intelligent adjuster are 
the weight of the steel element (piece/assembly), the shift in 
which it has been fabricated, the rank of the worker who has 
processed that steel element (the higher the rank the more 
experienced the worker) and piece complexity. Piece 
complexity is represented by a parameter called “complexity 
factor.” “Complexity factor” refers to the number of the 
components in each steel piece. For instance, the steel beam 
shown in figure 4a is composed of an I shaped beam and 5 
stiffeners. Thus, there are 6 components forming that steel 
piece which results in a complexity factor equal to 6.  

Steel pieces differ, sometimes significantly, regarding 

their complexity factors. In other words, while some steel 

pieces are fairly simple (e.g. Fig. 4a), some pieces can be 

considerably more complicated (e.g., Fig. 4b). The 

complexity factor can also be calculated for each division 

with the same concept, i.e., total number of steel 

components divided by the number of steel pieces forming 

the division. A template was also developed to 

automatically capture complexity factors and weight of steel 

pieces from 3D models (Fig. 5) of steel projects. These 3D 

models use Building Information Modeling (BIM) which is 

a common way to construct a building virtually before 

building it in the real world, bringing the structures from 

concept to reality [30]. Automatically capturing information 

from 3D models with minimum human involvement 

guarantees high-quality data with great speed for data 

analysis purposes.   
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a) Two side views of a steel beam with 5 stiffeners. 

 

 
b) A steel frame consisting of tapered beams and columns with a large 

complexity factor. 

Figure 4.  Sample of structural steel pieces with different complexities 

A sample of data captured automatically from a 3D model by 
the developed template is represented in Table II. 

The intensity of complexity is an indicator that 
determines how complicated a steel element is (i.e., piece 
complexity) and has a direct relationship with the complexity 
factor. It is one of the input variables utilized for training the 
intelligent adjuster and is defined as in Table III.  

TABLE II.  SAMPLE OF DATA CAPTURED BY THE DEVELOPED 

TEMPLATE FROM 3D MODELS 

Piece ID C.F.* I.C.** Weight(kg) 

50A1 12 4 582 

50A2 17 5 555 

50A5 10 3 529 

50A7 17 5 539 

50A4 10 3 529 

50A8 17 5 542 

50A6 11 3 519 

50A15 19 5 293 

50A16 9 3 280 

50A20 9 3 132 

50A18 7 2 137 

* Complexity Factor 

**Intensity of Complexity 

 
 

TABLE III.  DEFINITION OF THE INTENSITY OF COMPLEXITY 

I.C. Definition Explanation 

1 Not complicated 1 ≤ C.F. < 4 

2 moderately complicated 4 ≤ C.F. < 8 

3 complicated 8 ≤ C.F. < 12 

4 very complicated 12 ≤ C.F. < 16 

5 extremely complicated 16 ≤ C.F. 

 

C) Training the intelligent adjuster  

The intelligent adjuster uses two back-propagation 
networks, each with 4 input nodes, one hidden layer, and one 
output node at the output layer. 

 

 
Figure 5.  Developed template for capturing complexity factor from 3D models 
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The number of hidden neurons for the networks is 
calculated with the following equation [31]: 

 

Hn=0.5×(I+O) + P     (1) 

 
Where: 
Hn: Number of hidden neurons 
I: Number of inputs 
O: Number of outputs 
P: Number of patterns 
 
“Neuroshell 2” [31] was used to train the networks. 114 

fitting data points and 61 welding data points were captured 
by the real-time RFID data capturing system during a two-
week time/case study used for training and validating the 
ANN models. For the fitting operation, 92 data points were 
randomly selected for training and 22 data points were used 
for testing. The learning rate and momentum of the fitting 
ANN model were set to 0.1. The initial weight of the links 
within the ANN model was set to 0.3 and numeric range of 
the linear scaling function used for the input layer was [-1,1]. 
For the welding operation, the number of training and testing 
data points were 49 and 12 respectively and the initial 
settings for learning rate, momentum etc. were similar to the 
settings of the fitting ANN model. The labor-driven nature of 
the steel fabrication process may lead to variance in 
productivity or activity duration even for similar steel pieces 
processed with laborers with the same rank and in the same 
shift. In this research one assumption is that such a variance 
is trivial; if that is not the case some techniques such as data 
filtration or using averages of the data can help 
in compensating for variances in the data. Sample actual data 
regarding welding operation that were used for training the 
intelligent adjuster are presented in Table IV. 

TABLE IV.  HISTORICAL DATA USED FOR TRAINING THE INTELLIGENT 

ADJUSTER 

Weight 

(kg) 

Shift 

(Day:1-Night:2) 
Rank I.C. 

Duration 

(Minutes) 

519 1 2 3 109 

87 1 1 4 163 

122 1 2 2 55 

919 1 1 5 197 

549 2 2 3 160 

111 1 1 3 90 

973 2 2 4 218 

1250 1 3 4 121 

… … … … … 

 
The training results regarding duration of fitting and 

welding operations (in minutes) are summarized in Table V. 
There are several factors that may affect the maximum 
absolute error in terms of duration prediction presented in 
Table V. For instance, once a fitted or welded piece is 
rejected by an inspector, it requires rework, and the activity 
duration is extended and is greater than a situation in which 
rework is not required. Missing components of a steel piece 
or unclear or impractical drawings are other examples that 
extend the normal fitting/welding durations. With that said, 

and considering the wide duration ranges in fitting and 
welding data sets (i.e., from 10 to 290 minutes for the fitting 
data set and from 20 to 352 minutes for the welding data set), 
the trained networks are considered proportionately accurate 
in forecasting the fitting and welding durations with an 
acceptable margin of error. 

TABLE V.  INTELLIGENT ADJUSTER TRAINING RESULTS 

Item Fitting Welding 

Patterns processed: 114 61 

R2: 0.89 0.87 

Mean absolute error: 13.46 26.14 

Min. absolute error: 0.02 0.11 

Max. absolute error: 73.20 53.00 

Correlation coefficient r: 0.95 0.94 

 
Two indicators, including R Squared (R

2
) and the 

correlation coefficient (r), usually used for interpreting the 
neural network models, are also presented in Table V. As 
indicated in Table V, the R

2
 values for the fitting and 

welding operations are 0.89 and 0.87 respectively. 
According to the network training results presented in Table 
V, the correlation coefficients for the fitting and welding 
operations are 0.95 and 0.94 respectively, which implies a 
strong positive relationship between the model outputs and 
the actual outputs for theses operations. 

Figure 6 shows the trained network predictions against 
the actual welding duration values for the welding data 
points. 

 

Figure 6.  Actual vs. forecasted welding duration for data points 

The trained ANN models were compiled as VB.NET code 
and used for developing the intelligent adjuster federate. This 
federate is capable of generating the distributions and other 
scheduling variables, such as productivity rate, based on the 
attributes (e.g. weight, complexity intensity, etc.) of each 
steel piece. An example of the generated scheduling 
variables is shown in Figure 7. This figure is a snapshot of an 
interface developed to provide managers with an intuitive 
report on the forecasted trend of productivity rates for fitting 
and welding activities within a 3-day time interval ending at 
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the date selected by the user. Such information can be a 
heads-up for impending deviations from desired values. The 
generated distributions then will be fed into the DES federate 
to improve its results. If required, the user can modify the 
influencing factors and experiment with different scenarios 
with the simulation model to find the best corrective actions 
to converge on the project goals.  
 

V. CASE STUDY 

A case study, the construction of an administrative office, 
was carried out to verify the feasibility and accuracy of the 
implemented simulation-based LAS system for steel 
fabrication projects. Because of the size of the building, the 
whole project is divided into 57 “divisions.” Each division 
itself includes several hundred steel pieces, including beams, 
columns, stairs and frames. The baseline schedules for all the 
divisions were prepared by the scheduler and stored in the 
baseline database. The data acquisition system was set up in 
the fabrication shop. The major elements of the data 
acquisition system are RFID tags, a tag reader, and a router 
connected to a computer. Data capturing began with the 
launching of the project in the shop (Fig. 8). The DES 
federate models four activities – cutting, fitting, welding, and 
painting. The resources required for this model include 
active stations (which correlate with the number of 
operators) in different areas, cranes and rail carts, inspectors, 
and storage areas. 

Usually, several divisions are processed at the same time 
in a fabrication shop and certain stations in each area are 

assigned to each division. The data capturing was carried out 
for all the steel elements that were being processed in the 
fabrication shop. In this way, scheduling information for the 
project level as well as the performance information (such as 
production rate at different areas) at the shop level was 
determined. 

The actual data collected during the case study were used 
to examine the accuracy of the simulation model. However, 
during the case study several outstanding discrepancies were 
captured. First, some fitting and welding stations shut down 
due to the fact that a number of fitters and welders were laid 
off during the case study. Second, the actual process time in 
each station was longer than expected in many cases. Third, 
the production rate predicted by the simulation model was 
significantly greater than what happened in reality. These 
discrepancies detract from the utility of the LAS and mean 
that the simulation model needs to be properly modified and 
updated in some aspects to address these deviations. 

Updating the simulation model is easy with regard to 
changing available resources (e.g., the number of active 
stations), but with variables such as process time and 
production rate, it is less straightforward. Variances in the 
process time and production rate can be caused by faults in 
estimation, external factors that were not considered in the 
simulation model, or both. While the faults in process time 
estimation are usually covered by the actual data, 
considering the effects of the external factors in the 
simulation model is a difficult task. For example, during the 
course of the case study, a number of workers received 
 

 

 

Figure 7.  Fitting and Welding production forecasted by the intelligent adjuster component for the fabrication shop. 
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Figure 8.  Collecting actual data using RFID technology  

termination notices due to the recession conditions. After 
being informed that their employment will cease by the next 
month, the productivity of these workers was far lower than 
what was estimated. The arrival of a new project with a 
higher priority that had not been considered in the master 
plan was another issue that meaningfully affected the 
available resources (e.g., raw material), shop performance 
and LAS for ongoing projects during this case study. A 
thorough tracking of the variances regarding schedules and 
budget (i.e., assigned man-hours) resulted in determining 
seven major factors causing variances in the studied 
fabrication shop (Fig. 9). Once these factors are tracked, they 
need to be addressed to improve the performance of the 
ongoing projects and the fabrication shop itself. Project 
managers and foremen try to make improvements in 
different areas that cause deviations and variances over the 
course of the fabrication, but it is still a major concern for 
them to have reliable LAS for different projects which take 
into account current situation in the fabrication shop. This is 
the benefit of the LAS system which has been developed, 
which enables users to have updated LAS automatically 
generated based on the most recent actual data. An updated 
LAS is a sound foundation for decision making and system 
analysis. Sample results of the simulation model, based on 
30 simulation runs, regarding LAS based on the actual data 
are shown in Table VI. The simulation results in Table VI 
represent four divisions including 321 steel pieces that 
originally were planned to be fabricated in the specified time 
interval (i.e., from January 18 – 27, 2010). Scheduled start 
and finish dates come from the project 
 

 
Figure 9.  Major factors causing cost/schedule variance in the case study  

baseline defined by a shop manager and two foremen, each 

with more than 15 years of experience. The calculated start 

and finish dates are the simulation output, generated based 

on the current shop conditions and the activity duration 

distributions forecasted by the intelligent adjuster for the 

pieces planned to be manufactured within the stipulated 

period of time. A comparison between the actual finish dates 

and the estimated finish dates generated by the people 

involved in scheduling, and what the developed intelligent 

system generated, results in determining estimation errors. 

Estimation error analysis reveals that the intelligent system 

could generate more reliable managerial information and 

LAS. As an example, for division 52A, human error 

regarding the finish date was 11 days, while the intelligent 

system had an error of 4 days. The average absolute 

estimation errors for the 4 divisions shown in Table VI was 9 

days in the case of human judgment, while the intelligent 

system’s estimation had an absolute error of 1.75 days on 

average. This may be attributable to the fact that the 

intelligent system generates schedules based on the recent 

conditions of the dynamic environment of the fabrication 

shop, perceived influencing factors and their combined 

interactions, while human beings are seldom able to consider 

all of these parameters in scheduling. It should be noted that 

a shortage of actual historical data that could be used for 

training the  intelligent adjuster limited the accuracy of the 

developed system. Even though the performance of the 

developed LAS system is quite promising, having more 

actual historical data can enhance the intelligent adjuster 

forecasts and subsequently improve the accuracy of the 

simulation results. 

 

TABLE VI.  SAMPLE RESULTS OF THE SIMULATION FEDERATE 

Division 

ID 

No. of  Scheduled Scheduled Calculated Calculated Actual Error in Estimating Finish Date (days) 

pieces Start Date Finish date Start date Finish Date Finish Date Human Estimator Intelligent LAS system 

52A 64 18/01/2010 22/01/2010 18/01/2010 29/01/2010 1/2/2010 11 4 

51A 34 19/01/2010 25/01/2010 19/01/2010 29/01/2010 29/01/2010 4 0 

5A 103 19/01/2010 27/01/2010 20/01/2010 4/2/2010 5/2/2010 9 1 

50A 120 21/01/2010 27/01/2010 25/01/2010 10/2/2010 8/2/2010 12 -2 

 

VarianceMaterial

Manpower

Rework

Change in 

priorities Unclear or 

impractical 

drawings

Unrealistic 

estimation

Inspection 

delays
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CONCLUSION 

Look-ahead scheduling of steel fabrication projects that 
considers projects’ constraints as well as the fabrication 
shop’s constraints is very complicated. This paper 
implements an intelligent and integrated simulation-based 
LAS framework for an actual case study in a steel fabrication 
shop. The system that was developed utilizes RFID 
technology to capture as-built data. As-built data along with 
the as-planned data are fed into the system; raw actual data 
are translated to meaningful data, and an intelligent 
component generates/forecasts essential scheduling variables 
based on the actual and historical data for each steel piece, 
considering several piece-oriented and environmental 
influencing factors, and updates the simulation model to 
allow it to produce reliable look-ahead schedules. The 
proposed system is expanded by employing High Level 
Architecture (HLA). In this way, the model is split into 
several components that are linked together in a well-
structured format.  

Unlike traditional scheduling methods that are static and 
time-consuming to update, the capability of the proposed 
system to dynamically and intelligently incorporate the most 
recent project data and changes in the fabrication shop 
environment can improve the accuracy of LAS and reduce 
input modeling burdens on end users.  
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