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Abstract—The contributions of this paper are threefold: (1)
the extensive introduction of a formal Video Notation (ViNo) that
allows for describing different multimedia transport techniques
for specifying required QoS; (2) the application of this formal
notation to analyzing different transport mechanisms without
the need of detailed simulations; (3) further application of ViNo
to caching techniques, leading to the introduction of two cache
admission policies and one replacement policy supporting non-
sequential multimedia access.
The applicability of ViNo is shown by example and by analysis
of an existing CDN simulation. We find that a pure LRU
replacement yields significantly lower hit rates than our suggested
popularity-based replacement. The evaluation of caches was done
by simulation and by usage of ViNo.

Keywords-Multimedia Formalism; QoS; Caching; CDN; Non-
sequential Multimedia

I. INTRODUCTION

A. Motivation

In the end of 1895 the Lumière brothers presented the
first moving pictures in France (Lyon and Paris). They stored
the movie as a sequence of images on a perforated celluloid
tape. They were able to record and play this back at such a
speed that the viewers had the impression of - more or less -
continuous movement. This was the birth of the movie. People
were so much fascinated from moving pictures that on the very
first posters for movie performances we cannot find a title,
author or the like - people just went to see moving pictures;
whatever was showed.

Since then we have got used to the idea that a movie is
a long sequence of images recorded and played back at a
more or less constant speed. Even though this basic principle
is still valid, the uncritical usage of this paradigm causes a
lot of unnecessary difficulties in modern video access. Usage
scenarios are rapidly changing. We have reported [2] how
arthroscopic videos are used. The camera plays a central role
in this kind of surgery and the recorded videos are highly
interesting for research and education. The users - medical
doctors - are interested to find special situations in a large
archive of visually very similar recordings, e.g., the usage of
surgery equipment of a given type, in a special pathological
situation. They might be interested in comparing similar
scenes, watch them in parallel and create sub-sequences or
even single images from them. Several persons may do this

in cooperation, in a distributed manner. Such usage patterns
are obviously very different from that of the first viewers of
Lumières’ movies. In the following non-exhaustive list, we
summarize the main aspects of the current situation:

1) Virtually everybody can create and consume videos.
2) The length of movies available on the Internet varies

from a few seconds up to several hours.
3) Besides entertainment, professional use is gaining im-

portance, e.g., in medicine, news production, traffic
control and so on.

4) Both in entertainment and in professional usage, people
are often only interested in a small fraction of long video
sequences.

We conclude that we could gain a lot if we regarded videos as
non-sequential, direct access media. To put it in another way:
It is time to switch from the tape to the disk paradigm. Or
again in other words: Instead of enforcing users to be passive
viewers of movies it would be desirable to enable them to
become active composers of video presentations.

B. Compositions

Instead of offering prefabricated long, sequential videos, we
propose to offer a set of elementary video units, which can be
composed with the help of sequential and parallel composition
operators to arbitrary Video Notation (ViNo) compositions.
A unit itself is regarded as an atomic composition. The
result of a composition operation is also a composition. Thus,
compositions can be constructed from video units by repeated
application of composition operators.

We do not constrain the exact semantics of a video unit. It
could be a single bit or byte, a video frame, or a semantically
meaningful, short clip. By short we mean that the download
time is short enough not to justify streaming. Streaming should
rather be expressed as a composition (see below).

A given video can be logically described by several different
compositions. It can also be physically decomposed, in order
to get physically materialized units. We assume that for a
given video usually several logical compositions exist, but only
one physical decomposition exists. The problem of finding a
physical decomposition of maximal unit size that is compatible
with a given set of logical compositions is the subject of
related research, but out of scope of this paper. In the following
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we assume that compositions rely on a given suitable physical
decomposition.

C. Quality of Service (QoS) constraints on compositions

Compositions may be subject to certain QoS constraints to
describe video processing requirements and properties using
ViNo. For example, we may require that the processing delay
for video units must not exceed a certain maximum. Or a
given network bandwidth must be available when transmitting
units according to a given ViNo composition. It is thus
possible to describe a video streaming scenario as a sequential
composition of bits with a bandwidth requirement of 1 Mbps,
or as a sequential composition of video frames with an average
throughput of 25 frames/sec. A video playback scenario could
be expressed as a parallel composition of some clips with
a maximal start-up delay of 500 ms. We can describe both
required and provided QoS using the same formalism.

ViNo compositions may also describe pipelined video pro-
cessing by an appropriate combination of sequential and
parallel operators according to a certain number of stages.
Each stage in the pipeline represents a buffering element.
Classical video streaming can be described as a pipelined
sequential composition, constrained by bandwidth and start-
up delay.

More generally, ViNo can be used to express temporal
relations between video units for the purpose of: (1) video
presentation requests, (2) video delivery execution plans, and
(3) video access methods.

D. Putting it together

Let us consider a simple example to put the elements
together. Assume that a ski-jumping video has already been
decomposed into six meaningful, short clips. The clips show
two essential moments (jump-off and touch-down) for three
athletes. The user would like to see the two clips belonging
to the same jumper sequentially, but the three clip pairs in
parallel. We assume that a video player capable of such
presentation modes is available. The user creates a ViNo
composition expressing her video presentation request (see
formal examples below) with the help of some appropriate
GUI. Now, the video transportation system transforms the
request to an execution plan, which is again represented by
a ViNo composition. For instance, if all clips are stored on
the same network node then the clips must be downloaded
sequentially (as we assume that clips are video units, which
are handled atomically by the video transportation system).
However, their order should be interleaved: first the jump-
off clips of all three athletes and then the touch-down clips).
On the other hand, if the clips happen to be distributed
in the delivery network in an optimal way, i.e. the clips
belonging to the same jumper are stored on the same network
node and clips belonging to different athletes are stored on
different nodes, with equal and minimal distance to the client,
then the execution plan is actually represented by the same
ViNo composition as the request. A good video transportation
system obviously strives for finding such optimal placement

of clips for popular requests. In any case the execution plan
must, of course, fulfill the requested QoS constraints. If this
is not possible, a good implementation is supposed to take
certain adaptation actions such as replicating video units.
These actions can again be expressed as ViNo composition
transformations.

E. What are ViNo compositions good for?

We see two main advantages:
1) Flexibility: If we get rid of the dictatorship of the long,

sequential, and continuous streams, then we gain a lot of
freedom in the handling of video systems. By using ViNo we
make any video delivery system programmable in a certain
sense. This apparently rather theoretical point should not be
underestimated. The success of digital computers relies exactly
on this kind of flexibility. Analog computers had a number
of advantages over the digital ones in solving differential
equations. They were faster and more precise – but less
flexible. No need to say who won the race between analog
and digital computers. Note that in the early 1960s, this was
not yet obvious.

2) Simplification: This is the actual topic of this paper.
Making explanations and descriptions simpler had always been
a driving power in science. It is not only a matter of costs
– a simple solution is usually cheaper than a complex one,
but a simple description is also easier to understand and
therefore less error-prone. On the other hand, if something is
getting very complicated then this is usually a sign of missing
understanding.

F. Using ViNo for deriving delay bounds

In the first part of this paper we introduce syntax and
semantics of ViNo and the associated QoS description lan-
guage in detail. In describing QoS constraints we rely on
QL, as defined by Blair and Stefani [3]. In the second part,
we show how to model Content Delivery Systems (CDNs)
with the help of ViNo. We can perform delay estimations of
arbitrary complex compositions in a recursive manner. We use
the CDNSim [4] simulator as a reference for evaluating our
results. We already obtain good estimations using a rough
model, which can easily be refined. Thus, we are able to
estimate transport delay bounds of complex, distributed video
delivery systems using a small set of ViNo expressions. The
results can be sufficient to support system design decisions,
thereby eliminating the need of sophisticated simulations. To
the best of our knowledge, this is a unique achievement.
ViNo expressions can easily be modified and extended. When
creating the examples, we experienced indeed that we could
not test all required situations using CDNSim. Modifying the
simulation would have needed days – if not weeks – of work.
Extending ViNo expressions, however, is a matter of hours or
minutes (for an experienced user).

In the third part of the paper we use ViNo to experiment
with some simple but novel video caching methods [1] based
on units. An own prototype implementation serves as a refer-
ence. Also in this case ViNo yields suitable delay estimations
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(under the assumption, of course, that QoS parameter estima-
tions are correct). The prototype implementation is a first step
towards a novel, self-organizing video delivery system, where
ViNo compositions and decompositions play a central role.
However, this system will not be discussed in this paper.

II. RELATED WORK

QoS languages have been defined to help a user or appli-
cation to specify requirements and to formally define actions
for recovery if the given requirements are not met. In [5] the
authors give an overview and classification of QoS languages,
which are categorized into user-layer QoS, application-layer
QoS and resource-layer QoS. Examples are INDEX [6] as
an expressive user-layer QoS language that helps translat-
ing the user’s preferences to more specific network-related
QoS. Application-layer QoS regards parameters such as frame
rate and frame resolution. The authors of HQML [7] took
advantage of XML for allowing developers to specify their
own multimedia-related tags. Another example is QML [8],
which is an object-oriented CORBA-based QoS language that
allows for QoS hierarchies and reusability. Resource-layer
QoS languages such as RSL [9] concentrate on resource
management and allocation.

However, ViNo’s aim is not to define a new QoS paradigm.
ViNo uses QoS languages, in particular QL [3], in order to
clarify QoS requirements. MMC# (see [10], [11]), a QL based
QoS extension of C#, provides automatic QoS requirement
formulation checking. A ViNo-compliant application might
take advantage of that by being implemented in MMC#.
However, calculations done with ViNo cannot be performed
with any of the examples given in [5] nor with MMC#.

In contrary to QoS languages, an XML-based language
exists that handles the presentation of autonomous media
objects, namely SMIL [12]. SMIL is a description language for
synchronizing different media channels like sound, video and
text in a SMIL player. Although ViNo might also be used to
describe multimedia presentations without the XML overhead
of SMIL, ViNo’s main strength is its general applicability
to the analysis of flexible transport mechanisms and related
calculations.

ViNo was designed to be able to compare existing multi-
media transport technologies, such as Client/Server, Content
Delivery Networks (CDNs) or P2P download and streaming,
to more flexible approaches. In this context, non-sequential
multimedia access patterns open new possibilities of video
services and require new ways of transport.

As described in [1], a first step in the direction of non-
sequential media was investigated by Zhao et al. [13]. The
authors define ”non-linear” media as video consisting of
several parallel branches. The streaming system maintains a
channel per branch. The authors observed as major problem
that there is no possibility to explore bandwidth reduction by
sharing connections, because it is not known if the client will
choose the branch just transmitted in advance. Nevertheless,
the authors showed that some hints regarding the client branch
selection lead to remarkable server bandwidth and client data

overhead reduction. However, the possible paths are predefined
and limited compared to the possibilities offered by our video
unit model.

Videos are considered as too large with respect to size to be
cached completely. A lot of research has been done on partial
caching. Generally, the idea of caching only parts of a video
supports our non-sequential media model.

In [14], a detailed overview of different caching strategies
is given. Prefix caching and segment-based caching are most
closely related to our work. A prefix may be fixed (e.g., the
first 10 minutes of a video) or dynamic (for every video
a proper prefix size is defined), see also [15]. Segment-
based caching increases the number of cached segments of
a video based on popularity measurements. Segments may be
uniformly sized or grow exponentially [16].

The authors of [17] propose a caching algorithm for stream-
ing media based on a measured popularity distribution of
segments. Considering fixed-sized segments of one second,
they observed that the popularity of segments of a single
video (internal popularity) follows a k-transformed Zipf-like
distribution (for kx = 10 and ky > 200). Hence the first
segments of a video are most popular, so the proposed caching
policy prioritizes prefix caching. However, we cannot expect
that non-sequential media access exhibits the same internal
popularity pattern. A user may not be aware of which unit is
the ”beginning” of a video.

Another segment-based caching mechanism aims to sup-
port interactive ”jumps” in a video stream [18]. The authors
introduce a basic interleaved segment caching (BISC) policy,
which disperses prefetched segments uniformly over the video
length to reduce response time for jump requests at the cost of
a reduced hit rate for sequential access. When the client jumps
to an uncached segment the cache delivers the closest cached
segment. Since segments are likely to be accessed sequentially
after a jump, BISC was extended to a dynamic interleaved
segment caching (DISC) policy, which dynamically selects an
interleaved or continuous segment caching strategy based on
observed client access patterns. However, the authors assume,
based on their analysis of a real RTSP workload in the year
2004, that video segments will be accessed sequentially in
most cases. In our video unit approach we refrain from this
restriction.

III. THE VINO FORMALISM

As described in the Introduction ViNo is based on so called
compositions. Its general syntax is given by the following
definition (the EBNF specification appears in the appendix).

Definition 1: A composition is an expression defined induc-
tively by these rules:

1) A single video unit is a composition.
2) Let c1, c2, ..., cn with n ≥ 2 be compositions, which

have already been defined. Then, the following expres-
sions are compositions, too:

a) [c1 || c2 || . . . || cn] is called a parallel composition.
b) (c1 ←Q1 c2 ←Q2 · · · ←Qn−1 cn) is called

a sequential composition. A symbol Qi, where
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i = 1, . . . , n − 1, represents an optional QoS
parameter and may be omitted.

Throughout this paper, ui (i ≥ 1) always denotes a single
video unit. The brackets or parentheses of a parallel or a
sequential composition c, respectively, may be omitted if c
does not appear as proper subexpression of a composition. So
both [u1 ||u2] and u1 ||u2 are valid compositions on their own,
but u1 ||u2 ← u3 is not.

We define the semantics of ViNo in the context of video
transmission, but analogous interpretations apply in other
contexts as explained in the Introduction.

Definition 2: Semantics.
1) If c = c1 || c2 for some compositions c1 and c2, then the

transport of c starts as soon as c1 or c2 starts, whatever
is earlier; and it is finished when the transport of both
c1 and c2 is completed.

2) If c = c1 ←Q c2 then the transmission of c2 must not
start before the completion of c1; the QoS predicate Q
applies to the time period between completion of c1 and
completion of c2.

3) The semantics of c = c1 ←Q1 c2 ←Q2 c3 is defined as
that of (c1 ←Q1

c2)←Q2
c3.

We consider two compositions c1 and c2 as equivalent if they
lead to the same semantics according to Definition 2. We then
write c1 = c2. It is easy to check that the following equations
hold:

[c1 || c2] || c3 = c1 || [c2 || c3] (1)
[c1 || c2] = [c2 || c1] (2)
(c1 ← c2)← c3 = c1 ← (c2 ← c3) (3)
(c1 ←Q1 c2)←Q2 c3 = c1 ←Q1◦Q2 (c2 ←Q2 c3) (4)

where c1, c2, c3 are arbitrary compositions and Q1 ◦Q2 means
a suitable combination of both QoS predicates Q1 and Q2,
e.g. the sum if Q1 and Q2 refer to maximal delay. Note that
according to (1) a parallel composition c is an associative
binary operation, so the semantics of c is well defined. The
same applies to sequential composition without QoS predicate.

Definition 3: The null unit u0 is a video unit of length 0
(empty).
The null unit u0 serves as a ”dummy” composition (in a
similar way as dummy targets are used to express side-effects
in functional languages). The following properties apply:

• u0 || c1 = c1
• u0 ← c1 = c1
• c1 ← u0 = c1

A. Simple examples

In order to show how the before mentioned definitions work,
three artificial examples are created. All examples are based on
the same video delivery system architecture. It consists of one
origin server, four interconnected proxies and one client. We
show how the transmission of six video units can be described
using ViNo for different configurations with respect to unit
placement. For sake of simplicity, QoS is postponed to the
next section.

Fig. 1. Sample video delivery system with one origin server S, four proxies
P1− P4, and one client C, where all video units u1− u6 are available at
proxy P3.

As described in the Introduction a presentation request
may be created using some appropriate GUI. The request of
displaying video units 1–6 sequentially can be expressed as:

r = u1 ← u2 ← u3 ← u4 ← u5 ← u6

The actual transport of video units may differ from the
presentation request. To keep it simple, we assume that all
video units are downloaded to the client completely before
play back starts. So the video delivery process can be decom-
posed into one or more download stages corresponding to a
ViNo transport description s, followed by a play back stage
equivalent to the presentation request r: s← r.

Example 1. All video units are located at proxy P3 as
shown in Fig. 1. The units will be downloaded sequentially to
the client, corresponding to the ViNo transport description:

s1 = u1 ← u2 ← u3 ← u4 ← u5 ← u6

By adding the play back stage s2 = r we obtain the complete
video delivery description:

c = s1 ← s2 = s1 ← r =

u1 ← u2 ← u3 ← u4 ← u5 ← u6

← u1 ← u2 ← u3 ← u4 ← u5 ← u6

Example 2. Three of the units are located on proxy P3
and the other three are located on proxy P4. Both proxies
are direct neighbors of the client (Fig. 2). The download from
P3 is described as s1 = u1 ← u2 ← u3 and the download
from P4 is described as s2 = u4 ← u5 ← u6. There are two
possibilities to combine these download stages to describe the
overall video transport:

(1) The client downloads everything from P3 and after-
wards everything from P4, resulting in the ViNo expression:
s1 ← s2 = (u1 ← u2 ← u3)← (u4 ← u5 ← u6).

(2) While downloading everything from P3 the units are
downloaded from P4 in parallel: s1 || s2 = (u1 ← u2 ←
u3) || (u4 ← u5 ← u6). The video transport expressed by
this composition is finished when all video units have been
transmitted. Note that there is no temporal relation between
downloading units of s1 and s2, respectively. That is, u2 can
be received before or after u5 by the client. However, a system
designer may decide to synchronize the transport of s1 and s2;
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Fig. 2. Sample video delivery system with one origin server S, four proxies
P1− P4, and one client C, where the video units u1− u6 are available at
proxies P3 and P4 near the client.

Fig. 3. Sample video delivery system with one origin server S, four proxies
P1− P4, and one client C, where the video units u1− u6 are available at
proxies P1 and P2, which are not directly connected to the client.

then the description specializes to [u1 ||u4] ← [u2 ||u5] ←
[u3 ||u6].

As in example 1 the transport description involving the
download stages s1 and s2 is followed by a play back stage
s3 = r.

Example 3. Three of the video units are located on proxy
P1 and the other three units are located on proxy P2. None of
these proxies is directly connected to the client (Fig 3), so units
have to be replicated to proxies P3 or P4, respectively, before
they are downloaded to the client. This results in 5 stages: the
transport of 3 units from P1 to P3 (stage s1), from P2 to P4
(stage s2), from P3 to the client (stage s3), and from P4 to
the client (stage s4); and finally, the play back of all 6 units
at the client (stage s5 = r).

Let us assume a pipelined transport where proxies P3 and
P4 forward units immediately after receiving them from P1
or P2, respectively. For the sake of simplicity, let us further
assume that the transmission times of all video units between
adjacent network nodes and the play back duration of a single
video unit are roughly equal to a certain time period t. Then
the temporal evolution of the video delivery process can be
represented by TABLE I. Consequently, the user has to wait
4 time slots until play back can start, and the entire video
delivery process takes 10 time slots.

The table also helps creating the appropriate ViNo expres-
sion that describes the given video delivery scenario. Units
within the same time slot are transmitted in parallel, units in
different time slots are processed sequentially. The resulting

t 1 2 3 4 5 6 7 8 9 10
s1 u1 u2 u3

s2 u4 u5 u6

s3 u1 u2 u3

s4 u4 u5 u6

s5 u1 u2 u3 u4 u5 u6

TABLE I
TEMPORAL EVOLUTION OF VIDEO DELIVERY SCENARIO OF EXAMPLE 3.

ViNo expression is:

[u1 ||u4]← [u2 ||u5 ||u1 ||u4]← [u3 ||u6 ||u2 ||u5]
← [u3 ||u6]← u1 ← u2 ← u3 ← u4 ← u5 ← u6 (5)

B. Introducing QoS

To specify a request a client has only to provide information
about the required video units and whether these units have to
arrive in order (e.g. at the player). For example, a user may
express “I want to download units x and y, the order does
not matter” as ux ||uy . Note that this does not mean that the
units have to be delivered in parallel. A user who wants to
watch the units using a video player would be more specific:
“I want to watch unit x and then unit y, and unit x has to arrive
within the next 30 seconds”. This request can be expressed as
u0 ←D=30sec ux ← uy , where u0 is the null unit needed only
to express the required delay for unit x.

In the sequel the usage of QoS parameters is demonstrated
for expressing video unit transport. However, if ViNo is used
in a different context, the semantics of QoS annotations may
differ and need to be clarified prior to any calculations based
on ViNo expressions. We provide examples for the well-known
transport-related QoS parameters bandwidth, delay, and jitter.

We derive the notation and semantics of QoS parameters
from the QoS language QL [3]. QL is based on events like
reception and sending of messages. It uses a function τ
mapping events to points in time. Since ViNo is based on
compositions, we restrict ourselves to the event of receiving a
composition c at a given network node or video display. This
event occurs as soon as all video units referenced by c have
been received completely. We denote the corresponding point
in time as τ(c). In this paper we focus on QoS parameters that
can be used for delay calculations of video transport processes
described by ViNo expressions.

Definition 4: We define a recursive function delay to cal-
culate a delay bound for a QoS-annotated ViNo transport
description c:

1) The null unit causes no delay: delay(u0) = 0.
2) If c = c1 ←Q u for some composition c1 and a video

unit u, then

delay(c) = delay(c1) + delay(u,Q)

where delay(u,Q) is defined to be the delay τ(u) −
τ(c1) assuming a provided QoS parameter Q (trivial
case of recursion).
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3) If c = c1 ← c2 for compositions c1 and c2, then the
delay bound is computed recursively as:

delay(c) = delay(c1) + delay(c2)

For delay calculations, we assume that the transmission
of c2 occurs as soon as possible after the transmission of
c1, which is expressed by omitting the QoS parameter.

4) If c = c1 || c2 for compositions c1 and c2, then the delay
bound is computed recursively as:

delay(c) = max(delay(c1), delay(c2))

Note that the delay function is defined only on a subset of
all possible ViNo expressions. The following two expression
types will occur frequently in the subsequent examples, so
we introduce a separate notation for the corresponding delay
bounds:

• If c = u0 ←Q1
u1 ←Q2

· · · ←Qn
un for video units ui

(u0 is the null unit), then

delay(c) =

n∑
i=0

delay(ui, Qi) (6)

= delay(u1, . . . , un, Q1, . . . , Qn, seq)

where the last term introduces a new notation.
• If c = (u0 ←Q1

u1) || . . . || (un ←Qn
un for video units

ui (u0 is the null unit), then

delay(c) = max
1≤i≤n

(delay(ui, Qi)) (7)

= delay(u1, . . . , un, Q1, . . . , Qn, par)

where the last term introduces a new notation.
Whether the delay function represents a lower or upper delay
bound depends on the definition of the delay(u,Q) values.
We now demonstrate how to define these values if the QoS
parameters are given in terms of bandwidth, delay, or jitter,
respectively.

1) Bandwidth: By Q = BW we express that a given
bandwidth BW is available for transmission. The delay of
transmitting a video unit u is defined as:

delay(u,BW ) =
size(u)

BW

The delay function therefore computes a lower bound of the
end-to-end delay corresponding to a given ViNo expression.
We assume that video units transmitted in parallel according to
some parallel ViNo composition use separate links, so that the
available bandwidth is not reduced by parallel transmissions.

Calculation of the lower delay bounds of sequential and
parallel compositions of video units according to equations
(6) and (7) results in:

delay(u1, . . . , un, BW1, . . . , BWn, seq)

=

n∑
i=1

size(ui)

BWi
(8)

delay(u1, . . . , un, BW1, . . . , BWn, par)

= max
1≤i≤n

(
size(ui)

BWi

)
(9)

2) Delay: By Q = D we express that transmission yields
a given delay D. The delay of transmitting a video unit u is
defined as:

delay(u,D) = D

If all delays occurring in a video delivery system are expressed
as provided QoS parameters of a corresponding ViNo compo-
sition and if the composition is an appropriate model of the
system, the calculated end-to-end delay value should be accu-
rate. However, for practical purposes, the ViNo composition
is constructed to provide an upper delay bound only, which
may lead to a simpler ViNo expression.

3) Jitter: According to the QoS language QL, jitter can
be defined by specifying lower and upper delay bounds
(Dmin, Dmax). To calculate the jitter of a given video trans-
port system described by an appropriate ViNo expression, we
therefore just need to apply the delay function to both bounds
separately. We obtain two functions delaymin and delaymax

with appropriate definitions of delay bounds for transmitting
a video unit u:

delaymin(u,Dmin) = Dmin

delaymax(u,Dmax) = Dmax

The jitter of a ViNo composition c is then computed as
(delaymin(c), delaymax(c).

To illustrate delay calculations, we now apply the delay
function to example 3 of section III-A. We restrict the dis-
cussion to delay as QoS parameter. Let the delay D1 for one
unit delivered from P1 to P3 be 300 ms, and the delay D2

from P2 to P4 be 350 ms. The delay D3 from both proxies
P3 and P4 to the client shall be 200 ms each. We need to
extend the ViNo transport description (see (5) and TABLE I)
to introduce delay parameters:

c = [(u0 ←D1
u1) || (u0 ←D2

u4)]

← [(u0 ←D1
u2) || (u0 ←D2

u5)

|| (u0 ←D3
u1) || (u0 ←D3

u4)]

← [(u0 ←D1
u3) || (u0 ←D2

u6)

|| (u0 ←D3
u2) || (u0 ←D3

u5)]

← [(u0 ←D3
u3) || (u0 ←D3

u6)]

Note that this ViNo composition is of the form c = c1 ← c2 ←
c3 ← c4, where each ci denotes a parallel composition. By
applying equation (7) and case 3 of Definition 4 we therefore
obtain:
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Fig. 4. Sample Architecture in CDNsim

delay(c1) = delay(u1, u4, D1, D2, par)

= max(D1, D2) = D2

delay(c2) = max(D1, D2, D3, D3) = D2

delay(c3) = max(D1, D2, D3, D3) = D2

delay(c4) = max(D3, D3) = D3

delay(c) = delay(c1) + delay(c2) + delay(c3) + delay(c4)

= D2 +D2 +D2 +D3

= (350 + 350 + 350 + 200) ms = 1250 ms

IV. ANALYZING TRANSPORT AND CACHING

In this section the potential of ViNo is shown as a tool
for analyzing existing delivery systems, such as Content
Delivery Networks (CDN). Additionally, we applied the same
analysis to our non-sequential multimedia cache to compare
its caching techniques to CDN.

A. Content Delivery Networks

CDNs consist of origin servers that are supported by
strategically placed surrogate servers to which the content
is replicated and/or cached (see [19], [20]). In most of
the commercially available CDNs, the content is passively
pulled by surrogate servers. Usually, commercial CDNs are
not available for research purposes. Even academic CDNs,
which are available on PlanetLab, are treated as black boxes.
For this reason, Stamos et al. [4] developed a simulation
environment, called CDNsim, for large scale CDN simulations.
This simulation is the basis for our experiments with ViNo.
A GUI for configuring simulations is also part of CDNSim.
CDNSim is an Omnet++ [21] simulation and uses the INET
Framework Library [22]. It covers all typical CDN function-
ality, such as DNS request redirection and LRU replacement.
CDNSim supports different cooperation policies such as clos-
est surrogate or random surrogate cooperation, but also simple
non-cooperative behavior can be configured. A very interesting
point for our investigations is the fact that if the number of
nodes and routers remains the same the same architecture
is generated for each simulation run. Therefore, the clients
connect always to the same surrogate servers.
TABLE II shows the configuration parameters used for our

experiments. Sample request traces and router topologies are

made available by the CDNSim developers at [23]. For sake
of simplicity we decided to use the non-cooperative policy for
our experiments, i.e, if a requested object is not available at the
client’s surrogate server the request is forwarded to the origin
server. However, all delay calculations can also be applied to
the cooperative policies as well.
The optimal unit size for a given application is an open
research issue. For our simulation experiments we simply
selected some reasonable size, namely 1500 bytes. This means
that a web page of 4,500 bytes is divided into 3 units and is
described as u1 ← u2 ← u3. The link speed is specified
to be 200 Mbits/sec, which results in a bandwidth BW of
16,666 units/sec.
We evaluate ViNo by calculating delay in miss and hit situa-
tions and compare the results to the simulated values.
In general a hit is represented as the distance from a client to
its surrogate, which is 1 hop. On a miss the transport represents
a sequential composition of two stages, i.e., from origin to
surrogate and from surrogate to client (e.g., c = (u0 ←BW

u1 ←BW u2 ←BW u3) ← (u0 ←BW u1 ←BW u2 ←BW

u3)). Thus, all calculations can be done without the complete
knowledge of the CDN’s architecture. The calculations repre-
sent the time a transport takes at minimum, i.e., it is the best
case transport delay. For the experiments these calculations are
referred to as ViNo generic.
The delay function for the example above can be described as
delay(c) and can be calculated as follows:

delay(c) = delay(u1, u2, u3, BW, ..., BW, seq)

+ delay(u1, u2, u3, BW, ..., BW, seq)

=
6

16, 666
= 0.36 ms

If the architecture is known in more detail, which is the case
for CDNSim, more precise calculations can be performed. As
shown in Fig. 4 routers are placed on the path of clients and
surrogates. The idea was to consider those routers as hops,
e.g., a client is 3 hops away from its surrogate server. On a
hit the delay can be calculated based on the distance (measured
in hops) from client to surrogate. For the experiments these
calculations are referred to as ViNo routers.
Two experiments were started, (1) all clients download web
pages of small size; (2) one client downloads a number of
different sized web pages.
Experiment 1. This experiment proves the general applica-
bility of ViNo, its results are shown in Fig. 5. It is seen that
both ViNo routers and ViNo generic estimate well the delay
pattern of the measured values. The distance of ViNo routers
to the simulated delay is smaller because its calculations are
more precise, for the price that the transport paths have to be
known in advance.
We show by the example of downloading one single object,
how the corresponding delay is calculated. A randomly chosen
client with the id c1009 connects to the surrogate server
with id s1199 in 4 hops. A miss means a transport over
9 hops from the origin server. This client downloads the
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Parameter Value
Router Topology Waxman for 1000 Routers
Link speed 200 Mbit/sec
Number of clients 100
Number of surrogate servers 100
Number of origin servers 1
Number of outgoing connections 1000
Websites 50000 Web objects, 100MB max object size, sizes’ zipf=1, size vs popularity correlation = 0
Traffic 1000000 requests, popularity’s zipf = 1.0, expo mean interarrival time = 1, 100 client groups

TABLE II
CDNSIM CONFIGURATION PARAMETERS
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Fig. 5. Comparison of download time ViNo vs. CDNSim

object with id 13, which has a size of 5 units. In ViNo
one stage consisting of these 5 units can be described as
ci = u0 ←BW u1 ←BW u2 ←BW u3 ←BW u4 ←BW u5. In
the simulation object nr 13 was not present at the surrogate
server. Thus, the overall composition c for ViNo routers is a
sequential composition of stages 1-9 (one stage per hop).

h = 9,BW = 16, 666u/sec

delay(c) =

h∑
i=1

delay(ci)

= h ∗ delay(u1, ..., u5, BW, ..., BW, seq) = 2.7 ms

The ViNo generic calculation has no detailed knowledge of
the routers and reduces therefore the miss to two hops, such
that the calculation changes to:

h = 2,BW = 16, 666u/sec

delay(c) =

h∑
i=1

delay(ci)

= h ∗ delay(u1, ..., u5, BW, ..., BW, seq) = 0.6 ms

The measured value was 3.01 ms, which shows that ViNo
routers calculation is a really good estimation.
Experiment 2. This experiment was done to investigate the

impact of different file sizes, since video objects are in general

larger than web objects. One client was picked out of all
clients, which downloads a set of very different sized objects.
The generic and the router based delay was calculated and then
compared to the simulated results. The ViNo router calculated
delay is shown in Fig. 7 and it can be seen that the calculations
do not always represent the lower bound of the simulated
duration. One extreme case is shown for the object with id
637 (the peak in Fig. 7), which has a size of 24 MBytes
(16,666 units). At this point of the simulation the object was
not present at the surrogate, thus it had to be downloaded from
the origin with a distance of 8 hops. The measured value was
3 seconds. The calculations with ViNo routers are provided
below:

delay(c) =

8∑
i=1

delay(ci)

= 8 ∗ delay(u1, ..., u16666, BW, ..., BW, seq) = 8sec

This effect appears for files that exceed the size of 10 KBytes,
which are routed in a different way than smaller files (as
in experiment 1). Larger files are split up and are routed
in parallel over several paths. Therefore, the transport is a
mixture of parallel and sequential compositions and not purely
sequential as assumed before. Since the routing algorithm is
part of the INET Framework and the paths are not predictable
with reasonable effort, we cannot provide a more detailed
calculation. However, the router based calculations might
represent the worst case delay if the routing path is always
the same.
The generic calculations are always representing the lower
bound of the duration as shown in Fig. 6, since in any way the
surrogate downloads the complete website before forwarding
it to the client. In comparison to the ViNo routers result the
ViNo generic result is 2 seconds for the object with id 637.
Thus, the generic case represents the larger file downloads
better and the router based calculations represent smaller file
downloads better. Which type of calculation is finally taken
depends on the knowledge of the architecture and on the
purpose of the analysis.
The efficiency of CDNs and caches is usually compared by

measuring the hit rate. ViNo can also be used to analyze the
impact of the hit rate to the delay.
In our experiments the objects’ sizes are Zipf distributed with
an alpha value of 1.0 (strongly skewed). This means that

26

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0,00010

0,00100

0,01000

0,10000

1,00000

10,00000

73
0

55
7

63
9

64
6

52
8

67
1

69
6

56
2

63
1

60
0

56
4

56
6

61
8

52
3

53
2

63
1

60
4

72
6

73
2

71
4

54
9

58
8

56
0

64
2

63
2

59
6

62
7

57
4

61
2

tim
e 

in
 se

c 
(lo

g)

object ID

CDNsim
ViNo …

Fig. 6. Comparison of download time ViNo generic vs. CDNSim

0,00050

0,00500

0,05000

0,50000

5,00000

73
0

55
7

63
9

64
6

52
8

67
1

69
6

56
2

63
1

60
0

56
4

56
6

61
8

52
3

53
2

63
1

60
4

72
6

73
2

71
4

54
9

58
8

56
0

64
2

63
2

59
6

62
7

57
4

61
2

tim
e 

in
 se

c 
 (l

og
)

object ID

CDNSim
Vino …

Fig. 7. Comparison of download time ViNo routers vs. CDNSim

80 % of the overall objects’ size are represented by 20 %
of the objects. This fact has a huge impact on the surrogates’
cache size. In CDNSim one cache was able to store 109 MBs,
which lead to hit rates of around 80 %. The reason is that
most surrogates handle small files and the cache misses only
occured in the beginning of the simulation until all objects
were loaded from the origin server (i.e., the actual cache size
was around 100 %).
If the surrogate servers had used popularity based prefetching
the hit rate would have reached 100 %. This leads to the
question on how much delay improvement prefetching would
make. For this investigation we took ten random surrogate
servers out of the simulation and calculated the delay reduction
as shown in TABLE III. It can be seen that the number
of units (i.e., the size of the original files) to serve vary
a lot. E.g., surrogate s1191 only serves 19 files, whereas
surrogates s1158 and s1164 serve almost the same amount
of units, but the number of objects differ by a factor of
10. In general, those surrogate servers serving large files
have advantages if prefetching is used. A CDN provider for

SID no. clients no. objects no. units prefetch pipeline
s1110 2 2158 26290 1.57733 1.57727
s1132 1 475 4033 0.24198 0.24190
s1140 3 46 210 0.01260 0.01255
s1158 1 214 18352 1.10110 1.10109
s1164 3 2632 18597 1.11571 1.11571
s1188 4 3007 49100 2.94594 2.94591
s1191 2 19 69 0.00414 0.00408
s1194 2 6658 77183 4.63089 4.63077
s1196 4 3355 56281 3.37679 3.37672
s1198 6 3291 39795 2.38764 2.38758

TABLE III
SURROGATE DELAY REDUCTION IN SECONDS ON PREFETCH AND ON

PIPELINING

videos can reach better surrogate efficiency and therefore
startup delay minimization if popularity based prefetching per
surrogate is applied. However, the popularity measures must
include different factors, e.g, region, as we might assume that
clients in Europe have different interests than in America, aso.
Another solution for the CDN provider could be to apply

pipelined transport on a miss, i.e., a surrogate forwards a unit
immediately after download from the origin. For a web site
that consists of three units this is described as:

c = (u0 ←BW u1)← [(u0 ←BW u2)||(u0 ←BW u1)]

← [(u0 ←BW u3)||(u0 ←BW u2)]← (u0 ←BW u3)

In comparison to c1 ← c2 = (u0 ←BW u1 ←BW u2 ←BW

u3) ← (u0 ←BW u1 ←BW u2 ←BW u3) for the pure
sequential transport. The delay for the pipelined composi-
tion is calculated as the sum of all sub-compositions (i.e.,
c = c1 ← c2 ← c3 ← c4).

delay(c)

=

4∑
i=1

delay(ci)

= delay(u1, BW )

+max(delay(u2, BW ), delay(u1, BW ))

+max(delay(u3, BW ), delay(u2, BW ))

+delay(u3, BW )

=
1

BW
+

1

BW
+

1

BW
+

1

BW
= 0.24ms

If the units would be transported sequentially as in c1 ← c2
the delay would be calculated as the sum of the sub delays,
i.e:

delay(c)

= delay(u1, u2, u3, BW, ..., BW, seq)

+delay(u1, u2, u3, BW, ..., BW, seq)

=
1

BW
+

1

BW
+

1

BW
+

1

BW
+

1

BW
+

1

BW
= 0.36ms

The transport would need 3+3=6 time slots. The pipelined
transport reduces the number of time slots to 4, in more general
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(for a 2-stage pipeline):

delaypipelined =
delaysequential

2
+ 1 time slots

If the surrogates analyzed before used pipelined transport
on a miss the delay would reduce in comparison to a
sequential transport as shown in TABLE III. Which of the
both techniques a CDN provider chooses is a matter of
implementation.

B. Non-sequential Multimedia Caching

If resources at a surrogate server are more limited and
the access patterns more flexible than in the CDNSim case
before, a CDN provider might be interested in a more efficient
replacement and prefetching policy. This analysis was done in
[1] and extended results are shown in the following.
We assume that the units are self-contained and equipped with
metadata comprising further information about the content.
Furthermore, we assume that a smart user application exists
that provides information about user intentions (see [24]). User
intentions are metadata about semantic roles a user can be cate-
gorized to. Such a role could be, e.g., ”informational” denoting
users looking for many but unspecific data and ”transactional”
denoting users wishing to buy a specific content. A semantic
group of units is therefore a number of units that is of interest
for a category of users. Note that the unit groups are not
disjoint, but a user mapped to a given role is expected to
request those units that are mapped to that role. This favors
units that are more popular than others. Units in each group
are ordered according to their popularity. This knowledge is
exploited in the proposed cache admission policy.
The initial content of the cache is prefetched at system start
and regards the most popular units of all groups, depending
on the cache’s size. Subsequently, the next fitting unit from
a user group will be prefetched. The next fitting unit is the
unit following the currently requested unit regarding popularity
within the current group. This policy is called ”simple cache
admission policy” and formally defined as follows:

prefetch=


unext if hit ucurrent
0 if hit ucurrent && hit unext
ucurrent ← unext else

However, this policy is inefficient, since unpopular units are
prefetched as well. Therefore, the second admission policy is
based on a rank calculation (rall) over all groups for each
unit. If the calculated global rank is below a predefined rank
(rank 0 is the highest rank level), the unit is considered for
prefetching. The impact of low popularity is minimized using
the logarithm of the group rank.

rall =
1

n

n∑
i=1

ln ri

If a unit is in the top 5 of one group and less popular in
another group, it is more likely that this unit is cached than a
unit that has an average popularity within several groups.
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Fig. 8. Hit rate comparison of pure, simple and rank-based admission using
LRU.

This approach was evaluated with a discrete-event based
simulation using Omnet++. The user requests were generated
with Medisyn [25], in a similar way as done in CDNSim.
For 100 units with different popularity, 10000 requests per
user group were generated. Initially, LRU was implemented as
the replacement strategy. The threshold was mapped to ranks
10, 15 and 20. Furthermore, we used CDNSim with the same
parameters to compare pure LRU without prefetching to the
non-sequential cache.
First, the hit rate comparison is done for the LRU-based
admission policies, the results are depicted in Fig. 8. The
rank-based admission policy shows an improvement of 5-
10 % according to the simple admission and up to 20 % of
improvement in comparison to the non-prefetching policy. It
can also be seen that the thresholds of the rank-based policy
show small differences in hit rate, but the number of prefetches
increases the higher the threshold is specified. For further
experiments the threshold of rank 10 is seen to be sufficient.
Although LRU supports popular units to remain longer in

the cache, for small cache sizes even popular units are often
replaced in the case of prefetching. Fig. 9 shows the factor of
requests sent to the server in comparison to the client requests.
This shows the maybe surprising result for small cache sizes
it would be more efficient to send the units directly from
the server, because the number of units sent from the server
exceeds the number of requests. For the simple admission
policy the server ought to send units in vain until 30 % of
cache size. Whereas the rank-based policy decreases the load
to an efficient level already at a cache size of 10-15 %. For
less unnecessary replacements LRU has to be substituted by
a replacement policy that considers the unit popularity.

A unit has to be prefetched and cached if it is popular
enough. The rank calculation of the admission policy can also
be applied to the replacement policy.
The effect on the load is shown in Fig.11. The simple
admission policy starts to be efficient from a cache size of
10 % in comparison to LRU replacement. Also the rank-based
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admission policy starts to be efficient from very small cache
sizes. However, this policy is complex and might not be used
for caches with limited computing resources. For this cases
the simple admission policy in combination with rank-based
replacement is preferable.
Fig. 10 compares the hit rate evolution for both replacement
policies. The comparison to pure LRU shows that the hit rate
increases remarkably if applying a combination of rank-based
admission and rank-based replacement. For a cache size of
20 % the hit rate differs by 40 %. Video CDN providers would
gain remarkable storage cost reductions if applying rank-based
caching.

V. CONCLUSION AND FUTURE WORK

In this paper we extended the definition of the syntax and
semantics of the Video Notation (ViNo) published in [26] and
in [1]. Its applicability for describing and analyzing video
transport is shown by simple examples and by the evaluation
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of an existing transport technique (CDN). For this reason
we investigated two calculation types: (1) a simple, generic
calculation that is always valid for the estimation of the best
case delay and (2) a router based calculation that is more
precise if the architecture is known in advance.
We showed in a caching scenario by taking advantage of ViNo
how the use of prefetching and pipelining reduces startup
delay. It is shown that ViNo could support content providers’
system design decisions without extensive simulations.
The analysis of the CDN simulation was further used to
investigate flexible access patterns in a non-sequential caching
technique. The next unit to prefetch is depending on the
popularity of this unit in all defined user groups. By comparing
these prefetching techniques LRU replacement was found to
replace units too frequent. Thus, LRU should be substituted
by a popularity based replacement. The popularity based
replacement technology improves hit rate and reduces the
load of the server remarkably. This proactive caching and
prefetching policy can be an efficient technique for multimedia
CDNs, because storage and costs would be reduced and quality
be increased (smaller start-up delays). The calculation effort of
rank-based prefetching combined with rank-based replacement
might have huge impact on the performance of a system. Thus,
the decision of which cache admission and replacement policy
to use depends on the resources available in the system to
analyze.
However, ViNo cannot fully substitute a simulation, since the
prediction of specific steps in a system (e.g., dynamic routing
paths) cannot be made with reasonable effort. ViNo can be
used as a tool for approximating general behavior of multime-
dia transport, e.g., to compute the best case delay on a miss or
on a hit. One of ViNo’s strength is the expression of different
transport techniques, which allows a simple comparison on the
first sight.

By using ViNo in research articles authors can explain new
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transport techniques. For example, a new flexible approach
can be formally described in a few lines. This would banish
a lot of ambiguity from the scientific discussion.
Future work will regard further QoS calculations beyond
delay, and the definition of unit loss. Another issue is dynamic
unit size, which will be needed for semantically meaningful
units. In this context ViNo will be applied to compare
self-organizing multimedia transport to existing techniques. It
is expected that in non-sequential cases the flexible system
will outperform the traditional systems regarding startup
delay and user experience, even though the proposed caching
technique will also have its costs.
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APPENDIX

The following ViNo specification was created by using
ANTLR a LL(*) parser generator [27]. Since special signs
are not allowed in ANTLR, we used < Q for ←Q.

SEQ : ’<’ Q? ;
PAR : ’||’;
NUMBER : (’0’..’9’);
VALUE : NUMBER+;
LETTER : (’a’..’z’|’A’..’Z’);
NAME : LETTER (NUMBER | LETTER)*;
Q : (’_’ NAME (’=’ | ’>=’ | ’<=’) VALUE)+;

unit : NAME;

primitive: unit | group;

par: (PAR primitive)+;

seq: (SEQ primitive)+;

pargroup: ’[’ primitive par ’]’;

seqgroup: ’(’ primitive seq ’)’;

group: pargroup | seqgroup;

comp: primitive ( par | seq )?;
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