
CRUD-DOM:

A Model for Bridging the Gap Between the Object-Oriented and the Relational Paradigms -

an Enhanced Performance Assessment Based on a Case Study

Oscar M. Pereira
1
, Rui L. Aguiar

2

 Instituto de Telecomunicações

University of Aveiro

Aveiro, Portugal

{omp
1
,ruilaa

2
}@ua.pt

Maribel Yasmina Santos

Algoritmi Research Center

University of Minho

Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract—the development of database applications comprises

three different tiers: application tier, database tier and finally

the middle tier also known as the data access layer. The

development of each tier per-se entails many challenges. Very

often the most difficult challenges to be addressed derive from

non-functional requirements, as productivity, usability,

performance, reliability, high-availability and transparency.

This paper is focused on defining and presenting a model for

the data access layer aimed to integrate object-oriented

application tiers and relational database tiers. The model

addresses situations on which users need to explicitly write

down complex static Create, Read, Update and Delete (CRUD)

expressions and simultaneously get advantages regarding some

non-functional requirements. The model, known as CRUD

Data Object Model (CRUD-DOM), tackles the following non-

functional requirements: performance, usability and

productivity. The main contributions of this paper are

threefold: 1) to present the CRUD-DOM model; 2) to carry out

an enhanced performance assessment based on a case study; 3)

to present a tool, called CRUD Manager (CRUD-M), which

provides automatic code generation with complementary

support for software test and maintenance. The main outcome

of this paper is the evidence that the pair CRUD-DOM and

CRUD-M effectively addresses productivity, performance and

usability requirements in the aforementioned context.

Keywords - CRUDDO; CRUD-DOM; database; impedance

mismatch;, high-performance computing; measurement; middle

tier.

I. INTRODUCTION

In order to bridge the gap between the object-oriented
and the relational paradigms, a model, known as CRUD-
DOM, has been already presented [1]. This paper is an
extended version of [1].

In spite of their individual successes, object-oriented and
relational paradigms are simply too different to bridge
seamlessly, leading to difficulties informally known as
impedance mismatch [2]. The diverse foundations of the
object-oriented and the relational paradigms are a major
hindrance for their integration, being an open challenge for
more than 45 years [3]. The challenge derives from the
multiplicity of aspects that need to be bridged across both
paradigms: imperative languages versus declarative
languages; compilation and execution performance versus

search performance; classes, algorithms and data structures
versus relations and indexes; transactions versus threads;
null pointers versus null for the absence of value [3], and
finally, inheritance versus specialization. The impedance
mismatch thus presents several challenges for developers of
database applications, where often both paradigms are found.
These challenges are especially noticeable in environments
where production code is under strict development deadlines,
and where (timely) code development efficiency is a major
concern. In order to cope with the impedance mismatch
issue, several solutions have emerged, such as language
extensions (SQLJ [4], LINQ [5]), call level interfaces [6]
(JDBC [7], ODBC [8] ADO.NET [9]), object/relational
mappings (O/RM) (Hibernate [10], TopLink [11], LINQ [5])
and persistence frameworks (JDO [12], JPA [13]). Language
extensions may provide static syntax and type checking but
always rely on proprietary standards. Call level interfaces,
despite their performance, provide no static syntax or static
checking. O/RM have the advantage of treating data as
objects but do not take the advantage of the database engine
performance and further rely on proprietary standards.
Persistent frameworks have the same drawbacks as O/RM.
Despite their individual advantages, these solutions have not
been developed to effectively address situations where users
need to write complex static CRUD (Create, Read, Update,
Delete) expressions. Table I presents an example of a not
very simple CRUD expression that is not easily supported by
any current solution. The increasing of the query complexity
increases the weaknesses of current solutions.

TABLE I. A CRUD EXPRESSION

Select pt.pt_id, pt.pt_fName, pt.pt_lName
 From pt_pilot pt,cc_circuit cc,cf_classif cf
 Where pt.pt_id=cf.cfPt_id and cf.cf_date=cc.cc_date and
 cf.cf_position not between 1 and 3
 Group by pt.pt_id, pt.pt_fName, pt.pt_lName
 Having count(cf.cf_position) = (Select count(*) From Cc_circuit …)
 Union
 Select top 5 distinct(….
 from …
 ….
 Order by …

Not easily supported means that current solutions push

users to deal with additional issues, as a decay of

158

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance, the usage of proprietary language extensions,
the usage of proprietary mapping techniques, the absence of
support to edit and dynamically test CRUD expressions and
some SQL features not easily supported or even not
supported at all.

A. Performance, Usability and Productivity

CRUD-DOM addresses mainly three non-functional
requirements: performance, usability and productivity. In this
section we introduce their basic concepts and also justify and
emphasize the relevance of each one.

Performance
Performance is a non-functional software requirement

that, among other issues, evaluates how well a system or a
component copes with a set of requirements namely for
timeless [14]. In this context, two dimensions may be
considered: responsiveness and scalability. Responsiveness
evaluates conformance with response time requirements
evaluating the amount of time to accomplish a task or the
number of tasks that can be accomplished in a given period
of time. Scalability evaluates the capacity of a system to
handle growing demand of power computation while
keeping its responsiveness. In this paper we are focused on
responsiveness. Scalability will be addressed in future works.

Performance is a pervasive outcome of software systems
[15]. Everything affects it, as software design, programming
paradigms, programming languages, compilers, operating
systems, communication networks, hardware and third party
software. As a pervasive quality, performance opens many
opportunities to research contributions. Very often, it is one
of the most challenging non-functional software
requirements in database applications. System architects and
system designers are called to decide upon many and
difficult options. Each option has an impact on the overall
performance. As an example, the middle tier may be built
around distinct technologies and solutions, as previously
mentioned, being CLI one of them. Despite CLI drawbacks,
they cannot be discarded as an important and valid option
whenever performance and SQL expressiveness are
considered key issues [3]. CLI provide mechanisms to
encode Create, Read, Update and Delete (CRUD)
expressions inside strings, easily incorporating the power and
the expressiveness of SQL. Thus, power and expressiveness
are crucial advantages of CLI but this comes with
unavoidable and important drawbacks (see detailed
discussion in section III).

Usability
Usability is another non-functional software requirement

in Software Engineering. It is linked to the software quality
design [16]. Several definitions may be found for the
usability concept [17-22]. We may accept the definition of
Jacob Nielson [17], which is focused on concepts as
Learnability, Efficiency, Memorability, Errorless-pronability
and Satisfaction. The application of usability in this work is
twofold. The first one is related to the development process
of the data access layer. It is addressed by the CRUD-M,
which must provide a GUI with improved usability. The

second one is related to the usage of the data access layer.
The access data layer should provide an improved usability
to developers of the application tier.

Productivity
In this work, productivity comprises the factors that may

influence costs during the three phases of the software
application life-cycle: development, test and maintenance of
access layers.

The development phase usually unlocks financial and
material resources, and also motivates the involved human
resources. On the contrary, the test and maintenance phases
are usually neglected and therefore we will pay some
additional attention to them.

The costs associated with software testing are very high
and may exceed 30% of the total cost of a project [23]. Two
of the most relevant sources for such a high cost comprise
the attitude assumed by the development team [24] and also
by the absence of an adequate infrastructure dedicated to
software testing. In the U.S. in 2002 it was estimated a cost
between $22 and $59.1 billion [25]. In opposite to what is
commonly accepted, rather than an act of testing, the
software testing should be seen as an overall strategy to be
included in the entire life-cycle of a software system: “the
act of designing tests is one of the best bug preventers
known”, Beizer in [26].

Software maintenance is well known for its very high
costs and delays in its implementation. Despite being the
aspect that consumes more resources during the product life-
cycle [27], it has usually been neglected. Software
maintenance is an inevitable activity resulting from requests
for assistance derived from its usage and from its aging.
Software maintenance is associated with different sources
but it is generally classified into 4 categories, each one with
different weights [28]: adaptive - 25% (changes in the
environment where software works); perfective – 50%
(adaption to new requirements); corrective – 21% (error
correction); preventive – 4% (prevention of future errors).
These values, although presented in 1980, still continue to be
accepted and cited in several publications [27-29]. Some
sources of software maintenance may not be easily
controlled by the development team, as are the adaptive and
perfective sources. But the other two, mainly the corrective
one, have their basis and origin in flaws occurred during the
development and test of the product.

B. Motivation

The motivation for this work is anchored in the fact that
none of the available current solutions and technologies
address effectively and simultaneously all the following
features:

 Hand-written CRUD expressions - business logic in
database applications very often rely on SQL statements
that have to be hand-written. This may be derived from
the fact that CRUD expressions are too complex and/or
CRUD expressions cannot be inferred from any other
data model.

159

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Decoupled data access layer - in order to completely
decouple the three tiers of database applications, the
data access layer should be developed as a separate
component. This will ensure not only the decouple at its
usage level (application level) but also at its
development level (organizational/responsibility level).

 Technological independency - technological
independency assures that: solutions may run on any
environment; users are not compelled to learn new
technologies.

 Productivity - productivity should be maximized by
exempting users from writing any source code; source
code should be automatically generated and tested.
Maintenance activities should require minimum user
effort.

 Usability: usability should always be presented as a key
concern in all aspects: development of the data access
layer and also the usage of the data access layer.

 Performance: the performance of the data access layer
must always be the main concern.

This work aims to provide a solution that copes with the

aforementioned features. For such, we developed a model,
known as CRUD Data Object Model (CRUD-DOM) where
each CRUD expression is wrapped into a type-safe and type-
state object-oriented component, known as CRUD Data
Object (CRUD-DO). Furthermore, we developed a tool
addressing automatic CRUD-DO generation having as only
input the standard SQL statements written by users. This tool
is known as CRUD Manager (CRUD-M).

Throughout this paper, by default - unless explicitly

referred, all examples are based on Java, SQL Server 2008
and JDBC (CLI) for SQL Server (sqljdbc4). Code snippets
may not execute properly since we will only show the
relevant code for the points under discussion. For
conciseness, Figure 1 presents a partial view of a database
schema, which will be used throughout the examples of this
paper.

Figure 1. Partial view of the database schema

This paper is organized as follows. Section II presents
related work. Section III highlights the impedance mismatch
problem. Section IV describes our proposed model (CRUD-
DOM), while section V presents the automatic code
generation tool (CRUD-M). Section VI presents performance
assessment and finally, Section VII presents the final
conclusion.

II. RELATED WORK

This section presents the different approaches for the
integration of object-oriented and relational paradigms. As a
well-known problem in industry, multiple techniques and
solutions have been released to address the impedance
mismatch problem. For some solutions we will present a real
case but always dealing with a very simple query.

Embedded SQL [30] is a method for writing SQL

statements in-line with regular source code of the host
language inside source files. The SQL statements provide the
database interface while the host language provides the
remaining support needed for the application to execute.
The files are then pre-processed (pre-compiled) in order to
check the correctness of the SQL statements namely against
the database schema, host language data type and SQL data
type checking, and finally syntax checking of the SQL
constructions. SQLJ [4] is an example of an Embedded SQL
standard, which provides language extensions for embedding
SQL statements in regular Java source files. Some SQLJ
disadvantages, which are common to most Embedded SQL
technologies: 1) SQLJ relies on an extra standard; 2) SQLJ
does not decouple SQL statements from regular source code;
3) SQLJ is not suited for client-server environments; 4)
SQLJ does not provide a clean object-oriented interface to
the assisted application; 5) SQLJ does not provide assistance
regarding the maintenance of SQL statements; 6) SQLJ
requires a JVM (Java Virtual Machine) built in the database;
7) In practice, embedded SQL has never been widely
adopted by end users. Table II shows an example using
SQLJ. Examples of other languages that support embedded
SQL are: C, C++, COBOL and Fortran.

TABLE II. SQLJ EXAMPLE

// Java
void getStudent(int id) throws SQLException {
 String firstName = null;
 String lastName = null;
 #sql {
 Select Std_firstName, Std_lastName
 INTO: firstName, lastName
 From Std_Student
 Where Std_id = :id
 }
 System.out.println(“Student‟s name: “ + firstName + “ “ + lastName);
}

Despite the aforementioned general disadvantages, some

embedded SQL features may be considered as advantages
such as: it is based on single development environment with
a strong interconnection between the two paradigms; unlike
other solutions, embedded SQL does not need to be executed

160

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to check the correctness of the SQL syntax. This task is
executed by the pre-compiler.

Object-relational mapping [31, 32] is a programming

technique aiming at enforcing relational data models to be
closely aligned with the object-oriented paradigm. The
relational to object-oriented translation is driven by an
explicit mapping (generally in XML) or by schema
annotations (inside the source code file). Much of the
enforcement is on behalf of getting an object-oriented logic
access layer coping with the impedance mismatch [2] issue.
Every relational concept must, somehow, have its
corresponding concept(s) in the object-oriented paradigm.
Very often, mainly in legacy databases, the translation is not
straightforward, leading to complex translations, as the case
of the relationship and specialization concepts. In these
cases, besides the aforementioned hindrance, the relational
model lacks essential conceptual information obliging
oneself to an extra effort on defining relationship direction,
cardinality, etc. Nevertheless, O/RM techniques have been
quite successful, either as commercial products (e.g., Oracle
TopLink [11], ADO.NET Entity Framework [33], LINQ [5])
or as open source projects (e.g., Hibernate [10]). Albeit this
achieved success, well known O/RM drawbacks are
unavoidable: 1) each O/RM programming technique relies
on proprietary standards introducing new mapping schemas
and new SQL-equivalent manipulation languages; 2) O/RM
entails an additional effort to map the relational model into
the object-oriented model; 3) performance and
expressiveness are the two main O/RM penalties; 4) complex
CRUD expressions may be supported but they must be hand
written and users have no support for their editing and
testing. Table III shows a Hibernate example with HQL and
Table IV shows an example with Hibernate without HQL
(both in Java). Table V shows an example with LINQ in C#.
For conciseness, the mapping schema and mapping classes
are not explicitly presented.

TABLE III. HIBERNATE EXAMPLE WITH HQL

// Java
void getStudent(int id) {
 Session s=HibernateUtil.getSessionFactory().getCurrentSession();
 List list=s.createQuery(“from Std_Student”).
 setInteger(“Std_id”, id);
 Student std=(Student) list.get(0);
 firstName=std.Std_firstName();
 lastName=std.Std_lastName();
 System.out.println(“Student‟s name: “ + firstName + “ “ + lastName);
}

TABLE IV. HIBERNATE EXAMPLE WITHOUT HQL

// Java
void getStudent(int id) {
 Session s=HibernateUtil.getSessionFactory().getCurrentSession();
 Student std=(Student) s.load(Student.class,id);
 firstName=std.Std_firstName();
 lastName=std.Std_lastName();
 System.out.println(“Student‟s name: “ + firstName + “ “ + lastName);
}

TABLE V. LINQ EXAMPLE

// C#
void getStudent(int id) {
 Student std=from s in db.StdStudent where Std_id=id select s;
 firstName=std.Std_firstname;
 lastName=std.Std_lastname;
 Console.WriteLine(“Student‟s name: “ + firstName + “ “ + lastName);
}

Despite the aforementioned disadvantages, O/RM

techniques are very powerful whenever the middle tier
implementation relies on a direct object-oriented perspective
of the relational model. In this particular context O/RM tools
relieve programmers from most of the translation work
between the two paradigms. CRUD-DOM is not tailored to
tackle these situations. Its target is focused on middle tiers
based on more complex CRUD expressions. Anyway,
CRUD-M may be extended in other to provide an additional
feature to automatically create the source code to execute the
4 basic SQL statements in each table: Select one row (by
primary key), Insert one row, Update one row (by primary
key) and Delete one row (by primary key).

Safe Query Objects [34] combine object-relational

mapping with object-oriented languages to specify queries
using strongly-typed objects and methods. They rely on Java
Data Objects to provide strongly-typed objects and also to
provide data persistence. Safe Query Objects are a promising
technique to express queries but share most of the
aforementioned drawbacks of O/RM, namely regarding
performance and SQL expressiveness.

SQL DOM [35] generates a Dynamic Link Library

containing classes that are strongly-typed to a database
schema. These classes are used to construct dynamic SQL
statements without manipulating any strings. As Safe Query
Objects, SQL DOM does not take the full advantage of SQL
expressiveness and also exhibits very poor results regarding
performance.

Static Checking of Dynamically Generated Queries [36]

presents a solution based on static string analysis of Java
programs to find out where SQL statements are being
constructed. The main idea is to find out all possible
combinations of distinct SQL statements and then analyze
them regarding their syntax and their type mismatch errors.
This approach does not affect system performance but
exhibits some drawbacks as: 1) all source code is hand
written from string concatenation till JDBC execution
context; 2) it does not provide any object-oriented view of
the SQL statement execution context.

ADO.NET [9, 37] is part of the base class library

included in the Microsoft .Net Framework. It is a set of
classes that expose data access services to .NET
programmers. The DataSet is the key component
implementing a disconnected memory-resident
representation of the data source. Some of the most
important features are: it is aimed at integrating several and
distinct data sources (XML, relational, etc.); it supports

161

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

several related tables, constraints and relationships between
them. The representation of the data source may be as
complex as necessary. Therefore, ADO.NET is tailored to
meet distinct requirements from those here announced. Table
VI depicts the code for an ADO.NET example written in C#.

TABLE VI. ADO.NET EXAMPLE

// C#
void getStudent(int id) {
 string sql=”select * from Std_student where Sd_id=” + id;
 SqlDataAdapter da=new SqlDataAdapter();
 da.SelectCommand=new SqlCommand(sql,conn);
 DataTable dt=DataTable();
 da.Fill(dt);
 DataRow dr=dt.Rows[0];
 string firstName=dr[“Std_firstName”];
 string lastName=dr[“Std_lastName”];
 Console.WriteLine(“Student‟s name: “ + firstName + “ “ + lastName);
}

Call Level Interfaces (CLI) [6], as JDBC [7] and ODBC [8]
are practically an unavoidable option whenever performance
and SQL expressiveness are simultaneously considered key
issues. CLI provide mechanisms to encode Create, Read,
Update and Delete SQL expressions inside strings, easily
incorporating the performance and expressiveness of SQL.
Thus, performance and expressiveness are crucial advantages
of CLI but this comes with unavoidable and important
drawbacks, namely there is no easy way to link CRUD
expressions and the applications they assist; the act of edit
CRUD expressions is tricky and error-prone; CRUD
expressions are awkward regarding their maintenance and
CRUD expressions are vulnerable to SQL injection attacks.
In order to overcome the drawbacks of these techniques, we
aim to explore CLI, namely through JDBC. These drawbacks
and other issues will be thoroughly addressed in the next
section. Table VII shows an example using JDBC.

TABLE VII. JDBC EXAMPLE

// Java
void getStudent(Connection,conn, int id) throws SQLException {
 sql=”select * “ +
 “from Std_student “ +
 “where std_student=” + id + “);”;
 st=conn.createStatement();
 rs=st.executeQuery(sql);
 firstName=rs.getString(“Std_firstName”);
 lastName=rs.getString(“Std_lastName”);
 System.out.println(“Student‟s name: “ + firstName + “ “ + lastName);
}

III. IMPEDANCE MISMATCH: COMMON JDBC

DRAWBACKS

JDBC is a common tool for integrating relational
databases with Java programming language. JDBC is also a
representative of the typical challenges of CLI. As such, we
will explore JDBC as a target tool. Thus, this section aims to
emphasize common drawbacks regarding the utilization of
JDBC focusing mainly on the ResultSet interface. The
drawbacks may be split into four categories: 1) the process

for editing SQL statements; 2) the process for retrieving data
from returned relations; 3) the process of updating databases
through CONCUR_UPDATABLE ResultSets; 4) protocols of
ResultSet interface regarding its usability. Figure 2 presents a
simple example, which comprises some of the drawbacks
related to categories 1), 2) and 3). This example is used in
the following paragraphs to describe JDBC drawbacks:

a) There is no easy way to link CRUD expressions and their
results to the application they assist. CLI provide services to
ease the integration of object-oriented applications and
relational databases but relevant issues are not overcome
as string concatenation (Figure 2: lines 22-24) and
conversion between relational and object-oriented paradigms
(Figure 2: lines 27, 28, 30).

Figure 2. Some JDBC drawbacks

b) Editing CRUD expressions and access to their results is
tricky and error-prone. CRUD expressions are constructed
by concatenating strings and access to their results is
achieved by reading attribute by attribute in a row by row
basis. Some of the most usual errors are: a) concatenation
errors - missing space between lines (Figure 2, lines 22, 23)
and missing space before “and” (Figure 2: line 23); b) type
mismatch error - argument startYear and column
Crs_startYear (Figure 2: lines 20, 24); c) retrieving data -
misspelled column name (Figure 2: line 28);

c) Errors cannot be checked for correctness at compile time,
addressed in [36]. None of the previous errors can be caught
at compile time demanding great accuracy while editing the
source code in order to prevent additional time on testing,
debugging and future maintenance.

d) CRUD expressions are awkward regarding their
maintenance, addressed in [38]. CRUD expressions
(construction and execution) comprise many different
entities grouped in three classes: SQL syntax, CLI services
and database schema. While SQL syntax and CLI services
can be considered stable, database schema is a dynamic
entity. Database schema may change for many reasons, as
initial error on conceptual model or the emerging of new
requirements, which usually happens several times during
the development process and even also after application

162

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

deployment. Any simple change in the database schema may
involve a huge work on updating the strings that encode the
affected SQL statements.

e) CRUD expressions are vulnerable to SQL injection
attacks, addressed in [39]. This issue is not addressed in the
current version of CRUD-DOM.

f) ResultSet usability, ResultSet interface has dozens of
states, dealing with different combinations of ResultSet
instantiations, directions, accesses, updates, etc. The
developer is before a huge task to become aware of how to
use the ResultSet interface. ResultSet interface comprises
several distinct protocols not organized in interfaces,
conveying the idea that everything is possible in anytime.
ResultSet interface is composed by more than 200 methods
and 10 attributes. Figure 3 presents a partial view of the
ResultSet interface. Each ResultSet state has its own usage
protocol gathering a subgroup of all methods of the
ResultSet interface. Figure 4 depicts the most relevant
protocols for this work: Read, Update, Insert and Delete
actions. While Read and Delete protocols do not comprise a
start and an end instruction, Update and Insert protocols
always have a start instruction (implicitly for Update and
explicitly for Insert) and an end instruction. Besides the
starting and the ending instructions, the main issue for
Update and Insert protocols is that the cursor cannot be
moved from the current selected row while the protocol is
being executed. If the cursor is moved from the selected row
while the protocol is being executed, the protocol will be
aborted and previous changes are discarded from the in-
memory of the ResultSet. In order to overcome some of
these difficulties we will present an approach where each
protocol is executed through a dedicated interface improving
this way ResultSet usability.

+next() : bool

+previous() : bool

+first() : bool

+last() : bool

+beforeFirst()

+afterLast()

+isFirst() : bool

+isLast() : bool

+isBeforeFirst() : bool

+isBeforeLast()

+absolute(in position : int) : bool

+relative(in offset : int) : bool

+getInt(in column : string) : int

+getString(in column : string) : string

+updateInt(in column : string, in value : int)

+updateString(in column : string, in value : string)

+updateRow()

+insertRow()

+deleteRow()

+cancelRowUpdates()

+moveToInsertRow()

+moveToCurrentRow()

+rowUpdated() : bool

+rowDeleted() : bool

+rowInserted() : bool

+wasNull() : bool

«interface»

ResultSet

Figure 3. Partial view of the ResultSet interface

Some of the aforementioned drawbacks have already
been individually addressed as previously cited. In this paper

we will present a simple, integrated and unified alternative to
overcome all the aforementioned drawbacks, except for the
SQL injection attack. The alternative comprises both the
CRUD-DOM and the CRUD-M.

Figure 4. Read, Update, Insert and Delete protocols

IV. CRUD-DOM

CRUD-DOM is our abstract model aimed at bridging the
gap between relational databases and object-oriented
applications. The CRUD-DOM goals are manifold, which
were described in section I.B Motivation. Before we delve
into the CRUD-DOM issue, we will present a concise
overview of Statement/ResultSet interfaces and CRUD
expressions.

A. Statement and ResultSet

The Statement interface [40] is used to execute SQL
statements and to return the possible results they produce
(only for Select statements). The returned results are
managed by the ResultSet interface [41]. Loosely speaking,
ResultSet interface provides two orthogonal functionalities:
scrollability and updatability. Scrollability defines the ability
to scroll over the rows retrieved from the database. There are
two options: forward only – in this case cursors may only
move forward one row at a time; scrollable – cursors may
move in any direction and jump several rows at a time.
Updatability defines the capacity to change the in-memory
data managed by the ResultSet interface and therefore the
content of the host database. There are two main
possibilities: read only – the content of the ResultSet is read
only and, therefore, no changes are allowed; updatable –
changes may be performed over the in-memory data, as
Insert, Update and Delete. These functionalities are defined
at instantiation time of the parent Statement or
PreparedStatement [42] object. The combination of these

163

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

two functionalities influences the performance of many
actions that are executed. This analysis will be carried out in
section VI.

B. CRUD Expressions

CRUD expressions are the basic entities from which
CRUD-DOM specification must evolve. Therefore, before
proceeding with the CRUD-DOM specification, it is
advisable to briefly survey CRUD expressions in order to be
aware of the JDBC context in which they are used. CRUD
expressions comprise the four basic SQL statements for
accessing information in databases: Select, Insert, Update
and Delete. While Insert, Update and Delete statements are
used to alter the state of databases, Select statements allow
the implementation of several views of the database. Hence,
CRUD expressions may be grouped into two categories:
“query CRUD expressions” (Q-CRUD) whenever involving
a Select statement; and “execute CRUD expressions” (E-
CRUD) whenever involving an Insert, Update or Delete
statement. The corresponding CRUD-DOs share some
source code but relevant differences must be emphasized.
The most relevant difference is that Q-CRUD expressions
return one or more relations from the database therefore
requiring specific processing, as seen in Figure 2 (lines 26-
28). Additionally, in some circumstances and also for certain
Q-CRUD expressions it is possible to instantiate updatable
ResultSets. Updatable ResultSets provide embedded
protocols to update, to delete and to insert data in databases.
Figure 2 (lines 30-32) concisely presents a case for the
update situation. Other examples are presented in Figure 4
for Update, Insert and Delete actions. Thus, two types of
CRUD expressions may be defined. Q-CRUD expressions
executed on updatable ResultSet are named as Active Q-
CRUD expressions (AQ-CRUD). Q-CRUD expressions
executed on non-updatable ResultSet are named as Passive
Q-CRUD expressions (PQ-CRUD).

C. CRUD-DOM Objectives

As previously mentioned CRUD-DOM addresses three
main objectives: high performance, high usability and high
productivity. In this section we will describe the most
relevant features to be included and that are dependent on
CRUD-DOM architecture: performance and usability (access
layer usability). The remaining features as usability (CRUD
Manager usability) and productivity depend on CRUD
Manager.

Performance
To comply with the performance objective, the following

features were established:

 Pool of CRUD-DOs: CRUD-DOs rely on statically
crated CRUD expressions. CRUD-DOs exist inside
the access layer and are supposed to be reused over
and over again. Therefore, a pool of CRUD-DOs
should minimize CRUD-DO instantiation time.

 Prepared statements: for the reasons pointed in the
previous feature (reuse of CRUD-DOs), it is
advisable to use prepared statements

(PreparedStatement [42]) instead of Statements
(Statement [40]).

Usability
To comply with the usability, the following features were

established:

 Type-state [43] oriented interfaces: For each main
ResultSet protocol (Read, Update, Insert and Delete)
CRUD-DOM makes available a type-state oriented
interface.

 Semantic interfaces: all interfaces defined by
CRUD-DOM aimed to deal with query parameters
and attributes of the returned relations are always
semantically oriented. This means that the names of
their methods and their arguments are always
derived from the associate queries.

 Factory: from users‟ perspective, all CRUD-DOs are
created and managed through a factory.

D. CRUD-DOM Details

We will present CRUD-DOM architecture by
enumerating and describing the fundamental features for
each type of CRUD expression: E-CRUD, PQ-CRUD and
AQ-CRUD. Afterwards, we will present class diagrams for
each type of CRUD expression. For all presented examples
we assume that:

 “CruddoName” is the name for all types of CRUD
expressions used as examples.

 Q-CRUD expression is “select co1A, colB from table
where colA>param” where colA is integer and colB
is String.

 E-CRUD is any delete, update or insert SQL
statement with one parameter (param) of type
integer.

All CRUD-DOs share the following features:

 Every CRUD-DO has a unique name.

 Every CRUD-DO is built around one class, known
as the invocation class, and among other things, the
class is responsible for the execution of the CRUD
expression.

 The name of the invocation class is the same as the
one given to the CRUD-DO.

 The invocation class has only one constructor with
no arguments. Its visibility is protected.

 The invocation class has one method with the
following signature void config(Connection conn).
This method is responsible for setting the connection
to be used during the query execution.

 The invocation class has one method named execute,
which is responsible for the execution of the CRUD
expression. This method returns no value and has as
many arguments as the number of the CRUD
expression parameters. The name, type and order of
the arguments depend on the name, type and order of
CRUD expression parameters. For our example,
execute has one parameter named as param and its
type is int.

164

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

All CRUD-DOs derived from E-CRUD expressions

share the following feature:

 The invocation class has a method with the
following signature: int getAffectedRows(); this
method returns the number of rows affected by the
execution of the E-CRUD expression.

 Figure 5 presents the class diagram for the E-CRUD

expression example.

#CruddoName()

#config(in conn : Connection)

+execute(in param : int)

+getAffectedRows() : int

CruddoName

E_CRUD

Figure 5. Class diagram for E-CRUD expressions

All CRUD-DOs derived from Q-CRUD expressions

share the following feature:

 The invocation class must implement all the
scrollable methods in accordance to its instantiation
criterion.

 If the ResultSet is scrollable, provide a method with
the following signature: int getRowCount(); this
method returns the number of rows retrieved by the
Select statement;

 Q-CRUD expressions have no concrete instances.
They are super types for PQ-CRUD and AQ-CRUD
expressions.

All CRUD-DOs derived from PQ-CRUD expressions

share the following features:

 Extend features of Q-CRUD expressions;

 The invocation class has one method with the
following signature: CruddoName_readTuple
beginRead();

 CruddoName_readTuple class, known as the access
class, implements one method, generally known as
access method, for each attribute of the returned
relation. Each access method has the following
signature javaDataType gAttributeName() where
JavaDataType is the correspondent java data type
for SQL data type and the method‟s name is built by
concatenating the name of the attribute (first letter
converted to uppercase) with the prefix g.

Figure 6 presents the class diagram for the PQ-CRUD

example.

 All CRUD-DOs derived from AQ-CRUD expressions

share the following features:

 Extend features of Q-CRUD expressions;

 The invocation class may provide any subset of the
following four features: readable, updatable,
insertable and deletable; whenever provided, the
readable feature may also be included in the
remaining features to improve their usability;

 If CRUD-DO is readable it implements one method
with the following signature:
CruddoName_readTuple beginRead();

 If CRUD-DO is updatable it implements one
method with the following signature:
CruddoName_updateTuple beginUpdate();

 If CRUD-DO is insertable it implements one method
with the following signature:
CruddoName_insertTuple beginInsert();

 If CRUD-DO is deletable it implements one method
with the following signature: void delete();

 CruddoName_readTuple class: previously explained
for PQ-CRUD;

 CruddoName_updateTuple and
CruddoName_insertTuple classes provide
functionalities easily perceived from
CruddoName_readTuple class: access methods have
s as prefix instead of g;.

 The delete method, deletes the current row from the
ResultSet.

#CruddoName()

#config(in conn : Connection)

+execute(in param : int)

+moveNext() : bool

+beginRead() : CruddoName_readTuple

CruddoName

+movePrevious() : bool

+moveAbsolute(in position : int) : bool

+moveRelative(in offset : int) : bool

+moveFirst() : bool

+moveLast() : bool

+moveBeforeFirst() : bool

+moveAfterLast() : bool

Scroll

Only if ResultSet

is scrollable

PQ_CRUD

Figure 6. Class diagram for PQ-CRUD expressions

Figure 7, Figure 8, Figure 9 and Figure 10 present the
class diagrams for AQ-CRUD expressions.

Class diagrams have been presented for each type of

CRUD expression. To completely understand the class

diagrams it is necessary to have an understanding of how the

ResultSet interface is implemented. Original ResultSet

method names have been renamed and some new ones have

been included. Renamed methods are easily identified: next-

>moveNext, previous->movePrevious, etc. Only a subgroup

of all methods has been presented in order to avoid

overcrowding the class diagrams.

There is a factory responsible for creating the correct

instances and also for managing the pool of CRUD-DO

165

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instances. Figure 11 depicts the factory source code for
managing CruddoName. After their utilization, CRUD-DOs
may be released for future reutilization (Figure 11, line 25)
maintaining this way an active pool of CRUD-DOs. Before
creating a new instance, the factory checks if there is any
instance available inside the pool (Figure 11, line 31).

#CruddoName()

#config(in conn : Connection)

+execute(in param : int)

+moveNext() : bool

+beginRead() : CruddoName_readTuple

+beginUpdate() : CruddoName_updateTuple

+beginInsert() : CruddoName_insertTuple

+delete()

CruddoName

+movePrevious() : bool

+moveAbsolute(in position : int) : bool

+moveRelative(in offset : int) : bool

+moveFirst() : bool

+moveLast() : bool

+moveBeforeFirst() : bool

+moveAfterLast() : bool

Scroll
Only if ResultSet

is scrollable

AQ-CRUD

beginRead only

 exists if readable

beginUpdate only

 exists if updatable

beginInsert only

 exists if insertable

delete only

 exists if deletable

Figure 7. Class diagram for AQ-CRUD expressions

+gColA() : int

+gColB() : string

CruddoName_readTuple

Figure 8. Readable class diagram for Q-CRUD expressions

+sColA(in value : int)

+sColB(in value : string)

+insert()

+cancelInsert()

CruddoName_insertTuple

only if readable

+gColA() : int

+gColB() : string

CruddoName_readTuple

Figure 9. Insertable class diagram for AQ-CRUD expressions

+sColA(in value : int)

+sColB(in value : string)

+update()

+cancelUpdate()

CruddoName_updateTuple

only if readable

+gColA() : int

+gColB() : string

CruddoName_readTuple

Figure 10. Updatable class diagram for AQ-CRUD expressions

Figure 11. Factory: pool management

V. CRUD MANAGER

CRUD-M addresses productivity objectives (automatic code
generation, semi-automatic test and also maintenance) and
usability objectives. No special programming skills should
be required to use CRUD-M and learning time should be
minimal. CRUD-M usage is centered in a GUI component
presented in Figure 12. Figure 12 shows a concrete example
for an AQ-CRUD expression, called Courses, which was
created as readable, updatable and insertable but not
deletable. Figure 13 shows the usage of CRUD-DO Courses
from the application tier point of view. As one can see, the
integration is seamless regarding impedance mismatch.
Additionally, an approach for the implementation of
ResultSet as a typestate [44] component is provided
improving this way CRUD-DO usability. This may be
verified, as an example, by the definition of the
Courses_readTuple interface (Figure 13, lines 68, 69), which
provides a coherent protocol for retrieving data from the
ResultSet.

CRUD-M encompasses five main blocks as depicted in
Figure 14. User launches CRUD-M and defines which
database is going to be used. Then, “Schema Reader” reads
the schema of the database. From now on, users may edit
and/or maintain CRUD expressions. “CRUD Editor”
provides a context where CRUD expressions may be edited.
“CRUD Execution Unit” may help “CRUD Editor” in some
specific tasks as defining SQL parameters and executing
statements against the database. After executing successfully
an SQL statement against the database, users are allowed to
create CRUD-DO, which will be accomplished by “CRUD-
DO Generator”. “CRUD Maintenance” parses CRUD-DO
and retrieves the underlying CRUD expression to be reedited
by “CRUD Editor”. A more detailed description for each
bock follows:

Schema Reader: this component reads the schema of the
database, which is mainly used to automatically suggest the
Java data types for the parameters of CRUD expressions.

CRUD Editor: CRUD Editor is a text editor where CRUD
expressions may be written from scratch. Parameters defined
in runtime must be identified through a unique name
preceded by a „@‟ character. These names will be used for

166

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. CRUD-M GUI

Figure 13. Courses from the application point of view

the arguments of the execute method of the invocation
classes. In our example we have defined two parameters:
dptId and startYear.

CRUD Execution Unit: CRUD Execution Unit is responsible
for three tasks: 1) providing, whenever necessary, input data
components for SQL parameters. Each input component is
identified by the name of the associated parameter and has a
default Java Data Type derived from the database schema.
Users may select another Java Data Type becoming
responsible for their decision; 2) executing the edited CRUD
expression against the database proving this way an expedite
and integrated tool for evaluating the correctness of CRUD
expressions and also for testing the outcome of CRUD
expressions. Developers are relieved to write source code to
test and debug their CRUD expressions; 3) formatting a table
in runtime to present the content of returned relations,

 Schema Reader

CRUD Execution Unit

C

R

U

D

E

d

i

t

o

r

Database

CRUD-DO Generator

CRUD MaintenanceP

o

o

l

Figure 14. Block diagram of the CRUD-M

whenever the underlying CRUD is a Q-CRUD expression.
This visualization allows developers to have an immediate
visual feedback about the retuned data and easily evaluate
the outcome of Q-CRUD expressions execution. In our
example, the returned relation has 4 rows and 5 attributes.

CRUD-DO Generator: CRUD-DO Generator creates

automatically all the necessary source code for the

underlying CRUD expressions. For all types of CRUD

expressions, users must input some additional information,

as: CRUD-DO‟s name, package‟s name, type of CRUD

expression, pool directory for CRUD-DOs, etc. Some

additional information is required if the CRUD expression is

167

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of type AQ-CRUD, as which of the following functionalities

should be implemented: readable, insertable, updatable and

deletable.

CRUD Maintenance: this component keeps track of all
existing CRUD-DOs in the pool directory. Any CRUD-DO
in the pool directory may be selected for editing or to be
deleted. If it is selected for editing, the underlying CRUD
expression is retrieved from the invocation class and
presented in the CRUD editor. From now on, the CRUD
expression may be retested or reedited to update the current
CRUD-DO or even to create a new one.

VI. PERFORMANCE ASSESSMENT

As mentioned in section I, two dimensions may be
considered for performance: responsiveness and scalability.
Hereafter, performance should be understood as the
responsiveness dimension. The first version of CRUD-DOM
was presented in [1]. CRUD-DOM performance was
evaluated by measuring the responsiveness for a particular
situation: a fixed block of code (one for each protocol) was
repeatedly executed for a specific number of times. In this
new approach, we will get a more dynamic view about how
CRUD-DOM and JDBC behave. This will be achieved by
stressing them under several conditions. Details are
explained in the next sub-sections.

A. The valuation testbed

All measurements share the same platform: PC - Dell
Latitude E5500; CPU - Intel Duo Core P8600 @2.40GHz;
RAM - 4.00 GB; OS - Windows Vista Enterprise Service
Pack 2 (32bits); Java SE 6; JDBC(sqljdbc4) and SQL Server
2008 version 10.0.1600.22. In order to promote an ideal
environment the following actions were taken: the running
threads were given the highest priority and all non-essential
processes/services were canceled. Transactions were not
used and auto-Commit was used in all connections.

A new database was created in conformance with the
schema presented in Figure 1. In order to avoid some
overhead added by SQL Server, some default properties
were changed as, Auto Update Statistics = false and
Recovery Model=Simple.

The performance assessment addresses two goals: the
first one, known as standard JDBC assessment (S-JDBC), is
to understand the behavior of the standard Statement and
ResultSet interfaces; the second one, based on a component
relying on CRUD-DOM (C-CRUD), aims to assess C-
CRUD and compare it with S-JDBC. S-JDBC and C-CRUD
are from now on generally known as entities and formally
represented by the letter E.

Part of the results of both assessments is influenced by
the Microsoft TDS protocol and also by the implemented
mechanisms on both sides (JDBC and SQL Server) to
support it. Some key notes are provided to help on the
understanding of the collected results:

 selected data through forward-only and read-only
ResulSets are always transferred to the client side in

a single batch. Sql Server does not implement any
mechanism to supervise or control client behavior.
On the other side, for other types of ResultSets, Sql
Server transfers data in blocks and keeps track of
clients‟ operations. This is achieved by a cursor and
a dataset that keeps all the selected data and also
keeps track on which row clients are pointing to.
This means that it is expected that forward-only and
read-only ResultSets should get better performance
results than the other types of ResultSets.

 forward-only ResultSets require a simpler
mechanism to scroll over the selected data. This
means that JDBC and Sql Server have optimized
algorithms and therefore improved performance for
forward-only ResultSets.

 Read-only ResultSets do not create, explicitly, any
concurrency constraint on the database and,
therefore, their implementations are more effective
on both sides.

 Scrollable and updatable ResultSets are expected to
have the worst performance. They are the sum the
most complex implementations of TDS: not
forward-only and nor read-only.

The size of blocks to be retrieved from the Sql Server

may be controlled by setting the block fetch size. Thus, in
order to impose a similar environment to all the collected
measures, the fetch size has been set to guaranty that all rows
are retrieved from Sql Server in a single block.

Sql Server supports more ResultSet types than those
defined in the standard JDBC. A more detailed description
about Microsoft implementation of JDBC may be found here
[45].

In [1], the context in which the assessment took place
was characterized by: 1) the type of Statement {Forward-
only Read-only (FR), Forward-only Updatable (FU),
Scrollable Read-only (SR) and Scrollable Updatable (SU)};
2) the type of operation {Read (R), Update (U), Insert (I) and
Delete (D)} and finally 3) by defining a normalized metric
based on the number of cycles that was possible to compute
in a second. In spite of its simplicity and validity, we have
adopted a new strategy that provides a better evaluation for
both entities.

The environment in which the assessment here presented

took place is characterized by: CRUD expression, scenarios,
contexts, units and data. These items are explained in the
next paragraphs.

CRUD expressions: All measurements derive from the AQ-
CRUD expression “Select * from Std_student”.

Scenarios (S): Four scenarios were defined for each
operation to be evaluated: Read (Sre), Update (Sup, Scu), Insert
(Sin, Sci) and Delete (Sde). The Sre consists in select a certain
number of tuples from the database and then read all
attributes of all tuples. The update scenario comprises two
variants: a) Sup consists in selecting a certain number of

168

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tuples from the database and then update all attributes
(except the primary key – Std_id) of all tuples without
committing the changes to the database; b) Scu consists in
selecting a certain number of tuples from the database and
then update all attributes (except the primary key – Std_id)
of all tuples and commit the changes to the database. The
insert scenario comprises two variants: a) the Sin consists in
selecting zero rows from the database and then insert all
attributes of a certain number of rows into the ResultSet
without committing them to the database; b) the Sci consists
in selecting zero rows from the database and then insert all
attributes of a certain number of rows into the ResultSet
committing them to the database. The Sde scenario consists in
select a certain number of tuples from the database and then
to delete all tuples one by one. Table VIII concisely
describes all scenarios. These scenarios are only one
possibility among an infinity of others. Thus, it was decided
to only assess S-JDBC in these scenarios because the most
relevant assessment is carried out for the individual units
(see Units).

TABLE VIII. FORMAL DESCRIPTION OF ALL SCENARIOS

S Description

Sre

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Start clock
Select all (n) tuples from the table Std_Student
For each tuple
 Read all attributes
Stop clock

Sup

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Start clock
Select all(n) tuples from the table Std_Student
For each tuple
 Update all attributes except the pk // without committing them
Stop clock

Scu

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Start clock
Select all(n) tuples from the table Std_Student
For each tuple
 Update all attributes except the pk
 Commit changes
Stop clock

Sin

Delete all tuples from the table Std_Student
Start clock
Select all (zero) tuples from the table Std_Student
While insert more tuples
 Insert all attributes // without committing them
Stop clock

Sci

Delete all tuples from the table Std_Student
Start clock
Select all (zero) tuples from the table Std_Student
While insert more tuples
 Insert all attributes
 Commit new tuple
Stop clock

Sde

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Start clock
Select n tuples from the table Std_Student
For each tuple
 Delete tuple
Stop clock

Unit (U): A unit is a task whose execution time is relevant to
understand the behavior of any of the four scenarios. The
following units were defined: time to execute the select
statement (Use), time to read all returned tuples (Ure), time to
update all returned tuples but not to commit them to the
database (Uup), time to insert tuples into the ResultSet but not
to commit them (Uin), time to update tuples and commit them
to the database (Uuc), time to insert tuples and commit them
to the database (Uic) and finally time to delete tuples from the
database (Ude). Table IX concisely describes all units. Each
scenario may be seen as an aggregation of individual units.

Now let‟s present the composition for each scenario in
terms of units: Sre=Use+Ure, Sup=Use+Uup, Scu=Use+Uuc
Sin=Use+Uin, Sci=Use+Uic and Sde=Use+Ude.

TABLE IX. FORMAL DESCRIPTION OF ALL UNITS

C Description

Use

Delete all tuples from the table Std_Student
Insert n into the database table Std_Student
Start clock
Select all (n) tuples from the table Std_Student
Stop clock

Ure

Delete all tuples from the table Std_Student
Insert n into the table Std_Student
Select all (n) tuples from the table Std_Student
Start clock
For each tuple
 Read all attributes
Stop clock

Uup

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Select all(n) tuples from the table Std_Student
Start clock
For each tuple
 Update all attributes without commit (except the pk)
Stop clock

Ucu

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Select all(n) tuples from the table Std_Student
Start clock
For each tuple
 Update all attributes (except the pk)
 Commit changes
Stop clock

Uin

Delete all tuples from the table Std_Student
Select all (zero) tuples from the table Std_Student
Start clock
While insert more tuples
 Insert all attributes without commit
Stop clock

Uci

Delete all tuples from the table Std_Student
Select all (zero) tuples from the table Std_Student
Start clock
While insert more tuples
 Insert all attributes
 Commit new tuple
Stop clock

Ude

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Select all (n) tuples from the table Std_Student
Start clock
For each tuple
 Delete tuple
Stop clock

169

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Context (C): Four contexts were defined for the Statement
interface: forward-only and read-only (Cfr), forward-only and
updatable (Cfu), scrollable and read-only (Csr) and finally
scrollable and updatable (Csu). All contexts were used to
explicitly assess S-JDBC. C-CRUD was only assessed in the
Csu. The justification for this option is that S-JDBC and C-
CRUD architectures do not depend on the running context.
The collected differences between S-JDBC and C-CRUD in
one context should be equivalent in all the other contexts.
This means that if for Csu the difference between C-CRUD
and S-JDBC is Δt then it will remain Δt for the other
contexts. Therefore, the behavior of C-CRUD for the
remaining contexts may be inferred from the behavior of S-
JDBC in those contexts and from the collected differences
between S-JDBC and C-CRUD in Csu. This assertion has
been confirmed by several collected measurements in the
other remaining contexts. Table X describes all contexts.

TABLE X. DESCRIPTION OF ALL CONTEXTS

C Description
Cfr Forward-only and read-only

Cfu Forward-only and updatable

Csr Scrollable and read-only

Csu Scrollable and updatable

Data: In order to promote a dynamic view about the
behavior of each entity, it was decided not to measure the
number of cycles that is possible to be computed in a second
but to measure the required time to execute each
scenario/unit for a set of numbers of rows. The chosen set of
numbers of rows is: 5, 10, 15, 25, 50, 75, 100, 150, 250, 350
and 500 rows. This approach gives a dynamic perspective
about the behaviors of all entities and is applied to all
scenarios, contexts and units. A simple formalization of both
entities may be expressed as:

 S(α,η) (1)

 U(α,η) (2)

Table XI describes each symbol of equations (1) and (2).

TABLE XI. MEANING OF EQUATIONS (1) AND (2)

 Description Domain

S Any subset of all
scenarios. All
scenarios is
represented by Sall.

S{Sall,Sre,Sup,Scu, Sin,Sci,Sde}

U Any subset of all
units (valid for the
defined scenario and
context). All units is
represented by Uall.

U{Uall,Use,Usc,Ure,Uup,Ucu,Uin,
 Uci,Ude}

α Any subset of all
contexts. All contexts
are represented by call.

α{call,cfr,cfu,csr,csu}

η Any subset of the set
of rows. All set is
represented by nall.

η{nall,n5,n10,n15,n25,n50,n75,
 n100,n150,n250,n350,n500}.

Example, Sde(cfu,su,nall) means: scenario delete, contexts
forward-only updatable and scrollable updatable and the
complete set of rows.

A slot is defined as the minimum granularity for which it
is necessary to collected measures. Examples: Sre(cfr,n5),
Sre(cfr,nl0) and Uup(cfu,su,n250). The distribution and the total
number of different slots are presented in Table XII. The
number of slots for S-JDBC for all scenarios is computed by
multiplying the number of scenarios by the number of
contexts by the number of sets of rows. The other values
follow the same reasoning to be computed. The total number
of slots for both entities is 649.

TABLE XII. NUMBER OF SLOTS

 S-JDBC C-CRUD Total
Scenarios 6x4x11=264 0 264

Units 7x4x11=308 7x1x11=77 385

Total 572 77 649

The measures used in all the following graphics for each

slot were computed, as:

 At least 500 raw measures were collected.

 The 25 best raw measures were discarded.

 Measure=average of the 50 best remaining raw
measures.

Thus, at least 649x500=324,500 raw measures were

collected for this current assessment.

B. S- JDBC assessment

S-JDBC assessment comprises both the units and the
scenarios. The assessment of units allows us to analyze and
isolate the impact of each context by unit. The assessment of
scenarios also allows us to analyze the impact by context but
the simulation in closer to real situations because the starting
point is always triggered by a select statement. Just to
remind, AQ-CRUD expressions always comprise a Select
statement.

S-JDBC assessment is carried out without any special
architecture, avoiding this way any additional overhead. This
will be confirmed in the following paragraphs.

1) Assessment of units
In section IV.A it was mentioned that each context

(combination of functionalities) may influence the
performance of each operation. In this section we will
analyze the impact of the chosen contexts in each unit.

Figure 15, Figure 18, Figure 21, Figure 23, Figure 25,
Figure 27 and Figure 30 depict the source code for each unit.
Each unit is individually controlled in order to collect
accurate measures for its execution time. These figures show
that: the source code is exempt of any architecture and the
source code is in line with the general description of all units,
see Table IX. These units have some modifications when
compared to the equivalent ones presented in [1] derived
from the changes introduced in the current test-bed.

170

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16, Figure 17, Figure 19, Figure 20, Figure 22,
Figure 24, Figure 26, Figure 28, Figure 29, Figure 31 and
Figure 32 show the performance of all units. The column
bars represent the required time to execute the unit (Tsj) and
the associated vertical axis is the left one. The dashed lines
represent the required mean time to process one row (Rsj)
and the associated vertical axis is the right one. Rsj is
computed dividing Tsj by η.

Use – Select unit
Figure 15 depicts the main source code for the

Use(call,nall). This unit is focused on measuring the required
time to select each set of number of rows.

Figure 15 . S-JDBC: source code for the Use(call,nall).

Figure 16 presents the general behavior of the

Use(call,nall). The dashed lines are very close conveying the
need for a more detailed graphic. Figure 17 presents a more
detailed view of Figure 16 emphasizing the behavior of each
context.

Figure 16. S-JDBC: behavior of Use(call,nall)

From Figure 16 and Figure 17 we may conclude that:

 Tsj of Cfr,fu is weakly dependent on η.

 Tsj of Csr,su increases with η.

 Rsj decreases for all contexts when η increases; as
an example, for Csu, Tsj varies from 77μs till 5.2μs.

 Cfu, Cfr, Csr and Csu are ordered from the best to the
worst Rsj score.

Figure 17. S-JDBC: detail of Use(call,nall).

Main point: scrollable ResultSets should be avoided
whenever possible, mainly when the number of rows is
above 100.

Ure – Read unit
Figure 18 depicts the main source code for the

Ure(call,nall). This unit is focused on measuring the required
time to read all rows returned by the select statement.

Figure 19 presents the general behavior of the
Ure(call,nall). The dashed lines for Cfu,sr,su are very close
conveying the need for a more detailed graphic. Figure 20
presents a more detailed view of Figure 19 emphasizing the
behavior of the 4 contexts.

Figure 18. S-JDBC: source code for the Ure(call,nall).

Figure 19. S-JDBC: behavior of Ure(call,nall).

Figure 20. S-JDBC: detail of Ure(call,nall).

From Figure 19 and Figure 20 we may conclude that:

 Tsj of Call increase with η; the Cfr is the most
independent one.

 Rsj decreases for Cfu,sr,su when η increases; as an
example, for Csu the ratio varies from 135μs till

171

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

26μs. Cfr is independent of η revealing a constant
performance.

 Cfr has by far the best scores for all η; Cfu,sr,su present
similar scores for all η.

Main point: Cfr is always the best option.

Uup – update unit without commit
Figure 21 depicts the main source code for the

Uup(cfu,su,nall). This unit is focused on measuring the required
time to update all rows returned by the select statement but
without committing those changes to the database.

Figure 21. S-JDBC: source code for the Uup(cfu,su,nall).

Figure 22 presents the general behavior of the

Uup(cfu,su,nall). The dashed lines for Cfu,su are overlapped
showing that the behaviors are the same for both contexts.

Figure 22. S-JDBC: behavior of Uup(cfu,su,nall).

From Figure 22 we may conclude that:

 Tsj of Cfu,su increases with η;

 The behavior is the same for both contexts.

 Rsj decreases for Cfu,su when η increases; it ranges
from 127μs till 18μs.

 For η>50, Rsj tends to be constant

Main point: there is no difference between Cfu and Csu.

Ucu – update unit with commit
Figure 23 depicts the main source code for the

Ucu(cfu,su,nall). This unit is focused on measuring the required
time to update all rows returned by the select statement and
also for committing those changes to the database.

Figure 23. S-JDBC: source code for the Ucu(cfu,su,nall).

Figure 24 presents the general behavior of the Ucu(cfu,su,nall).
The dashed lines for Cfu,su are overlapped when η>=10,
showing that the behaviors are practically the same for both
contexts.

Figure 24. S-JDBC: behavior of Ucu(cfu,su,nall).

From Figure 24 we may conclude that:

 Tsj of Cfu,su increases with η;

 For η>=10, the behavior is the same for both
contexts.

 Rsj decreases for Cfu,su when η increases; it ranges
from about 3,000μs till 600μs.

 For η>=50, Tsj tends to be constant.

From Figure 22 and Figure 24 we conclude that

committing the changes to the database causes a significant
increase in Tsj and Rsj in about 25 times for all η. This means
that any improvement in CRUD-DOM will very probably
convey a minor effect in Cfu,su.

Main point: for η>=10, there is no difference between Cfu

and Csu.

Uin – insert unit without commit
Figure 25 depicts the main source code for the

Uin(cfu,su,nall). This unit is focused on measuring the required
time to insert η tuples into the ResultSet but without
committing them to the database.

Figure 26 presents the general behavior of the
Uin(cfu,su,nall). The dashed lines for Cfu,su are always
overlapped showing that the behaviors are the same for both
contexts.

172

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 25. S-JDBC: source code for the Uin(cfu,su,nall).

From Figure 26 we may conclude that:

 Tsj of Cfu,su increases with η.

 The behavior is the same for both contexts.

 Rsj decreases for Cfu,su when η increases; it ranges
from 128μs till 19μs.

 For η >=50, Tsj tends to be constant.

Main point: there is no difference between Cfu and Csu.

Figure 26. S-JDBC: behavior of Uin(cfu,su,nall).

Uci – insert unit with commit
Figure 27 depicts the main source code for the

Uci(cfu,su,nall). This unit is focused on measuring the required
time to insert η into the ResultSet and to commit them to the
database.

Figure 27. S-JDBC: source code for the Uci(cfu,su,nall).

Figure 28 presents the general behavior of the

Uci(cfu,su,nall). The dashed lines for Cfu,su are very close
conveying the need for a more detailed graphic. Figure 29
presents a more detailed view of Figure 28 emphasizing the
differences between the behaviors of the 2 contexts.

Figure 28. S-JDBC: behavior of Uci(cfu,su,nall).

Figure 29. S-JDBC: detail of Uci(cfu,su,nall).

From Figure 28 and Figure 29 we may conclude that:

 Tsj of Cfu,su increases with η.

 The behavior is very similar to both contexts.

 Rsj is weakly dependent on η for values of η >=75.

 Cfu gets better scores for all η.

From Figure 28 and Figure 29 we conclude that

committing the new tuples to the database causes an increase
in Tsj that ranges from 8 times for η =5 till 25 times for
N=500.

Main point: scrollable ResultSets should always be

avoided whenever possible.

Ude – delete unit
Figure 30 depicts the main source code for the

Ude(cfu,su,nall). This unit is focused on measuring the required
time to delete all tuples returned by the select statement.

Figure 30. S-JDBC: source code for the Ude(cfu,su,nall).

Figure 31 presents the general behavior of the

Ude(cfu,su,nall). The dashed lines for Cfu,su are very close
conveying the need for a more detailed graphic. Figure 32
presents a more detailed view of Figure 31 emphasizing the
differences between the behaviors of the 2 contexts. From
Figure 31 and Figure 32 we may conclude that:

 Tsj of Cfu,su increase with η.

173

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The behavior is very similar to both contexts.

 For η>=50, Rsj tends be independent from η.

 Cfu gets better scores for all η.

Main point: if possible, scrollable ResultSets should

always be avoided mainly when the number of rows is low.

Figure 31. S-JDBC: behavior of Ude(cfu,su,nall).

Figure 32. S-JDBC: detail of Ude(cfu,su,nall).

Summary
Despite some particularities, as a summary of all units,

we may say that:

 Cfr,fu have better scores than Csr,su.

 Most of the times, Csr have better scores than Csu.

 Tsj increases with η except for Cfr,fu in Use.

 Rsj decays when η increases except for Cfr in Ure.

 Rsj decays rapidly from η=5 till η=50 or η>75.

 Rsj tends to be constant for η>=50 or η>=75

The collected measures come in line with the knowledge

about the TDS protocol [46] and its implementation on the
client side and on the server side. Scrollable and updatable
ResultSets always use a cursor and a dataset inside the Sql
Server. The cursor management and the selected row in the
client side are always synchronized leading this way a
decrease in the overall performance. This characteristic will
also have impact in the next assessment.

2) Assessment of scenarios
In spite of being an important issue, the scenarios have

been introduced only to simulate situations closer to a
hypothetical situation. Therefore, we only briefly present
some results for the assessment of the six scenarios. Figure
33, Figure 34, Figure 35, Figure 36, Figure 37 and Figure 38
present the individual behavior for each scenario.

Figure 33. S-JDBC: behavior of Sre(call,nall)

The main idea to be emphasized is that the global

behavior of each scenario follows the global behavior of the
correspondent unit. The measures for each η and each
context are now increased by adding the correspondent
collected value for Use. The weight of Use is almost
unnoticeable for Scu,ci,de. This derives from the fact that these
contexts have very high Tsj. Anyway, the weight of Use is not

Figure 34. S-JDBC: behavior of Sup(cfu,su,nall)

Figure 35. S-JDBC: behavior of Scu(cfu,su,nall)

Figure 36. S-JDBC: behavior of Sin(cfu,su,nall)

174

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 37. S-JDBC: behavior of Sci(cfu,su,nall)

Figure 38. S-JDBC: behavior of Sde(cfu,su,nall)

Figure 39. S-JDBC: weight of each unit in the Sre(cfu,nall)

Figure 40. S-JDBC: weight of each unit in the Sci(cfu,nall)

constant neither for each context nor for each η. Two
examples for Cfu are shown in Figure 39 and Figure 40. In
these graphics each column represents the relative weight of
each unit for the total measured value. They show the
relative weight of each unit in the Sre(cfu,nall) and Sci(cfu,nall),
respectively. As expected, Use has a higher weight in Sre than
in Sci for all η.

C. C-CRUD assessment

C-CRUD assessment, as mentioned before, will only
comprise units. Scenarios will not be addressed because the
defined scenarios are only one among infinity of
possibilities. Moreover, each scenario conveys a similar
behavior as the correspondent main units (others than Ure) as
has been shown for S-JDBC.

C-CRUD assessment will be presented through graphics
that show the differences between S-JDBC and C-CRUD. In
all graphics, the bars represent the time required to execute a
unit (Tcc) and the dashed lines represent the % of the
difference between S-JDBC and C-CRUD (Vcc) = (C-
CRUD)-(S-JDBC)/(C-JDBC). The axis for the bars is the left
one and the axis for the dashed lines is the right one.

The main source code for the implementation of C-
CRUD basically differs from the depicted code for S-JDBC
on the usage of the type-state interfaces. The main structure
is equal on both entities. Anyway, we will always present the
source code in order to provide a better context for the
understanding of how each unit was assessed. The CRUD-
DO‟s name is Student.

Use – select unit
Figure 41 depicts the main source code for the

Use(call,nall). No differences were detected between S-JDBC
and C-CRUD and therefore there is no need to present the
correspondent graphic. Use(call,nall) behavior for S-JDBC is
presented in Figure 16 and Figure 17.

Figure 41. C-CRUD: source code for the Use(call,nall).

Ure – read unit
Figure 42 depicts the main source code for the

Ure(call,nall). Figure 43 presents the general behavior of the
Ure(call,nall).

Figure 42. C-CRUD: source code for the Ure(call,nall).

 From this figure we may conclude that:

 Vcc decreases for all contexts when η increases; Cfr is
the most independent one.

175

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The variation of Vcc along η is very similar to all
contexts

 The behavior of Cfr has the largest difference to S-
JDBC. This derives from the fact that Ure(Cfr) in S-
JDBC has by far the best scores leading to the
situation where any C-CRUD overhead implies a
stronger impact.

 Cfu,sr.su have very similar differences to S-JDBC.

 Vcc for Cfr range from about 2.9% till 2.6%

 Vcc for the other contexts range from about 2.6% till
2.15%

Figure 43. C-CRUD: behavior of Ure(call,nall).

Uup – update unit without commit
Figure 44 depicts the main source code for the

Uup(cfu,su,nall). Figure 45 presents the general behavior of the
Uup(cfu,su,nall).

Figure 44. C-CRUD: source code for the Uup(cfu,su,nall).

Figure 45. C-CRUD: behavior of Uup(cfu,su,nall).

From this figure we may conclude that:

 Vcc decreases for all contexts when η increases.

 Csu has the largest difference to S-JDBC but they
converge from η=5 till overlap for η>350.

 For Csu, Vcc ranges from about 3.2% till 2.8%.

 For Cfu, Vcc ranges from about 3,1% till 2.8%

Ucu – update unit with commit
Figure 46 depicts the source code for the Ucu(cfu,su,nall).

Figure 47 presents the general behavior of the Ucu(cfu,su,nall).
From this figure we may conclude that:

 The maximum variation of Vcc is 0.01% in each
context.

 Vcc for Csu is always higher than for Cfu.

 Vcc ranges from 0.01% till 0.03%. The low impact of
C-CRUD derives from the relative very low
overhead introduced by C-CRUD. The commit
operation is very slow weakening this way the
relative weight of C-CRUD overhead.

Figure 46. C-CRUD: source code for the Ucu(cfu,su,nall).

Figure 47. C-CRUD: behavior of the Ucu(cfu,su,nall).

Uin – insert unit without commit
Figure 48 depicts the main source code for the

Uin(cfu,su,nall). The method insert() is an empty method
avoiding this way committing new tuples to the database.

Figure 49 presents the general behavior of the

Uin(cfu,su,nall). From this figure we may conclude that:

 Vcc decreases for all contexts when η increases.

 Csu has the largest difference to S-JDBC but its
difference to Cfu is minimal and converges to zero
for η=500.

 For Csu, Vcc ranges from about 3.2% till <2.8%

 For Cfu, Vcc ranges from about 3,18% till <2.8%

176

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 48. C-CRUD: source code for the Uin(cfu,su,nall

Figure 49. C-CRUD: behavior of the Uin(cfu,su,nall).

Uci – insert unit with commit
Figure 50 depicts the main source code for the

Uci(cfu,su,nall). In opposite to Uin(cfu,su,nall) the method insert()
commits new tuples to the database.

Figure 50. C-CRUD: source code for the Uci(cfu,su,nall).

Figure 51. C-CRUD: behavior of Uci(cfu,su,nall).

Figure 51 presents the general behavior of the
Uci(cfu,su,nall). From this figure we may conclude that:

 The maximum variation of Vcc along η for each
context is at most 0.01%.

 Vcc for Csu is about twice the value of Cfu. Anyway,
the involved absolute values are very small.

 Vcc ranges from 0.01% till 0.03%. The low impact of
C-CRUD derives from the relative very low
overhead introduced by C-CRUD. The commit
operation is very slow weakening this way the
relative weight of C-CRUD overhead.

Ude – Unit delete
Figure 52 depicts the main source code for Ude(cfu,su,nall).

Figure 52. C-CRUD: source code for the Ude(cfu,su,nall).

Figure 53. C-CRUD: behavior of Ude(cfu,su,nall).

Figure 53 presents the general behavior of the

Ude(cfu,su,nall). From this figure we may conclude that Vcc is
so small for both contexts that it is not possible to represent
them in the graphic. This derives from the fact that the delete
operation is too slow and also from the fact that S-JDBC and
C-CRUD implementations are very similar.

Summary
Despite some particularities, as a summary of all units,

we may say that:

 Between units, the weight of Vcc decreases when η
increases.

 For slower units (Ucu,ci,de) the C-CRUD overhead is
lower than 0.03%.

 For faster units (Ure,up,in) the C-CRUD overhead
ranges from 3.2% till 2.4%.

VII. CONCLUSION

The solution here presented proved to be effective for
bridging the gap between the object oriented and the
relational paradigms in the context where programmers have
no alternative but write the required CRUD expressions to
implement the middle tier. This may occur in situations

177

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where CRUD expressions cannot be derived from any data
model and mainly in applications where CRUD expressions
are complex or very complex. The span of its effectiveness
relies on two main dimensions: the model itself and the
CRUD-M.

The model itself: CRUD-DOM addresses the following
issues:

 CRUD-DOM encapsulates CRUD expressions of
any complexity and exposes an object-oriented
interface to the assisted application translating this
way the row/table oriented paradigm into the object-
oriented paradigm; the encapsulation hides all the
complexity for the communication between the two
paradigms tackling this way the impedance
mismatch issue for the present context, which is
focused on static customized CRUD expressions;

 interfaces are strongly-typed and type-state oriented
providing this way an improved usability and
productivity;

 it is amenable to the development addressing
automatic code generation improving this way
programmers productivity;

 CRUD-DOM totally relies on JDBC and copes with
requirements as SQL expressiveness and system
performance;

 it does not rely on any complementary or proprietary
technology; the version here presented is based on
Java but CRUD-DOM may be implemented in any
other object-oriented programming language;

 it promotes the development of intermediate access
layers this way decoupling applications and
databases tiers and, therefore, leveraging this way
the separation of concerns.

CRUD-M: CRUD-M addresses the following issues:

 from user defined SQL statements CRUD-M
automatically creates all the necessary source code
to implement the correspondent CRUDDOs,
promoting this way programmers productivity;

 CRUD-M provides the programmers an automatic
mechanism to test SQL statements promoting this
way their productivity;

 CRUD-M allows programmers to easily update
existing CRUDDO promoting this way their
productivity.

So, the collaboration and interdependence between CRUD-
DOM and CRUD-M is a key issue to achieve the three
announced goals: 1) programmers‟ productivity – less time
to develop, test and maintain middle tiers; 2) middle tier
performance is kept at a level very similar to the standard
JDBC API and, 3) usability is significantly improved when
compared with the standard JDBC.

Regarding CRUD-DOM performance, despite the limited
range of tests, the obtained results show that in most

database applications the induced overhead may be
considered as perfectly acceptable. Anyway, for very
demanding database applications some additional attention
should be given to CRUD-DOM, mainly for faster units, in
order to minimize its overhead. Improving the performance
of the slower units is beyond the programmer‟s scope. Most
of the time is spent on updating the state of the database.
Thus, it is expected, for these slower units, that any
improvement in the source code should have a negligible
impact on performance.

The automatic source code development tool, CRUD-M,

designed as proof of concept, proved to be an efficient tool
addressing all features of CRUD-DOM in an integrated way.
Programmers are only required to input customized SQL
statements of any complexity. CRUD-M relieves
programmers from writing and testing any source code
addressing this way the productivity requirement.
Additionally, it provides an interactive GUI where
programmers are guided step by step, since the editing of
CRUD expressions till the creation of CRUD-DO addressing
this way the usability requirement.

Some small differences in the final results between this

assessment and [1] derives from the fact that the
environments in which they took place are slightly different.
Anyway, the fundamental conclusions and the collected
results are basically identical. CRUD-DOM induces an
overhead that for most of the database applications may be
considered as not significant. Anyway, some more attention
is needed to minimize the CRUD-DOM overhead in order to
address very demanding database applications.

A new version of CRUD-DOM is being prepared. This

new version will support several mechanisms of concurrency
promoting this way CRUD-DOM performance in new
directions. Additional new features will be also included in
order to support current JDBC features. Among them:

 to provide support for the execution of SQL
statements in batch mode;

 to provide support to execute stored procedures;

 to provide support to allow programmers to choose
at runtime between statements and
preparedStatements;

It is expected that CRUD-DOM and CRUD-M may be

used in database applications where the middle tier is not a
direct object-oriented perspective of relational models as
happens with O/RM tools. CRUD-DOM and CRUD-M
impact may be significant in database applications where
CRUD expressions are very complex. Without the support of
CRUD-DOM and CRUD-M, complex CRUD expressions
are not easy to write, test, maintain and wrapped in a
structure identical to CRUD-DOM.

REFERENCES

[1] O. M. Pereira, R. L. Aguiar, and M. Y. Santos, "CRUD-DOM:
A Model for Bridging the Gap Between the Object-Oriented

178

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and the Relational Paradigms," in ICSEA 2010 - International
Conference on Software Engineering and Applications, Nice,
France, 2010, pp. 114-122.

[2] M. David, "Representing database programs as objects," in
Advances in Database Programming Languages, F. Bancilhon
and P. Buneman, Eds., ed N.Y.: ACM, 1990, pp. 377-386.

[3] ODBMS.ORG. (2011 May). Integrating programming
languages and databases: what is the problem? Available:
http://www.odbms.org/experts.aspx#article10

[4] Part 1: SQL Routines using the Java (TM) Programming
Language, 1999.

[5] Microsoft Corporation. (2011 May). The LINQ Project.
Available: http://msdn2.microsoft.com/en-
us/netframework/aa904594.aspx

[6] ISO. (2011 May). ISO/IEC 9075-3:2003. Available:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134

[7] Oracle. (2011 May). JDBC Overview. Available:
http://www.oracle.com/technetwork/java/overview-
141217.html

[8] Microsoft. (2011 May). Microsoft Open Database
Connectivity. Available: http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx

[9] Microsoft Corporation. (2011 May). Overview of ADO.NET.
Available: http://msdn.microsoft.com/en-
us/library/h43ks021(VS.71).aspx

[10] B. Christian and K. Gavin, Hibernate in Action: Manning
Publications Co., 2004.

[11] Oracle. (2011 May). Oracle TopLink. Available:
http://www.oracle.com/technetwork/middleware/toplink/overv
iew/index.html

[12] Oracle. (2011 May). Java Data Objects (JDO). Available:
http://www.oracle.com/technetwork/java/index-jsp-
135919.html

[13] D. Yang, Java Persistence with JPA: Outskirts Press, 2010.

[14] C. U. Smith and L. G. Williams, Performance Solutions: a
Practical Guide to Creating Responsive, Scalable Software,
1st ed.: Addison Wesley, 2001.

[15] M. Woodside, G. Franks, and D. C. Petriu, "The Future of
Software Performance Engineering," presented at the FOSE
'07- Future of Software Engineering, Minneapolis,MN,USA,
2007.

[16] IEEE, SWEBOK, 2004 ed. Los Alamitos,CA: IEEE Computer
Society.

[17] J. Nielson, Usability Engineering. San Francisco, CA: Morgan
Kaufman, 1993.

[18] D. G. John and L. Clayton, "Designing for Usability: Key
Principles and What Designers Think," Communications of the
ACM, vol. 28, pp. 300-311, 1985.

[19] ISO 9241-11: Ergonomic Requirements for Office Work With
Visual Display Terminals, fdew, 1998.

[20] ISO 13407: Human-Centered Design Processes for Interactive
Systems, 1999.

[21] ISO/IEC 9126-1: Software Engineering - Product Quality,
2001.

[22] ISO/TR 16982: Usability Methods Supporting Human
Centered Design, 2002.

[23] M. J. Suárez-Cabal and J. Tuya, "Using an SQL coverage
measurement for testing database applications," presented at
the FSE'04 - ACM SIGSOFT 12th International Symposium
on Foundations of Software Engineering, Newport Beach-CA-
USA, 2004.

[24] E. Vincent, "Is ISSTA research relevant to industrial users?
panel - ISSTA 2002: empowering the developer to be a tester
too!," ACM SIGSOFT Software Engineering Notes, vol. 27,
pp. 203-204, 2002.

[25] G. Tassey, "The economic impacts of inadequate infrastructure
for software testing," ed: National Institute of Standards and
Technology, 2002, pp. Planning Report 02-3.

[26] A. Bertolino, "Software Testing Research: Achievements,
Challenges, Dreams," presented at the FOSE '07- Future of
Software Engineering, Minneapolis,MN,USA, 2007.

[27] Y. Singh and B. Goel, "A step towards software preventive
maintenance," ACM SIGSOFT Software Engineering Notes,
vol. 32, 2007.

[28] B. P. Lientz and E. B. Swanson, Software Maintenance
Management: A Study of the Maintenance of Computer
Application Software in 487 Data Processing Organizations.
Reading,MA: Addison Wesley, 1980.

[29] K. H. Bennett and V. T. Rajlich, "Software maintenance and
evolution: a roadmap," presented at the FOSE'00 - Future of
Software Engineering, Limerick,Ireland, 2000.

[30] J. W. Moore, "The ANSI binding of SQL to ADA," Ada
Letters, vol. XI, pp. 47-61, 1991.

[31] W. Keller, "Mapping Objects to Tables - A Pattern Language,"
in European Conference on Pattern Languages of
Programming Conference (EuroPLoP), Irsse, Germany, 1997.

[32] R. Lammel and E. Meijer, "Mappings Make data Processing
Go 'Round: An Inter-paradigmatic Mapping Tutorial," in
Generative and Transformation Techniques in Software
Engineering, Braga, Portugal, 2006.

[33] C. Pablo, M. Sergey, and A. Atul, "ADO.NET entity
framework: raising the level of abstraction in data
programming," in ACM SIGMOD International Conference on
Management of Data, Beijing,China, 2007, pp. 1070-1072.

[34] R. C. William and R. Siddhartha, "Safe query objects:
statically typed objects as remotely executable queries," in
27th International Conference on Software Engineering, St.
Louis, MO, USA, 2005, pp. 97-106.

[35] A. M. Russell and H. K. Ingolf, "SQL DOM: compile time
checking of dynamic SQL statements," in 27th International
Conference on Software Engineering, St. Louis, MO, USA,
2005, pp. 88-96.

[36] W. Gary, G. Carl, S. Zhendong, and D. Premkumar, "Static
checking of dynamically generated queries in database
applications," ACM Transansactions on Software Eng.
Methodology, vol. 16, p. 14, 2007.

[37] Microsoft Corporation. (2011 May). ADO.NET. Available:
http://msdn.microsoft.com/en-us/library/aa286484.aspx

[38] M. Andy, E. Wolfgang, and S. R. David, "Impact analysis of
database schema changes," in 30th International Conference
on Software Engineering, Leipzig, Germany, 2008, pp. 451-
460.

[39] B. Gregory, W. W. Bruce, and A. G. S. Paolo, "Using parse
tree validation to prevent SQL injection attacks," in 5th
International Workshop on Software Engineering and
Middleware, Lisbon, Portugal, 2005.

[40] Oracle. (2011 May). Interface Statement. Available:
http://download.oracle.com/javase/6/docs/api/java/sql/Stateme
nt.html

[41] Oracle. (2011 May). Interface ResultSet. Available:
http://download.oracle.com/javase/6/docs/api/java/sql/ResultS
et.html

[42] Oracle. (2011 May). Interface PreparedStatement. Available:
http://download.oracle.com/javase/6/docs/api/java/sql/Prepare
dStatement.html

[43] R. E. Strom and S. Yemini, "Typestate: A programming
language concept for enhancing software reliability," IEEE
Transactions on Software Engineering, vol. 12, pp. 157-171,
1986.

179

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[44] R. E. Strom and S. Yemini, "Typestate: A programming
language concept for enhancing software reliability," IEEE
Trans. Softw. Eng., vol. 12, pp. 157-171, 1986.

[45] Microsoft. (2011 May). SQL Server JDBC Driver 2.0
Documentation. Available: http://technet.microsoft.com/en-
us/library/ff928320(SQL.10).aspx

[46] Microsoft. (2011 May). [MS-TDS]: Tabular Data Stream
Protocol Specification. Available:
http://msdn.microsoft.com/en-
us/library/dd304523(v=prot.13).aspx

180

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

