
Bioinformatics: From Disparate Web Services to
Semantics and Interoperability

Mikael Åsberg, Lena Strömbäck
Department of Computer and Information Science

Linköpings Universitet
Linköping, Sweden

Email: m.asberg.watch@gmail.com, lena.stromback@liu.se

Abstract—In the field of bioinformatics, there exists a large
number of web service providers and many competing stan-
dards regarding how data should be represented and inter-
faced. However, these web services are often hard to use for
a non-programmer and it can be especially hard to understand
how different services can be used together to create scientific
workflows. In this paper we have performed a literature study
to identify problems involved in developing interoperable web
services for the bioinformatics community and steps taken by
other projects to address them. We have also conducted a case
study by developing our own bioinformatic web service to further
investigate these problems. Based on our case study we have
identified a number of design issues important to consider when
designing web services. The paper is concluded by discussing
current approaches aimed at making web services easier to use
and by presenting our own proposal of an easy-to-use solution
for integrating information from web services.

Keywords-bioinformatics; XML; web services; interoperability;
semantics

I. INTRODUCTION

In our previous work [1] we studied the interoperability of
web services within the bioinformatics community. This article
extends the work by providing a more comprehensive literature
review, more details on our work, and a first description of our
current work in the field.

In the field of bioinformatics, there has been an explosion
of data over the past years. For example, in the Molecular
Biology Database Collection: 2008 update [2], 1078 databases
are listed, 110 more than in the previous update [3], which
itself also contained 110 more databases than the update
before that. These databases are being maintained and hosted
by a large number of autonomous service providers. Many
of them are only concerned with a single database and its
tools. Regarding how data should be represented and formatted
and how its corresponding tools and algorithms should be
interfaced, there exists a large number of standards [4] [5].
As an example, P. Lord et al. say in [6] that ”there are at least
20 different formats for representing DNA sequences, most
of which have no formal specification”. Many standards and
specifications evolved in an ad-hoc fashion and there is no
wide-spread agreement on when a particular standard should
be used.

Remotely accessing the resources maintained by the service
providers can often be done in more than one way. Many

service providers have constructed www-based interfaces to
their resources, meant to be used by humans. The user does not
have to use any specialized software or use a specific platform
to access the resource, a common web browser is sufficient.
As an alternative to browser-based interfaces, many service
providers in the bioinformatics community offer programmatic
access by using web services [7]. A web service is any
service available over the Internet using XML as its messaging
system, and it is independent of platform and programming
language. The web services we specifically mean here are
those falling under the category of RPC (remote procedure
call) web services, being parts of Internet API:s. Such web
services allow for programmatic and batch access. An example
web service method from the bioinformatics community is
get genes by enzyme, which is part of the web service API
that allows access to KEGG (Kyoto Encyclopedia of Genes
and Genomes) [8]. This particular method takes an organism
and an enzyme ID in string form and returns its corresponding
genes. Another example is EBI Soaplab Web Services for
EMBOSS programs [9], which is a large set of web services
providing web access to many EMBOSS programs.

Given the nature of biology, a bioinformatician often has to
use multiple service providers to conduct his or her research.
By combining several resources and processes, local or re-
mote, bioinformaticians can create scientific workflows [10].
There exists a number of different tools for creating scientific
workflows, for example Taverna [11] [12] [13] and VisTrails
[14] [15]. These tools allow the user to create a data pipeline,
a workflow, using a number of different resources. Taverna
caters specifically to bioinformaticians while VisTrails was
originally targeted at visualization. An alternative to flexible
workflow systems like Taverna and VisTrails are specialized
bioinformatic grids [16] that tie remote and local resources
together in a client to provide a unified view. Such grids can
often be successful on a small scale, but development costs
and network restrictions prevented them from becoming the
de-facto standard for integration of bioinformatic services [16].

However, the task of creating bioinformatics workflows
can be very difficult because of the fact that there are so
many service providers and there is little consensus about
data formatting and interfacing. Thus, bioinformaticians face
a massive interoperability problem. A browser-based form is
a convenient way to work if one just wants to do a few

396

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



stand-alone look-ups in a given database, but when one needs
to perform many look-ups and queries on several disparate
resources it becomes unfeasible. This is true not just because
of the fact that these web-based interfaces may be poor at
supporting programmatic and batch access, but also of the
intricate data reformatting that may be involved in using the
output from one resource as input to another. Web services, by
themselves, do not solve the interoperability problem. They are
simply a way to access remote resources programmatically. A
problem facing users is to determine how different sets of web
services can be used together to create the desired workflows.

In this paper we have performed a literature study to
give an overview of other projects that have been introduced
to enhance semantic interoperability and discoverability for
bioinformatic web services. Section II discusses the problem
with designing interoperable web services and Section III
discusses semantic frameworks that have been introduced in
bioinformatics community to alleviate the problem of lacking
interoperability. In Section IV we discuss scientific workflow
systems that are becoming a more and more popular way of
interacting with multiple bioinformatic resource providers to
form workflows. This way of working has many benefits, but
introduces new problems that need to be considered. Section
V discusses our case study, where we developed our own
web service to get a hands-on experience of the problems
involved with web service design. The case study was also
aimed at designing a web service capable of performing data
integration on the fly. Section VI summarizes the problems
and design issues we encountered. In Section VII we end the
paper by discussing other approaches to interoperability and
also present our continued work, BioSpider.

II. DESIGNING INTEROPERABLE WEB SERVICES

Our main issue is how to design web services for the
bioinformatics community that are interoperable with other
services. We focus on technologies used in this community.

SOAP-based web services are sometimes called XML-based
web services. Everything that is passed between the users of
a web service and the web service itself is in XML form.
This means that input parameters and output data for a given
web service method are also serialized in XML. In order for
clients to use a particular web service, they need a description,
the WSDL, to learn about, which methods are available, what
parameters those methods require and what kind of data is
returned.

As an example, let us create a web service of the Java
method (showing its signature only) String getXItem(String
id). It accepts a single string and returns a single string value.
In Figure 1 we see what the created data types for our example
method looks like in the WSDL description.

The WSDL description shows that for our example method,
two complex schema types have been declared, one for the
input parameter and one for the result. However, these types
are simply wrappers around the XML Schema primitive type
xs:string. Herein lies the interoperability problem, because
these types have no semantics attached to them. We do not

<xs:complexType name="getXItem">
<xs:sequence>

<xs:element minOccurs="0"
name="arg0" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="getXItemResponse">

<xs:sequence>
<xs:element minOccurs="0"

name="return" type="xs:string"/>
</xs:sequence>

</xs:complexType>

Fig. 1. Type Declarations in WSDL-file

know the semantic meaning of the input and output data, only
their syntactic meaning!

When programming in a strongly-typed language like Java
or C# and one needs to have semantics for syntactically simple
types (like strings or integers), the common practice is to
introduce new classes or hierarchies of classes. By doing
that, we can enforce semantic rules at compile time and
prevent, for example, scenarios where users are passing strings
that represent journal abstracts to methods expecting database
identifiers in string form. However, this will not work in a web
service context, because, in order to achieve interoperability
between different programming languages and platforms, the
types used in the host language must have corresponding XML
Schema types like integers or strings.

The WSDL description for a web service can be seen as the
grammar of that particular web service. Thus, all providers
have their own grammars, albeit specified using the same
XML language constructs. In order to achieve true semantic
interoperability we need a common grammar, a common
stock of reference. Within the bioinformatics community, a
number of different semantic frameworks have been proposed
to provide a common grammar, for use as a common stock of
reference regarding data types, naming, operations etcetera.

Another thing to consider is that not all parameters for
a given web service method may hold the same merit.
Some parameters constitute the fundamental data needed by
the service. These are the important parameters. But many
methods also accept additional parameters, whose purpose is
simply to tweak the behavior of the service. When looking
for semantically suitable web services, a bioinformatician is
not interested in these kinds of parameters as they would only
serve to complicate the task at this point [6].

A problem with the web services themselves can also be that
a given method is semantically simple and has a limited and
well-defined purpose. This programming paradigm is mostly
considered a good thing, but if the building blocks of a
workflow become too fine-grained it will be difficult to create
more advanced workflows without requiring a lot of ”glue” in
the form of data formatting or even programming. However,
it may be the case that possible interoperability between two
web services is easier to establish if their parameters are
fundamentally simple and well-defined. This leads to the main
point of this article: how to design web services with clear

397

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



semantics that can be easily used in bioinformatic workflows.
In the following section we will give a presentation of

some of the more notable semantic frameworks that have been
introduced to provide a single grammar to describe a host of
autonomous service providers.

III. SEMANTIC FRAMEWORKS IN BIOINFORMATICS

Several projects have attempted to address the above prob-
lems and here we give a brief overview of the three most
important in the field of bioinformatics today: BioMoby [17],
myGrid [18], and the more recent BioCatalogue [19] [20].
These projects tackle not only the problem of helping users
to determine how services from different providers can work
together to form workflows, but also assist in the discovery of
relevant services.

A. BioMoby

The BioMoby project was initiated in 2001 and has a main
branch, MOBY-Services (MOBY-S) and a sub-branch known
as SSWAP (Simple Semantic Web Architecture and Protocol).
However, according to the BioMoby web page [21] these two
branches are to be merged in the future.

In the MOBY Services branch three ontologies provide se-
mantic discoverability and interoperability along with strictly
enforced naming rules, and we present them briefly below:

• Service ontology - this ontology contains operational
classifications used to label web service methods. There
is a root type called Service and a tree of sub-types, such
as alignment or rendering. The purpose of this ontology
is to assist in the discovery of web service methods that
are useful or interesting for a given task or problem.

• Namespace ontology - this ontology can be seen as a flat
list of different namespaces that can be used to semanti-
cally describe data that is consumed and/or produced by
a web service method. It also enforces a method for how
to name identifiers. A problem in the bioinformatics field
is that identifiers have not been named in a consistent
and reliable way. The namespace ontology derives in-
formation from Cross-Reference Abbreviations List from
the Gene Ontology consortium [22] and defines distinct
naming rules that are used dependably and reliably. For
example, Antirrhium majus (Snapdragon) gene names live
in the DragonDB gene namespace.

• Object ontology - this ontology is similar to the service
ontology in the sense that it can be viewed as a tree. The
root node is called Object and between all nodes and its
children there exists an IS-A relationship, e.g., an Aligned-
Sequence is an Object and an AlignedDNASequence is
an AlignedSequence. Two nodes, in different parts of the
tree, can also have a HAS-A relationship (either one-
to-one or one-to-many), e.g., the type Annotation is a
direct child of Object and it has two Integers, but is itself
not an Integer. An instance of an object that is returned
from a web service method is serialized into XML and
contained in an envelope (that is also XML). Envelopes
can contain cross-references that are supplied by the data

Fig. 2. Fraction of BioMoby object ontology

provider and they describe related pieces of information.
Since cross-references are valid objects by themselves
they may be used directly, without additional formatting
or computation to discover services from other providers
that operate on them [23]. In Figure 2 we can see a small
fraction of this ontology.

The BioMoby team runs Moby Central, which is a web
service registry where all service definitions can be found,
expressed in the ontologies described above. When a new
actor wants to participate in the BioMoby project they register
their objects, namespaces, and service classifications in the
registry. This implies something that is very important and
fundamental to BioMoby: the ontologies described above are
end-user extendable.

SSWAP stands for Simple Semantic Web Architecture Pro-
tocol and was previously called Semantic-MOBY or simply
S-MOBY. The approach taken by this sub-branch differs
from the one taken by the MOBY-Services project. Instead
of maintaining three user-extendable ontologies centrally, it
defines a minimal messaging structure and relies on the wealth
of the available third party ontologies, such as OBO [24], to
define meaning, syntax and interoperability between services.
In [17] the authors say that ”SSWAP has shown exciting early
success in achieving interoperability between a small number
of participating providers. It remains to be seen, however, if
the complexity of reasoning over an open-world system, and/or
the potential dilution of compatibility between resources due
to an increasing number of ontological possibilities, will
interfere with the desired goal of straight-forward, maximum
interoperability between bioinformatics Web resources”.

B. myGrid

The myGrid project is a part of the UK government’s e-
Science program and it seeks to enable bioinformaticians to
discover and chain together disparate bioinformatics services
to create workflows, in silico experiments. For describing
a bioinformatics domain and the properties of its services
there exists a domain ontology that is stored centrally and
maintained and generated by an expert. Semantic descriptions
of services are made using a lightweight RDF data model
using terms from the domain ontology. These descriptions are
extendible by users. The project makes a distinction between
domain services and shim services. Domain services are the
centerpieces, those that perform scientific functions. The archi-

398

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



tecture should not automatically select those for the scientist,
because there could be alternatives that only the scientist doing
the experiment should select among. Shim services, on the
other hand, does not have a scientific function per se, but are
only used as glue to connect two domain services that are
not directly compatible. The architecture should automatically
insert available shim services where they are needed without
the scientist having to intervene. The Taverna software can
interact with myGrid-based sources, and also with BioMoby-
ones through a plugin [25].

C. BioCatalogue

The BioCatalogue project [19] [20] was launched in June
2009 and is a joint venture between EMBL-EBI and the
myGrid project. It aims to assist web resource users within
the Life Sciences community to find relevant services for
their research and assist in determining how different services
can operate together. Another goal is to act as a registry for
suppliers of services, which will allow any given supplier to
increase the size of its user base.

The project tries to tackle the problem of services becoming
stale, disappearing, or changing by monitoring both their
actual availabilty and their supposed function. To put it another
way, the four main issues listed on their homepage (http:
//www.biocatalogue.org/) effectively point out the objectives
of the project:

• “Web Services are hard to find.”
• “Web Services are poorly described”
• “My Web Services are not visible”
• “Web Services are volatile”

By finding solutions to the problems listed above, the BioCata-
logue project aims to become the central hub for web services
in the Life Sciences community. It doesn’t aim to become a
supplier of scientific web services themselves, only to bring
the vast variety of already existing ones under one umbrella
to the benefit of the community.

The BioCatalogue project has noted that finding an interest-
ing web service is only part of the problem. It’s not enough
just to have a central registry of services where suppliers can
register their service. Often the documentation for a service
is mediocre or outdated and comes with few or no examples,
making the service hard to use. Some services also require
certain operations to happen in sequence to be able to produce
a meaningful result, and this fact is not always clear from the
get-go.

To minimize this problem of understanding a given web
service, the BioCatalogue project employs rich annotations
for all registered services. The annotations for a given service
are not derived from a single source (e.g., the supplier of the
service). Instead it’s comprised of information from several
parties: the supplier of the service, a domain expert curator
employed full-time who has sub-curators to assist him or her,
the user base itself, and usage patterns that are automatically
collected. Together, these entities evolve the annotations for a
given service over time to make it better and more consistent.
The role of the curator is to oversee the process to ensure that

guidelines are followed in order to avoid annotations to be
given in an inconsistent manner. Annotations for services can
be divided into four main categories:

• Functional - these annotations describe the purpose of
the service, what kind of operations it can perform and
what data it will operate on and produce. This category
is further divided into sub-categories, pin-pointing the
task of the service more explicitly, e.g., alignment or text
mining. Example input data and other usage scenarios
often accompany these annotations in order to help users.

• Operational - these annotations detail any particular con-
siderations that must be taken into account in order
to successfully use the service. As noted above, some
services require operations to happen in sequence (i.e.,
the individual methods of the service cannot be seen as
separate islands) in order to produce a sensible result.
Such things are annotated in this category.

• Profile - here automatically collected data and other
comments by users regarding the service are maintained.

• Provenance - contains information about the supplier of
the service and an audit trail detailing any changes to
service over time are kept here.

BioCatalogue can be accessed through a web portal [20], but
an API is also provided to allow programmatic access. A user
using the web portal can look for services by searching for
scientific function, data types, provider, country etcetera. If
the user is unsure about the type of some data he or she has,
BioCatalogue can analyze an excerpt of it to determine its
type. Regarding data, input and output data are tagged with
ontological terms from the myGrid project and if the users
know that information it’s straightforward to find services that
fit perfectly semantically. All services from the myGrid project
have been imported into BioCatalogue and work is currently
underway to merge with other big repositories like BioMoby.

IV. SCIENTIFIC WORKFLOW SYSTEMS

The main aim of this paper is to study interoperability of
web services, i.e., how web services can be designed to be
easily used together to solve an information integration task.
From a technical point of view there are several ways to
combine web services into more complex tasks, however, one
approach in common use within the bioinformatics community
is scientific workflows. Scientific workflow and workflow-
based systems [11] [12] [13] [14] [15] [26] [27] [28] have
emerged as an alternative to ad-hoc approaches for document-
ing computational experiments and designing complex pro-
cesses. They provide a simple programming model whereby
a sequence of tasks (or modules) is composed by connecting
the outputs of one task to the inputs of another. Workflows
can thus be viewed as graphs, where nodes represent modules
and edges capture the flow of data between the processes.

The actual features and representation of a scientific work-
flow differ between the systems, due to varied needs from
application areas and users. There is ongoing work to create
one common model for provenance, e.g., the Open Provenance
Model [29] and a mediation approach [30]. However, currently

399

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 3. Sample workflow illustrating iteration in Taverna

systems tend to work in their own internal format albeit it is
becoming common to provide conversion to other formats. In
practice this means that a web service can be more or less easy
to use within the scientific workflow framework dependent on
its design and the available features for the chosen tool.

In this work we have chosen to work with two different
workflow systems, VisTrails [14] [15] and Taverna [11] [12]
[13]. VisTrails is a workflow system that supports exploratory
computation tasks. It has a graphical user interface that is used
for the composition and execution of workflows. Data and
workflow provenance is uniformly captured to ensure repro-
ducibility of results by others. Workflows can be composed
by program libraries (Python) or by external web services.
VisTrails has been used in the fields of biology and earth
science. Taverna is designed specifically for bioinformatics
applications. As VisTrails, Taverna has a graphical user in-
terface for creating and executing workflows. Workflows are
composed by making use of external services such as web
services, BioMart, BioMoby and SoapLab services.

There are several differences between VisTrails and Tav-
erna in terms of how they represent provenance and what
functionality they offer. However, for this work the most
important difference is how they represent iteration, which is
a common task in bioinformatics. Taverna offers a straight-
forward solution. Figure 3 shows an example of a Taverna
workflow. Whenever a module returns a list of results the
next module is iteratively applied on all results in the list. In
this case getSpecies returns a list of all species in the model
and getUniProtReferences is applied on every species in the
list. VisTrails does not offer this feature, instead they offer a
number of control flow modules. This includes control flow
modules such as conditions and a map module for iteration.
By using the map module we can apply the next module
on all results in a list. The resulting VisTrails workflow
corresponding to the Taverna version is shown in Figure 4.

Fig. 4. Sample workflow illustrating iteration in VisTrails

V. CASE STUDY

To further explore the design issues encountered when
designing bioinformatic web services, we have performed a
case study where we implemented our own service. The main
objectives of the service were that it should be easy to use,
it should help with data integration, and the semantics should
be possible to model in frameworks such as MOBY-Services.
Regarding data integration, we wanted to investigate ways
of following links between different data sources using a
single service. Right now, our service links three databases
together: the (curated) BioModels Database [31], the UniProt
Knowledgebase (UniprotKB) [32], and the RCSB Protein Data
Bank (PDB) [33]. The service is not intrinsically bound to just
these three databases forever, but could be expanded to work
on others.

A. Design of the web services

The web service is written in Java [34] using the Eclipse
Web Tools Platform [35], but it is platform neutral in the
sense that it can be used from any WSDL-enabled language
and platform without any additional dependencies. Using the
SBML library [36], the service loads SBML models from
the BioModels database, and the loading of a model can be
seen as an entry point to the web service. From this model
the user can extract UniProt references that can be found
in the annotations for some species in the BioModels data.
The UniProt references are used, by the server, to obtain the
corresponding UniProtKB XML-files and, from those PDB-
references can sometimes be extracted. A PDB file is returned
to the caller who can use it for visualization. The service
can be seen as having several stateful subsets: when you ask
questions about BioModels or its species you need a BioModel
or species ID, but when you obtain a UniProt reference then
that becomes the key you use and likewise the PDB reference

400

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



getSBMLModel(biomodelFileName) : BioModel ID
getSpecies(modelID) : Species IDs
getNthSpecies(modelID, n) : Species ID
getNumberOfSpecies(modelID) : Number of Species
getSpeciesSBMLID(speciesID) : Species SBML ID
getSpeciesSBMLName(speciesID) : Species SBML name
getUniProtReferences(speciesID) : UniProt references
getPDBReferences(uniprotID) : PDB references
getPDB(pdbReference) : PDB file

Fig. 5. Web Service Method Listing

Fig. 6. Type ontology for our web service

becomes the identifying token that is used for the PDB part of
the service. In figure 5 we see a listing of the core methods.

Figure 3, from the previus section, is an example of a Tav-
erna workflow utilizing the web service. It’s a straightforward
workflow that loads a BioModel. From the BioModel a list of
ID:s to its species is obtained and for each species any UniProt
references are determined. The method getUniProtReferences
that is called only takes a single species ID so Taverna
automatically iterates over our list of species ID:s and calls
the method once for each. The resulting output is a list
of lists that shows how species are annotated with UniProt
references. In Figure 4, the previous section also showed
the same workflow modeled using the VisTrails system. The
VisTrails variant of the workflow is a bit more complicated
than its Taverna counterpart. This is due to the fact that
iteration is not automatic in VisTrails, but modeled in the
workflow itself, using special control flow modules like map.

BioModel-files and UniProtKB-files are never passed ver-
batim between the client and the server, instead ID:s are used
to identify a particular file. The only large data object that is
passed is the output of the getPDB-method that represents the
PDB itself. The server stores the latest release of the curated
biomodels in a database and it will fetch UniProtKB-files and
PDB-files when they are needed from their respective resource
providers. Any downloaded files are cached for performance
reasons.

All input and output parameters to the methods that make up
the web service are simple types like strings or integers. Since
all types used can be modeled using XML Schema primitives
we are not tied to a particular platform. It also means that our
interface is fit for modeling in MOBY-Services. A question
that arises when modeling an interface in MOBY-Services is
if one should use namespaces or types for new items. We have
chosen to define new types. Figure 6 shows how the types can
be realized for our service. For UniProt and PDB references
there are already existing namespaces defined that can be used.
See also the descriptions of input and output parameters in
Figure 5.

Determining the proper level of granularity of your inter-

Fig. 7. Fetching name, id, and references for a given species

faces is hard. If it’s too fine-grained, you could end up with an
explosion in the number of methods that might require glue
to perform complex tasks. If you design a service where the
methods are complex and operate on complex data structures
the service will tend to be tied to a very limited set of tasks and
it might require the user to perform data-reformatting tasks,
especially if he or she wants to use other services as part of
his or her workflow. In our implementation the goal was to
design a service that ties together several different databases
by following links in the data while at the same time having
a simple interface to allow for interoperability and to severely
limit the need for the user to reformat data. If the primary
goal of the service was to obtain PDB data then a much more
compact interface could have been made, where the meth-
ods getSpecies, getUniProtReferences, and getPDBReferences
could have been replaced with a method that given a BioModel
ID returns a list of PDB:s. Such a method would be very easy
to use for that particular task, but it could not be used in some
other context.

B. Using the web services

The design of the web services is important for its ease of
use and the possibility to combine the services into extended
functionality. In this section we will exemplify and discuss
two of the major design choices that we considered in our
case study. These were to design a service that ties together
several different databases by following links in the data and
providing a simple interface to allow for interoperability and
to severely limit the need for the user to reformat data. This
is demonstrated by the two examles in Figure 4 and 7.

Here we use the services to find references to information
in the UniProt database, but by combining them in another
way the user can select other information about each species.

If the primary goal of the service was to obtain PDB data
then a much more compact interface could have been made,
where the methods getSpecies, getUniProtReferences, and
getPDBReferences could have been replaced with a method
that given a BioModel ID returns a list of PDB:s. Such a

401

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 8. Find PDB references in VisTrails

method would be very easy to use for that particular task, but
it would not have allowed the variation demonstrated by the
previous example.

As shown by pervious examples, in bioinformatics, it is
common to have lists of data as the result of some operation
that one might want to pass to another operation. Even though
both Taverna and VisTrails have facilities for creating iterative
control flows it still remains a complex task. As an example,
we can study the workflow where the user loads a BioModel,
obtains an ID for each of its species and for each species
determines any UniProtreferences. So far, this is the same
example as before, but what if we want to follow the UniProt
links to find any PDB references? The more straightforward
solution is shown in Figure 8.

Here we reformat the list of UniProt references and find a
set of PDBreferences for each of them. The drawback with
this solution is that the connection between each species and
the resulting PDBreference is lost. Maintining them requires
building complex datastructures during the iteration. In Figure
9 we show an alternative solution in VisTrails. For iteration,
the workflow utilizes a combination of VisTrails features for
parameter exploration and control flow modules like maps.

This implementation prints the desired results of the work-
flow. In Figure 10, we see the output of the workflow from
VisTrails when we are using BioModel BIOMD0000000003.
Three short Python scripts are used for printing results and
for data type conversion. A main objective when constructing
this workflow was to preserve information regarding links,
i.e., we want to know exactly how species are annotated with
UniProt references and how UniProt references links with PDB
references. This goal has been fulfilled. A careful study of the
output reveals that only the species with index one has UniProt
references and gives findPDBReferences something to work

Fig. 9. Find PDB references using parameter exploration and iteration

on. Since map returns a list of lists we can tell how UniProt
references are connected to PDB references. In this case they
both point to the same PDB file.

VI. DESIGN ISSUES

In this section we summarize our experiments identifying
the important design issues to consider when designing web
services for bioinformaticians. The goal is to allow bioinfor-
maticians to create complex workflows using multiple service
providers that are easily located and those workflows should
require a minimum amount of glue in the form locally-
performed programming. We have divided these issues into
the following categories (in no particular order): semantics,
chainability, granularity, data representation, and data passing.

A. Semantics

When creating workflows, bioinformaticians need to be able
to automatically discover services that perform some scientific
function or find services that either produce or consume data
in some given format. The key to enabling this automatic
discovery is semantics and here is where frameworks such as
MOBY-Services or myGrid come into the picture. Registering
your service in frameworks such as MOBY-Services or myGrid
will allow users to automatically find it when it fits at the
semantic level and not just at the syntactic level.

Species 0 UniProt refs: []
Species 0 PDB refs: []
Species 1 UniProt refs: [’P24033’, ’P35567’]
Species 1 PDB refs: [[’1P2A’], [’1P2A’]]
Species 2 UniProt refs: []
Species 2 PDB refs: []

Fig. 10. Find PDB references workflow in VisTrails - output

402

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



B. Chainability

Chainability is closely related to semantics, because we
need semantics to be able to attain it. Chainability means the
ability to automatically list consumers for a given type of data,
consumers that fit semantically. Sometimes a service cannot
work on your data directly but may be able to work on some
subset of the data or requires re-formatting of the data. This
requires so called shim services that perform extraction or
formatting on some existing data to make it usable by another
service, but have no scientific domain function by themselves.
Shim services are important to discover automatically. One
step towards realizing semantically correct chainability has
been made through frameworks such as BioMoby and myGrid
where the semantics of the function of a web service and of
its input and output data is specified. However, the framework
must also be clever enough to suggest shim services automat-
ically. Say a user has some piece of data in a given format
and wants to perform some scientific function on it. The data
might need to be reformatted before the methods performing a
scientific function can operate on it. The reformatting is done
by shim services, and those should be discovered automatically
by the framework even though they themselves do not perform
the scientific function the user was searching for per se. In
[37], D. Koop et al. presents a method of suggesting suitable
services by using predictions.

C. Granularity

Should we make stateless or stateful web services? How
fine-grained should they be? Very fine-grained methods could
be seen as following the programming paradigm of divide-and-
conquer. A large problem is broken down to a large number
of very small, restricted, and well-defined mini-problems. In a
procedural context one could then image writing a procedure
(a function, a method) for each mini-problem and this would
allow for modularity, ease of testing, re-usability, and ease
of documentation. It might not always be the best way when
catering to non-programmers because it becomes a complex
task of putting all the pieces together in a workflow if there
are lots of them. However, if the building blocks in the toolbox
are all fundamentally simple, this might lead to a lot of glue in
workflows in the form of shim services or programming. On
the other hand, if the function of a service is fundamentally
simple, it will be easier to describe its semantics. This allows
for interoperability. A complex web service where too much
functionality has been shoe-horned into a few methods will be
very hard to use outside the particular purpose it was designed
for. This kind of web service would be hard to use as a tool
in a toolbox.

Another issue to take into account is whether the service
should operate on lists or single items. Operating on lists
can be tempting for performance reasons due to overhead
associated with web service calls. However, the output from
such methods will become more complex and it may be
difficult or impossible to tell how results are connected to input
data. The capabilities of workflow tools regarding support of

iterative control flows would influence the design of the web
service.

D. Data representation

One very important issue when designing a web service
operating on complex data is the data format, such as the
SBML model. The choice of representation is important when
passing complex objects as arguments between web services,
but also to enable an understanding of the semantics of
the services. In our case we have chosen to use available
XML standards for bioinformatics [4] [5], such as SBML and
UniPROT. This is a benefit, as it makes the functionality of the
service transparent to anyone familiar with the standard, e.g.,
in our case the naming and the functionality of the SBML
services have a direct relationship to the entities defined by
SBML.

Another aspect is that data representation for web services
is closely related to data formats available for export on the
web. Therefore it is natural to reuse the work already invested
in this area instead of inventing new representations. Our case
study shows that using available data formats works well. In
addition we avoid unnecessary conversions of data by using
formats where data is already available.

E. Data passing

When using web services we want to avoid passing large
amounts of data back and forth when we do not need to. If
the data is not generated by the client and is available in the
public domain and it is the responsibility of the web service to
manipulate or study this data in order to compute some result
that is to be returned to the caller, then that data should stay on
the web service server as much as possible. The clients should
only see the results they are interested in. In our example
implementation we found that using IDs worked well as links
to pieces of data.

VII. OTHER APPROACHES

In the previous sections we have discussed interoperability
issues regarding bioinformatic web services, we followed with
a look at some semantic frameworks that have been introduced
to tackle those issues. We also presented a detailed case study
where we identified and discussed design issues related to the
construction of web services.

In this section we will present three other approaches that
aim to make web services easier to use for bioinformaticians.
First we present TogoWS [38] [39], which is a web service and
data-integration proxy for a number of service providers. We
follow that with a presentation of SeaHawk [40], that serves
as a front-end to the BioMoby framework presented earlier.
The section is concluded with a presentation of our future
work, the BioSpider, which in short can be described as plugin-
based framework for modelling disparate, but yet connected
bioinformatic web resources.

403

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A. TogoWS

The TogoWS project [38] [39] sprung out from ideas
seeded and problems recognised at the BioHackathons in
2008 and 2009. In these BioHackathons it was concluded
that interoperability was a major problem in bioinformatics,
not only because of data representation but also because
technical decisions made by some certain service providers,
forcing clients to use a particular programming language or
environment. It was also noted that there are projects aimed
at tackling this problem, such as BioMoby, but that many
providers have not made their services compatible with these
frameworks due to the hefty investment in server-side work
required, making these proposed solutions not completed.

Due to the amount of data reformatting required to be able
to use data from one service provider with another provider,
a large number of third-party, client side libraries have been
developed. There are libraries for different programming lan-
guages aimed at different tasks and these include the set of
libraries (BioPerl, BioPython, BioRuby, BioJava) provided by
the Open Bioinformatics Foundation [41]. However, the team
behind TogoWS decided that their service should itself provide
the data reformatting features offered by these libraries. This
would relieve the user of the burden of having to install these
libraries and write code to interface with them.

The team behind the TogoWS project decided to build
a web service frontend for different suppliers, acting as a
proxy between them and the users. Several major service
providers were included under this umbrella. Operations were
divided into two main categories: data retrieval and analysis.
It was decided that using a REST-based API was best for
data retrieval because then a uniform URI-scheme for the
participating databases could be devised. For analysis oper-
ations, it was decided that SOAP was the best option because
here results returned and parameters can be very complex and
running time can be substantial, making REST a less than
ideal choice. In the first phase, a unified SOAP-based interface
was developed for several service providers located in Japan,
and certain technical limitations found in some services were
worked-around.

By developing a front-end that is itself a web service too,
the clients can continue to use whichever tools they like to
call these services and instead of waiting for service providers
to agree on interoperability issues, the TogoWS project makes
it happen for them.

B. SeaHawk

SeaHawk [40] is a front-end for BioMoby (more specifi-
cally, MOBY Services), written in Java, and developed at the
University of Calgary (Canada). The people behind the project
reviewed numerous other front-ends available for MOBY-S,
categorised them, and evaluated what their respective strengths
and weakness were, in order to build, as they see it, a better
client. A major problem they identified with other front-ends
is how they deal with actual data. MOBY-S employs several
ontologies to deal with service specification, naming, data type
hierarchies and relationships etcetera and all communication

payload is wrapped in XML structures called Moby Envelopes.
Many of the other front-ends either required the user to have
extensive knowledge of the layout of those ontologies or
were very limited in their expressiveness (in order to reduce
complexity).

These findings inspired the idea of developing a front-
end that was data-centric, the bioinformatician using the tool
should focus on his or her actual data and not worry about
implementation details. Since ontological terms do have to be
specified in order to operate within MOBY-S, the SeaHawk
client generates the required Moby Envelopes under the hood
for the user. Data can be anything from service output,
formatted HTML, rich-text files, text files in certain biologicial
formats, or subsets and through its interface SeaHawk offers
many ways to access the data.

While making it easier for novice programmers to work
with the tool and focus on the data, the focus is also on using
the system in a workflow manner and SeaHawk was recently
enhanced to be able to generate Taverna workflows from its
operations [42].

C. BioSpider

Our ongoing work to address the above problems is a tool
that goes under the name of BioSpider. It’s inspired by one
of the core research ideas that we investigated in this paper:
having a web service perform on-the-fly data integration on a
few databases we knew had references to each other in one
way or another.

In BioSpider, we do not focus on a particular technology
like web services, but the emphasis is on the data itself. As
we have discussed in this article, there are several autonomous
providers of data (along with tools corresponding to that
data) in the bioinformatics community. Even though there
is an abundant number of data and service providers in
the bioinformatics community, the actual data in databases
themselves are not self-contained but full of references to other
databases. These references represent important information
for bioinformaticians performing their research, but the sheer
intricacy and massiveness makes it very diffult for them to
get a bird’s eye view of how different data sets and entries are
connected.

This is where BioSpider comes in. BioSpider is at its core a
framework, a model for creating a single graph, representing
data from disparate sources that have references to each
other in some way. This graph is in effect the result of data
integration operations performed between two connected sets
of data.

The framework also comes with a rule-set for displaying
this graph in a graphical user interface. It’s through this user
interface the user sees a unified view of the data, and he or
she can follow links in the data to more sources, or apply
actions on different data items (nodes) in the graph. These
actions include visiting web pages, invoking web services or
even running third-party tools. Figure 11 shows an example
of the what the graph can look like for the user.

404

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 11. Graph of connected data sources as visualized by BioSpider

In technical terms, BioSpider is written in Java. It consists
of a set of classes that make up the core framework where
connections between data items and actions that are available
are specified. We have separated the actual framework from
the data to allow the rule-set used by the framework to be
extendible by users. One extension is the introduction of
support for a completely new database, i.e., completely new
functionality, or it can be an extension of the functionality of
an already known data source. Another possible extension is
additional actions that can be performed on data items or new
references to other sources that can be exploited.

Our goal with the framework is to avoid hard-coded connec-
tions to any given data set and just provide a set of rules for
describing data sets, actions that can be performed on items
in the data and connections to other sources. The framework
should be expressive to be able to capture all kinds of different
data and actions but still be easy to extend.

We forsee two kinds of users. The first user is the normal
user, using the framework as an ordinary desktop application to
explore data in a unified way and perform actions on the data.
The second user is a power user who will extend the rule set,
making the tool even more powerful. These extensions should
be easy to feed back to the community, or to the authors of
the framework. Recently, we evaulated the extensibility of the

framework and the results were encouraging.
In the future, we envision being able to in one way or

another incorporate or utilize work done by other projects,
like the BioCatalogue project, to further extend and improve
our framework for the benefit of the user.

VIII. CONCLUSION

In this article we performed a literature and case study to
examine the situation for bioinformaticians with a need for
creating complex workflows using multiple service providers.
They face severe interoperability problems because it can be
very difficult to discover appropriate services and determine
how they can be used in conjunction. When designing web
services for the bioinformatics community we have identified
several issues that need to be addressed to achieve a high
discoverability and interoperability. The individual web service
methods should be fundamentally simple so the semantics is
easy to describe and the method should operate on data that
is semantically well defined. This will allow the service to
be registered in frameworks such as BioMoby and myGrid.
Registration of services will assist users in discovering the
service and decide how it can be used with other services.

REFERENCES

[1] M. Åsberg and L. Strömbäck, “Interoperable and easy-to-use web
services for the bioinformatics community - a case study,” in The Second
International Conference on Advances in Databases, Knowledge, and
Data Applications DBKDA 2010, 2010.

[2] M. Y. Galperin, “The molecular biology database collection: 2008
update,” Nucleic Acids Research, vol. 36, 2008.

[3] ——, “The molecular biology database collection: 2007 update,” Nucleic
Acids Research, vol. 35, 2007.

[4] L. Strömbäck, D. Hall, and P. Lambrix, “A review of standards for data
exchange within systems biology,” Proteomics, vol. 7, no. 6, pp. 857–
867, 2007.

[5] L. Strömbäck, V. Jakoniene, H. Tan, and P. Lambrix, “Representing,
storing and accessing molecular interaction data: a review of models and
tools,” Briefings in Bioinformatics, vol. 7, no. 4, pp. 331–338, 2006.

[6] P. W. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler,
D. Hull, C. A. Goble, and L. Stein, “Applying semantic web services
to bioinformatics: Experiences gained, lessons learnt,” International
Semantic Web Conference, pp. 350–364, 2004.

[7] E. Germani, Web Services Essentials. O’Reilly, 2002.
[8] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori, “The

KEGG resource for deciphering the genome,” Nucleic Acids Research,
vol. 32, 2004.

[9] M. Senger, P. Rice, and T. Oinn, “Soaplab - a unified sesame door to
analysis tools,” in UK e-Science- All Hands Meeting 2003, 2003.

[10] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
Kepler system,” Concurrency and Computation: Practice & Experience,
vol. 18, no. 10, pp. 1039–1065, 2006.

[11] The Taverna Team, “Taverna - open source and domain independent
workflow management system,” Accessed january 16th 2011. [Online].
Available: http://www.taverna.org.uk/

[12] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows of
services.” Nucleic Acids Research, 2006.

[13] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe, “Taverna: lessons in
creating a workflow environment for the life sciences,” Concurrency
and Computation: Practice and Experience, 2006.

[14] The VisTrails Team, “VisTrailsWiki,” Accessed january 16th 2011.
[Online]. Available: http://vistrails.org/

405

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[15] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger,
C. T. Silva, and H. T. Vo, “Vistrails: Enabling interactive multiple-view
visualizations,” In Proceedings of IEEE Visualization, 2005.

[16] P. B. T. Nerrincx and J. A. M. Leunissen, “Evolution of web services in
bioinformatics,” Briefings in Bioinformatics, vol. 6, no. 2, pp. 178–188,
2005.

[17] The BioMoby Consortium, “Interoperability with Moby 1.0-it’s better
than sharing your tootbrush!” Briefings in Bioinformatics, vol. 9, no. 3,
pp. 220–231, 2009.

[18] K. Wolstencroft, P. Alper, D. Hull, C. Wroe, P. Lord, R. Stevens, and
C. Goble, “The myGrid ontology: bioinformatics service discovery,”
International Journal of Bioinformatics Resesearch and Applications,
vol. 3, no. 3, pp. 303–325, 2007.

[19] J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent, J. Orlowski, M. Roos,
K. Wolstencroft, S. Aleksejevs, R. Stevens, S. Pettifer, R. Lopez, and
C. A. Goble, “BioCatalogue: a universal catalogue of web services for
the life sciences,” Nucleic Acids Research, 2010.

[20] The BioCatalogue Project, “BioCatalogue.org - Home,” Accessed
january 16th 2011. [Online]. Available: http://www.biocatalogue.org

[21] The BioMoby Consortium, “BioMoby Semantic MOBY,” Accessed
january 16th 2011. [Online]. Available: http://biomoby.open-bio.org/
index.php/semantic-moby/

[22] The Gene Ontology Consortium, “GO database abbreviations,” Accessed
january 16th 2011. [Online]. Available: http://geneontology.org/cgi-bin/
xrefs.cgi

[23] M. Wilkinson, D. Gessler, A. Farmer, and S. L, “The BioMOBY project
explores open-source, simple, extensible, protocols for enabling biolog-
ical database interoperability,” Proceeding of the Virtual Conference on
Genomic and Bioinformatics, vol. 3, pp. 16–26, 2003.

[24] Object Management Group, “Life sciences analysis engine
specification,” Accessed january 16th 2011. [Online]. Available:
http://www.omg.org/technology/documents/formal/lsae.htm

[25] E. Kawas, M. Senger, and M. D. Wilkinson, “BioMoby extensions
to the taverna workflow management and enactment software,” BMC
Bioinformatics, 2006.

[26] Information Sciences Institute, “Pegasus:home,” Accessed january 16th
2011. [Online]. Available: http://pegasus.isi.edu

[27] The Kepler Project, “The Kepler project - Kepler,” Accessed january
16th 2011. [Online]. Available: http://kepler-project.org

[28] The Swift Project, “Swift,” Accessed january 16th 2011. [Online].
Available: http://www.ci.uchicago.edu/swift

[29] L. Moreau, J. Freire, J. Futrelle, R. E. McGrath, J. Myers, and
P. Paulson, “The open provenance model,” 2008. [Online]. Available:
http://eprints.ecs.soton.ac.uk/14979/1/opm.pdf

[30] T. Ellkvist, D. Koop, J. Freire, C. Silva, and L. Strömbäck, “Using
mediation to achieve provenance interoperability,” in IEEE Workshop
on Scientific Workflows, 2009.

[31] EMBL-EBI, “BioModels database,” Accessed january 16th 2011.
[Online]. Available: http://www.ebi.ac.uk/biomodels-main/

[32] UniProt Consortium, “UniProtKB,” Accessed january 16th 2011.
[Online]. Available: http://www.uniprot.org/help/uniprotkb

[33] RCSB, “RCSB protein data bank,” Accessed january 16th 2011.
[Online]. Available: http://www.rcsb.org/pdb/home/home.do

[34] Oracle Corporation, “Oracle technology network for java developers,”
Accessed january 16th 2011. [Online]. Available: http://www.oracle.
com/technetwork/java/index.html/

[35] The Eclipse Foundation, “Web tools platform (WTP) project,” Accessed
january 16th 2011. [Online]. Available: http://www.eclipse.org/webtools/

[36] B. J. Bornstein, S. M. Keating, A. Jouraku, and H. M., “Libsbml: An
api library for sbml.” Bioinformatics, 2008.

[37] D. Koop, C. E. Scheidegger, S. P. Callahan, J. Friere, and C. T. Silva,
“Viscomplete: Automating suggestions for visualization pipelines,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 6, pp. 1691–1698, 2008.

[38] T. Katayama, M. Nakao, and T. Takagi, “TogoWS: integrated SOAP
and REST APIs for interoperable bioinformatic web services,” Nucleic
Acids Research, 2010.

[39] Database Center for Life Science, “TogoWS,” Accessed january 16th
2011. [Online]. Available: http://togows.dbcls.jp/

[40] P. M. Gordon and C. W. Sensen, “Seahawk: moving beyond HTML in
web-based bioinformatics analysis,” BMC Bioinformatics, 2007.

[41] The Open Bioinformatics Foundation, “Open bioinformatics
foundation,” Accessed january 16th 2011. [Online]. Available:
http://www.open-bio.org/

[42] P. M. Gordon, K. Barker, and C. W. Sensen, “Helping biologists
effectively build workflows, without programming,” in Proceedings of
the 7th International Conference on Data Integration in the Life Sciences
- DILS 2010, 2010.

406

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


