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Abstract — Widely used network measurement applications, 

such as tcpdump and Wireshark, use the same common 

libpcap packet capture library. Libpcap assigns a 10
-6

 second 

precision timestamp to all processed frames. Higher physical 

bandwidth implies shorter inter-arrival times between 

consecutive frames. Accordingly timestamp resolution must be 

proportional to the link speed. The latest version 1.1.x of 

libpcap provides 10
-6

 second native resolution, however pcap 

format supports a larger 2 x 32-bit timestamp value for each 

stored packet. On Gigabit Ethernet or faster networks, a 

timestamp resolution that works in the microsecond domain 

may not enable us to precisely reproduce the time-domain 

relation between consecutive frames. Therefore overall 

analysis of the data transmission could lead to a false result. 

For packet capturing with libpcap, it is assumed that the 

timestamp represents the time moment when a frame reaches 

the kernel’s input packet queue. In an idealized case generated 

timestamps are always converging and suitably close to the 

real arrival or transmission time of each frame so as to 

conserve the original inter-arrival time values. The timestamp 

resolution of network measurement applications must be 

increased according to the requirements of advanced high 

speed data networks. In our paper, we are going to show and 

evaluate an alternative libpcap-based solution that features 

nanosecond precision timestamping.  

Keywords-libpcap; timestamp resolution; inter-arrival time; 

Linux kernel; high speed network. 

I.  INTRODUCTION 

This paper is the extended version of our previous work 
[1] that focuses on a software solution based on the libpcap 
packet capture library and high resolution kernel-based 
timestamp generation. On Linux machines the libpcap 
library retrieves timestamps of captured frames from the 
kernel through some special kernel functions. Independently 
from one other, several impact factors could directly bias the 
generation of timestamps [2]. 

Some timestamp-related terms that will be used in the 
rest of this paper should be introduced here: 

 Timestamp size (TSS): bit length of the timestamp 

 Timestamp precision (TSP): sub-second resolution 

 Timestamping time (TST): time required to generate 
a timestamp value 

 
High resolution timestamping of data packets on high 

speed networks is a challenging issue [3], which is even 
more critical on a software-based packet capture 

environment such as libpcap [4]. Libpcap relies on the 
operating system kernel to provide the arrival or transmission 
time moment of the processed data packets. Since 
timestamping is performed in the kernel space, several 
hardware and software factors impact the overall precision 
and accuracy of the generated timestamps. Furthermore, data 
structures in libpcap are designed for 32-bit TSS. 
 
The precision requirement of TSP depends on:  

 Link speed 

 The minimum of packet inter-arrival times within a 
data stream 

 
The following factors affect TST: 

 Hardware architecture 

 NIC driver design 

 OS kernel (enqueing/dequeuing, handlers) 

 Clock sources 

 Libpcap 
 

Let us suppose that two uniform sequences of minimum-
sized and maximum-sized Ethernet frames are transmitted 
over Gigabit and Ten Gigabit Ethernet links at the theoretical 
maximum rate. Table 1 and Table 2 show the PHY (physical 
layer) level timing parameters of the Gigabit and Ten Gigabit 
Ethernet standards.  

TABLE I.  GIGABIT ETHERNET TIME PARAMETERS 

Timing parameters  

1 GbE 

Smallest Ethernet frame 

length: 72 Bytes  

Largest Ethernet frame 

length: 1526 Bytes  

Bit time 1 ns 1 ns 

Inter-frame gap 96 ns = 96 x bit time 96 ns = 96 x bit time 

Δt between 
timestamps of two 
consecutive frames 

576 ns + 96 ns = 672 ns 
12,208ns + 96ns = 
12,304ns 

Theoretical precision 
of NTP sync 

≥1 msec ≥1 msec 

Required time sync 
precision 

≤600 ns (theoretical 
minimum) 

≤12 µs (theoretical 
maximum) 

Maximum number of 
frames per second 

1,488,096 81,274 
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TABLE II.  TEN GIGABIT ETHERNET TIME PARAMETERS 

Timing parameters 

10 GbE  

Smallest Ethernet frame 

length: 72 Bytes  

Largest Ethernet frame 

length: 1526 Bytes  

Bit time .1 ns .1 ns 

Inter-frame gap 9.6 ns = 96 x bit time 9.6 ns = 96 x bit time 

Δt between 
timestamps of two 
consecutive frames 

57.6 ns + 9.6 ns = 67.2 ns 
1,220.8 ns + 9.6 ns = 
1,230 ns 

Theoretical precision 
of NTP sync 

≥1 msec ≥1 msec 

Required time sync 
precision 

≤60.0 ns (theoretical 
minimum) 

≤1.2 µs (theoretical 
maximum) 

Maximum number of 
frames per second 

14,880,960 812,740 

 
We assume that the indicated frame sizes include 8 bytes 

preamble, 6 bytes destination MAC address, 6 bytes Source 
MAC address, 2 bytes MAC Type/length, 4 bytes CRC and 
the payload (46-1500 bytes). The inter-frame gap is 12 bytes 
according to the Ethernet specification. Based on these 
values the minimum of packet inter-arrival time can be 
determined that is 672 ns for Gigabit Ethernet and 67.2 ns for 
Ten Gigabit Ethernet respectively. 

 
IP Packet Delay Variation (IPDV) is an IETF RFC 3393 

proposal [5][6]: 
 

(1) 

 
 

 

 

 

Delay per hop: 

 

(2) 

 

 

 

 
 
 
End-to-end delay: 
 

(3) 
 
 
 
 
 
 
We assume that (3) has a Gamma distribution function [7]: 
 

(4) 
 

A 64-Byte packet sequence has been generated according to 

(4) at a 1 Gbps transmission rate (Fig. 1). 

 

 

■ Δt at µs resolution ■ Δt at ns resolution 

Figure 1.  Gamma distributed PDV of 64-Byte frames  at 1Gbps 

transmission rate 

It can easily be shown that microsecond time resolution 
could be insufficient to describe the time domain relation 
(1)(2) between packet arrivals on Gbit/s or a higher speed 
network path [8]. 

II. RELATED WORK 

In the last couple of years several research projects have 
realized the problem of the inefficient time resolution of 
packet timestamps [9][10][11]; most of their proposals and 
solutions resulted in hardware-based packet timestamping. 
For higher performance some of them integrated the entire 
capturing process into a dedicated hardware device 
[9][11][12][13]. However, none of them was focused on 
extending the resolution of software-based packet 
timestamping. 

 

III. PROBLEM DEFINITION 

A. NIC driver architecture 

The NIC driver connects the physical layer and the 
internal packet structures of the operating system. A 
sophisticated network driver design combines interrupt and 
polling operation modes using the kernel feature NAPI (New 
API) [14]: at lower traffic it uses interrupts, while at higher 
loads it switches to polling mode [15]. 

 
Interrupt mode: When a frame arrives at the NIC, it 

generates an interrupt that calls a specific handler registered 
by the driver. The handler places the frame into the input 
packet queue and the kernel processes it thereafter. The 
handler is given priority over the kernel‟s processing code as 
long as frames are arriving at a higher rate (due to a high 
network load) than the kernel can handle them. High traffic 
results in a high number of interrupts that could consume 
hardware resources. 

 
Some NIC drivers can support the passing of multiple 

frames within an interrupt. 
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 Polling mode: The kernel queries the driver about 
the arrival of new frames with a specific frequency. 
Resource consumption of this method is optimal at 
high network load. 

 Timer-driven interrupts: The NIC asynchronously 
notifies the kernel about frame reception. The 
handler processes the frame, which has arrived since 
the last interrupt. 

 
Since timestamping of the incoming packets is performed 

by the queue handler, the timestamp value does not 
necessarily depend on the operation mode of the NIC driver. 
Nevertheless, in order to determine the dependency of the 
timestamp value on the operation mode further analysis is 
required. 

B. The OS kernel 

We must define the exact code point over the data path 
from the NIC to the kernel input queue where timestamping 
is performed. The Linux kernel puts timestamps onto each 
frame when they are enqueued to the input packet queue. 
This is the point where the kernel processes the frame (Fig. 
1). 

Since libpcap relies on kernel timestamps, we had to 
observe the latest Linux kernel functions, which could 
acquire 10-9 TSP from a high frequency and very accurate 
clock source.  

 
Figure 2.  Sk_buff structure of the linux kernel 

C. Clock sources 

The Linux kernel supports multiple clock sources. Their 
availability depends on the underlying hardware architecture. 

 

1) ACPI (Advanced Configuration and Power Interface) 

Power Management Timer 

This clock, known as the RTC (Real Time Clock), is usually 

integrated into the south bridge of the motherboard. Its 

3.579545 MHz clock frequency limits its precision to the 

microsecond domain. 

2) HPET (High Precision Event Timer) 

This is available on most of today‟s PC architectures. HPET 

is a high precision clock source due to its very low jitter, 

which is within the nanosecond domain. However its clock 

frequency is about 10 MHz, which is not an appropriate for 

high resolution timestamping. 

3) Jiffies 
These are based on timer interrupt and are referred to as 

the kernel heartbeats. Jiffy frequency can be specified at 

compile time. Under recent 2.6.x Linux kernels it is set to 

1/250 Hz (4 ms resolution) or its maximum 1/1000 Hz (1 

ms) by default, which is far from the requirements of proper 

timestamping. There are plans to remove this timing method 
and move to tickless systems because of power saving 

considerations. 

4) TSC (Time Stamp Counter) 
A 64-bit CPU register that is present on all x86 

processors since the Intel Pentium. It counts the number of 
ticks since boot or reset. The time stamp counter is an 
excellent high-resolution, low-overhead way of providing 
timestamps. The novel constant TSC feature ensures that the 
duration of each clock tick is uniform and supports the use of 
the TSC as a wall clock timer even if the processor core 
changes frequency. “This is the architectural behaviour 
moving forward for all Intel processors.” [16] 

 
Constant TSC operates at the CPU's clock speed from 

which the 10-9 second TSP can be easily derived.  

D. Libpcap 

The last stage of transmission just before getting to the 
capture application is the libpcap. Timestamp information 
received by the libpcap depends on the factors discussed in 
the previous sub-sections. The Linux-specific part of the 
libpcap is contained in the pcap-linux.c source file. The 
library captures the packets with the pcap_read_packet() 
function. Timestamping is handled either by the 
SIOCGSTAMP IOCTL call or by the TPACKETv2 
structure.  

 

IV. IMPLEMENTATION OF HIGH RESOLUTION 

TIMESTAMPING 

Our goal was to reveal and test all of the kernel functions 
and features that will be essential parts of our project to 
modify libpcap to a nanosecond-capable capture library. In 
this section, related source code snippets are presented in 
such a way that the beginning of deleted and inserted source 
code lines are marked with the „-‟ and „+‟ signs respectively. 

A. Implementation  

It is feasible to reach nanosecond TSP resolution purely 
on software-based tapping: 

 The tstamp member of sk_buff structure is capable of 
nanosecond resolution 

 The Linux kernel function ktime_get_real() to query 
the system clock is in nanosecond resolution 

 This function is adequate to fill up nanosecond 
tstamp fields in sk_buff 

 Accordingly user-space applications (such as 
libpcap-based ones) could display and process 10-9 
second resolution timestamps 
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 The Linux kernel supports TSC as a clock source 

 For efficient time synchronization dedicated LAN 
interfaces and a PTP timing protocol could be used 
within a low latency wired environment 

 
The input queue handler within the 2.6 kernel puts a 64-

bit timestamp onto each frame that is enqueued to the 
input_packet_queue. The Linux kernel API features the 
ktime_get_real()  function that enables us to query 
nanosecond  resolution timestamps from the kernel.  

 
For nanosecond time resolution we assume that the 

kernel‟s clock source is a constant TSC that operates at 
≥1GHz frequency. 

The latest Linux kernels (v2.6.27+) introduce the 
SIOCGSTAMPNS call that returns with the nanosecond 
precision timestamp of the last incoming packet.  

Through this IOCTL call, we indirectly get to the 
sock_get_timestampns() function inside kernel‟s sock.c. This 
function relies on the ktime_get_real() for timestamp 
generation and uses the ktime_to_timespec() to convert it to 
tv_nsec format, which is a nanosecond capable time variable 
within the timespec data structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our first modification is replacing the SIOCGSTAMP 

IOCTL call with the more recent SIOCGSTAMPNS one: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Libpcap alternatively uses the tpacket_hdr structure to query 
packet description header information.  
 
 
 

 
 
 
 
 
 
 
 

 
 
 

We would like to emphasize the limitation of this 
structure: content of the tp_usec element is always a 
microsecond precision sub-second time value (TSP). Latest 
linux kernels (2.6.27+) now feature the enhanced tpacket_v2 
structure: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The novel tpacket_v2 is able to store nanosecond 

precision TSP as well as some VLAN information. We 
managed to maintain and adapt the benefits of tpacket_v2 
structure within the packet capturing process. Our next 
modification is to retain the nanosecond information 
provided by the tpacket_v2 structure: 

 

include/linux/sk_buff.h: 
 
struct sk_buff {  
/* These two members must be first. */     
struct sk_buff         *next; 
struct sk_buff        *prev; 
struct sock             *sk; 
ktime_t                  tstamp; 
struct net_device    *dev; 
} 
 
 
include/linux/ktime.h: 
 
ktime_t 
union ktime { 
        s64     tv64; 
#if BITS_PER_LONG != 64 && 
!defined(CONFIG_KTIME_SCALAR) 
        struct { 
# ifdef __BIG_ENDIAN 
        s32     sec, nsec; 
# else 
        s32     nsec, sec; 
# endif 
        } tv; 
#endif 
}; 
 
typedef union ktime ktime_t; 

 

pcap-linux.c, in function pcap_read_packet(): 
 
-        if (ioctl(handle->fd, SIOCGSTAMP, 

&pcap_header.ts) == -1) { 
-                snprintf(handle->errbuf,  

PCAP_ERRBUF_SIZE, "SIOCGSTAMP: %s", 
pcap_strerror(errno)); 

+        if (ioctl(handle->fd, SIOCGSTAMPNS, 
&pcap_header.ts) == -1) { 

+                snprintf(handle->errbuf, 
PCAP_ERRBUF_SIZE, "SIOCGSTAMPNS: 
%s", pcap_strerror(errno)); 

                return -1; 
        } 

 

struct tpacket_hdr  
{ 
        unsigned long   tp_status; 
        unsigned int    tp_len; 
        unsigned int    tp_snaplen; 
        unsigned short  tp_mac; 
        unsigned short  tp_net; 
        unsigned int    tp_sec; 
        unsigned int    tp_usec; 
}; 

 

struct tpacket2_hdr                                                              
{                                                                                
        __u32           tp_status;                                               
        __u32           tp_len;                                                  
        __u32           tp_snaplen;                                              
        __u16           tp_mac;                                                  
        __u16           tp_net;                                                  
        __u32           tp_sec;                                                  
        __u32           tp_nsec;                                                 
        __u16           tp_vlan_tci;                                             
};   
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Using the default capture buffer size of libpcap (which is 

2 Mbytes) disk I/O performance could lead to a serious 
number of packet drops at a high transmission rate. 
Unfortunately libpcap does not feature any option for 
adjusting capture buffer. In order to prepare libpcap for high 
speed packet procession, its capture buffer had to be 
increased. We made a series of measurements at 1 Gbps 
transmission rate so as to determine the optimal size of this 
buffer for capturing without packet loss. These 
measurements resulted in a capture buffer of 128 Mbytes, 
which is an empirical value. The last modification made to 
libpcap is to increase the default buffer size: 

 
 
 
 
 
 
 
 
 
 
 
 
                             
With this modification we enhanced the well-known 

libpcap (v1.1.x) library so as to be able to put nanosecond 
precision timestamps onto captured packets without packet 
loss. This feature relies on some novel features of the latest 
linux kernels that we effectively integrated into the libpcap 
library via our modifications. We made libpcap ready to 
operate with nanosecond precision timestamps; however its 
effective TST greatly depends on the performance of the 
underlying hardware.  

At this point it is important to note that the nanosecond 
resolution is largely theoretical. On a dedicated server-class 
machine with 2 x Intel Xeon dual-core 3GHz (Woodcrest 
5160) CPUs and 8GB of RAM, we managed to get a TST of 
approx. 75 ns. Hence, we would like to emphasize that 
effective TST and its variance greatly depends on the 
hardware performance of the host computer, its current 
system load, various critical kernel parameters and the time 
data conversion overhead. Even so, in our result TST is close 
to the time precision requirement of packet capturing on 10 
Gbps Ethernet since the inter-arrival time of minimum-sized 
consecutive frames is about 61ns. 

System dependency and variance of TST are rooted in 
the software-based nature of the solution. Accordingly, an 
extensive series of comparative tests against hardware-based 
solutions is required for its validation (see Section IV for 
details).  

B. Application 

With the nanosecond capable libpcap, a wide range of 
network data traces can be captured and stored for 
subsequent analysis. Accordingly, we have made further 
developments to make the commonly used tcpdump and 
Wireshark capable of easily processing, displaying and 
storing these high precision timestamps in the quasi-standard 
pcap file format (Figs. 3, 4). 

 

 
Figure 3.  Output screen for microsecond timestamp resolution with the 

standard libpcap and Wireshark 

 
Figure 4.  Output screen for nanosecond timestamp resolution with the 

enhanced libpcap and Wireshark 

pcap-linux.c, in function pcap_read_linux_mmap(): 
 
                case TPACKET_V2:                                                 
                        tp_len     = h.h2->tp_len;                               
                        tp_mac     = h.h2->tp_mac;                               
                        tp_snaplen = h.h2->tp_snaplen;                           
                        tp_sec     = h.h2->tp_sec;                               
-                       tp_usec    = h.h2->tp_nsec / 1000;                       
+                      tp_usec    = h.h2->tp_nsec; 
                        break; 

 

pcap-linux.c, in function activate_mmap(): 
 
        if (handle->opt.buffer_size == 0) {                                      
-            /* by default request 2M for the ring buffer 

*/                  
-            handle->opt.buffer_size = 2*1024*1024; 
+           /* request 128M for the ring buffer */                  
+           handle->opt.buffer_size = 

128*1024*1024;                           
        }                                                                        
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While tcpdump is not, Wireshark 1.2.x is indeed ready to 
process pcap trace files that feature nanosecond precision 
packet timestamps [17]. We had to apply a specific magic 
number (0xa1b23c4d) that registered for the nanosecond 
pcap format. Using this number, Wireshark could be made 
capable of identifying and capturing pcap files with 
alternative attributes and structures.  

 
 
 
 
 
 
 
 
The magic number of 0xa1b23c4d stands for a 

subversion of pcap that includes nanosecond precision 
timestamps for each packet. 

 
The default time precision of the Wireshark GUI must be 

set to a nanosecond: 
 
 
 
 
 
 
 
For comparison, two screenshots present the timestamp 

resolution enhancement. Microsecond scale TSP is the 
default time resolution for libpcap and Wireshark (Fig. 3), 
while our modified version is capable of capturing nanoscale 
TSP as displayed in the “Time” column (Fig. 4). 

 

V. PRECISION EVALUATION OF THE SOFTWARE 

TIMESTAMPING 

A. The timestamp generation process within the kernel 

Timestamp put onto each packet must be adequately 
accurate. Hence, it is essential to investigate the process of 
its generation and to minimize CPU consumption of its sub-
processes. Received packets are enqueued by the kernel in 
the CPU‟s incoming packet queue. Packet enqueuing is 
performed within interrupt context while software 
timestamps are generated by the getnstimeofday() and 
ns_to_timespec() functions (Fig. 5). 

 
For representing time domain relation of the successive 

packets in 10-9 second resolution, TST also has to be kept in 
this time domain. The minimum of this overhead can be 
predicted by measuring the execution times for 
getnstimeofday() and ns_to_timespec(). For this 
measurement we applied a clock source with the lowest and 
the most uniform overhead, called TSC. The CPU instruction 
used to read the TSC register value is RDTSC [18] since its 
execution time takes constant or shows a very low variation 
on most systems. Time consumption for the aforementioned 
functions are measured by inserting TSC checkpoints into 

the kernel code. The read TSC values are corrected with its 
overhead on the current system as well as taking the system 
CPU clock frequency in account. 

 

 
Figure 5.  The sub-processes of  software-based timestamp generation 

The minimum overhead of TST for common CPU 
frequencies can be derived from mean results of a 
measurement series made on various hardware architectures 
(Fig. 6). For a CPU of 3 GHz only some 10 ns is the 
estimated minimum value of TST. Real execution times 
show some variation since several processes must share the 
hardware resources, in this case the CPU itself. In the 
extreme timestamp generation instructions are preceded or 
interrupted by the execution of other processes' instructions, 
which the kernel scheduler decides upon. 

 

 
Figure 6.  Timestamping overhead on different CPU speed 

B. Timestamping performance of the common kernel clock 

sources 

In order to compare timestamping capabilities of the 
mostly available clock sources, we set up a Gigabit Ethernet 
test network. A dedicated FPGA (Field-programmable Gate 
Array) packet generator had been set up and a continuous 
sequence of 72-Byte packets has been generated and 
captured. Since the PCI-based Netfpga-1G board [19] was 
applied as GbE NIC the inter-frame gap was adjusted to 
1472 bytes due to the data transfer limitation of the PCI bus 
and the Netfpga device driver. Also note that its driver does 
not support NAPI, more packets per interrupt mode or other 
performance enhancing technologies. The inter-arrival times 
and packet losses were recorded for every clock source. 
Beside the software timestamp derived from the kernel clock 
source an additional 8 ns resolution hardware timestamp was 
inserted by the NetFPGA (Fig. 7).   

 

In the pcapio.c source file, in function 
libpcap_write_file_header(): 

 
-file_hdr.magic = PCAP_MAGIC; 
+file_hdr.magic = PCAP_NSEC_MAGIC; 

 

In the gtk/recent.c source file: 
- recent.gui_time_precision = TS_PREC_AUTO; 
+ recent.gui_time_precision 

=TS_PREC_FIXED_NSEC; 
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Figure 7.  Precision evaluation of the timestamping 

On Figure 7, one dot represents a successfully received 
and timestamped packet where the timestamp value is 
relative to the arrival of the previous packet. 

For this dual timestamping operation mode, we modified 
the Linux kernel as well as the libpcap library to be able to 
store both timestamps side by side. Since our FPGA-based 
packet generator injects a 32-bit serial number into each 
packet, losses were easy to detect.  

In this case beside that the inter-arrival times show large 
variation using the ACPI-PM and HPET clock sources, 
serious packet drops were present due to the high overhead 
of accessing these clock sources.. ACPI-PM based 
timestamps show the highest overhead. The three nearly 
solid lines of HPET show that TST variance is lower than 
that of ACPI-PM. Since the packet sending rate was constant 
a higher inter-arrival time value indicates a higher execution 
overhead. 

 

 
Figure 8.  TST performance comparison (TSC and hardware 

timestamping)    

Based on the hardware timestamps we can assume that 
the time values derived from TSC show a more realistic 

representation of the inter-arrival times. Moreover, it features 
the lowest TST overhead among the supported kernel clock 
sources. 

 
Accordingly, it is reasonable to compare the variance of 

inter-arrival times gained from the TSC and the NetFPGA 
(Fig. 8). It is important to note that hardware timestamps 
show inter-arrival times of the packets in the MAC layer in 
contrast to the software based timestamps that represent the 
time moment of enqueuing the received packet.  

 
Nevertheless, there is an obvious difference between the 

hardware and software timestamps in absolute time since 
their generation occurs at different points of the data path. 
They are not related very closely but the comparison shows 
that the relative inter-arrival times derived from TSC can be 
fairly close to the hardware-based values. However, even 
with TSC the TST variation of software timestamps has a 
significant extent since the execution of the generator 
functions is triggered by the kernel‟s scheduler subsystem 
(Fig. 8). Software timestamps are generated by kernel space 
functions, thus it is easy to see that kernels with pre-emption 
enabled are not eligible for high precision timestamping and 
high performance packet capturing. 

C. Timestamp generation using TSC 

To generate a timestamp based on TSC its value has to be 
converted, since the register value read by RDTSC is not 
represented in natural time but in the CPU frequency. Linux 
kernel has the cyclecounter/timecounter/timecompare 
framework. It makes possible to use independent cycle 
counter running on an arbitrary frequency to convert it to 
natural time. The cyclecounter structure has to be initialized 
by storing the counter's current value (in this case the register 
value of TSC) and letting it know its ticking frequency. 
Since there is no floating point support in the kernel, this 
frequency conversion is described by a mask, a shift and a 
mult member. Mask describes the size of the counter (64 bit 
for TSC). Shift is fixed at 22 (based on an algorithm in 
arch/mips/kernel/time.c from the Linux kernel) and 
clocksource_khz2mult() helps to convert CPU frequency 
into a multiplier. Then the timecounter has to be fixed to a 
base time (using ktime_get_real() and another clock source 
such as HPET) and to be stored the counter's current cycle 
counter value. 

Timecounter_cyc2time() function is applied to convert 
counter value to natural time and timecompare_update() to 
update offset since last conversion, furthermore to handle 
possible counter turnaround. Downside is that the usage of 
these function calls adds significant processing overhead. 

Nevertheless, TSC is actually the most adequate clock 
among the commonly available Linux kernel clock sources. 
On high performance and carefully tuned systems, its 
precision is sufficient for generating timestamps in the 
nanosecond time domain for certain traffic patterns, however 
for intensive traffic (high packet rate) hardware-based 
solution has to be applied. 
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As a future project, a post-processing of TSC data could 
be implemented to get the potential benefits of offloading 
register data conversion to time of day format.  

 

VI. CONCLUSION 

Version 1.1.1 of libpcap provides a 10-6 second native 
resolution, however pcap format supports a larger 2 x 32-bit 
timestamp value for each stored packet. On Gigabit Ethernet 
and faster networks, a timestamp resolution that works in the 
microsecond domain may not enable the precise 
reproduction of the time-domain relation between 
consecutive frames. Therefore overall analysis of the data 
transmission could lead to a false result. 

For packet capturing with libpcap, it is assumed that 
timestamping is performed when a frame is enqueued to the 
kernel‟s input packet queue. Accordingly libpcap must 
retrieve timestamps from the kernel.  

In this paper, we showed our alternative libpcap-based 
network monitoring solution for Linux systems, which 
features nanosecond resolution timestamping. Our primary 
goal was to test and evaluate all of the clock sources and 
kernel functions and features that are essential parts of our 
project to turn libpcap into a nanosecond-capable capture 
library. With the presented modifications and additions to the 
original codes, we managed to maintain and adapt the 
benefits of tpacket_v2 structure within the entire packet 
capturing process, which resulted in our enhanced libpcap 
solution. In Section V, the precision of the applied software-
based timestamping was analyzed and evaluated. We showed 
that the variation of the TST derived from two factors: the 
retrieval overhead of the applied clock source and the 
kernel‟s scheduler that commands the execution of running 
processes. 
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