

From Meta-modeling to Automatic Generation

of Multimodal Interfaces for Ambient Computing

José Rouillard

LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex - France

jose.rouillard@univ-lille1.fr

Jean-Claude Tarby

LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex – France

jean-claude.tarby@univ-lille1.fr

Xavier Le Pallec

LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex - France

xavier.le-pallec@univ-lille1.fr

Raphaël Marvie

LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex - France

raphael.marvie@univ-lille1.fr

Abstract — This paper presents our approach to design

multichannel and multimodal applications as part of ambient

intelligence. Computers are increasingly present in our

environments, whether at work (computers, photocopiers), at

home (video player, hi-fi, microwave), in our cars, etc. They are

more adaptable and context-sensitive (e.g., the car radio that

lowers the volume when the mobile phone rings). Unfortunately,

while they should provide smart services by combining their

skills, they are not yet designed to communicate together. Our

results, mainly based on the use of a software bus and a

workflow, show that different devices (such as Wiimote, multi-

touch screen, telephone, etc.) can be coordinated in order to

activate real things (such as lamp, fan, robot, webcam, etc.). A

smart digital home case study illustrates how using our

approach to design with ease some parts of the ambient

system and to redesign them during runtime.

Keywords — Pervasive computing; ubiquitous computing;

ambient intelligence; multi-channel interaction; multimodality.

I. INTRODUCTION

Ambient computing is one of the most significant recent

advances in Human-Computer Interaction (HCI). Due to the

arising of pervasive and ubiquitous computing, the design of

HCI has to take into account the context of interactions. The

objective is to allow users to interact with a smart system

with low constraints through the use of multiple modalities,

channels, and devices. In the future, with the availability of

new devices and smart objects, ambient computing will

allow the definition of services seamlessly interacting with

both environment and users.

Our current work takes place in this context of ambient

computing. In order to support dynamic unplanned

interactions with the user, services have to adapt themselves

to their mutating environment – resulting from the user

mobility and the variability of her/his context. This requires

(a) the availability of distributed devices such as PDA

(Personal Digital Assistant), laptops, smartphones, robots,

probes, and (b) easing the discovery of these devices.

Currently, development tools that enable us to easily

generate and integrate ambient services are lacking. Each

piece of software is developed on its own, and then

integrated in the system. This introduces additional costs as

well as misconfiguration risks. This paper focuses on the

design of multi-channel interfaces relying on a workflow

engine in order to ease the realization of ambient systems.

This document is an extended version of our previous

paper [1]. It is structured as follows. Section two presents

related works. Section three explains the background and

motivation of this project. Section four gives an overview of

our conceptual approach in order to tackle the emerging

problems encountered. Section five explains in details our

approach from an implementation point of view. Section

six describes a case study around the smart digital home

thematic and presents the benefits of our approach for the

design and generation of multimodal and multichannel

interactive systems. Then, a conclusion gives our roadmap

for future work.

II. RELATED WORK

Computer frameworks and languages have been

proposed specifically to facilitate the development of

multimodal interfaces. In the World Wide Web

Consortium (W3C) MultiModal Interaction (MMI)

framework [2], the interaction manager invokes specific

application functions and accesses information in a

dynamic processing module. The interaction manager

presents the result to the user via one or more output

components. Obviously, the interaction manager of this

framework is very important because it coordinates data

and manages execution flow among various input and

output components. It also responds to inputs from the

input components, updates the interaction state and the

application context, and initiates output to one or more

output components. Developers use several approaches

to implement interaction managers, including:

Traditional programming languages such as C or C++;

318

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Speech Application Language Tags (SALT), which

extends HTML by adding a handful of HTML tags to

support speech recognition, speech synthesis, audio file

replay, and audio capture; XHTML plus Voice (often

referred as “X+V”), in which the VoiceXML 2.0 [3]

voice dialog control language is partitioned into modules

that are embedded into HTML; Formal specification

techniques such as state transition diagrams and Harel

Statecharts [4].

The OpenInterface project [5] is dedicated to

multimodal interaction. In this project, everyday objects

can take part in the interaction in ubiquitous computing

(including an augmented table for instance) and the user

can freely switch from one modality to another

according to her/his context: running in the street, at

home, in front of a big screen in an airport, etc. This

project aims at the design and development of an open

source framework for multimodal interaction: the

OpenInterface framework.

Those kinds of projects are mainly devoted to the

study of multimodal interactions, allowing the usage of

more than one device or modality at the same time in

order to interact with a main system connected to

Internet. Ambient computing increases complexity

because related applications are not supposed to manage

only devices and modalities, but also channels (cf.

Section III.A) in order to allow intelligent and context-

aware communications. Our research activity takes place

in ambient computing area.

III. BACKGROUND

This background section is divided in three parts:

multimodality, user activity, and connection with the

ambient environment.

A. Multimodality

Our work tackles the ability of ambient computing to

permit context-aware interactions between humans and

machines. To do so, we rely on the use of multimodal and

multi-channel interfaces in various fields of application

such as coaching [6], learning, health care diagnosis, or

in-situ marketing. For Frohlich, a channel is defined as an

interface that makes a transformation of energy [7]. From

a user’s point of view, he distinguished voice and

movement channels, and from the system’s point of view

he mentioned audio, visual, and haptic channels.

In the Human–Computer Interaction (HCI) domain, the

notion of channel is not used very often and there are very

few references to multi-channel research with some

exceptions such as the work of [8]: “Often these

modalities require specialized channels to allow access

modalities such as cameras, microphones, and sensors. A

multi-modal multi-channel system faces the challenge of

accepting information from any input method and

delivering information through the appropriate output

methods”.

Using a multi-channel approach allows users to interact

with several channels choosing the most appropriate one

each time in order to exchange with an entity. Such

channels could be, for instance, plain paper, e-mail,

phone, web site. Using a multimodal approach allows

users to employ several modalities in order to interact

with a single system. It can be sequential, like first being

on the phone then on the web, or synergistic [9], like

being on the phone while on the web. This approach

implies some synchronization requirements both for the

interfaces and knowledge bases used during the

interactions.

There are very few tools that support the design and

implementation of interfaces having such characteristics

[10]. One of our goals is to study and propose

infrastructures easing interactions that are both

multimodal and multi-channel in an ambient context. In

our work, we use the Multi-DMC referential proposed in

[11]. It can identify a system based on three criteria:

Device (D), Modal (M) and Channel (C). It has two

positions (Mono or Multi) for each of the three criteria

targeted (DMC). This represents 2
3
 (=8) possibilities,

which are presented on Figure 1 .

Figure 1. The Multi-DMC referential.

For a given system, one tries to indicate the position of

each decisive factor. For example, the system represented

on the bottom right of the figure is a multi-device,

multimodal, and multi-channel system.

319

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Workflow designed with the Studio Common Knowledge.

B. User activity

In this paper, we are targeting ambient systems, which

aim to be user-friendly. Unfortunately, until now such

systems are more difficult to conceive and to implement

than traditional systems because of the heterogeneity of

devices (hardware, software, different locations, etc.).

Given its complexity, an ambient system must observe the

rules of usability: guidance, low workload, concision, etc.

[12]. Therefore, our work is based on concepts identified

by HCI domain such as user’s activity and logic of use.

The design of interactive systems is based on the notion

of tasks and activities, themselves decomposed into sub-

tasks/sub-activities whose arrangement is managed by

temporal or structural sequences. Among all the

approaches used in the design of interactive systems and

using these concepts, some are more used such as task

models [13][14], Petri nets [15], Statecharts [16], and

workflows.

Given all these solutions we have chosen the workflows

[17] because they are adapted for non-experts in order to

explain their rationale for the use of ambient systems.

First, Workflow concepts are as simple as needed to be

understood by usual end-users. Second, related modeling

languages have been generally designed to be readable by

non-(computer)specialists. Finally, they are widespread in

information systems and especially in document

management systems.

C. Connection with the ambient environment

A major question in pervasive and ubiquitous

computing is how to integrate physical objects (screen,

chair, coffee machine, etc.) into multimodal applications

using technologies such as Radio-frequency identification

(RFID), Near field communication (NFC), Barcodes (1D

or 2D as QR codes). This will help the users to

manipulate freely virtual and real objects with commands

like “identify this,” “make a copy of that object, here”,

“move that webcam on the left,” etc. We are using the

notion of workflow in order to indicate to the user the

tasks available at each point of the whole activity flow.

For our work, we are using Common Knowledge [17],

which is a cross-platform business rules engine and

management system that supports the capture,

representation, documentation, maintenance, testing, and

deployment of an organization's business rules and

application logic. Common Knowledge allows the

business logic to be represented in a variety of inter-

operable visual formats, including Rete rules, workflows,

flowcharts, decision tables, decision trees, decision grids,

state maps, and scripts. The engine allows running,

testing, and simulating the system behaviors. It can be

used through many languages (such as Java, Delphi,

VisualBasic, C#, DotNET, etc.) and platforms (Windows,

Linux, UNIX).

Figure 2 presents an example of workflow designed

graphically using the Studio Common Knowledge tool.

It allows following different paths in order to complete a

command such as “switch on fan”, “move camera

down”, “switch off lamp”, etc.

Figure 3 shows standard and advanced operators used

to represent tasks, task choices, split or merge actions,

timers, loops, etc. The result is stored using an XML

format, in a file with an .aex extension. With our work

the resulting system could be used through different

modalities of interaction like graphically, vocally, with

gesture, RFID, barcodes or a combination of those

modalities. Instead of programming applications in an ad

hoc fashion, our approach allows to query dynamically

the workflow and to propose relevant information to the

user while interacting with the system.

The notion of persistence is very important in this context.

Indeed, we consider that a global interaction could be the

result of many sub-interactions between the system and one

or many users. It could also be the result of a sequence of

sub-interactions conducted via different kind of channels

and modalities.

320

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Standard and advanced operators available in

Common Knowledge.

The Common Knowledge software supports this

persistence feature.

IV. OUR APPROACH

In the context of interaction design based on the DMC

referential, we believe, as we explained previously, that

meaningful global actions on the system may be the result

of a series of sub-actions. These sub-actions can be

performed by multiple users cooperating. Several types of

devices can be utilized (PC, Smartphone, mobile phone,

etc.). Several modalities of interaction, such as direct

manipulation (keyboard/mouse), voice, gesture, brain

waves, can be employed both in input and output. Finally,

multiple communication channels can be exploited such

as the telephone or the Internet.

Currently we limit the use to an alternate

multimodality (not synergistic). The triggering of a sub-

action is based on the FIFO (First In, First Out)

principle.

Figure 4 shows our approach based on a software bus.

We used for instance the IVY bus [18] and the Web

Server Event (WSE) bus (see Section V.B.1) in our

experiments, as we will explain later. The “model driven”

part mentioned on the figure is used for modeling the

activities at a higher level, and mapping resulting models

to workflow models, for example. The “engine” part uses

an application that queries the generated workflow during

the interaction via an Application Programming Interface

(API). The “usage” part explains that different kinds of

interaction are possible (web client, graphical user

interface, vocal user interface, etc.). The “development”

part means that the architecture is open in terms of futures

applications, technologies and languages. In our approach,

the transition from one state to another can be modelized

with different tools, such as Petri nets or the usage of

workflows for instance. The model driven approach

allows working on an abstract level, independently from

the chosen technical solution (Petri nets or workflow in

our example).

A. Model driven approach

Figure 5 shows that a workflow (middle of the picture)

is generated from a high-level model (left of the picture)

thanks to a set of model transformation rules. This

workflow model is used in order to describe objects and

actions that can be applied on those objects using one or

more devices in final interfaces (right of the picture).

Our work mainly concerns description of operating and

use of multimodal interactions (MMI). The Activity

concept is the main notion of our approach. We have

experimented a workflow management system (see

Section VI) as a support to define the operating logic of

MMI and its corresponding execution. However, defining

interaction logic may be done at different steps of an

application design and so, according to different points of

view.

With workflow concepts, we may use complex

operators like fork/join, alternatives, variables, composite

tasks, to describe some interactions sequences. Using

these complex operators corresponds to use software and

technical artifacts in order to address functional

requirement(s). It may be relevant to define only the

interactive requirements without dealing with technical

details. The underlying idea is to define a modeling

language dedicated to MMI, which contains a minimal set

of concepts leaving technical aspects aside in order to

easily focus on the interaction concern. With

corresponding model transformation rules, the resulting

MMI models would be mapped to several technical

platforms (other than workflow management system).

Thus, operating subtleties underlying the high-level

models would be fully described within the generated

technical models.

321

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Our approach from meta-modeling to automatic generation of code.

Figure 5. From meta modeling to final interfaces (via a workflow in this case).

This abstraction operation may be repeated in order to

propose a simpler modeling language dedicated to end users

with some technical skills (like persons who install home

automation systems). Finally, we have currently chosen

home automation as application domain of our work.

Our approach would have to be tested with other domains

like healthcare, e-learning or tourism domains. Indeed, we

cannot state that such previous high-level modeling

language will still be adapted. In this perspective, we think

that domain-oriented modeling languages will be useful in

order to better contextualize MMI and to get finer mapping

to technical platforms.

For all these reasons, we decided to adopt a Model-Driven

Engineering approach, particularly the Object Management

Group - Model Driven Architecture (OMG-MDA)

declination (abstract towards concrete). We currently focus

on an abstract meta-model and a mapping to workflow one.

Figure 6 represents what we plan to do and what we have

already done (gray rectangle).

322

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Our Model Driven Engineering

(MDE) approach.

B. Conceptual architecture

From a conceptual point of view, our approach is based on

the concept of message diffusion between the different actors in

our system (an actor can be a user, an application or a device).

When an actor wants to do something (for example the user

wants to switch on a lamp, or the RFID reader will notify that it

has decoded an RFID chip), it sends a message that is then

received by all actors. Then the actors have the freedom to

perform an action based on this message or not, depending on

their needs.

Among the actors, the interpreter of messages has a special

significance. It is the ‘brain’ of the system. Each time it

receives a message, it processes it and tries to combine it with

previously received messages to produce a higher level of

abstraction message. For example, if the RFID reader has

sent the message ‘FAN chip decoded' and the interpreter has

previously received the ‘switch on’ message, then the

interpreter will combine the two for the final message

‘switch on the fan’. This message will then in turn be sent to

other actors. Among them, the application charged to

operate the fan will send the X10 command to switch on the

fan.

1) Communication bus

For the actors, several solutions are possible to

communicate, such as:

• Pushing information, i.e., send messages to actors, such

as broadcasting (sending messages to everyone),

multicasting (sending messages only to certain actors),

and so on.

• Pulling information. In this case, actors must request

information themselves, for example by consulting a

database or by consulting an actor responsible for

managing the overall ambient system, etc.

• Using a distributed approach such as a multi-agent

system.

• Using a centralized approach, such as a communication

bus.

We chose to use a communication bus, whose function is

to receive the messages and distribute them to all connected

actors. This type of solution leaves considerable freedom in

the implementation as we shall see later.

2) Device access layer

A communication bus is a relevant component in order to

develop applications using interactive devices located in a

room among several terminals. Sending a command to/from

a remote device or listening/reacting to its events refers to

marshalling/unmarshalling mechanisms. Its implementation

is time-consuming and decreases code readability.

Figure 7. An example of configuration.

Figure 7 illustrates the device access layer based on the

following example. A web page is loaded on an Android

323

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mobile phone and can switch on a lamp or a fan through

X10. The X10 manager (CM15 module) is connected to a

PC (Windows) where a software adapter translates

particular messages coming from the communication bus in

X10 switch on/off orders. A RFID reader is connected to

another PC: when a RFID tag is laid down on the reader, the

background of previous web page changes to red, and when

the RFID tag is picked up, the background is becomes

green. These RFID reactions are possible thanks to a

software adapter located to the related PC: for each RFID

action, this adapter sends corresponding message on the

communication bus.

We call terminals, the android mobile, X10-PC and

RFID-PC. Web page and software adapters are called

processes. To locate process, we usually mention user-side

(Android mobile), X10-side or RFID-side.

To implement the previous example, we may program all

processes as following. When user-side sends a “switch fan

on” command to X10-side, the related process (i.e., web

page) constructs a specific message and sends it through the

message bus. The X10-side process receives it, detects it as

a X10 order and acts in consequence. When a tag is laid

down from the RFID reader, the related adapter reacts by

constructing a message and sending it. The user-side process

receives the message, detects it as a RFID event and sets the

background to red if it is a lay-down event or to green if it is

a pick-up one.

Constructing, sending, receiving and detecting messages

is a tedious task (long and repetitive) and corresponding

code blurs the whole implementation. For this reason it is

highly recommended to use an additional software layer that

hides messages bus stuff and therefore ease the

implementation of MMI application.

V. OUR APPROACH: IMPLEMENTATION

This implementation section is divided in two parts. The

first is about model driven engineering, and the second

presents the implementation details of our conceptual

architecture.

A. Model Driven Engineering

1) Towards a high-level MMI meta-model

As we previously mentioned in Section IV.A, we have

adopted a model driven approach (MDA) to get a better

separation of concerns (for example, by defining

multimodal interactions in dedicated models) and to address

the problem of platform heterogeneity.

We use ModX [19] as model framework. ModX is a

MOF-tool [20] that we have implemented in 2004. It allows

defining abstract and concrete syntaxes; it means meta-

models and associated visual representations. ModX-users

can create and edit models according to concrete syntaxes.

ModX proposes a Javascript API for model transformations.

We have defined a meta-model to describe multimodal

interactions requirement. We wanted this meta-model very

simple: there is no notion about activity, merge, condition,

etc. The main notion of this meta-model is the sentence. A

sentence is a sequence of interactions and causes an

action/reaction of the ambient system. A term is an

interaction that refers to what a user wants to transmit

(rather than focusing on the device s/he uses). The meta-

model contains 3 concepts (see Figure 8): Start, Term and

Action. Start and Action are ways to define the beginning

and the end of a sentence. Action is also used to indicate the

reaction of the system.

Figure 8. MMI use requirement meta-model.

A Term may be a word or a long expression, and it can be

transmitted through different devices. For example, the

Term ‘Fan’ may be indicated through speech recognition, a

RFID tag, a QR code, etc. A sentence split into N Terms

refers to a sentence with X different interactions.

Figure 9. A sample model of multimodal interactions about

home automation.

324

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This is illustrated by the model in Figure 9 (Terms and

Actions are respectively represented by rounded rectangles

and cinema clap in circles).

The sentence “Switch On Fan” (from the Term sequence

“Switch On” and “Fan”) launches the “switch fan on”

action. This sentence refers to two successive interactions

and so can use a maximum of two different devices. The

same Action is caused by the sentence ‘it is too hot’, which

contains only one Term, so only one interaction that can be

performed with one RFID tag or one QR code for the whole

expression, for instance. Such a definition also means that

“it is too hot” refers to an ‘only-one interaction’: the

previous sentence cannot be constructed by an interaction

for “it is too” and another interaction for “hot”.

2) Model transformation

To map each MMI use requirement model on Common

Knowledge platform, we have defined a set of model

transformation rules, implemented as following:

1. Create a workflow model

2. Create a starting node

3. Create a taskChoice (STC) connected to the
previous starting node.

4. For each term (T) connected to the start
 If T is bound to an action (A)

 Create a EndNode (EN)

 EN.caption = A.name

 Associate it with STC,

 association.caption = T.name

 Else

 Create a taskChoice (TC)

 TC.id = T.id

 Associate it with STC

 association.caption = T.name

5. For each term (TA)
 For each its connected term (T)

 If T is bound to an action (A)

 Create a EndNode (EN)

 EN.caption = A.name

 Associate it with TA

 association.caption = T.name

 Else

 Create a taskChoice (TC),

 TC.id = T.id

 Associate it with TA

 association.caption = T.name

To summarize these rules, a Term corresponds to a link,

i.e., a choice that is done. When a Term is the last of a

sequence (and cause an action), an EndNode is also

created. If the Term points out to other possible choices, a

taskChoice is created instead.

Object Connections provides a C# API for its workflow

engine. It allows creating and editing workflow models. We

have implemented a software adapter of this API for our

communication bus, called WSE (see below). In this way,

the Javascript code (in ModX) corresponding to the

previous model transformation, sends WSE messages in

order to create elements of workflow model.

B. Implementation of our conceptual architecture

1) Communication bus: WSE

The implementation of a communication bus can be done in

several ways, e.g., with the IVY bus as we demonstrated in a

previous paper [1] or a multi-agent system [21]. Unfortunately

IVY does not work through the web, while using the web is

one of our requirements. Therefore we decided to implement

our own communication bus, called WSE (Web Server Event).

WSE is the core of our architecture and the central point of

traffic. All messages, i.e., user interactions but also actions

requested to devices, are carried by WSE (see Figure 11).

WSE is an HTTP-based message bus, like COMET [22].

Such buses are generally dedicated to web pages. Because we

focus on interactive devices whose drivers are generally not

accessible with JavaScript, we also provide an API in Java and

C#. Only a web server supporting PHP scripts, for instance

EasyPHP or WAMP (Windows, Apache, MySQL, PHP) is

required to install WSE. We choose not to create a standalone

WSE server in order to avoid conflict on port 80 with a

possible existing web server. Finally we choose to use PHP

scripts because of the popularity of this language. Thus, WSE

should be installable on most existing / running web servers.

The immediate benefits of this web server-based solution

are:

- Multi-OS: if an operating system can access the web, it

can use WSE. WSE is therefore compatible with

Mac OS, Windows, Android, and Linux.

- Multi-platform: the previous point implies that

WSE is running on computers, smartphones,

tablets, etc.

- Multi-browser: each operating system has

dedicated web browsers. Because we are multi-

platform and multi-OS, we are also multi-browser.

Thus WSE can be used by Internet Explorer,

Firefox, Chrome, Safari, Opera, and so on, as long

as they support JavaScript.

- Multi-network: the web access can be done via

wired connections, Wi-Fi, 3G. WSE can be used by

325

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

all these different modes of connection without

restriction. As long as people have access to the web

(port 80 is open), they can use WSE. We are therefore

not blocked by firewalls. We also tested successfully

WSE in our University that offers two different internet

accesses, a network dedicated to the staff (teachers,

researchers, administration) and a network with a proxy

for students.

a) Features of WSE

WSE is multi-languages. Programming a Web application

that uses simultaneously a Wiimote [23], a RFID reader and

X10 adapters requires handling several programming

languages. It can be for instance Java for Wiimote, C# for

mir:ror [24] (RFID reader), Javascript for Web application.

Currently WSE can be managed with C#, Java, JavaScript, and

soon with ActionScript (Flex/Flash) and Python. The only two

constraints for languages are to be able to process JSON

(JavaScript Object Notation) and support HTTP requests,

which can be implemented in any language if necessary.

Installing WSE is very simple. It consists in copying a

directory (“Miny/WSE/PutOnWebServer_Root”) from the ZIP

file available at http://www.lifl.fr/miny, and to place this file in

the root of the web server.

WSE provides basically a mechanism for trace. Traces are

very interesting for an interactive system, e.g., to do debug, to

support the “Undo” command or to analyze user’s activities.

Messages routed by WSE are JSON objects. This implies

that each message must respect a JSON structure, for instance

{"param1":"value1", "param2":"value2", "param3":"value3"}.

The advantage is no message format is required. Thus

messages like {"action":"open"} or {"whatToDo":"open"} are

acceptable. Consequently, each developer can write her/his

own message format dedicated to her/his application. For our

MINY project, we use the following format: {"action":"…",

"actionParams":"…", "object":"…", "objectParams":"…",

"location":"…", "locationParams":"…", "fromWhere":"…",

"fromWhom":"…"}.

b) Using WSE

To use WSE, simply connect to a session or create one, then

send and receive messages. WSE is session-based. All

messages within a session are stored in a file, which is named

as the session (http://server_url/WSE/traces_files/name).

Below is an example in JavaScript and C# for the three steps,

connect, send and receive (equivalent code in Java can be

found on our web site).

i. Connect to a session

To connect to a session, the user only needs to provide the

session name. If the session already exists, WSE connects to it,

otherwise the session is automatically created and the

connection is established.

JavaScript code:

<script LANGUAGE="JavaScript" src="wse.js"/>

…

wse.joinSession("mySession");

C# code:

using Newtonsoft.Json.Linq;

using Wse;

…

private Wse.Bus myWSEBus;

String serverUrl =

"http://xxx.xxx.xxx.xxx/WSE/traceSession.php";

String sessionName = "mySession";

myWSEBus = new Bus(serverUrl, sessionName);

ii. Send a message

To send a message, simply send a JSON object.

JavaScript code:

wse.sendMessage

({"action":"switchOn","object":"lamp"});

C# code:

JObject myMessage = new JObject();

myMessage.Add ({"action":"switchOn", "object":"lamp"});

myWSEBus.SendBusMessage(myMessage);

iii. Receive a message

To receive a message it is necessary to declare a listener for

messages traveling on the bus. Each time a message is

transmitted on the bus, the listener is notified and performs the

associated function (Observer pattern). Then the function can

extract all the needed information for the application.

JavaScript code:

myListener = {};

myListener.newMessageReceive = function

(message)

 { alert("A message has been received: " +

 message);

 };

wse.addListener(myListener);

326

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C# code:

public class MyListener : IListener

{

 public void NewMessageReceive(string source,

JObject jObject)

 {

 MessageBox.Show("A message has been

received: " + jObject.ToString());

 }

}

…

MyListener myListener = new MyListener();

myWSEBus.AddListener(myListener);

2) Device access: Proxy/Stub generator

a) Principles

As explained before, constructing, sending, receiving and

detecting WSE messages is a tedious task. For this reason, we

have developed a code generator that produces a WSE-based

software layer, which handles WSE message operations. With

this layer, a programmer uses a remote device as a local device.

The following Javascript code shows how to switch on a fan

with the devices layer on the example of Section IV.B.2.

manager = new Manager("IJAIS2010");

X10 = manager.getX10("328", "Xavier", "Lamp");

// Param 1 : for the office number 328

// Param 2 : around the desk of xavier

// Param 3 : this X10 adapter is dedicated to a

// lamp

X10.switchOn();

Here is the code related to RFID events (still in Javascript).

rfid = manager.getRFiD("328","all");

// Param 1 : for the office number 328

// Param 2 : for all the office

rfid.layDown = function (stamp) {

 document.body.bgColor = "red";

}

// lay down a RFid tag will set the

// background color of page to red

rfid.pickUp = function (stamp) {

 document.body.bgColor = "green";

}

// pick up a RFid tag will set the

// background color of page to green

b) Generator

The code generator produces userSide.X10 and

userSide.RFiDReader classes to allow developers to

focus on functional/interactive concerns without worrying

about remote access. Production of such a class is done from a

description of actions (called methods) and events of related

devices. The description is JSON formatted and therefore does

not imply to use another language.

Here are the two description files corresponding to X10 and

et RFID reader devices.

{

 name : "X10",

 package : "x10",

 type : "Device",

 constants : {

 object : '"x10"',

 objectParams : null,

 location : null,

 locationParams : null

 },

 methods : {

 switchOn : {},

 switchOff : {}

 }

}

{

 name : "RFiD",

 package : "rfid",

 type : "Device",

 constants : {

 object : '"RFiDReader"',

 location : null,

 locationParams : null

 },

 events : {

 layDown : {

 stamp : String

 },

 pickUp : {

 stamp : String

 }

 }

}

We have defined a generic format inspired from JSON-RPC

[25] in order to homogenize the structure of WSE messages

that will be exchanged though this devices layer.

This format message protocol is the following:

• action: the expected action (e.g., switchOn) or name of

the event (layDown for a RFID reader).

• actionParams: arguments of action or event.

• object: type of device (e.g., X10, RFIDReader).

• objectParams: optional details about the device (for

instance X10 has two objectParams: lamp, fan).

327

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Rather than automatic identifiers, we choose to use explicit

identifiers, which indicate where the device is.

• location: indicates where the device is (for example:

‘Office 328’).

• locationParam: details the place in the previous location

(e.g., ‘Desk of Xavier’)

Figure 10 shows a communication between user-side and

device-side. Concerning the user-side, the generator produces a

proxy class for each description file. For each described

method, the proxy (step 2 on Figure 10) contains a

corresponding method that consists in creating a WSE message

and sending it. If the description defines events, an interface is

generated. It contains one method for each event. This interface

is associated to the proxy: add/remove listeners methods are

added to the proxy while a listener consists in an object

implementing the interface. In Javascript, there is no listener

interface. The events correspond to methods of the proxy.

Figure 10. Stub and skeleton on example.

A class Manager is also generated and acts as a factory.

This class is instantiated with a WSE bus as parameter, and

gives access to proxy objects according to

location/identification values (step 1 of Figure 10). If a

programmer wants to add a new type of device in the device

access layer, the code generator can also help her/him by

producing code, a stub class, (step 3 of Figure 10) related to

WSE stuff. This stub class will have to be connected to another

class, a device-WSE adapter (step 4). This one has to interpret

a) WSE actions into actions on devices, b) events from device

into WSE events. The generation principle is the same as for

the user-side but with reversed responsibilities: the skeleton

contains a method for each event that device can emit and an

associated interface which defines a method for each possible

action on the device.

C. Our methodology in a few words

To summarize, here are the major steps to follow to

implement our methodology:

1. Identify the devices and the associated actions to

use.

2. Define a MMI model to specify the possible

interactions that you want to apply through the

device actions (cf. Figure 9).

3. Convert this MMI model into a workflow; this step

is done automatically in our case.

4. Implement a distributed communications and

access to devices. Designers can use the stub/proxy

generators (see above), or even can use the already-

implemented package we propose for RFID,

Androphone, BCI, X10 and IP Camera.

5. Implement the parts that associate interactions to

real actions on devices. For instance lay down a

specific RFID tag should produce the “It is too hot”

interaction.

6. Start the WSE drivers for each device with

providing parameters such as IP address, session

name, location, etc.

7. Start the workflow engine and the code produced

in step 5.

VI. CASE STUDY

This case study section is divided in four parts, which

present, respectively, the domain of smart digital home, the

architecture of the project, the implementation of this case

study and finally, the multimodal aspects of this

implementation.

A. Smart digital home

A smart digital home refers to a living space with devices

that are connected through wired or wireless networks. The

328

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

connected devices may be sensors, actors, consumer

electronics, appliances, mobile and PC devices that

cooperate transparently for facilitating living and improving

usability in the home. Since a variety of devices are present

in a smart digital home, convergence and standardization

across all the screens of TVs, PCs, appliances and mobile

devices, and management of multi-channel interactions is

manifestly the key for the success of residential

applications.

In our example, several objects are identified in order to

be driven remotely: a lamp, a fan, a Rovio robot [26], and a

webcam. The possible actions on those objects are the

following: move (up, down, left, right, and home) and switch

(on/off). As we can see on Figure 2, while the interaction takes

place, one of the possible paths of the workflow is followed.

Once the final state is reached, a command is sent to the bus.

B. Architecture

For this smart digital home case study, we are using the

IVY software bus [18] or our WSE bus, indifferently.

With the IVY bus, a publish/subscribe mechanism is

available. Some applications are only subscribers. It

means that they need data to prompt information to the

user (a synthesized speech for example), to activate

appliances (micro-wave oven, washing machine, etc.), or

to generate some piece of VoiceXML [3][27] code that

will be dynamically generated and used at runtime. Some

applications are only sending information to the bus.

Others are using the bus to both receive and send data.

For instance, the Automatic Speech Recognition (ASR)

application usable on a PC needs to receive the different

labels corresponding of the speakable words, and

oppositely, it sends to the bus the result of the speech

recognition engine.

The “Workflow_Engine” application is in charge of the

connection with the persistent workflow that we use for

this project. It exploits a dedicated API to send the

choices of the user to the object connection engine, and to

receive the next elements to be presented to the user.

C. Implementation

Our global project was conceived to manage various kinds of

devices, sensors, effectors and technologies such as keyboard

and mouse, voice over telephone or softphone, QR code, multi-

touch screen, Wiimote, Mirror [24] / Reflet [28] NanoZtag

RFID, motion webcam, X10 protocol, Rovio robot [26], etc.

Our proposition is based on the architecture illustrated in

Figure 11. Three types of elements are present: (1) Interactive

components that are detectors and/or effectors, (2)

Communication bus for message exchange and (3) Workflow

engine. This proposal aims at providing developers the ability

to associate to her/his application a multimodal dimension

concerning its interactive part. Currently, interactions supported

are ruled by only one principle, which is "sentences triggering

actions". A sentence consists in a sequence of words that can be

triggered by any type of modality (voice, QR code,

keyboard/mouse, etc.). To facilitate the writing of such

sentences for an application, we use the Task Choice concept

[17] in order to factorize words. For example, a sentence may

begin by "move" and then be divided into 4 sub-sentences (one

for each concerned device). This avoids writing four complete

sentences.

An example of path may be the following one: the user

activates the button "move" from the Windows application

(first sub-action), presents in front of a webcam a QR code

identifying the robot (second sub-action) and then pronounces

on her/his phone the word "left" (third sub-action). This path is

completed and the action "move the robot on the left" is

triggered.

Once a model is loaded into the workflow engine, it is

executed by the engine that starts with the first task choice.

Each time the engine points to a new task choice, the list of

possible choices is sent to the bus. This is done by a software

agent attached to the workflow engine. Thus, interactive

components can subscribe to this type of message, in order, for

example, to present the list of choices to the user (as graphical

buttons, voice prompt, etc.).

Two other software agents were needed and developed. The

first one notifies the workflow engine that a sub-action was

performed. This type of agent is attached to an interactive

component and translates each relevant interaction into a sub-

action that is sent to the bus. The second agent allows to be

notified that an action is requested (e.g., switch on fan). Such

agent aims to be associated to an interactive component that

will translate actions into actual commands on the component,

using X10 protocol, for instance.

The three software agents previously mentioned have two

roles: to subscribe/transmit on the communication bus and to

establish a protocol for discussion between the workflow

engine and interactive components. This protocol is based on

actions, sub-actions and possible actions. Note that in the

model associated to smart digital home, we defined paths so

user must first specify the command, then identify the device

and finally give a possible parameter for command.

329

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Architecture of our Smart Digital Home project.

The three software agents used the workflow presented in

Figure 2 to describe the objects and actions that can be

applied on those objects using one or more devices.

D. Multimodality

As previously mentioned, our goal is to provide tools in

order to facilitate the design and implementation of

multimodal interfaces for ambient computing. Concerning

vocal interactions, one big challenge is to provide the

designers an easy and robust way to generate code (like

VoiceXML [29] for instance) that can integrate grammars

related to a particular changing context. Dynamic voice

grammars (or entire VoiceXML files) can be generated with

our approach, as we can see in Figure 12.

If the designer decides to add a possible new direction,

s/he can do it graphically, on the workflow, by adding an arc

(called “home” for example), near the up/down/left/right

already available. Then with no addition of code, a new

possible interaction is available through the workflow.

Consequently, one can then pronounce a sentence like

“move camera home”, in order to physically make the

webcam move.

<?xml version="1.0" encoding="UTF-8"?>

<vxml xmlns="http://www.w3.org/2001/vxml"

version="2.0" xml:lang="en-gb">

<form>

<grammar version="1.0" root="GR_VOICE"

mode="voice" tag-format="semantics/1.0">

<rule id="GR_VOICE">

<one-of>

<item>up<tag>out.choice="up";</tag></item>

<item>down<tag>out.choice="down";</tag></item>

<item>left<tag>out.choice="left";</tag></item>

<item>right<tag>out.choice="right";</tag></item>

<item>home<tag>out.choice="home";</tag></item>
</one-of>

</rule>

</grammar>

<field name="choice"><prompt>

Choose among up, down, left, right, home

</prompt>

<filled>

<prompt bargein="false">

The chosen value is: <value expr="choice"/>

</prompt>

</filled>

</field>

</form>

</vxml>

Figure 12. Example of VoiceXML code generated by the

VoiceXML_Maker agent.

330

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For this case study, we have implemented a multi-

device, multimodal, and multi-channel system:

- a Multi-device system because more than one

device can be used during the interaction. In our

experiments we used many PCs, smartphones and

telephones, and a Wii Console.

- a Multi-modal system because more than one

modality can be used during the interaction. In

our examples we used traditional

keyboard/mouse interactions, vocal, gesture and

brain computer interaction (BCI). We also used

QR codes and RFID tags containing data related

to desired actions or objects.

- a Multi-channel system because more than one

channel can be use during the interaction. In our

smart home case study, it was done across

internet and telephone networks.

VII. CONCLUSION AND FUTURE WORK

The goal of this paper was to describe how we can

facilitate the design of multi-channel and multi-modal

interfaces for ambient computing with a model-driven

approach. We used a smart digital home case study to

explain how to design easily an ambient system using a

workflow oriented approach.

Our results show that different devices (such as

Wiimote, multi-touch screen, telephone, etc.) can be

managed in order to activate real or virtual things.

Adding new features (such as appliances, actions,

direction, etc.) to an existent system is also very easy

and only needs a modification of the workflow.

Our work is orientated toward the production of code

generated from model (and meta-model)

transformations, and shows that this model-driven

approach is encouraging and suitable for the ambient

computing domain. With our methodology, a large part

of the scripts and applications programs, traditionally

coded by developers, can be automatically generated by

the ambient system itself.

In the future, this should improve the possibility to

detect new objects, persons or possible behaviors

dynamically and to respond to them as soon as possible

with relevant feature of the ambient system. Thus, it

will be challenging to work on the possibility to manage

simultaneously different natural languages with a

unique model of existing actions.

We will also work on the important point of semantic

aspect of the workflow. This will help users for instance

when they will not use the commands in the right order.

Indeed, a smart system must be able to understand that

“move up robot” is the same command as “move robot

up”. We are also planning to offer the possibility to

dynamically switch from a software bus to another and

to manage virtual representation of tangible things

(fridge, oven, etc.) in order to allow realistic

simulations before real implementation.

VIII. ACKNOWLEDGEMENT

The authors would like to thank ObjectConnections,

Jaxo Sytem and bcWebCam for providing special tools:

Common Knowledge, Cam'A'Bar and bcwebcam.

IX. REFERENCES

[1] Rouillard, J., Tarby, J.C., Le Pallec, X., and Marvie,

R., “Facilitating the Design of Multi-channel

Interfaces for Ambient Computing”, The Third

International Conferences on Advances in Computer-

Human Interactions, ACHI 2010, St. Maarten,

Netherlands Antilles, 2010, pp. 95-100.

[2] W3C Multimodal Interaction Activity (MMI),

Retrieved January 10, 2011, from

http://www.w3.org/2002/mmi/

[3] VoiceXML 2.0., W3C Recommendation (16/03/04),

Retrieved January 10, 2011, from

http://www.w3.org/TR/voicexml20

[4] Harel, D., “Statecharts: a visual formalism for

complex systems”, Science of Computer

Programming, Volume 8, Issue 3, pp. 231-274, 1987.

[5] OpenInterface European project. IST Framework 6

STREP funded by the European, Commission (FP6-

35182). Retrieved January 10, 2011, from

http://www.openinterface.org and http://www.oi-

project.org.

[6] Tarby, J.C. and Rouillard, J., “Assistance, advice and

guidance with digital coaching”, EAM'06 European

Annual Conference on Human Decision-Making and

Manual Control Lecture Notes in Computer

Science, Springer-Verlag, Berlin, 2006,

Valenciennes.

[7] Frohlich, D., “The design space of interfaces,

multimedia systems, Interaction and Applications”,

1
st
 Eurographics workshop, Stockholm, Sweden,

Springer Verlag, p. 53-69, 1991.

[8] Healey, J., Hosn, R., and Maes, S.H, “Adaptive

Content for Device Independent Multi-modal

Browser Applications”, Lecture Notes In Computer

Science; Vol. 2347, Proceedings of the Second

International Conference on Adaptive Hypermedia

331

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and Adaptive Web-Based Systems, pp. 401-405,

ISBN: 3-540-43737-1, 2002.

[9] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May,

J., and Young, R. M., “Four easy pieces for assessing

the usability of multimodal interaction: the CARE

properties”. In INTERACT, pages 115-120.

Chapman & Hall, 1995.

[10] Vanderdonckt, J., Grolaux, D., Van Roy, P.,

Limbourg, Q., Macq, B., and Michel, B., “A Design

Space for Context-Sensitive User Interfaces”, Proc.

of ISCA 14th Int. Conf. on Intelligent and Adaptive

Systems and Software Engineering IASSE’2005

(Toronto, 20-22 July 2005), International Society for

Computers and their Applications, Toronto, 2005, pp.

207-214.

[11] Rouillard, J., “Multimodal and Multichannel issues in

pervasive and ubiquitous computing”, Multimodality

in Mobile Computing and Mobile Devices: Methods

for Adaptable Usability, Idea Group. Inc, Information

Science Reference, ISBN: 978-1-60566-978-6, 409

pages, 2009.

[12] Bastien, Ch. and Scapin, D., “Ergonomic Criteria for

the Evaluation of Human-Computer Interfaces”, J.

M., INRIA Technical report N° 156, 1993.

[13] Bourguin, G., Lewandowski, A., and Tarby J-C.,

“Defining Task Oriented Components, Task Models

and Diagrams for User Interface Design”, 6
th

International Workshop, TAMODIA 2007, Toulouse,

France, November 7-9, 2007, Marco Winckler,

Hilary Johnson, Philippe A. Palanque (Eds.), Lecture

Notes in Computer Science 4849 Springer 2007,

ISBN 978-3-540-77221-7, pp. 170-183

[14] Tarby, J.C., “One Goal, Many Tasks, Many Devices:

From Abstract User Task Specification to User

Interfaces” (Chapter 26). In, Diaper, D. and Stanton,

N. The handbook of Task Analysis for Human-

Computer Interaction. (pp.531-550). Mahwah, New

Jersey: Lawrence Erlbaum Associates, 2004.

[15] Palanque P., Bernhaupt, R., Navarre, D., Ould, M.,

and Winckler, M., “Supporting Usability Evaluation

of Multimodal Man-Machine Interfaces for Space

Ground Segment Applications Using Petri net Based

Formal Specification”. In International Conference

on Space Operations (SpaceOps 2006), Rome, Italy,

18/06/06-22/06/06, American Institute of Aeronautics

and Astronautics (AIAA), 2006.

[16] Horrocks, I., Constructing the User Interface with

Statecharts, Addison-Wesley Professional, 272 pages,

1999.

[17] ObjectConnections, Common Knowledge Studio and

engine, provided by ObjectConnections. Retrieved

January 10, 2011, from

http://www.objectconnections.com

[18] IVY Bus, Retrieved January 10, 2011, from

http://www2.tls.cena.fr/products/ivy/

[19] ModX MOF modeling tool, Retrieved January 10,

2011, from http://edutechwiki.unige.ch/en/ModX

[20] MOF OMG Meta-Object Facility, Retrieved January

10, 2011, from http://www.omg.org/mof/

[21] Kubera, Y., Mathieu, P. and Picault, S., “Everything

can be Agent!”, Proc. of 9
th

 Int. Conf. on

Autonomous Agents and Multiagent Systems

(AAMAS 2010), van der Hoek, Kaminka,

Lespérance, Luck and Sen (eds.), Toronto, Canada,

pp.1547-1548, 2010.

[22] COMET, Retrieved January 10, 2011, from

http://en.wikipedia.org/wiki/Comet_(programming)

[23] Nintendo, Wii game console and Wiimote controller,

Retrieved January 10, 2011, from

http://www.nintendo.fr/

[24] Nabaztag, Mir:ror, Nano:ztag, and Ztamp:s, from

Violet, Retrieved January 10, 2011, from

http://www.violet.net/index_en.html

[25] JSON-RPC: lightweight remote procedure call

protocol, Retrieved January 10, 2011, from

http://json-rpc.org/

[26] WowWee Group Limited, Rovio robot, Retrieved

January 10, 2011, from

http://www.omg.org/mof/http://www.wowwee.com/e

n/support/rovio

[27] VoiceXML 2.1, Recommendation, (19/06/07),

Retrieved January 10, 2011, from

http://www.w3.org/TR/voicexml21/

[28] Ref:let, An open-source alternative to mir:ror from

Violet, under Windows, Retrieved January 10, 2011,

from http://code.google.com/p/reflet-mirror/

[29] VoiceXML 3.0, W3C Working Draft (08/08/2008),

Retrieved January 10, 2011, from

http://www.w3.org/TR/vxml30reqs/

332

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

