
Combining Formal Methods and MDE Techniques
for Model-driven System Design and Analysis

AngeloGargantini∗, Elvinia Riccobene,† and Patrizia Scandurra∗
∗Dipartimento di Ingegneria dell’Informazione e Metodi Matematici (DIIMM)

Università di Bergamo, Viale Marconi, 5 - 24044 Dalmine (BG), Italy
Email: {angelo.gargantini,patrizia.scandurra}@unibg.it
†Dipartimento di Tecnologie dell’Informazione (DTI)

Università degli Studi di Milano, via Bramante 65 - 26013 Crema (CR), Italy
E-mail: elvinia.riccobene@dti.unimi.it

Abstract—The use offormal methods, based on rigorous math-
ematical foundations, is essential for system specification and
proof, especially for safety critical systems. On the otherhand,
Model-driven Engineering (MDE) is emerging as new approach
to software development based on the systematic use of models as
primary artifacts throughout the engineering life-cycle by com-
bining domain-specific modeling languages (DSMLs) with model
transformers, analyzers, and generators. This paper presents our
position and experience on combining flexibility and automation
of the MDE approach with rigorousness and preciseness of formal
methods to achieve significant boosts in both productivity and
quality in model-driven design and analysis of software and
systems. An in-the-loop integration is proposed where, on one
hand, MDE principles are used to engineer a language and a tool-
set around a formal method for its practical adoption in systems
development life cycle, and, on the other hand, the same formal
method is used in the same MDE context to endow modeling
languages with a precise and (possibly) executable semantics
and to perform formal analysis of systems models written in
those languages. A concrete scenario of in-the-loop integration is
presented in terms of the Abstract State Machine formal method
and the Eclipse Modeling Framework. This integration allows
system design using the Eclipse Modeling Framework and formal
system analysis by Abstract State Machines in a seamless and
systematic way, as shown by a concrete case study.

Keywords-Formal methods; Model Driven Engineering; Ab-
stract State Machines; model semantics; model execution and
analysis

I. I NTRODUCTION

Using Formal Methods(FMs), which have rigorous math-
ematical foundations, for system development is nowadays
extremely important, especially for high-integrity systems
where safety or security need to be formally proved. On
the other hand, theModel-driven Engineering(MDE) [2],
[3] is emerging as a new paradigm in software engineering,
which bases system development on (meta-)modeling and
model transformations, and provides methods to build bridges
between similar or different technical spaces and domains.

Both approaches have advantages and disadvantages that we
here shortly summarize (see Fig. 1).

This paper is the extended version of the conference paper [1].
This work is supported in part by the Italian Government under the project

PRIN 2007D-ASAP: Architetture Software Adattabili e Affidabili per Sistemi
Pervasivi(2007XKEHFA).

Advantages of FMs The use of formal methods in system
engineering is becoming essential, especially during the early
phases of the development process. Indeed, an abstract model
of the system can be used to understand if the system under
development satisfies the given requirements (by simulation
and model-based testing), and guarantees certain properties
by formal analysis (validation & verification).

Disadvantages of FMsWhile there are several cases proving
the applicability of formal methods in industrial applications
and showing very good results, many practitioners are still
reluctant to adopt formal methods. Besides the well-known
lack of training, this skepticism is mainly due to: the com-
plex notations that formal techniques use rather than other
lightweight and more intuitive graphical notations, like the
Unified Modeling Language (UML) [4]; the lack of easy-
to-use tools supporting a developer during the life cycle
activities of system development, possibly in a seamless
manner; and the lack of integration among formal methods
themselves and their associated tools.

Advantages of MDE MDE technologies with a greater fo-
cus on architecture and automation yield higher levels of
abstraction in system development by promoting models
as first-class artifacts to maintain, analyze, simulate, and
eventually transform into into code or into other models.
Meta-modeling is a key concept of the MDE paradigm and
it is intended as a way to endow a language or a formalism
with an abstract notation, so separating the abstract syntax

M D E

F M

A d v a n t a g e s D i s a d v a n t a g e s

* De r i va t i ve a r t i f ac t s f o r
 t o o l d e v e l o p m e n t

* A u t o m a t e d m o d e l
 t rans fo rmat ions

* U s e r - f r i e n d l y n o t a t i o n

* L a c k o f i n t e g r a t i o n

* L a c k o f t o o l s

* H a r d n o t a t i o n

* L a c k o f s e m a n t i c s

* Un f i t f o r mode l
 ana lys is

* R i g o r o u s m a t h e m a t i c a l
 f o u n d a t i o n
* S u i t a b l e f o r m o d e l
 analys is

Fig. 1: Formal methods and MDE

1

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and semantics of the language from its different concrete
notations. Although the foundation constituents of the MDE
are still evolving, some MDE principles are implemented
in meta- modeling/programming frameworks like the OMG
MDA (Model Driven Architecture) [5], Model-integrated
Computing (MIC) [6], Software Factories and Microsoft
Domain-Specific Languages (DSLs) tools (as part of the
Visual Studio SDK) [7], Eclipse/EMF [8], etc. Metamodel-
based modeling languages are increasingly being defined and
adopted for specific domains of interest addressing the inabil-
ity of third-generation languages to alleviate the complexity
of platforms and express domain concepts effectively [3].

Disadvantages of MDE Although the definition of a lan-
guage abstract syntax by a metamodel is well mas-
tered and supported by many meta-modeling environ-
ments (EMF/Ecore, GME/MetaGME, AMMA/KM3, XMF-
Mosaic/Xcore, etc.), the semantics definition of this class
of languages is an open and crucial issue. Currently, meta-
modeling environments are able to cope with most syntactic
and transformation definition issues, but they lack of any
standard and rigorous support to provide the (possibly ex-
ecutable) semantics of metamodels, which is usually given
in natural language. This implies that most currently adopted
metamodel-based languages (such as the UML) are not yet
suitable for effective model analysis due to their lack of
a strong semantics necessary for a formal model analysis
assisted by tools.
In [1], we described how these two approaches can be

combined showing how the advantages of one can be exploited
to cover or weaken the disadvantages of the other. In this
paper, we extend and deepen this combination view with the
final goal of developing a model-driven approach for designing
systems according to the MDE principles, and analyzing
models by exploiting formal techniques.

Section II provides some related work concerning connec-
tions between formal methods and MDE.

Section III describes an overall process, based on the MDE
approach, for engineering a language and a tool-set for a
formal method. This allows to overcome the lack of user-
friendly notations, of integration of techniques, and of their
tool inter-operability. This deficiency still poses a significant
challenge for formal methods.

Section IV presents an approach to endow language meta-
models with precise executable semantics, and we discuss
techniques for formal analysis that can be used once formal
models are associated to language terminal models by, pos-
sibly, automatic model mapping. This addresses the problem
of expressing semantics of metamodel-based languages and
performing model validation and formal verification.

In order to combine in a tight way rigorousness and pre-
ciseness of FMs with flexibility and automation of the MDE,
in Section V anin-the-loopintegration is proposed, where the
same MDE technology and FM techniques are involved in
both the two activities: MDE for FMs and FMs for MDE.

Section VI provides basic concepts concerning the Abstract
State Machine formal method which is later used to implement
the in-the-loop approach.

Sections VII and VIII show a concrete scenario of in-the-

loop integration between the ASM formal method and the
EMF framework. On one side, we report our experience in
exploiting MDE methodology to engineer a language and
a tool-set for the ASMs in order to support their practical
use in systems development life cycle. On the other side,
we show how ASMs can be used to provide semantics to
languages defined in the MDE context and how to perform
formal analysis of models developed by MDE technology.

A complete case study is presented in Section IX which
shows how MDE-based technologies are used to define a
metamodel-based language for the Tic-Tac-Toe, and the ASM-
based semantic framework is used to define an executable
semantics of the language and to support semantics validation
and formal verification of models.

Section X shows how to get a tighter integration between
ASM and EMF byclosing the loop, i.e. by using the ASM
formal method itself to define the semantics of the ASMs in
the EMF framework.

Finally, our conclusion and future directions are provided
in Section XI.

II. RELATED WORK

Software languages play a cornerstone role in system devel-
opment. Language engineering processes have been considered
in many contexts of software engineering [9]. Concerning
the metamodeling technique of MDE for (software) language
engineering, many proposals have been presented, which pay
attention to the fact that language descriptions take different
form in different technical spaces (e.g. metamodels, schemas,
grammars, and ontologies) and typically multiple languages
(from different technical spaces) need to be used together and
integrated in most software development scenarios. A process
to engineer languages address several aspects of a language:
structure, constraints, textual and graphical representation,
parser/compiler, transformational and executional behavior.
Research usually faced only one of these aspects, therefore, a
comparison with related work can be often done considering
single aspects of a language development process.

Formal methods communities have only recently started
to settle their tools on metamodels and MDE platforms.
A non exhaustive list of such efforts follows. An Event-B
metamodel and an EMF-based Framework for Event-B have
been recently developed [10] to provide an EMF-based front-
end to the Rodin platform, an Eclipse-based IDE for Event-B
that provides support for refinement and mathematical proof
of Event-B models.

The Maude Formal Tool Environment [11] is an executable
rewriting logic language suited for the specification of object-
oriented open and distributed systems. It offers tool support
for reasoning about Maude specifications and, recently, also an
Eclipse plug-in that allows to connect the Maude environment
to the KM3 metamodeling framework using ATL (the ATLAS
Transformation Language) [12] transformations.

Within the Graph Transformation community, using the
concepts of graph transformations and metamodeling, the
transformation language GReAT (Graph Rewriting And Trans-
formation language) [13] has been designed to address the

2

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specific needs of the model transformation area of the Model
Integrated Computing. It is supported by tools that allow the
rapid prototyping and realization of transformation tools.

To the best of our knowledge, the development of the above
mentioned languages and tools did not follow a model-driven
engineering process like the one described here in Section III.

A metamodel for the ITU language SDL-2000 has been
also developed [14]. The authors present also a semi-automatic
reverse engineeringmethodology that allows the derivation of
a metamodel from a formal syntax definition of an existing
language. The SDL metamodel has been derived from the
SDL grammar using this methodology. A very similar method
to bridgegrammarwareand modelwareis also proposed by
other authors in [15] and in [16]. These approaches are
complementary to the development process presented in Sect.
III. Our approach has to be considered aforward engineering
process consisting in deriving a concrete textual notationfrom
an abstract metamodel.

A recent result [17] shows how to apply metamodel-based
technologies for the creation of a language description for
Sudoku. This is on the same line of our approach of exploiting
MDE technologies to develop a tool-set around ASMs.

Within the ASM community, a number of notations and
tools have been developed for the specification and analysis
[18]. The Abstract State Machine Language (AsmL) developed
by the Foundation Software Engineering group at Microsoft
is the greatest effort. AsmL is a rich executable specification
language, based on the theory of Abstract State Machines,
expression- and object- oriented, and fully integrated into
the Microsoft .NET framework. However, AsmL does not
provide a semantic structure targeted for the ASM method.
“One can see it as a fusion of the Abstract State Machine
paradigm and the .NET type system, influenced to an extent by
other specification languages like VDM or Z” [19]. Adopting
a terminology currently used, AsmL is a platform-specific
modeling language for the .NET type system. Of the remaining
tools for ASMs, let us mention the more popular ones: the
CoreASM, an extensible execution engine developed in Java,
TASM (Timed ASMs), an encoding of Timed Automata in
ASMs, and a simulator-model checker for reactive real-time
ASMs [20] able to specify and verify First Order Timed
Logic (FOTL) properties on ASM models. Among these, the
CoreASM engine is the more comparable to our. Other specific
languages for the ASMs, no longer maintained, are ASM-SL,
which adopts a functional style being developed in ML and
which has inspired us in the language of terms, the AsmGofer
language based on the Gofer environment, and XASM which
is integrated in Montages, an environment generally used for
defining semantics and grammar of programming languages.
All the above tools, however, do not rely on MDE principles
and techniques, and, except CoreASM that is based on an
extensible architecture, none of the others are designed to
support model exchange and tool integration. Recently, a
metamodel for the AsmL language is available as part of a
zoo of metamodels defined by using the KM3 meta-language.
However, this metamodel is not appropriately documented or
described elsewhere, so this prevented us to evaluate it.

Regarding the derivation of concrete grammars for meta-

models, developing a grammar for the ASMs from the meta-
model was challenging and led us to the definition of a bridge
between grammars and metamodels as explained in [21]. This
part of the process required at least six man month. Although
we did not automatize these rules, because no advanced model-
to-text tools were available at that time and because we wanted
to derive only one grammar for AsmetaL, the rules may be
easily reused for other formalisms. Several model-to-texttools
exist now: EMFText [22] working for Ecore metamodels,
TCS [23] (Textual Concrete Syntax) for metamodels written
in KM3, TEF (Textual Editing Framework) for EMF-based
metamodels, etc. Vice versa, Xtext [24] allows to derive
a language metamodel from the language concrete textual
grammar. An overview of textual grammars and metamodel
is given in [25]. Other more complex model-to-text tools,
capable of generating text grammars from specific MOF
based repositories, exist [26], [27]. These tools render the
content of a MOF-based repository (known as a MOFlet) in
textual form, conforming to some syntactic rules (grammar).
However, though automatic, since they are designed to work
with any MOF model and generate their target grammar based
on predefined patterns thus they do not permit a detailed
customization of the generated language.

On the problem of integrating graphical notations and
formal methods, [28] shows how the process algebra CSP
and the specification language Object-Z, can be integrated into
an object-oriented software engineering process employing the
UML as a modeling and Java as an implementation language.
In [29], the author presents an approach to formal methods
technology exploitation which introduces formal notations into
critical systems development processes. Furthermore, [30] pro-
poses a metamodel-based transformation technique, which is
founded by a set of structural and semantic mappings between
UML and B, to assist derivation of formal B specifications
from UML diagrams. All these approaches are based on
translating graphical models to formal specifications, andare
similar to our approach on moving from terminal models of a
metamodel-based language to an ASM specification. However,
they are tailored for the UML, while our approach refer to
generic metamodel-based languages, and they perform only
one side of the in-the-loop integration.

An MDE-based approach for integrating different formal
methods was recently proposed in [31]. As in our approach,
formal models are introduced into MDE as domain specific
languages by developing their metamodels. Then, transfor-
mation rules are defined to obtain notation bridges. At last,
model-to-text syntax rules are developed, so to map models
into programs. As case study, the approach was applied for
bridging MARTE to LOTOS. The main goal of their work is to
integrate different formal notations in software development,
however they do not provide semantics to them. General
challenges of tool integration are discussed in [32], wherea
software language engineering solution technique is presented
that apply MDE principles to address tool interoperability.

Concerning the problem of specifying the semantics of
metamodel-based languages, some recent works, such as
Kermeta [33], aim at providing executability into current
metamodeling frameworks. Another effort toward this same

3

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

direction is presented in [34] where the authors describe the
M3Actions framework to support operational semantics for
EMF models. The Maude formalism is also proposed in [35]
as a way for specifying the semantics of visual modeling
languages.

On the application of ASMs for specifying the execution
semantics of metamodel-based languages in a MDE style,
we can mention the translational approach described in [36].
They propose asemantic anchoringto well-established formal
models of computation (such as FSMs, data flow, and discrete
event systems) built upon AsmL, by using the transforma-
tion language GME/GReAT. The proposed approach offers
up predefined and well-defined sets ofsemantic unitsfor
future (conventional) anchoring efforts. However, we see two
main disadvantages in this approach: first, it requires well
understood and safe behavioral language units and it is not
clear how to specify the language semantics from scratch when
these language units do not yet exist; second, inheterogeneous
systems, specifying the language semantics as composition
of some selected primary semantic units for basic behavioral
categories [37] is not always possible, since there may exist
complex behaviors which are not easily reducible to a com-
bination of existing ones. Still concerning the translational
category, in [38] the dynamic semantics of the AMMA/ATL
transformation language was specified in the XASM [39] ASM
dialect. A direct mapping from the AMMA meta-language
KM3 to an XASM metamodel is used to represent metamodels
in terms of ASM universes and functions, and this ASM model
is taken as basis for the dynamic semantics specification of the
ATL metamodel. However, this mapping is neither formally
defined nor the ATL transformation code which implements
it have been made available in the ATL transformations Zoo
or as ATL use case [12]; only the Atlantic XASM Zoo
[40], a mirror of the Atlantic Zoo metamodels expressed
in XASM (as a collection of universes and functions), has
been made available. A further recent result [41] proposes
ASMs, Prolog, and Scheme as description languages in a
framework named EProvide 2.0 for prototyping the operational
semantics of metamodel-based languages. Their approach is
also translational as it is based on three bridges: a physical,
a logical, and a pragmatical bridge between grammarware
language and modeling framework.

By exploiting our ASM-based semantic framework [42], we
also defined the semantics of the AVALLA language [43] of
the AsmetaV validator, a domain-specific modeling language
for scenario-based validation of ASM models. Moreover, in
[44] we adapt one of the techniques in [42], themeta-hooking,
for UML profiles, and we show its application to theSystemC
Process (SCP) state machinesformalism of the SystemC UML
profile [45].

III. MDE FOR FMS

Applying the MDE development principles to a formal
method has the overall goal of engineering a language and
a tool-set around the formal method in order to support its
practical use in systems development life cycle.

The MDE methodology for engineering software languages
is well established in the context of domain-specific languages

[46]. Nevertheless, this model-driven development process can
be adapted to formal methods, too.

The first step of this engineering process is thechoice of a
metamodeling framework and its supporting technologies. In
principle, the choice of a specific meta-modeling framework
should not prevent the use of models in other different meta-
modeling spaces, since model transformations among meta-
modeling framework should be theoretically supported by the
environments. However, although in theory one could switch
framework later, a commitment with a precise meta-modeling
framework is better done at the very early stage of the
development process, mainly for practical reasons. The chosen
MDE framework should support easy (e.g., graphical) editing
of (meta) models, model to model transformations, and text to
model and model to texts mappings to assist the development
of concrete notations in textual form. It should also provide a
mapping towards programming languages (i.e. API artifacts)
to allow the integration with other software applications.

Once a metamodeling framework has been chosen, the
further main steps, that might require iterative processing, of
the process are the following.
Design of a language abstract syntax.In the MDE context,

theabstract syntaxof a specification language is defined by
means of ametamodel[47]. It is an object-oriented model
of the vocabulary of the language. It represents concepts
provided by the language, the relationships existing among
those concepts, and how they may be combined to create
models. Precise guide lines exist (e.g., [46]) to drive this
modeling activity that leads to an instantiation of the chosen
metamodeling framework for a specific domain of interest.
This is a critical process step since the metamodel is the
starting point for tool development.

Development of tools.Software tools are developed starting
from the language metamodel. They can be classified in
generated, based, andintegrated, depending on the decreas-
ing use of MDE generative technologies for their develop-
ment. The effort required by the user increases, instead.
Software tools automatically derived from the metamodel
are considered generated. Based tools are those developed
exploiting artifacts (APIs and other concrete syntaxes) and
contain a considerable amount of code that has not been
generated. Integrated tools are external and existing tools
that are connected to the language artifacts: a tool may use
just the XMI format, other tools may use the APIs or other
derivatives. In the sequel we explain these kinds of tools.
1) Development of language artifacts.From the language
metamodel, severallanguage artifactsare generated for
model handling – i.e. model creation, storage, exchange,
access, manipulatation –, and these artifacts can be reused
during the development of other applications. Artifacts are
obtained by exploiting standard or proprietary mappings
from the metamodeling framework to several technical
spaces, as XMLware for model serialization and interchange,
and Javaware for model representation in terms of pro-
grammable objects (through standard APIs).
2) Definition and validation ofconcrete syntax(es). Lan-
guage concrete notations (textual, graphical or both) can be
introduced for the human use of editing models conforming

4

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to the metamodel. Several tools exist to define (or derive)
concrete textual grammars for metamodels. For example,
EMFText [22] allows defining text syntax for languages de-
scribed by an Ecore metamodel and it generates an ANTLR
grammar file. TCS [23] (Textual Concrete Syntax) enables
the specification of textual concrete syntaxes for Domain-
Specific Languages (DSLs) by attaching syntactic informa-
tion to metamodels written in KM3. A similar approach
is followed by the TEF (Textual Editing Framework) [48].
Other tools, like the Xtext by openArchitectureWare [49],
following different approaches, may fit in our process as
well. Depending on the degree of automation provided by the
chosen framework, concrete syntax tools can be classified
between generated and based software.
Besides to be defined, concrete grammars must be also
validated. To this aim, a pool of models written in the
concrete syntax and acting as benchmark has to be selected.
During this activity it is important to collect information
about the coverage of language constructs (classes, attributes
and relations) to check that all them are used by the exam-
ples. Writing wrong models and checking that they are not
accepted is important as well. Coverage evaluation can be
performed by using a code coverage tool and instrumenting
the parser accordingly. This validation activity is also useful
to provide confidence that the metamodel correctly captures
concepts and constructs of the underline formal method.
3) Development of other tools.Metamodel, language arti-
facts, and concrete syntaxes are the foundations over which
new tools can be developed and existing ones can be
integrated.

IV. FM S FORMDE

Applying a formal method to a languageL defined in a
meta-modeling framework should have the following overall
goals: (a) allow the definition of the behaviors (semantics)of
models conforming toL and (b) provide several techniques
and methods for the formal analysis (e.g., validation, property
proving, model checking, etc.) of such models.

A. Language semantics definition

A metamodel-based languageL has a well-defined seman-
tics if a semantic domainS is identified and a semantic
mappingMS : A → S is provided [50] between theL’s
abstract syntaxA (i.e. the metamodel ofL) and S to give
meaning to syntactic concepts ofL in terms of the semantic
domain elements.

The semantic domainS and the mappingMS can be de-
scribed in varying degrees of formality, from natural language
to rigorous mathematics. It is very important that bothS

and MS are defined in a precise, clear, and readable way.
The semantic domainS is usually defined in some formal,
mathematical framework (transition systems, pomsets, traces,
the set of natural numbers with its underlying properties, are
examples of semantic domains). The semantic mappingMS

is not so often given in a formal and precise way, possibly
leaving some doubts about the semantics ofL. Thus, a precise
and formal approach to define it is desirable.

AML

A

ω

EE

MS

((
M // A′

ω

ZZ

M
′

S ///o/o/o/o/o/o/o/o/o/o/o S′ = S

m

ω

OO

�
M // m′

ω

OO

�

M
′

S ///o/o/o/o/o/o/o MS(m) = M ′

S
(m′)

Fig. 2: The building functionM

Sometimes, in order to give the semantics of a languageL,
another helper languageL′, whose semantics is clearly defined
and well established, is introduced. Therefore,M ′

S
and S′

should be already well-defined forL′. L′ can be exploited
to define the semantics ofL by:

1) takingS′ as semantic domain forL too, i.e.S = S′,
2) introducing abuilding functionM : A → A′, beingA′

the abstract syntax ofL′, which associates an element of
A′ to every construct ofA, and

3) defining the semantic mappingMS : A → S as

MS = M ′

S ◦ M

TheM functionhooksthe semantics ofA to theS′ semantic
domain of the languageL′. The complexity of this approach
depends on the complexity of building the functionM .

Note that the functionM can be applied to terminal models
conforming to A in order to obtain models conforming to
A′, as shown in Fig. 2. In this way, the semantic mapping
MS : A → S associates a well-formed terminal modelm

conforming toA with its semantic modelMS(m), by first
translatingm to m′ conforming toA′ by means of theM
function, and then applying the mappingM ′

S
which is already

well-defined.
To be a good candidate, a languageL′ should (i) be abstract

and formal to rigorously define model behavior at different
levels of abstraction, but without formal overkill; (ii) beable
to capture heterogeneous models of computation (MoC) in
order to smoothly integrate different behavioral models; (iii)
be endowed with a model refinement mechanism leading to
correct-by-construction system artifacts. Furthermore,as MDE
specific requirement (iv),L′ should be possibly endowed
with a metamodel-based definition in order to automatize
the application of building functionM by exploiting MDE
techniques of automatic model transformation.

B. Formal analysis

Besides the above stated requirements about the expressive
power ofL′ as notation, it is important that formal analysis of
models written inL′ is supported by a set of tools for model
execution, as simulation or testing, and for model verification.
Indeed, the main goal of applying a formal notation to the
semantics ofL is to allow formal analysis of the models
written in L.

5

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As main formal activities that are allowed by applying a
formal method to a languageL, we identify at least:model
validation andproperty verification.

Validation is intended as the process of investigating a
model (intended as formal specification) with respect to its
user perceptions, in order to ensure that the specification really
reflects the user needs and statements about the application,
and to detect faults in the specification as early as possible
with limited effort. Techniques for validation includescenarios
generation, when the user builds scenarios describing the
behavior of a system by looking at the observable interactions
between the system and its environment in specific situations;
simulation, when the user provides certain input and observes
if the output is the expected one or not (it is similar to
code debugging);model-based testing, when the specification
is used as oracle to compute test cases for a given critical
behavior of the system at the same level of the specification.
These abstract test cases cannot be executed at code level since
they are at a wrong level of abstraction. Executable test cases
must be derived from the abstract ones and executed at code
level to guarantee conformance between model and code.

In any case, validation should precede the application of
more expensive and accurate methods, likerequirements for-
mal analysisand verification of properties, that should be
applied only when a designer has enough confidence that
the specification captures all informal requirements. Formal
verification has to be intended as the mathematical proof of
system properties, which can be performed by hand or by the
aid of model checkers (which are usable when the variable
ranges are finite) or of theorem provers (which require strong
user skills to drive the proof).

Model validation techniques can be also used during the
development of the language semantics ofL for semantic
validation. This activity consists in checking (or proving, if
possible) that the building functionM really captures the
intended semantics ofL, and it must be performed before any
formal analysis of models. Indeed every later formal activity
on models written inL is based onM and a faultyM would
jeopardize the results obtained.

V. I N-THE-LOOP INTEGRATION

Although the two activities of applying the MDE to a FM
and apply a FM to the MDE can be considered unrelated and
could be performed in parallel even by using two different
notations for the MDE and FMs, the best results can be
obtained by a tight integration between the MDE and a FM
in an in-the-loop integration approach. In this approach, the
MDE framework and the FM notation are the same in both
of the above activities and the application of the MDE to the
FM is carried out before the application of the FM to the
MDE. Thanks to the first activity, the FM will be endowed
with a metamodel and possibly a set of tools (e.g., a grammar,
artifacts, etc.) which can be used in the second activity to
automatize (meta-)model transformations and apply suitable
tools for formal analysis (i.e. validation and verification) of
models. Indeed, although for applying FM to the MDE it
is in principle not required that the FM is provided with a

M D E F M
a p p l y M D E t o F M
 (1)

a p p l y F M t o M D E (2)

Fig. 3: In the loop integration of FM and MDE

metamodel (see Sect. IV), a formal notation endowed with
a representation of its concepts in terms of a metamodel
would allow the use of MDE transformation languages (as
ATL) to define the building functionM and to automatize
the application ofM as model transformation by means of
a transformation engine. Therefore, having a metamodel is a
further constraint for an helper languageL′, and it justifies
why the second activity must precede the first one.

Sect. VII and VIII present our instantiation of thein-the-
loop integration with the EMF (Eclipse Modeling Framework)
as MDE framework and the ASMs (Abstract State Machines)
as formal method. This choice is justified by the following
motivations:

• EMF is based on an open-source Eclipse framework and
unifies the three well known technologies, i.e. Java, XML,
and UML, currently used for software development.

• ASMs own all the characteristics of preciseness, ab-
straction, refinement, executability, metamodel-based def-
inition that we identified as the desirable properties a
FM should have in order to be a good candidate for
integration.

In order to make a further step in the direction of a tighter
integration between ASM and EMF, Sect. X shows how
effectively we canclose the loop(see Fig. 3) by describing
the semantics of ASMs representation in the EMF framework
by using the ASM formal method itself.

VI. A BSTRACT STATE MACHINES

Abstract State Machines are an extension of FSMs [51],
where unstructured control states are replaced by states com-
prising arbitrary complex data. Thestatesof an ASM are
multi-sorted first-order structures, i.e. domains of objects with
functions and predicates (boolean functions) defined on them,
while thetransition relationis specified by “rules” describing
the modification of the functions from one state to the next.

Basically, a transition rule has the form ofguarded update
“ if Conditionthen Updates” whereUpdatesis a set of function
updates of the formf(t1, . . . , tn) := t that are simultaneously
executed whenCondition is true, f is an arbitraryn-ary
function, andt1, . . . , tn, t are first-order terms. To fire this
rule to a stateSi, i ≥ 0, evaluate all termst1, . . . , tn, t at Si

and update the functionf to t on parameterst1, . . . , tn. This
produces another stateSi+1 which differs fromSi only in the
new interpretation of the functionf . An ASM M is therefore
a finite set of rules for such guarded multiple function updates.

Function are classified asderivedfunctions, i.e. those com-
ing with a specification or computation mechanism given in
terms of other functions, andbasic functions which can be

6

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

static(never change during any run of the machine) ordynamic
(may change as a consequence of agent actions orupdates).
Dynamic functions are further classified into:monitored(only
read, as events provided by the environment),controlled(read
and write),sharedandoutput (only write) functions.

These is a limited but powerful set ofrule constructors
that allow to express simultaneous parallel actions (par),
sequential actions (seq), iterations (iterate, while, rec-
while), and submachine invocations returning values. Ap-
propriate rule constructors also allow non-determinism (exis-
tential quantificationchoose) and unrestricted synchronous
parallelism (universal quantificationforall).

A computationof an ASMM is a finite or infinite sequence
S0, S1, . . . , Sn, . . . of states ofM , whereS0 is an initial state
and eachSn+1 is obtained fromSn by firing simultaneously
all of the transition rules which are enabled inSn.

The notion of ASMs formalizes simultaneous parallel ac-
tions of a single agent, either in an atomic way,Basic ASMs,
or in a structured and recursive way,Structured or Turbo
ASMs. Furthermore, it supports a generalization where mul-
tiple agents interact in parallel in a synchronous/asynchronous
way, Synchronous/Asynchronous Multi-agent ASMs.

Although the ASM method comes with a rigorous math-
ematical foundation, ASMs provide accurate yet practical
industrially viable behavioral semantics for pseudocode on
arbitrary data structures. We quote here thisworkingdefinition
of an ASM defined as a tuple (header, body, main rule,
initialization).

Theheadercontains thenameof the ASM and itssignature,
namely all declarations of domains, functions, and predicates.
The header may contain alsoimportandexportclauses, i.e., all
names for functions and rules that are, respectively, imported
from other ASMs, and exported from the current one. We
assume that there are no name clashes in these signatures.

The body of an ASM consists of (static) domain and
(static/derived) function definitions according to domainand
function declarations in the signature of the ASM. It also
contains declarations (definitions) of transition rules and def-
initions of axioms for invariants one wants to assume for
domains and functions of the ASM.

The (unique)main ruleis a transition rule and represents the
starting point of the machine program (i.e. it calls all the other
ASM transition rules defined in the body). The main rule is
closed(i.e. it does not have parameters) and since there are no
free global variables in the rule declarations of an ASM, the
notion of a move does not depend on a variable assignment,
but only on the state of the machine.

The initialization of an ASM is a characterization of the
initial states. An initial state defines an initial value for
domains and functions declared in the signature of the ASM.
Executingan ASM means executing its main rule starting from
a specified initial state.

A complete mathematical definition of the ASM method
can be found in [52], together with a presentation of the great
variety of its successful application in different fields such as:
definition of industrial standards for programming and model-
ing languages, design and re-engineering of industrial control
systems, modeling e-commerce and web services, design and

Fig. 4: Package structure of the AsmM metamodel

analysis of protocols, architectural design, language design,
verification of compilation schemas and compiler back-ends,
etc.

VII. EMF FOR ASMS

In addition to its mathematical-based foundation, a
metamodel-based definition for ASMs has been given [53],
[54]. This ASM metamodel allowed us to apply MDE
techniques for developing a general framework, called
ASMmETA- modeling framework (ASMETA) [55], for a wide
inter-operability and integration of new and existing tools
around ASMs (ASM model editors, ASM model repositories,
ASM model validators, ASM model verifiers, ASM simula-
tors, ASM-to-Any code generators, etc.).

A. ASM Metamodel

We started by defining a metamodel [55], [56], [53], [54],
the Abstract State Machine Metamodel(AsmM), as abstract
syntax description of a language for ASMs. The aim was
that of developing aunified abstract notation for the ASMs,
independent from any specific implementation syntax and
allowing a more direct encoding of the ASM mathematical
concepts and constructs.

The complete AsmM metamodel is organized in one pack-
age calledASMETA containing 115 classes, 114 associations,
and 150 class invariants expressed in the OMG OCL language
[57], approximatively. TheASMETA package is further divided
into four packages as shown in Fig. 4. Each package covers
different aspects of the ASMs. The dashed gray ovals in
Fig. 4 denote packages representing the notions ofState
and Transition System, respectively. TheStructure pack-
age defines architectural constructs (modules and machines)
required to specify the backbone of an ASM model. The
Definitions package contains all basic constructs (func-
tions, domains, constraints, rule declarations, etc..) which char-
acterize algebraic specifications. TheTerms package provides
all kinds of syntactic expressions which can be evaluated
in a state of an ASM. TheTransitionRules package
contains all possible transition rules schemes of Basic and
Turbo ASMs. All derived transition rules are contained in
theDerivedTransitionRules package. These rules are
other ASM transition rule schemes derived from the basic

7

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5: Backbone

and the turbo ones, respectively. Although they could be
easily expressed at model level in terms of other existing rule
schemes, they are considered “syntactic sugar” and therefore
they have been included in the metamodel. Example of such
rules are the case-rule and the (turbo) iterative/recursive while-
rule. All relations between packages are of typeuses.

We present here only a very small fragment of the AsmM
whose complete description can be found in [53], [55]. Fig.
5 shows the backbone of abasic ASM. An instance of
the root classAsm represents an entire ASM specification.
According to the definition given in Sect. VI, a basic ASM
has a name and is defined by aHeader (to establish
the signature), aBody (to define domains, functions, and
rules), amain rule, and a set of initial states (instances of
the Initialization class). All possible initial states are
linked to an ASM by the association endinitialState
and one initial state is elected asdefault (see the association
enddefaultInitialState). ASM rule constructors are
represented by subclasses of the classRule, not reported here.

B. ASMETA tool-set

From the AsmM, by exploiting the MDE approach and
its facilities (derivative artifacts, APIs, transformation li-
braries, etc.), we obtained in a generative manner (i.e. semi-
automatically) several artifacts (an interchange format,APIs,
etc..) for the creation, storage, interchange, access and manip-
ulation of ASM models [58]. The AsmM and the combination
of these language artifacts lead to an instantiation of the EMF
metamodeling framework for the ASM application domain,
the ASMETA framework that provides a global infrastructure

AsmM

AsmEE AsmetaS

AsmetaV

Asm XMI

Asm Java Api

AsmetaL

ATGT

generated based

integrated

AsmetaLc
AsmetaSMV

Fig. 6: TheASMETA tool set

for the interoperability of ASM tools (new and existing ones)
[59].

The ASMETA tool set (see Fig. 6) includes (among other
things) a textual concrete syntax,AsmetaL, to write ASM
models (conforming to the AsmM) in a textual and human-
comprehensible form; a text-to-model compiler,AsmetaLc,
to parse AsmetaL models and check for their consistency
w.r.t. the AsmM constraints expressed in the OCL language;
a simulator,AsmetaS, to execute ASM models; theAvalla
language for scenario-based validation of ASM models, with
its supporting tool, theAsmetaVvalidator; a model checker
AsmetaSMV[60] for model verification by NuSMV; theATGT
tool that is an ASM-based test case generator based upon
the SPIN model checker; a graphical front-end calledASMEE
(ASM Eclipse Environment) which acts as IDE and it is an
eclipse plug-in.

All the above artifacts/tools are classified in:generated,
based, andintegrated. Generated artifacts/tools are derivatives
obtained (semi-)automatically by applying appropriate Ecore
projections to the technical spaces Javaware, XMLware, and
grammarware. Based artifacts/tools are those developed ex-
ploiting the ASMETA environment and related derivatives; an
example of such a tool is the simulator AsmetaS). Integrated
artifacts/tools are external and existing tools that are connected
to the ASMETA environment.

VIII. ASM S FOREMF

We here describe how the ASM formal method can be
exploited as helper language to define a formalsemantic
framework to provide languages with their (possibleexe-
cutable) semantics natively with their metamodels. We also
describe how the ASM tool-set provides a concrete support
for model analysis.

A. Language semantics definition

Recall, from Sect. IV, that the problem of giving the seman-
tics of a metamodel-based languageL is reduced to define the
function M : A → A′, beingA andA′ the language and the
helper language abstract syntaxes, respectively. Let us assume
the ASMs as helper language satisfying the requirements,
given in Sect. IV, of having a mathematical well-founded se-
mantics and a metamodel-based representation. The semantic
domainSAsmM is the first-order logic extended with the logic
for function updates and for transition rule constructors defined
in [52] and thesemantic mappingMS : AsmM → SAsmM

to relate syntactic concepts to those of the semantic domain
is given in [58].

8

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

trasf. application

Γ
Amodel

A

AsmM
defined

m

intialization

metamodel

ι

ι
apply

MOFMeta−metamodel

M(m)

conforms to

trasf. definition

Fig. 7: Semantic hooking

The semantics of a metamodel-based language is expressed
in terms of ASM transition rules by providing the building
function M : A −→ AsmM . As already mentioned, the
definition of the functionM may be accomplished by different
techniques (see [42]), which differ in the way a terminal model
is mapped into an ASM. As example of such techniques, the
semantic hookingtechnique is presented below. This technique
is used in Section IX-B to provide behavioral semantics of the
language in our case study.

Thesemantic hookingendows a language metamodelA with
a semantics by means of a unique ASM for any model con-
forming to A. By using this technique, designershook to the
language metamodelA an abstract state machineΓA, which is
an instance ofAsmMand contains all data structures modeling
elements ofA with their relationships, and all transition rules
representing behavioral aspects of the language.ΓA does not
contain the initialization of functions and domains, whichwill
depend on the particular instance ofA. The function which
adds the initialization part is calledι. Formally, the building
function M is given by M(m) = ιA(ΓA, m), for all m

conforming toA.
ΓA: AsmM , is an abstract state machine which contains

only declarations of functions and domains (the signature)and
the behavioral semantics ofL in terms of ASM transition rules.

ιA: AsmM × A −→ AsmM , properly initializes the
machine.ιA is defined on an ASMa and a terminal model
m instance ofA; it navigatesm and sets the initial values for
the functions and the initial elements in the domains declared
in the signature ofa. The ιA function is applied toΓA and to
the terminal modelm for which it yields the final ASM.

Examples of applying the semantic hooking technique to
define the semantics of a metamodel-based language can be
found in [42] for a metamodel of Finite State Machines and
in [1] for a metamodel of the Petri net formalism. The latter is
also reported in Appendix A and can be viewed as an example
which facilities the reader in understanding our approach since
the semantics of Petri nets is well-known.

B. Formal analysis

The ASM-based semantic framework supports formal anal-
ysis of ASM models by exploiting theASMETA tool-set (see
Section VII-B for details) for model validation and verifica-
tion.

1) Model validation: Simple model validation can be per-
formed bysimulatingASM models with the ASM simulator
(see Section VII-B) to check a system model with respect
to the desired behavior to ensure that the specification really
reflects the user needs and statements about the system, and
to detect faults in the specification as early as possible with
limited effort.

The AsmetaS simulator can be used in a standalone way
to provide basic simulation of the overall system behavior.As
key features for model validation, AsmetaS supportsaxiom
checkingto check whether axioms expressed over the currently
executed ASM model are satisfied or not,consistent updates
checkingfor revealing inconsistent updates,random simulation
where random values for monitored functions are provided by
the environment,interactive simulationwhen required input
are provided interactively during simulation, and configurable
loggingfacilities to inspect the machine state. Axiom checking
and random simulation allow the user to perform a draft
system validation with minimal effort, while interactive sim-
ulation, although more accurate, requires the user interaction.

The most powerful validation approach is thescenario-
based validation[61] by the ASM validator (see Section
VII-B). The AsmetaV validator is based on the AsmetaS simu-
lator and on the Avalla modeling language. This last provides
constructs to express execution scenarios in an algorithmic
way as interaction sequences consisting ofactionscommitted
by the user actor to set the environment (i.e. the values
of monitored/shared functions), tocheck the machine state,
to ask for theexecution of certain transition rules, and to
enforce the machine itself to make onestep (or a sequence
of steps bystep until) as reaction of the actor actions.

AsmetaV reads a user scenario written in Avalla, it builds
the scenario as instance of the Avalla metamodel by means
of a parser, it transforms the scenario and the AsmetaL
specification which the scenario refers to, to an executable
AsmM model. Then, AsmetaV invokes the AsmetaS inter-
preter to simulate the scenario. During simulation the user
can pause the simulation and watch the current state and value
of the update set at every step, through a watching window.
During simulation, AsmetaV captures any check violation and
if none occurs it finishes with a “PASS” verdict. Besides a
“PASS”/“FAIL” verdict, during the scenario running AsmetaV
collects in a final report some information about thecoverage
of the original model; this is useful to check which transition
rules have been exercised.

2) Model checking:The ASMETA tool-set provides support
for temporal properties verification of ASM models by means
of the model checker AsmetaSMV [60], which takes in input
ASM models written in AsmetaL and maps these models into
specifications for the model checker NuSMV [62].

AsmetaSMV supports both the declaration ofComputation
Tree Logic(CTL) andLinear Temporal Logic(LTL) formulas.
CTL/LTL properties to verify are declared directly into the
ASM model as (special) axioms of the form:

axiom over [ctl | ltl] : p

where the over section specifies ifp is a CTL or a LTL
formula. No knowledge of the NuSMV syntax is required to

9

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model benchmark hooking
 function

AsmetaV

PASS/FAIL

COVERAGE

ASM models

scenarios

Fig. 8: Semantic validation by AsmetaV

the user in order to use AsmetaSMV.
3) Language semantics validation:The ASMETA tool-set

and the validation techniques can also be used forlanguage
semantics validation. Indeed, this activity is performed through
the validation of the hooking functionM presented in Section
VIII-A by applying it to a collection of meaningful examples.
The ASM models obtained form the application ofM to
the examples can be validated in different ways providing
increasing degrees of confidence in the semantics correctness.
Random simulationallows checking if errors like inconsistent
updates and type errors, occur.Interactive simulationcan
provide evidence that the semantics captures the intended be-
havior, but it requires the user to provide the correct inputs and
to judge the correctness of the observed behavior. The most
powerful validation approach is thescenario-based validation.
As shown in Fig. 8, a suitable set of models are selected
as benchmark for language semantic validation; these models
are translated into ASM models by the hooking functionM ;
moreover, a set of scenarios specifying the expected behavior
of the models must be provided by the user and are used
for validation. These scenarios can be written from scratchin
the Avalla language, or alternatively, if the languageL has
already a simulator, these scenarios may be derived from the
execution traces generated by such a simulator. The second
approach is useful to check the conformance of the semantics
implemented byLS with respect to the semantics defined
by the hooking functionM . The ASM validator provides
also useful information about the coverage obtained by the
scenarios.

IX. T HE TIC-TAC-TOE EXAMPLE

As a case study, we consider Tic-Tac-Toe as a language,
where a Tic-Tac-Toe board is an instance of the language.
We use MDE-based technologies to define a metamodel for a
description language of the Tic-Tac-Toe game, and the ASM-
based semantic framework for the definition of the execution
semantics of a board (for playing) including correctness check-
ing by validation and verification.

A. Tic-Tac-Toe abstract syntax

Fig. 9 shows the metamodel for the Tic-Tac-Toe. It describes
the static structure of a board (theBoard class) maintain-
ing data seen by users: rows (theRow class) and squares
(the Square class). A board has (see referenceshrows,
vrows, and drows): three horizontal rows, three vertical
rows, and two diagonal rows. Totally, in a board there are
nine squares (see the referencesquare), three per each row
(thesquareInRow reference). TheSKind enumeration type
denotes the kind of symbols a square can contain (cross,
nought, empty). The default symbol is empty.

Fig. 9: A metamodel for Tic-Tac-Toe

Fig. 10: Examples of Tic-Tac-Toe boards

Each square is contained in one row and one vertical row.
Some squares may be contained in more than one row. The
square in the center, for example, is contained in the middle
vertical row and horizontal row, and in the two diagonal rows.
All these structural constraints can be expressed in OCL. For
example, the following OCL invariant

Contex t : Board
i nv RowColumnCommonSquares :
s e l f . hrow . squareInRow−>

i n t e r s e c t i o n (s e l f . vrow . squareInRow)−> s i z e ()=1

states that an horizontal row and a vertical row can only have
exactly one square in common.

Fig. 10 shows (using a graphical concrete syntax) examples
of Tic-Tac-Toe boards as instances (terminal models) of the
Tic-Tac-Toe metamodel in Fig 9.

B. Tic-Tac-Toe semantics definition

According to the hooking technique, first we have to specify
an ASM ΓTic−Tac−Toe containing the signature and the
behavioral semantics of the Tic-Tac-Toe metamodel in terms
of ASM transition rules. Listings 1 (for the signature), 2
and 3 (for the transition rules) report portions of a possible
ΓTic−Tac−Toe in AsmetaL for a computer (symbol O) vs user
(symbol X) Tic-Tac-Toe game. The complete ASM model is
reported in Appendix B.

The signature (see Listing 1) introduces domains and func-
tions for representing a board such as the enumerationSKind,
domains for squares and rows as subsets of the predefined
Integer domain, and so on. The signature also provides
domain and functions for managing the overall game. Each
player takes alternating turns (see the functionstatus)
trying to earn three of their symbols in a row horizontally,
vertically, or diagonally. The game can end with a player
winning (represented by thewhoWon function) by getting
three of his/her symbol in row (as denoted by the function
hasThreeOf) or end in a draw, i.e. no spaces left on the
board with none winning (as denoted by thenoSquareLeft
function). The winner is determined by position of board; no
history needs to be recorded (only board position before and
after turn). If there is no winner after nine clicks, there isa

10

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 1: ΓTic−Tac−Toe signature

asm Tictactoe
signature:

//For representing a board
enum domain Skind = {CROSS|NOUGHT|EMPTY}
domain SquaresubsetofInteger
domain Row subsetofInteger
static squaresInRow: Prod(Row,Integer)−> Square
controlled symbol: Square−> Skind

//For managing the game
enum domain Finalres = {PLAYERX|PC|TIE}
enum domain Status = {TURNX|CHECKX|TURNPC|CHECKPC

|GAMEOVER}
monitored playerX:Square// move of X
controlled status: Status
controlled whoWon: Finalres
derived noSquareLeft : Boolean
derived hasThreeOf: Prod(Row,Skind)−> Boolean

//For PC strategies
controlled count: Integer
derived openingPhase: Boolean
controlled lastMoveX: Square
static isCorner: Square−> Boolean
static isEdge: Square−> Boolean
static isCenter: Square−> Boolean
derived hasTwo: Row−> Boolean
static opposite: Square−> Square

tie. Note that the square selected by the player X (the user) is
represented by a monitored functionmoveX, and therefore is
provided at each step as input value to the ASM; the computer
move (the square to mark) is instead calculated according to
some playing strategies. Further domains and functions are
introduced in the signature to implement these PC strategies,
as better explained later in the text.

The behavior of the overall game is provided by the main
rule r_Main (see Listing 2) where at each step a check for a
winner or a tie (ruler_checkForAWinner) or a move of a player
is executed depending on the status of the game. The two rules
r_movePlayerXandr_movePCspecify the execution behavior
of the two players. The behavior of the user (player X) is
straightforward as the square to mark is provided interactively
through the monitored functionmoveX. The behavior of the
computer depends instead by the chosen strategy as formalized
by the invokedr_tryStrategyrule.

Listing 3 reports the definition of ther_tryStrategyrule and
of the invoked macro rules for making a computer play the
game. To this goal, we formalize by ASM rules a children’s
strategy that is divided in two phases:opening phase(opening
of the game) anddraw phase(after opening of both players).
Note that to build an unbeatable opponent (especially if we
want to learn a computer to play it), we need to use aminimax
approach of Game Theory. We remark that this is out of the
scope of this work. So, here we limit to express a children’s
strategy.

For the opening phase (see ther_opening_strategyrule in
Listing 3), as first player the computer has three possible
positions to mark during the first turn. Superficially, it might
seem that there are nine possible positions, corresponding
to the nine squares in the board. However, by rotating the

Listing 2: ΓTic−Tac−Toe transition rules for game management

asm Tictactoe
...
rule r_movePC =par

r_tryStrategy[NOUGHT]
count := count + 1
status := CHECKPC

endpar

rule r_movePlayerX =if symbol(playerX)= EMPTY
then par

symbol(playerX):= CROSS
count := count + 1
lastMoveX := playerX
status := CHECKX

endpar
elsestatus := TURNX
endif

rule r_checkForAWinner($symbolin Skind) =
//GAME OVER WITH A WINNER?
if (exist $r in Row with hasThreeOf($r,$symbol))then
par

status := GAMEOVER
if $symbol = CROSSthen whoWon:= PLAYERX
elsewhoWon:= PC
endif

endpar
//GAME TIE?

else if (noSquareLeft)
then par

status := GAMEOVER
whoWon := TIE

endpar
else

if $symbol = CROSSthen status:= TURNPC
elsestatus:= TURNX

endif endif endif

main rule r_Main =
if status = TURNXthen r_movePlayerX[]
else if status = CHECKXthen r_checkForAWinner[CROSS]
else if status = TURNPCthen r_movePC[]
else if status = CHECKPCthen r_checkForAWinner[NOUGHT]
endif endif endif endif

board, we will find that in the first turn, every corner mark
is strategically equivalent to every other corner mark. The
same is true of every edge mark. For strategy purposes, there
are therefore only three possible first marks: corner, edge,or
center. The computer can win or force a draw from any of these
starting marks; however, playing the corner gives the opponent
the smallest choice of squares which must be played to avoid
losing. In ther_opening_strategyrule, the computer chooses
therefore a corner (see the ruler_playACorner) in case of first
player. As second player, the computer must respond to X’s
opening mark in such a way as to avoid the forced win. The
computer (player O) must always respond to a corner opening
with a center mark, and to a center opening with a corner
mark. An edge opening must be answered either with a center
mark, a corner mark next to the X, or an edge mark opposite
the X. For semplicity, in this case we play always the center as
formalized in ther_opening_strategyrule. Any other responses
will allow X to force the win. Once the opening is completed,
O’s task is to follow the below draw strategy in order to force

11

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 3: ΓTic−Tac−Toe transition rules for the game strategies

asm Tictactoe
...

//A very naive player: choose an empty square and mark it.
rule r_naive_strategy ($symbolin Skind)=
choose$s in Squarewith symbol($s)=EMPTY
do symbol($s):= $symbol

rule r_playACorner($symbolin Skind) =
choose$s in Squarewith (symbol($s)=EMPTY and isCorner($s))
do symbol($s):= $symbol

//Opening strategy
rule r_opening_strategy ($symbolin Skind)=

if (count=0)//first mark
then r_playACorner[$symbol]
else //second mark

if symbol(5) = EMPTYthen symbol(5):=$symbol//play the center
elser_playACorner[$symbol]//we play a corner
endif

endif

//Mark with $symbol the last empty square within row $r
rule r_markLastEmpty ($rin Row, $symbolin Skind) =
choose$x in {1,2,3} with symbol(squaresInRow($r,$x))=EMPTY
do symbol(squaresInRow($r,$x)) := $symbol

//Draw strategy (with no fork creation/block)
rule r_draw_strategy ($symbolin Skind) =

choose$wr in Row with hasTwo($wr)
do r_markLastEmpty[$wr,$symbol]//1. Win or 2. Block
ifnone

if (symbol(5)=EMPTY)
then symbol(5):=$symbol//3. Center
else if (isCorner(lastMoveX) and symbol(opposite(lastMoveX))=EMPTY)
then symbol(opposite(lastMoveX)):= $symbol//4. Opposite corner
else choose$s in Squarewith (symbol($s)=EMPTY and isCorner($s))

do symbol($s):= $symbol//5. Empty Corner
ifnone r_naive_strategy[$symbol]//6. Empty edge

endif endif

//Computer strategy selection
rule r_tryStrategy ($symbolin Skind) =
if openingPhasethen r_opening_strategy[$symbol]
elser_draw_strategy[$symbol]
endif

the draw, or else to gain a win if X makes a weak play.

For the draw phase (see ther_draw_strategyrule in Listing
3), the PC try adraw strategywith no fork creation or block.
Essentially, the computer can play Tic-Tac-Toe if it chooses
the move with the highest priority in the following list:
1. Win: you have two in a row, play the third to get three in
a row.
2. Block: the opponent has two in a row, play the third to
block.
3. Center: Play the center.
4. Opposite Corner: the opponent is in the corner, play the
opposite corner.
5. Empty Corner: Play an empty corner.
6. Empty Side: Play an empty edge.

For this example, the functionιTic−Tac−Toe that adds to
ΓTic−Tac−Toe the initialization necessary to make the ASM
model executable do not present variability among terminal
models (unless one want to start playing from a partially

Listing 4: A winning scenario for player O

1 scenario winPC
2 load Tictactoe.asm
3 set playerX := 2;
4 step until status = TURNPC;
5 step until status = TURNX;
6 check symbol(2)=CROSS;
7 check symbol(5)=NOUGHT;
8 set playerX := 1;
9 step until status = TURNPC;

10 step until status = TURNX;
11 check symbol(1)=CROSS;
12 check symbol(3)=NOUGHT;
13 set playerX := 8;
14 step until status = GAMEOVER;
15 check symbol(7)=NOUGHT;
16 check whoWon = PC;

full board). In this case,ιTic−Tac−Toe is to be intended as a
constant function always producing in the target ASM model
the same ASM initial state. One possible, for example, is as
follows:

default init s0:
function symbol($sin Square) = EMPTY
//A polite computer: it allows the user (X) to play first
function status = TURNX
function count = 0

C. Tic-Tac-Toe semantic validation

The validation of the semantics of the Tic-Tac-Toe case
study consists in checking that the mapping function defined
in IX-B really captures the intended semantics of the case
study language. Among the semantics validation techniques
discussed in Section VIII-B, we have used interactive and
scenario-based simulation. By interactive simulation, wehave
used the ASM specification and the AsmetaS simulator to
interactively play Tic-Tac-Toe (player vs computer) and check
that the ASM model actually captures the desired behavior.

For scenario-based simulation, Listing 4 reports a scenario
in Avalla corresponding to the board configurations shown in
Fig. 10. In this scenario, the player opens by crossing cell
2 (line 3), the PC responds in the cell 5 (line 7), and the
player crosses cell 1. At this point the PC correctly responds
by occupying cell 3 (line 12). If the player puts the cross in
cell 8 (line 13), the PC takes advantage of that and wins. This
scenario shows the smart opening of the PC (as second player)
and that the PC is able both to block the player to win and to
take advantage of the opportunity to win.

D. Tic-Tac-Toe formal verification

Once we were confident that the semantics of the Tic-Tac-
Toe as specified really captures the intended behavior, we tried
to model andprovesome formal properties. The first one states
that the specification is fair and allows both player to win. To
model this fact, we have introduced in the specification the
following three temporal properties written in Computational
Tree Logic (CTL).

12

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MDE FM
apply MDE to FM
 (1)

apply FM to MDE (2)

Fig. 11: Closing the in-the-loop integration

//the player can win
axiom over CTL: EF(whoWon=PLAYER)
//the computer can win
axiom over CTL: EF(whoWon=PC)
//the match can terminate tie
axiom over CTL: EF(whoWon=TIE)

The meaning ofEF(φ) is given by theE (exist) operator
which means along at least one path (possibly) and the
F operator which means finally: eventuallyφ has to hold
(somewhere on the subsequent path). We have automatically
proved the three properties via model checking by using the
AsmetaSMV component [60].

We wanted also to prove that the match always finishes and
we added the following property:

axiom over CTL: AF((status = GAMEOVER))

It means that on all paths (A) starting from the initial state,
status will eventually (F) becomeGAMEOVER. This was
proved false by the model checker which provided a counter
example for it. Analyzing the counter example, we noticed
that the player can indefinitely postpone the end of a game by
keeping to try to put a cross in an already occupied cell.

X. CLOSING THE LOOP

This section shows a portion of the definition of the ex-
ecutable semantics of the AsmM metamodel itself by using
the ASM-based semantic framework outlined in Sect. IV. We
apply the semantic hooking approach on a small portion of the
AsmM metamodel concerning the interpretation of the ASM
update-rule. In this way, we close the in-the-loop integration
between the formal method (ASM) and the MDE framework
(EMF), as depicted in Fig. 11.

A. AsmM semantics

We have to specify, in general, an ASMΓAsmM (i.e.
a model conforming to the AsmM metamodel) containing
declarations of functions and domains (the signature) and the
behavioral semantics of the AsmM metamodel itself in terms
of ASM transition rules.

ASM rule constructors are represented in the AsmM meta-
model by subclasses of the classRule. Fig. 12 shows a subset
of basic forms of a transition rule under the class hierarchy
rooted by the classBasicRule: update-rule, conditional-
rule, skip, do-in-parallel (block-rule), extend, etc.

Listing 5 reports a fragmentΓAsmM in AsmetaL notation,
for the interpretation of an ASM update-rule. It contains
domains and function declarations induced from the AsmM
metaclasses themselves for static/structural concepts (terms,

rule constructors, etc.). Further domains and functions are
introduced to denote run-time concepts like locations, values,
updates, etc., according to the theoretical definitions given in
[52] to construct therun of the ASM model under simulation.

A supporting execution engine has to keep the current state
of the ASM model and, on request, evaluates the values of
terms and computes (and applies) the update set to obtain the
next state. To this purpose, an abstract domainValue and
its sub-domains are introduced to denote all possible values
of ASM terms. The functioneval computes the value for
every term (expression) in the current ASM state. The abstract
domain Location represents the ASM concept of basic
object containers (memory units), namedlocations, abstracting
from particular memory addressing and object referencing
mechanisms. Functionssignt and elements denote, re-
spectively, the pair of a function namef , which is fixed by
the signature, and an optional argument(v1, . . . , vn), which is
formed by a list of dynamic parameter valuesvi of whatever
type, forming a location. Two functionscurrentState,
which represents the state of an ASM, andupdateSet,
which represents an update set, are used as tables to denote
location-value pairs(loc, v) (updates) and are the basic units
of state change. Theassignment function maps location
variables to their values for variable assignment in a state.

The very crucial task is that of computing at each step
the ASM update set. To this purpose, there exist a rule
visit(RuleType R) for everyRuleType subclass of the
Rule class of the AsmM. Given a ruleR, the matching visit
method is invoked accordingly to the type ofR to obtain the
update set ofR. As example of such a kind of rule, Listing
5 reports the ruler_visit to compute the update set for an
update-rule type.

One has also to define a functionιPT which adds to
ΓAsmM the initialization necessary to make the ASM model
executable. Any model transformation tool can be used to
automatize theιAsmM mapping by retrieving data from a
terminal modelm and creating the corresponding ASM initial
state in the target ASM model. A model transformation engine
may implement such a mapping. Essentially, for each class
instance of the terminal model, a static 0-ary function is
created in the signature of the ASM modelΓAsmM in order
to initialize the domain corresponding to the underlying class.
Moreover, class instances with their properties values andlinks
are inspected to initialize the ASM functions declared in the
ASM signature.

B. AsmM semantics validation

We applied the scenario-based approach for the validation
of the semantics. We initially collected a set of AsmetaL
examples representing all ASM constructs. In order to build
an extensive set of scenario specifying the expected behavior
of the system, instead of writing the scenario by hand, we
simulated the original examples with AsmetaS (the simulator
of AsmetaL models, see Sect. VII) itself, parsed the log files
produced by AsmetaS in order to obtain valid scenario files in
the Avalla syntax. Then we run the validator with the scenarios
and the translation of the input examples by the semantic

13

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 12: A fragment of the AsmM metamodel for function terms and update-rules

Listing 5: ΓAsmM

asm AsmM_hooking
signature:
// Signature induced from the AsmM metamodel:
abstract domain Function
abstract domain Term
concrete domainVariableTermsubsetofTerm
concrete domainFunctionTermsubsetofTerm
concrete domainLocationTermsubsetofFunctionTerm
...
abstract domain Rule
concrete domainUpdateRulesubsetofRule
...
controlled updatingTerm: UpdateRule−> TupleTerm
controlled location: UpdateRule−> Term
...

// Signature for run−time concepts:
abstract domain Value
abstract domain Location
controlled signt: Location−> Function
controlled elements: Location−> Seq(Value)
//Function for the evaluation of ASM terms
static eval: Term−> Value
...
//Functions for the current state of the ASM and memory updates
controlled currentState: Location−> Value
controlled updateSet: Location−> Value
controlled assignment: VariableTerm−> Value
...

definitions:
rule r_visit($r in UpdateRule) =
let (content = eval(updatingTerm($r)))in

if isLocationTerm(location($r))
then extend Locationwith $l do

par
signt($l):= funct(location($r))
elements($l):= values(eval(arguments(location($r))))
updateSet($l):= content

endpar
else if isVariableTerm(location($r))

then assignment(location($r)):= content
endif

endif
endlet

...

proposed above. In this way we have checked the conformance
of AsmetaS with the semantics of the ASM as defined by the
hooking functionM .

XI. CONCLUSION AND FUTURE DIRECTIONS

On the basis of our experience in developing theASMETA

toolset, we believe a formal method can gain benefits from the
use of MDE automation means either for itself and toward the
integration of different formal techniques and their tool inter-
operability. Indeed, the metamodel-based approach has the
advantage of being suitable to derive from the same metamodel
several artifacts (concrete syntaxes, interchange formats, APIs,
etc.). They are useful to create, manage and interchange
models in a model-driven development context, settling, there-
fore, a flexible infrastructure for tools development and inter-
operability. Moreover, metamodeling allows to establish a
“global framework” to enable otherwise dissimilar languages
(of possibly different domains) to be used in an inter-operable
manner by defining precisebridges (or projections) among
different domain-specific languages to automatically execute
model transformations. That is in sympathy with theSRI
Evidential Tool Bus idea[63], and can contribute positively
to solve inter-operability issues among formal methods, their
notations, and their tools.

On the other hand, the definition of a means for specifying
rigorously the semantics of metamodels is a necessary step
in order to develop formal analysis techniques and tools
in the model-driven context. Along this research line, for
example, we are tackling the problem of formally analyzing
visual models developed with the SystemC UML Profile [64].
Formal ASM models obtained from graphical SystemC-UML
models can potentially drive practical SoC model analysis like
simulation, architecture evaluation and design exploration.

In conclusion, we believe MDE principles and technologies
combined with formal methods elevate the current level of
automation in system development and provide the widely
demanded formal analysis support.

14

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] A. Gargantini, E. Riccobene, and P. Scandurra, “Integrating formal
methods with model-driven engineering,” inThe Fourth International
Conference on Software Engineering Advances, ICSEA 2009, 20-25
September 2009, Porto, Portugal, K. Boness, J. M. Fernandes, J. G.
Hall, R. J. Machado, and R. Oberhauser, Eds. IEEE Computer Society,
2009, pp. 86–92.

[2] J. Bézivin, “On the Unification Power of Models,”Software and System
Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[3] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
IEEE Computer, vol. 39, no. 2, pp. 25–31, 2006.

[4] “OMG. The Unified Modeling Language (UML), v2.1.2,”http://
www.uml.org, 2007.

[5] “OMG. The Model Driven Architecture (MDA Guide V1.0.1),” http:
//www.omg.org/mda/, 2003.

[6] S. J. and K. G., “Model-Integrated Computing,”IEEE Computer, pp.
110–112, 1997.

[7] S. Cook, G. Jones, S. Kent, and A. C. Wills,Domain-Specific Develop-
ment with Visual Studio DSL Tools. Addison Wesley, 2007.

[8] “Eclipse Modeling Framework (EMF),”http://www.eclipse.
org/emf/.

[9] D. Gasevic, R. Lämmel, and E. V. Wyk, Eds.,Software Language En-
gineering, First International Conference, SLE 2008, Toulouse, France,
September 29-30, 2008. Revised Selected Papers, ser. Lecture Notes in
Computer Science, vol. 5452. Springer, 2009.

[10] C. Snook, F. Fritz, and A. Illisaov, “An EMF Framework for Event-B,”
in Workshop on Tool Building in Formal Methods - ABZ Conference,
2010.

[11] “The Maude System,”http://maude.cs.uiuc.edu/.
[12] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, “ATL: a

QVT-like transformation language,” inProc. OOPSLA’06. ACM, 2006,
pp. 719–720.

[13] A. Agrawal, G. Karsai, S. Neema, F. Shi, and A. Vizhanyo,“The
design of a language for model transformations,”Software and System
Modeling, vol. 5, no. 3, pp. 261–288, 2006.

[14] J. Fischer, M. Piefel, and M. Scheidgen, “A Metamodel for SDL-2000
in the Context of Metamodelling ULF,” inProc. SAM’04, 2004, pp.
208–223.

[15] M. Alanen and I. Porres, “A Relation Between Context-Free Grammars
and Meta Object Facility Metamodels,” Turku Centre for Computer
Science, Tech. Rep., 2003.

[16] M. Wimmer and G. Kramler, “Bridging grammarware and model-
ware,” in Proc. of the 4th Workshop in Software Model Engineering
(WiSME’05), Montego Bay, Jamaica, 2005.

[17] T. Gjøsæter, I. F. Isfeldt, and A. Prinz, “Sudoku - a language description
case study,” inProc. SLE’08, 2008, pp. 305–321.

[18] “Abstract State Machines tools,”http://www.eecs.umich.edu/
gasm/tools.html.

[19] Y. Gurevich and B. Rossman and W. Schulte, “Semantic Essence of
AsmL,” Microsoft Research Technical Report MSR-TR-2004-27, March
2004 .

[20] A. Slissenko and P. Vasilyev, “Simulation of timed abstract state ma-
chines with predicate logic model-checking,”J. UCS, vol. 14, no. 12,
pp. 1984–2006, 2008.

[21] A. Gargantini, E. Riccobene, and P. Scandurra, “Deriving a textual
notation from a metamodel: an experience on bridging Modelware and
Grammarware,” in3M4MDA’06 workshop at the European Conference
on MDA, 2006.

[22] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende,
“Derivation and refinement of textual syntax for models,” inECMDA-
FA, 2009.

[23] F. Jouault, J. Bézivin, and I. Kurtev, “TCS: a DSL for thespecification
of textual concrete syntaxes in model engineering.” inProceedings
of the fifth international conference on Generative programming and
Component Engineering (GPCE’06), 2006.

[24] S. Efftinge, “oAW xText - A framework for textual DSLs,”in Workshop
on Modeling Symposium at Eclipse Summit, 2006.

[25] P.-A. Muller, F. Fondement, F. Fleurey, M. Hassenforder, R. Schneck-
enburger, S. Gérard, and J.-M. Jézéquel, “Model-driven analysis and
synthesis of textual concrete syntax,”Software and System Modeling,
vol. 7, no. 4, pp. 423–441, 2008.

[26] “OMG, Human-Usable Textual Notation, v1.0. Document formal/04-08-
01,” http://www.uml.org/.

[27] D. Hearnden, K. Raymond, and J. Steel, “Anti-Yacc: MOF-to-text,” in
Proc. of EDOC, 2002, pp. 200–211.

[28] M. Möller, E.-R. Olderog, H. Rasch, and H. Wehrheim, “Integrating a
formal method into a software engineering process with UML and Java,”
Form. Asp. Comput., vol. 20, no. 2, pp. 161–204, 2008.

[29] J. Armstrong, “Industrial integration of graphical and formal specifica-
tions,” J. of Systems and Software, vol. 40, no. 3, pp. 211–225, 1998.

[30] A. Idani, J.-L. Boulanger, and L. P. 0002, “A generic process and its
tool support towards combining uml and b for safety criticalsystems,”
in Proc. CAINE, 2007, pp. 185–192.

[31] T. Zhang, F. Jouault, J. Bézivin, and J. Zhao, “A MDE Based Approach
for Bridging Formal Models,” inTASE ’08. IEEE Computer Society,
2008, pp. 113–116.

[32] Y. Sun, Z. Demirezen, F. Jouault, R. Tairas, and J. Gray,“A model
engineering approach to tool interoperability,” inSLE, 2008, pp. 178–
187.

[33] P.-A. Muller, F. Fleurey, and J.-M. Jezequel, “WeavingExecutability into
Object-Oriented Meta-Languages,” inProc. MODELS, 2005.

[34] M. Soden and H. Eichler, “Towards a model execution framework for
Eclipse,” inProc. of the 1st Workshop on Behavior Modeling in Model-
Driven Architecture. ACM, 2009.

[35] J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo, “Analyzing rule-
based behavioral semantics of visual modeling languages with maude,”
in SLE, ser. Lecture Notes in Computer Science, D. Gasevic, R. Lämmel,
and E. V. Wyk, Eds., vol. 5452. Springer, 2008, pp. 54–73.

[36] K. Chen, J. Sztipanovits, and S. Neema, “Toward a semantic anchoring
infrastructure for domain-specific modeling languages,” in EMSOFT,
2005, pp. 35–43.

[37] ——, “Compositional specification of behavioral semantics,” in DATE,
2007, pp. 906–911.

[38] D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and A. Pierantonio,
“Extending AMMA for Supporting Dynamic Semantics Specifications
of DSLs,” LINA, Tech. Rep. 06.02, 2006.

[39] M. Anlauff, “XASM - An Extensible, Component-Based ASMLan-
guage,” inProc. of Abstract State Machines, 2000, pp. 69–90.

[40] “Atlantic XASM Zoo,” http://www.emn.fr/z-info/
atlanmod/index.php/Xasm/, 2001.

[41] D. A. Sadilek and G. Wachsmuth, “Using grammarware languages to
define operational semantics of modelled languages,” inTOOLS (47),
2009, pp. 348–356.

[42] A. Gargantini, E. Riccobene, and P. Scandurra, “A semantic framework
for metamodel-based languages,”Journal of Automated Software Engi-
neering, vol. 16, no. 3-4, pp. 415–454, 2009.

[43] A. Carioni, A. Gargantini, E. Riccobene, and P. Scandurra, “Exploiting
the ASM method for Validation & Verification of Embedded Systems,”
in Proc. of ABZ’08, LNCS 5238. Springer, 2008, pp. 71–84.

[44] E. Riccobene and P. Scandurra, “An executable semantics of the Sys-
temC UML profile,” in ABZ 2010, ser. LNCS, M. F. et al., Ed., vol.
5977, 2010, pp. 75–90.

[45] E. Riccobene, P. Scandurra, S. Bocchio, A. Rosti, L. Lavazza, and
L. Mantellini, “SystemC/C-based model-driven design for embedded
systems,”ACM Trans. Embedded Comput. Syst., vol. 8, no. 4, 2009.

[46] M. Strembeck and U. Zdun, “An approach for the systematic develop-
ment of domain-specific languages,”Software: Practice and Experience,
vol. 39, no. 15, pp. 1253 – 1292, October 2009.

[47] J. Bézivin, “In Search of a Basic Principle for Model Driven
Engineering,” CEPIS, UPGRADE, The European Journal for
the Informatics Professional, vol. V, no. 2, pp. 21–24, 2004.
[Online]. Available: http://www.upgrade-cepis.org/issues/2004/2/up5-
2Bezivin.pdf

[48] “Textual Editing Framework.”http://www2.informatik.hu-
berlin.de/sam/meta-tools/tef, 2009.

[49] “openArchitectureware website,”www.openarchitectureware.
org, 2009.

[50] D. Harel and B. Rumpe, “Meaningful modeling: What’s thesemantics
of "semantics"?”IEEE Computer, vol. 37, no. 10, pp. 64–72, 2004.

[51] E. Börger, “The ASM method for system design and analysis. A tutorial
introduction,” in Frontiers of Combining Systems, 5th International
Workshop, FroCoS 2005, Vienna, Austria, September 19-21, 2005,
Proceedings, ser. Lecture Notes in Computer Science, B. Gramlich, Ed.,
vol. 3717. Springer, 2005, pp. 264–283.

[52] E. Börger and R. Stärk,Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer Verlag, 2003.

[53] A. Gargantini, E. Riccobene, and P. Scandurra, “Metamodelling a
Formal Method: Applying MDE to Abstract State Machines,” DTI Dept.,
University of Milan, Tech. Rep. 97, 2006.

[54] ——, “Ten reasons to metamodel ASMs,” inDagstuhl Workshop
on Rigorous Methods for Software Construction and Analysis, LNCS
Festschrift. Springer, 2007.

15

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[55] “The Abstract State Machine Metamodel website,”http://asmeta.
sf.net/, 2006.

[56] E. Riccobene and P. Scandurra, “Towards an InterchangeLanguage for
ASMs,” in Abstract State Machines. Advances in Theory and Practice,
ser. LNCS 3052, W. Zimmermann and B. Thalheim, Eds. Springer,
2004, pp. 111 – 126.

[57] “OMG. Object Constraint Language (OCL), v2.0 formal/2006-05-01,”
2006.

[58] A. Gargantini, E. Riccobene, and P. Scandurra, “A Metamodel-based
Language and a Simulation Engine for Abstract State Machines,” J.
UCS, vol. 14, no. 12, pp. 1949–1983, 2008.

[59] ——, “Model-driven language engineering: The ASMETA case study,”
in International Conference on Software Engineering Advances, ICSEA.
IARIA: Published by IEEE Computer Society, 2008, pp. 373–378.

[60] P. Arcaini, A. Gargantini, and E. Riccobene, “AsmetaSMV: A way to
link high-level ASM models to low-level NuSMV specifications,” in
ABZ 2010, ser. LNCS, M. F. et al., Ed., vol. 5977, 2010, pp. 61–74.

[61] E. Börger, M. J. Butler, J. P. Bowen, and P. Boca, Eds.,Abstract
State Machines, B and Z, First International Conference, ABZ 2008,
London, UK, September 16-18, 2008. Proceedings, ser. Lecture Notes
in Computer Science, vol. 5238. Springer, 2008.

[62] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking,” inProc. International
Conference on Computer-Aided Verification (CAV 2002), ser. LNCS, vol.
2404. Copenhagen, Denmark: Springer, July 2002.

[63] J. M. Rushby, “Harnessing Disruptive Innovation in Formal Verifica-
tion,” in Proc. SEFM, 2006, pp. 21–30.

[64] A. Gargantini, E. Riccobene, and P. Scandurra, “Model-driven design
and ASM-based analysis of embedded systems,” inBehavioral Modeling
for Embedded Systems and Technologies: Applications for Design and
Implementation, L. Gomes and J. M. Fernandes, Eds. Norwell, MA,
USA: IGI Global, 2009, pp. 24–54.

APPENDIX A
BASIC PETRI NETS SEMANTICS

A concrete example is here provided by applying the
semantic hooking technique to a possible metamodel for the
Petri net formalism. The results of this activity are executable
semantic models for Petri nets which can be made available
in a model repository either in textual form using AsmetaL
or also in abstract form as instance model of the AsmM
metamodel.

Fig. 13 shows the metamodel for the basic Petri net for-
malism. It describes the static structure of a net consist-
ing of places and transitions (the two classesPlace and
Transition), and of directed arcs (represented in terms of
associations between the classesPlace andTransition)
from a place to a transition, or from a transition to a place.
The places from which an arc runs to a transition are called
the input places of the transition; the places to which arcs run
from a transition are called the output places of the transition.
Places may contain (see the attributetokens of the Place
class) any non-negative number of tokens, i.e. infinite capacity.
Moreover, arcs are assumed to have a unary weight. Fig. 14
shows (using a graphical concrete syntax) an example of Petri
net (with its initial marking) that can be intended as instance
(a terminal model) of the Petri net metamodel in Fig 13.

According to the semantic hooking approach, first we have
to specify an ASMΓPT (i.e. a model conforming to the AsmM
metamodel) containing only declarations of functions and
domains (the signature) and the behavioral semantics of the
Petri net metamodel in terms of ASM transition rules. Listing
6 reports a possibleΓPT in AsmetaL notation. It introduces
abstract domains for the nets themselves, transitions, and

Fig. 13: A metamodel for basic Petri nets

Fig. 14: A basic Petri net with its initial marking

places. The static functionisEnabledis a predicate denoting
whether a transition is enabled or not. The behavior of a
generic Petri net is provided by two rules:r_fire, which express
the semantics of token updates upon firing of transitions,
and r_PetriNetReact, which formalizes the firing of a non-
deterministic subset of all enabled transitions. The main rule
executes all nets in theNet set.

One has also to define a functionιPT which adds toΓPT the
initialization necessary to make the ASM model executable.
Any model transformation tool can be used to automatize the
ιPT mapping by retrieving data from a terminal modelm and
creating the corresponding ASM initial state in the target ASM
model. We adopted the ATL model transformation engine to
implement such a mapping. Essentially, for each class instance
of the terminal model, a static 0-ary function is created in the
signature of the ASM modelΓPT in order to initialize the
domain corresponding to the underlying class. Moreover, class
instances with their properties values and links are inspected to
initialize the ASM functions declared in the ASM signature.
For example, for the Petri netmPT shown in Fig. 14, the
ιPT mapping would automatically add to the originalΓPT

the initial state (and therefore the initial marking) leading to
the final ASM model shown in Listing 7. The initialization of
the abstract domainsNet, Transition, andPlace, and
of all functions defined over these domains, are added to the
original ΓPT .

16

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 6: ΓPT

asm PT_hooking
signature:
abstract domain Net
abstract domain Place
abstract domain Transition

//Functions on Net
controlled places: Net−> Powerset(Place)
controlled transitions: Net−> Powerset(Transition)

//Functions on Place
controlled tokens : Place−> Integer

//Functions on Transition
controlled inputPlaces: Transition−> Powerset(Places)
controlled outputPlaces: Transition−> Powerset(Places)
static isEnabled : Transition−> Boolean

definitions:
function isEnabled ($tin Transition) =

(forall $p in inputPlaces($t)with tokens($p)>0)

rule r_fire($t in Transition) =
seq

forall $i in inputPlaces($t)do tokens($i) := tokens($i)−1
forall $o in outputPlaces($t)do tokens($o) := tokens($o)+1

endseq

rule r_PetriNetReact($nin Net) =
choose$transSetin Powerset(Transitions($n))

with (forall $t in $transSetwith isEnabled($t))do
iterate let ($t = chooseOne($transSet))in par

remove($t,$transSet)
if isEnabled($t)then r_fire[$t] endif

endpar endlet

//Run all Petri nets
main rule r_Main = forall $n in Net do r_PetriNetReact[$n]

Listing 7: ιPT (ΓPT , mPT)

asm PT_hooking
signature:

....
static myNet: Net
static P1,P2,P3,P4:Place
static t1,t2:Transition
....

default init s0:
//Functions on Net
function places($nin Net) = at({myNet−> {p1,p2,p3,p4}},$n)
function transitions($nin Net) = at({myNet−> {t1,t2}},$n)

//Functions on Place (the "initial marking")
function tokens($pin Places) =

at({p1−>1,p2−>0,p3−>2,p4−>1},$p)

//Functions on Transition
function inputPlaces($tin Transition) =

at({t1−>p1,t2−>{p2,p3}},$t)
function outputPlaces($tin Transition) =

at({t1−>{p2,p3},t2−>{p4,p1}},$t)

APPENDIX B
ASM SPECIFICATION FORTIC-TAC-TOE

Listing 8: ΓTic−Tac−Toe - the complete signature

asm Tictactoe
signature:
//For representing a board
enum domain Skind = {CROSS|NOUGHT|EMPTY}
domain SquaresubsetofInteger
domain Row subsetofInteger
domain ThreesubsetofInteger
static squaresInRow: Prod(Row,Three)−> Square
controlled symbol: Square−> Skind
//For managing the game
enum domain Finalres = {PLAYERX|PC|TIE}
enum domain Status = {TURNX|CHECKX|TURNPC|CHECKPC

|GAMEOVER}
monitored playerX:Square// move of X
controlled status: Status
controlled whoWon: Finalres
derived noSquareLeft : Boolean
derived hasThreeOf: Prod(Row,Skind)−> Boolean
//For PC strategies
domain Count subsetofInteger
controlled count: Count
derived openingPhase: Boolean
controlled lastMoveX: Square
static isCorner: Square−> Boolean
static isEdge: Square−> Boolean
static isCenter: Square−> Boolean
derived hasTwo: Row−> Boolean
static opposite: Square−> Square

definitions:
domain Square = {1..9}
domain Count = {0..9}
domain Row = {1..8}
domain Three = {1..3}

function squaresInRow($rin Row,$x in Three) =
if $r = 1 then if $x = 1 then 1 else if $x = 2 then 2 else3 endif endif
else if $r = 2 then if $x = 1 then 4 else if $x = 2 then 5 else6 endif endif
else if $r = 3 then if $x = 1 then 7 else if $x = 2 then 8 else9 endif endif
else if $r = 4 then if $x = 1 then 1 else if $x = 2 then 4 else7 endif endif
else if $r = 5 then if $x = 1 then 2 else if $x = 2 then 5 else8 endif endif
else if $r = 6 then if $x = 1 then 3 else if $x = 2 then 6 else9 endif endif
else if $r = 7 then if $x = 1 then 1 else if $x = 2 then 5 else9 endif endif
else if $x = 1 then 3 else if $x = 2 then 5 else7 endif endif
endif endif endif endif endif endif endif

function noSquareLeft = not(exist $sin Squarewith symbol($s)=EMPTY)

function hasThreeOf ($rin Row, $symbolin Skind) =
(symbol(squaresInRow($r,0)) = $symbol) and
(symbol(squaresInRow($r,0)) = symbol(squaresInRow($r,1))) and

(symbol(squaresInRow($r,0)) = symbol(squaresInRow($r,2)))

function openingPhase = count=0 or count=1

function isCenter($sin Square) = $s =5
function isCorner($sin Square) = $s =1 or $s=3 or $s=7 or $s=9
function isEdge($sin Square) = $s =2 or $s =4 or $s=6 or $s=8

//return true iff $r has two equal symbols and the third square is EMPTY
function hasTwo($rin Row) =

(exist $i1 in Three, $i2in Three, $i3in Three
with ($i1!=$i2 and $i1!=$i3 and $i2!=$i3 and
(symbol(squaresInRow($r,$i1)) = symbol(squaresInRow($r,$i2))) and
(symbol(squaresInRow($r,$i1)) != EMPTY) and
(symbol(squaresInRow($r,$i3)) = EMPTY)))

function opposite($sin Square) =
if $s=1 then 9 else if $s=3 then 7 else if $s=7 then 3
else if $s=9 then 1 endif endif endif endif

17

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 9: ΓTic−Tac−Toe transition rules

//A very naive player: choose an empty square and mark it.
rule r_naive_strategy ($symbolin Skind)=
choose$s in Squarewith symbol($s)=EMPTY
do symbol($s):= $symbol

rule r_playACorner($symbolin Skind) =
choose$s in Squarewith (symbol($s)=EMPTY and isCorner($s))
do symbol($s):= $symbol

//Opening strategy
rule r_opening_strategy ($symbolin Skind)=

if (count=0)then r_playACorner[$symbol]
else if symbol(5) = EMPTYthen symbol(5):=$symbol//play the center
elser_playACorner[$symbol]//we play a corner
endif endif

//Mark with $symbol the last empty square within row $r
rule r_markLastEmpty ($rin Row, $symbolin Skind) =

choose$x in {1,2,3} with symbol(squaresInRow($r,$x))=EMPTY
do symbol(squaresInRow($r,$x)) := $symbol

//Draw strategy (with no fork creation/block)
rule r_draw_strategy ($symbolin Skind) =
choose$wr in Row with hasTwo($wr)
do r_markLastEmpty[$wr,$symbol]//1. Win or 2. Block
ifnone

if (symbol(5)=EMPTY)then symbol(5):=$symbol//3. Center
else if (isCorner(lastMoveX) and symbol(opposite(lastMoveX))=EMPTY)
then symbol(opposite(lastMoveX)):= $symbol//4. Opposite corner
else choose$s in Squarewith (symbol($s)=EMPTY and isCorner($s))

do symbol($s):= $symbol//5. Empty Corner
ifnone r_naive_strategy[$symbol]//6. Empty edge

endif endif

//Computer strategy selection
rule r_tryStrategy ($symbolin Skind) =
if openingPhasethen r_opening_strategy[$symbol]
elser_draw_strategy[$symbol]endif

rule r_movePC =par r_tryStrategy[NOUGHT]
count := count + 1
status := CHECKPC

endpar

rule r_movePlayerX =if symbol(playerX)= EMPTY
then par symbol(playerX):= CROSS

count := count + 1
lastMoveX := playerX
status := CHECKX

endpar
elsestatus := TURNXendif

rule r_checkForAWinner($symbolin Skind) =
//GAME OVER WITH A WINNER?
if (exist $r in Row with hasThreeOf($r,$symbol))then
par status := GAMEOVER

if $symbol = CROSSthen whoWon:= PLAYERX
elsewhoWon:= PCendif

endpar
else if (noSquareLeft)//GAME TIE?

then par status := GAMEOVER whoWon := TIEendpar
else if $symbol = CROSSthen status:= TURNPC

elsestatus:= TURNXendif endif endif

main rule r_Main = if status = TURNXthen r_movePlayerX[]
else if status = CHECKXthen r_checkForAWinner[CROSS]
else if status = TURNPCthen r_movePC[]
else if status = CHECKPCthen r_checkForAWinner[NOUGHT]
endif endif endif endif

18

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

