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Abstract—The use offormal methods, based on rigorous math-
ematical foundations, is essential for system specificatioand
proof, especially for safety critical systems. On the othehand,
Model-driven Engineering (MDE) is emerging as new approach
to software development based on the systematic use of moslels
primary artifacts throughout the engineering life-cycle by com-
bining domain-specific modeling languages (DSMLs) with moel
transformers, analyzers, and generators. This paper presgs our
position and experience on combining flexibility and automéon
of the MDE approach with rigorousness and preciseness of fanal
methods to achieve significant boosts in both productivity ad
quality in model-driven design and analysis of software and
systems. Anin-the-loop integration is proposed where, on one
hand, MDE principles are used to engineer a language and a tbo
set around a formal method for its practical adoption in sysems
development life cycle, and, on the other hand, the same forah
method is used in the same MDE context to endow modeling
languages with a precise and (possibly) executable semarti
and to perform formal analysis of systems models written in
those languages. A concrete scenario of in-the-loop integfion is
presented in terms of the Abstract State Machine formal metiod
and the Eclipse Modeling Framework. This integration allows
system design using the Eclipse Modeling Framework and forad

Advantages of FMs The use of formal methods in system

engineering is becoming essential, especially during #nky e
phases of the development process. Indeed, an abstract mode
of the system can be used to understand if the system under
development satisfies the given requirements (by simuiatio
and model-based testing), and guarantees certain preperti
by formal analysis (validation & verification).

Disadvantages of FMsWhile there are several cases proving

the applicability of formal methods in industrial applicats

and showing very good results, many practitioners are still
reluctant to adopt formal methods. Besides the well-known
lack of training, this skepticism is mainly due to: the com-
plex notations that formal techniques use rather than other
lightweight and more intuitive graphical notations, likeet
Unified Modeling Language (UML) [4]; the lack of easy-
to-use tools supporting a developer during the life cycle
activities of system development, possibly in a seamless
manner; and the lack of integration among formal methods
themselves and their associated tools.

system analysis by Abstract State Machines in a seamless andAdvantages of MDE MDE technologies with a greater fo-

systematic way, as shown by a concrete case study.

Keywords-Formal methods; Model Driven Engineering; Ab-
stract State Machines; model semantics; model execution dn
analysis

I. INTRODUCTION
Using Formal Methods(FMs), which have rigorous math-

cus on architecture and automation yield higher levels of
abstraction in system development by promoting models
as first-class artifacts to maintain, analyze, simulated an
eventually transform into into code or into other models.
Meta-modeling is a key concept of the MDE paradigm and
it is intended as a way to endow a language or a formalism
with an abstract notation, so separating the abstract synta

ematical foundations, for system development is nowadays

extremely important, especially for high-integrity syste

Advantages Disadvantages

where safety or security need to be formally proved. On
the other hand, theModel-driven EngineeringMDE) [2], MDE
[3] is emerging as a new paradigm in software engineering,
which bases system development on (meta-)modeling and
model transformations, and provides methods to build lesdg
between similar or different technical spaces and domains.
Both approaches have advantages and disadvantages thatfng | *
here shortly summarize (see Fig. 1).

* User-friendly notation * Lack of semantics
* Derivative artifacts for *

tool development

Unfit for model
analysis

* Automated model
transformations

Rigorous mathematical ard notation

foundation *
* Suitable for model
analysis

Lack of tools

* Lack of integration

This paper is the extended version of the conference paper [1

This work is supported in part by the Italian Government urtte project
PRIN 2007D-ASAP: Architetture Software Adattabili e Affidabili past&@mi
Pervasivi(2007XKEHFA).

Fig. 1: Formal methods and MDE
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and semantics of the language from its different concrdteop integration between the ASM formal method and the
notations. Although the foundation constituents of the MDEMF framework. On one side, we report our experience in
are still evolving, some MDE principles are implementedxploiting MDE methodology to engineer a language and
in meta- modeling/programming frameworks like the OM@ tool-set for the ASMs in order to support their practical
MDA (Model Driven Architecture) [5], Model-integrateduse in systems development life cycle. On the other side,
Computing (MIC) [6], Software Factories and Microsofive show how ASMs can be used to provide semantics to
Domain-Specific Languages (DSLs) tools (as part of tHanguages defined in the MDE context and how to perform
Visual Studio SDK) [7], Eclipse/EMF [8], etc. Metamodel-formal analysis of models developed by MDE technology.
based modeling languages are increasingly being defined and. complete case study is presented in Section IX which
adopted for specific domains of interest addressing thdlinalshows how MDE-based technologies are used to define a
ity of third-generation languages to alleviate the comityex metamodel-based language for the Tic-Tac-Toe, and the ASM-
of platforms and express domain concepts effectively [3]. based semantic framework is used to define an executable
Disadvantages of MDE Although the definition of a lan- semantics of the language and to support semantics validati
guage abstract syntax by a metamodel is well maand formal verification of models.
tered and supported by many meta-modeling environ-Section X shows how to get a tighter integration between
ments (EMF/Ecore, GME/MetaGME, AMMA/KM3, XMF- ASM and EMF byclosing the loopi.e. by using the ASM
Mosaic/Xcore, etc.), the semantics definition of this clagsrmal method itself to define the semantics of the ASMs in
of languages is an open and crucial issue. Currently, methe EMF framework.
modeling environments are able to cope with most syntacticFinally, our conclusion and future directions are provided
and transformation definition issues, but they lack of ang Section XI.
standard and rigorous support to provide the (possibly ex-
ecutable) semantics of metamodels, which is usually given
in natural language. This implies that most currently addpt
metamodel-based languages (such as the UML) are not yeboftware languages play a cornerstone role in system devel-
suitable for effective model analysis due to their lack agfpment. Language engineering processes have been causider
a strong semantics necessary for a formal model analysismany contexts of software engineering [9]. Concerning
assisted by tools. the metamodeling technique of MDE for (software) language
In [1], we described how these two approaches can B&gineering, many proposals have been presented, which pay
combined showing how the advantages of one can be exploiféention to the fact that language descriptions take riffe
to cover or weaken the disadvantages of the other. In th@m in different technical spaces (e.g. metamodels, selsem
paper, we extend and deepen this combination view with tBeammars, and ontologies) and typically multiple langsage
final goal of developing a model-driven approach for designi (from different technical spaces) need to be used togetir a
systems according to the MDE principles, and analyzirigtegrated in most software development scenarios. A jgce

Il. RELATED WORK

models by exploiting formal techniques. to engineer languages address several aspects of a language
Section Il provides some related work concerning connegtructure, constraints, textual and graphical repretienta
tions between formal methods and MDE. parser/compiler, transformational and executional biehav

Section Ill describes an overall process, based on the MBesearch usually faced only one of these aspects, therefore
approach, for engineering a language and a tool-set forcamparison with related work can be often done considering
formal method. This allows to overcome the lack of usepingle aspects of a language development process.
friendly notations, of integration of techniques, and o¢ith ~ Formal methods communities have only recently started
tool inter-operability. This deficiency still poses a siigant to settle their tools on metamodels and MDE platforms.
challenge for formal methods. A non exhaustive list of such efforts follows. An Event-B

Section IV presents an approach to endow language mexgtamodel and an EMF-based Framework for Event-B have
models with precise executable semantics, and we dischéen recently developed [10] to provide an EMF-based front-
techniques for formal analysis that can be used once forngald to the Rodin platform, an Eclipse-based IDE for Event-B
models are associated to language terminal models by, pgt provides support for refinement and mathematical proof
sibly, automatic model mapping. This addresses the probl&hEvent-B models.
of expressing semantics of metamodel-based languages anthe Maude Formal Tool Environment [11] is an executable
performing model validation and formal verification. rewriting logic language suited for the specification ofeutty

In order to combine in a tight way rigorousness and preriented open and distributed systems. It offers tool suppo
ciseness of FMs with flexibility and automation of the MDEfor reasoning about Maude specifications and, recently,aais
in Section V anin-the-loopintegration is proposed, where theEclipse plug-in that allows to connect the Maude environimen
same MDE technology and FM techniques are involved to the KM3 metamodeling framework using ATL (the ATLAS
both the two activities: MDE for FMs and FMs for MDE. Transformation Language) [12] transformations.

Section VI provides basic concepts concerning the AbstractWithin the Graph Transformation community, using the
State Machine formal method which is later used to implemeetncepts of graph transformations and metamodeling, the
the in-the-loop approach. transformation language GReAT (Graph Rewriting And Trans-

Sections VIl and VIII show a concrete scenario of in-theformation language) [13] has been designed to address the
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specific needs of the model transformation area of the Modabdels, developing a grammar for the ASMs from the meta-
Integrated Computing. It is supported by tools that alloe thmodel was challenging and led us to the definition of a bridge
rapid prototyping and realization of transformation tools  between grammars and metamodels as explained in [21]. This
To the best of our knowledge, the development of the abopart of the process required at least six man month. Although
mentioned languages and tools did not follow a model-drivere did not automatize these rules, because no advanced-model
engineering process like the one described here in Sedtion to-text tools were available at that time and because weegant
A metamodel for the ITU language SDL-2000 has beeo derive only one grammar for Asmetal, the rules may be
also developed [14]. The authors present also a semi-atitbmaasily reused for other formalisms. Several model-to-ttzois
reverse engineerinmethodology that allows the derivation ofexist now: EMFText [22] working for Ecore metamodels,
a metamodel from a formal syntax definition of an existingCS [23] (Textual Concrete Syntax) for metamodels written
language. The SDL metamodel has been derived from timeKM3, TEF (Textual Editing Framework) for EMF-based
SDL grammar using this methodology. A very similar methothetamodels, etc. Vice versa, Xtext [24] allows to derive
to bridgegrammarwareand modelwareis also proposed by a language metamodel from the language concrete textual
other authors in [15] and in [16]. These approaches ageammar. An overview of textual grammars and metamodel
complementary to the development process presented in Sectgiven in [25]. Other more complex model-to-text tools,
lll. Our approach has to be considerefbavard engineering capable of generating text grammars from specific MOF
process consisting in deriving a concrete textual notdtiom based repositories, exist [26], [27]. These tools render th
an abstract metamodel. content of a MOF-based repository (known as a MOFlet) in
A recent result [17] shows how to apply metamodel-baséektual form, conforming to some syntactic rules (grammar)
technologies for the creation of a language description felowever, though automatic, since they are designed to work
Sudoku. This is on the same line of our approach of exploitingth any MOF model and generate their target grammar based
MDE technologies to develop a tool-set around ASMs. on predefined patterns thus they do not permit a detailed
Within the ASM community, a number of notations andustomization of the generated language.
tools have been developed for the specification and analysi©n the problem of integrating graphical notations and
[18]. The Abstract State Machine Language (AsmL) developéormal methods, [28] shows how the process algebra CSP
by the Foundation Software Engineering group at Microsadind the specification language Object-Z, can be integrated i
is the greatest effort. AsmL is a rich executable specificati an object-oriented software engineering process empjdiie
language, based on the theory of Abstract State MachinE/L as a modeling and Java as an implementation language.
expression- and object- oriented, and fully integrated intn [29], the author presents an approach to formal methods
the Microsoft .NET framework. However, AsmL does notechnology exploitation which introduces formal notasanto
provide a semantic structure targeted for the ASM methodfitical systems development processes. Furthermorgpfde
“One can see it as a fusion of the Abstract State Machipeses a metamodel-based transformation technique, which i
paradigm and the .NET type system, influenced to an extentfoynded by a set of structural and semantic mappings between
other specification languages like VDM or Z” [19]. AdoptingUML and B, to assist derivation of formal B specifications
a terminology currently used, AsmL is a platform-specifitom UML diagrams. All these approaches are based on
modeling language for the .NET type system. Of the remainitiganslating graphical models to formal specifications, aral
tools for ASMs, let us mention the more popular ones: th@milar to our approach on moving from terminal models of a
CoreASM, an extensible execution engine developed in Jametamodel-based language to an ASM specification. However,
TASM (Timed ASMs), an encoding of Timed Automata irthey are tailored for the UML, while our approach refer to
ASMs, and a simulator-model checker for reactive real-timgeneric metamodel-based languages, and they perform only
ASMs [20] able to specify and verify First Order Timedone side of the in-the-loop integration.
Logic (FOTL) properties on ASM models. Among these, the An MDE-based approach for integrating different formal
CoreASM engine is the more comparable to our. Other specifiethods was recently proposed in [31]. As in our approach,
languages for the ASMs, no longer maintained, are ASM-Sfgrmal models are introduced into MDE as domain specific
which adopts a functional style being developed in ML anénguages by developing their metamodels. Then, transfor-
which has inspired us in the language of terms, the AsmGofaation rules are defined to obtain notation bridges. At last,
language based on the Gofer environment, and XASM whichodel-to-text syntax rules are developed, so to map models
is integrated in Montages, an environment generally used fato programs. As case study, the approach was applied for
defining semantics and grammar of programming languagbsidging MARTE to LOTOS. The main goal of their work is to
All the above tools, however, do not rely on MDE principleintegrate different formal notations in software devel@mt
and techniques, and, except CoreASM that is based on lmwever they do not provide semantics to them. General
extensible architecture, none of the others are designedctmllenges of tool integration are discussed in [32], where
support model exchange and tool integration. Recently, saftware language engineering solution technique is ptede
metamodel for the AsmL language is available as part ofthat apply MDE principles to address tool interoperabhility
zoo of metamodels defined by using the KM3 meta-language Concerning the problem of specifying the semantics of
However, this metamodel is not appropriately documented mretamodel-based languages, some recent works, such as
described elsewhere, so this prevented us to evaluate it. Kermeta [33], aim at providing executability into current
Regarding the derivation of concrete grammars for metmetamodeling frameworks. Another effort toward this same
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direction is presented in [34] where the authors descrilee tf#6]. Nevertheless, this model-driven development precas
M3Actions framework to support operational semantics fdre adapted to formal methods, too.
EMF models. The Maude formalism is also proposed in [35] The first step of this engineering process is theice of a
as a way for specifying the semantics of visual modelinmetamodeling framework and its supporting technolagies
languages. principle, the choice of a specific meta-modeling framework
On the application of ASMs for specifying the executioshould not prevent the use of models in other different meta-
semantics of metamodel-based languages in a MDE stylegodeling spaces, since model transformations among meta-
we can mention the translational approach described in [36jodeling framework should be theoretically supported &y th
They propose aemantic anchoringp well-established formal environments. However, although in theory one could switch
models of computation (such as FSMs, data flow, and discrétemework later, a commitment with a precise meta-modeling
event systems) built upon AsmL, by using the transform&amework is better done at the very early stage of the
tion language GME/GReAT. The proposed approach offetlevelopment process, mainly for practical reasons. Theaho
up predefined and well-defined sets sémantic unitsfor MDE framework should support easy (e.g., graphical) editin
future (conventional) anchoring efforts. However, we see t of (meta) models, model to model transformations, and text t
main disadvantages in this approach: first, it requires welodel and model to texts mappings to assist the development
understood and safe behavioral language units and it is whtconcrete notations in textual form. It should also preval
clear how to specify the language semantics from scratcimwhmapping towards programming languages (i.e. API artifacts
these language units do not yet exist; secontigierogeneous to allow the integration with other software applications.
systems specifying the language semantics as compositionOnce a metamodeling framework has been chosen, the
of some selected primary semantic units for basic behaviofarther main steps, that might require iterative processof
categories [37] is not always possible, since there mayt exibe process are the following.
complex behaviors which are not easily reducible to a corDesign of a language abstract syntaxin the MDE context,
bination of existing ones. Still concerning the translatib  the abstract syntaxof a specification language is defined by
category, in [38] the dynamic semantics of the AMMA/ATL means of ametamode[47]. It is an object-oriented model
transformation language was specified in the XASM [39] ASM of the vocabulary of the language. It represents concepts
dialect. A direct mapping from the AMMA meta-language provided by the language, the relationships existing among
KM3 to an XASM metamodel is used to represent metamodelshose concepts, and how they may be combined to create
in terms of ASM universes and functions, and this ASM modelmodels. Precise guide lines exist (e.g., [46]) to drive this
is taken as basis for the dynamic semantics specificatiomeof t modeling activity that leads to an instantiation of the @ros
ATL metamodel. However, this mapping is neither formally metamodeling framework for a specific domain of interest.
defined nor the ATL transformation code which implementsThis is a critical process step since the metamodel is the
it have been made available in the ATL transformations Zoostarting point for tool development.
or as ATL use case [12]; only the Atlantic XASM ZooDevelopment of tools.Software tools are developed starting
[40], a mirror of the Atlantic Zoo metamodels expressedfrom the language metamodel. They can be classified in
in XASM (as a collection of universes and functions), has generatedbased andintegrated depending on the decreas-
been made available. A further recent result [41] proposesng use of MDE generative technologies for their develop-
ASMs, Prolog, and Scheme as description languages in anent. The effort required by the user increases, instead.
framework named EProvide 2.0 for prototyping the operation Software tools automatically derived from the metamodel
semantics of metamodel-based languages. Their approach &e considered generated. Based tools are those developed
also translational as it is based on three bridges: a pHysicaexploiting artifacts (APIs and other concrete syntaxes) an
a logical, and a pragmatical bridge between grammarwareontain a considerable amount of code that has not been
language and modeling framework. generated. Integrated tools are external and existings tool
By exploiting our ASM-based semantic framework [42], we that are connected to the language artifacts: a tool may use
also defined the semantics of the AVALLA language [43] of just the XMI format, other tools may use the APIs or other
the AsmetaV validator, a domain-specific modeling languagederivatives. In the sequel we explain these kinds of tools.
for scenario-based validation of ASM models. Moreover, in1) Development of language artifactsrom the language
[44] we adapt one of the techniques in [42], theta-hooking  metamodel, severalanguage artifactsare generated for
for UML profiles, and we show its application to tlystemC  model handling — i.e. model creation, storage, exchange,
Process (SCP) state machirfesmalism of the SystemC UML  access, manipulatation —, and these artifacts can be reused
profile [45]. during the development of other applications. Artifacte ar
obtained by exploiting standard or proprietary mappings
Ill. MDE FORFMs from the metamodeling framework to several technical
Applying the MDE development principles to a formal spaces, as XMLware for model serialization and interchange
method has the overall goal of engineering a language andnd Javaware for model representation in terms of pro-
a tool-set around the formal method in order to support itsgrammable objects (through standard APIs).
practical use in systems development life cycle. 2) Definition and validation ofconcrete syntax(es). Lan-
The MDE methodology for engineering software languagesguage concrete notations (textual, graphical or both) @n b
is well established in the context of domain-specific langega  introduced for the human use of editing models conforming
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to the metamodel. Several tools exist to define (or derive) Awme
concrete textual grammars for metamodels. For example, i
EMFText [22] allows defining text syntax for languages de- .
scribed by an Ecore metamodel and it generates an ANTLR £ w ", Ms
grammar file. TCS [23] (Textual Concrete Syntax) enables .
the specification of textual concrete syntaxes for Domain- -

P ; o A~ S g = 8
Specific Languages (DSLs) by attaching syntactic informa-’; A
tion to metamodels written in KM3. A similar approach w
is followed by the TEF (Textual Editing Framework) [48]. M ML L
Other tools, like the Xtext by openArchitectureWare [49], " m’ I~ Mg (m) = Mg (m!')
following different approaches, may fit in our process as
well. Depending on the degree of automation provided by the Fig. 2: The building function}/

chosen framework, concrete syntax tools can be classified
between generated and based software. _ ) ) )
Besides to be defined, concrete grammars must be alsgometimes, in order to give the semantics of a language
validated. To this aim, a pool of models written in thénother helper languadg, whose semantics is clearly defined
concrete syntax and acting as benchmark has to be selecttfl Well established, is introduced. Therefolé;; and 5*
During this activity it is important to collect informationShould be already well-defined fdi’. L' can be exploited
about the coverage of language constructs (classesuaisib {0 define the semantics df by:

and relations) to check that all them are used by the examt) taking.S” as semantic domain fat too, i.e..S = 5,

ples. Writing wrong models and checking that they are nof2) introducing abuilding functionM : A — A’, being A’
accepted is important as well. Coverage evaluation can be the abstract syntax af’, which associates an element of
performed by using a code coverage tool and instrumenting A’ to every construct of4, and

the parser accordingly. This validation activity is alsefus  3) defining the semantic mappings : A — S as

to provide confidence that the metamodel correctly captures
concepts and constructs of the underline formal method.

3) Development of other tooldvetamodel, language arti-  The A functionhooksthe semantics oA to the S’ semantic
facts, and concrete syntaxes are the foundations over whigdmain of the languagé’. The complexity of this approach
new tools can be developed and existing ones can §€pends on the complexity of building the functih.
integrated. Note that the functiord/ can be applied to terminal models
conforming to A in order to obtain models conforming to
IV. FMs FORMDE A’, as shown in Fig. 2. In this way, the semantic mapping

Applying a formal method to a language defined in a Ms : A — S associates a well-formed terminal model
meta-modeling framework should have the following overafionforming to A with its semantic model\s(m), by first
goals: (a) allow the definition of the behaviors (semantifs) translatingm to m’ conforming to A’ by means of thel/
models conforming tal and (b) provide several techniquedunction, and then applying the mappingg which is already
and methods for the formal analysis (e.g., validation, prop Well-defined.

proving, model checking, etc. ) of such models. To be a good candidate, a languageshould (i) be abstract
and formal to rigorously define model behavior at different

levels of abstraction, but without formal overkill; (ii) keble

. to capture heterogeneous models of computation (MoC) in
~ A metamodel-based languagehas a well-defined seman-grder to smoothly integrate different behavioral modeis; (
tics if a semantic domairts is identified and a semantiche endowed with a model refinement mechanism leading to
mapping Ms : A — S is provided [50] between thd's  correct-by-construction system artifacts. FurthermaseyIDE
abstract syntax4 (i.e. the metamodel of.) and S to give gpecific requirement (iv)L’ should be possibly endowed
meaning to syntactic concepts 6fin terms of the semantic yjth a metamodel-based definition in order to automatize
domain elements. the application of building functiom/ by exploiting MDE

The semantic domairs' and the mappingl/s can be de- techniques of automatic model transformation.
scribed in varying degrees of formality, from natural laaga

to rigorous mathematics. It is very important that bdih
and Mg are defined in a precise, clear, and readable w
The semantic domai® is usually defined in some formal, Besides the above stated requirements about the expressive
mathematical framework (transition systems, pomsetse$;a power of L’ as notation, it is important that formal analysis of
the set of natural numbers with its underlying properties, amodels written inL’ is supported by a set of tools for model
examples of semantic domains). The semantic mappifag execution, as simulation or testing, and for model verifiorat

is not so often given in a formal and precise way, possiblpdeed, the main goal of applying a formal notation to the
leaving some doubts about the semanticé oThus, a precise semantics ofL is to allow formal analysis of the models
and formal approach to define it is desirable. written in L.

Mg =MjoM

A. Language semantics definition

%_ Formal analysis
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As main formal activities that are allowed by applying a MDE apply MDE to FM FM‘_
formal method to a languagk, we identify at leastmodel (1) S
validation and property verification ‘.
Validation is intended as the process of investigating a U
model (intended as formal specification) with respect to its wav’
user perceptions, in order to ensure that the specificatialtyr apply FM to MDE (2)
reflects the user needs and statements about the application Fig. 3: In the loop integration of FM and MDE

and to detect faults in the specification as early as possible
with limited effort. Techniques for validation includeenarios
generatlom when the user t_)unds scenarios desc_:rlblng .thneletamodel (see Sect. 1V), a formal notation endowed with
behavior of a system by looking at the observable interastio . : .

a representation of its concepts in terms of a metamodel

between the system and its environment in specific S'tthIOOvould allow the use of MDE transformation languages (as

simulation when the user provides certain input and observgs“_) to define the building function) and to automatize

if the output. Is the expected one or not (it is s_|m|la}r t?he application ofM as model transformation by means of
code debugging)nodel-based testingvhen the specification a }ransformation enai . .
gine. Therefore, having a metamodel is a

is used as oracle to compute test cases for a given Criti?@rther constraint for an helper languadé, and it justifies
behavior of the system at the same level of the specificatio P 9 ' J

These abstract test cases cannot be executed at code feeel %/v?hy the second activity must prec_ede th_e _f|rst one_.
Sect. VII and VIII present our instantiation of the-the-

they are at a wrong level of abstraction. Executable tesisca?o integration with the EMF (Eclipse Modeling Framework)

must be derived from the abstract ones and executed at cgg? DE framework and the ASMs (Abstract State Machines)

a? formal method. This choice is justified by the following
Rlotivations:

« EMF is based on an open-source Eclipse framework and
unifies the three well known technologies, i.e. Java, XML,
and UML, currently used for software development.
ASMs own all the characteristics of preciseness, ab-
straction, refinement, executability, metamodel-baséd de
inition that we identified as the desirable properties a

level to guarantee conformance between model and code.
In any case, validation should precede the application
more expensive and accurate methods, fidguirements for-
mal analysisand verification of propertiesthat should be
applied only when a designer has enough confidence that
the specification captures all informal requirements. FRdrm
verification has to be intended as the mathematical proof of®
system properties, which can be performed by hand or by the
aid of model checkers (which are usable when the variable . )
ranges are finite) or of theorem provers (which require gtron .FM ShQUId have in order to be a good candidate for
user skills to drive the proof). Integration. ) o )
Model validation techniques can be also used during the'n oro_ler to make a further step in the direction of a tighter
development of the language semantics Ioffor semantic Ntegration between ASM and EMF, Sect. X shows how
validation This activity consists in checking (or proving, iféfféctively we canclose the loop(see Fig. 3) by describing
possible) that the building function/ really captures the the semantics of ASMs representation in the EMF framework
intended semantics df, and it must be performed before anyY Using the ASM formal method itself.
formal analysis of models. Indeed every later formal attivi
on models written in is based on\/ and a faulty) would VI. ABSTRACT STATE MACHINES
jeopardize the results obtained. Abstract State Machines are an extension of FSMs [51],
where unstructured control states are replaced by statas co
prising arbitrary complex data. Thetatesof an ASM are
multi-sorted first-order structures, i.e. domains of otgeeith
Although the two activities of applying the MDE to a FMfunctions and predicates (boolean functions) defined omthe
and apply a FM to the MDE can be considered unrelated anthile thetransition relationis specified by “rules” describing
could be performed in parallel even by using two differerthe modification of the functions from one state to the next.
notations for the MDE and FMs, the best results can beBasically, a transition rule has the form gfiarded update
obtained by a tight integration between the MDE and a FMf Conditionthen Update$ whereUpdatess a set of function
in an in-the-loopintegration approach. In this approach, thepdates of the fornf (¢4, ..., t¢,) := t that are simultaneously
MDE framework and the FM notation are the same in bo#xecuted whenCondition is true, f is an arbitraryn-ary
of the above activities and the application of the MDE to thinction, andt,,...,t,,t are first-order terms. To fire this
FM is carried out before the application of the FM to theule to a stateS;, ¢ > 0, evaluate all termsy,...,¢,,t at.S;
MDE. Thanks to the first activity, the FM will be endowedand update the functiofi to ¢ on parameters, ..., t,. This
with a metamodel and possibly a set of tools (e.g., a grammaroduces another statg, ; which differs fromS; only in the
artifacts, etc.) which can be used in the second activity teew interpretation of the functiofi. An ASM M is therefore
automatize (meta-)model transformations and apply dSeitala finite set of rules for such guarded multiple function updat
tools for formal analysis (i.e. validation and verificatjoof Function are classified aterivedfunctions, i.e. those com-
models. Indeed, although for applying FM to the MDE itng with a specification or computation mechanism given in
is in principle not required that the FM is provided with germs of other functions, anbdasic functions which can be

V. IN-THE-LOOP INTEGRATION
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static(never change during any run of the machinejigmamic i
(may change as a consequence of agent actionpdates. ——
Dynamic functions are further classified intapnitored(only
read, as events provided by the environmesthtrolled (read T T e
and write),sharedand output (only write) functions. [poie] o [Teme ] T

These is a limited but powerful set ofile constructors || [eumnek-|— et S
that allow to express simultaneous parallel actiopar(), : i L CL : !
sequential actionsgq), iterations (t er at e,whi l e,rec- [ rurtnerterms |+~ | TiboTranstionRutes | pervedtransitonfues
whi | e), and submachine invocations returning values. A} ° P L= =
propriate rule constructors also allow non-determinismiste .. 0 e
tential quantificatorchoose) and unrestricted synchronous 77 Transition System
parallelism (universal quantificatidnor al | ). _ State

A computatiorof an ASM M is a finite or infinite sequence Fig. 4. Package structure of the AsmM metamodel
So0,51, .., Sn,. .. of states ofM, whereS is an initial state
and eachS,,,; is obtained fromS,, by firing simultaneously
all of the transition rules which are enabledSh. analysis of protocols, architectural design, languagegdes

The notion of ASMs formalizes simultaneous parallel adrerification of compilation schemas and compiler back-ends
tions of a single agent, either in an atomic wB@sic ASMs etc.
or in a structured and recursive wa$tructured or Turbo
ASMs Furthermore, it supports a generalization where mul- VIl. EMF FORASMS

tiple agents interact in parallel in a synchronous/asymtbus In addition to its mathematical-based foundation, a

way, Synchronous/Asynchronous Multi-agent ASMs metamodel-based definition for ASMs has been given [53],

Alihmljgfh thz '?SM Qgtl\;md CO”_‘OT‘S with atr|gor(?[us matl'thgi‘l]' This ASM metamodel allowed us to apply MDE
ematical tounaation, S provide accurate yet practic chniques for developing a general framework, called

industrially viable behavioral semantics for pseudocode ASMMETA- modeling frameworkgSMETA) [55], for a wide
arbitrary data structures. We quote here thisking definition inter-operability and integration of new and’existing ©0l

of an ASM defined as a tuplen¢ader body main rule around ASMs (ASM model editors, ASM model repositories,

initialization). . . .
. - ASM model validators, ASM model verifiers, ASM simula-
Theheadercontains thenameof the ASM and itssignature tors, ASM-to-Any code generators, etc.).

namely all declarations of domains, functions, and predia
The header may contain alsaportandexportclauses, i.e., all
names for functions and rules that are, respectively, itegor A- ASM Metamodel

from other ASMs, and exported from the current one. We We started by defining a metamodel [55], [56], [53], [54],
assume that there are no name clashes in these signaturethe Abstract State Machine Metamod@smM), as abstract

The body of an ASM consists of (static) domain andsyntax description of a language for ASMs. The aim was
(static/derived) function definitions according to domaimd that of developing aunified abstract notation for the ASMs,
function declarations in the signature of the ASM. It alsmdependent from any specific implementation syntax and
contains declarations (definitions) of transition rulesl a@ef- allowing a more direct encoding of the ASM mathematical
initions of axioms for invariants one wants to assume foconcepts and constructs.
domains and functions of the ASM. The complete AsmM metamodel is organized in one pack-

The (unique)main ruleis a transition rule and represents thage calledasMETA containing 115 classes, 114 associations,
starting point of the machine program (i.e. it calls all thkes and 150 class invariants expressed in the OMG OCL language
ASM transition rules defined in the body). The main rule if57], approximatively. TheasMETA package is further divided
closed(i.e. it does not have parameters) and since there areinto four packages as shown in Fig. 4. Each package covers
free global variables in the rule declarations of an ASM, thdifferent aspects of the ASMs. The dashed gray ovals in
notion of a move does not depend on a variable assignmdfigy. 4 denote packages representing the notionsStafte
but only on the state of the machine. and Transition Systemrespectively. Thest r uct ur e pack-

The initialization of an ASM is a characterization of theage defines architectural constructs (modules and maghines
initial states. An initial state defines an initial value forequired to specify the backbone of an ASM model. The
domains and functions declared in the signature of the ASIlef i ni ti ons package contains all basic constructs (func-
Executingan ASM means executing its main rule starting frortions, domains, constraints, rule declarations, etc.ighvbhar-

a specified initial state. acterize algebraic specifications. Ther ns package provides

A complete mathematical definition of the ASM methoall kinds of syntactic expressions which can be evaluated
can be found in [52], together with a presentation of thetgrea a state of an ASM. Thdr ansi ti onRul es package
variety of its successful application in different fieldskuas: contains all possible transition rules schemes of Basic and
definition of industrial standards for programming and medeTurbo ASMs. All derived transition rules are contained in
ing languages, design and re-engineering of industriairobn the Der i vedTr ansi t i onRul es package. These rules are
systems, modeling e-commerce and web services, design attter ASM transition rule schemes derived from the basic
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smetaLc
| Asm M Header | QOPPNICRtee I |AsmetaV| | AsmetaSMV ||
’ 00 0.1 | ASITet_aL_________-_.-_.-_.-_.—
+ importClause
k- agm |
|
|

11 ! '
[ ] | [TeT]
(]| < CASTME!

+ signature Fig. 6: TheASMETA tool set

+ bodySection

+axiom
for the interoperability of ASM tools (new and existing ohes
[59].

The ASMETA tool set (see Fig. 6) includes (among other
things) a textual concrete syntaRsmetal. to write ASM
models (conforming to the AsmM) in a textual and human-

*

+ domainDefinition

DomainDefinition

+ functionDefinition

F unctionDefinition

¢ rieDecarmton . comprehensible form; a text-to-model compil&smetal¢
| RuleDeclaration ’?%pmed;;me to parse AsmetaL models and check for their consistency
A Jeporedrue  W.ILE. the AsSmM constraints expressed in the OCL language;

mainrule a simulator,AsmetaSto execute ASM models; thévalla
0.1 language for scenario-based validation of ASM models, with

RN its supporting tool, theAsmetaVvalidator; a model checker

nitialization omaininitialization
AsmetaSM\J60] for model verification by NuSMV; th&TGT

+ functioninitialization P ——— tool that is an ASM-based test case generator based upon
* | Functioninitialization )
: the SPIN model checker; a graphical front-end cah&MEE

(ASM Eclipse Environment) which acts as IDE and it is an
eclipse plug-in.

All the above artifacts/tools are classified igenerated
based andintegrated Generated artifacts/tools are derivatives
and the turbo ones, respectively. Although they could kghtained (semi-)automatically by applying appropriaterec
easily expressed at model level in terms of other existitg riprojections to the technical spaces Javaware, XMLware, and
schemes, they are considered “syntactic sugar” and tirerefgrammarware. Based artifacts/tools are those developed ex
they have been included in the metamodel. Example of suglditing the ASMETA environment and related derivatives; an
rules are the case-rule and the (turbo) iterative/receisivle-  example of such a tool is the simulator AsmetaS). Integrated
rule. All relations between packages are of tyges artifacts/tools are external and existing tools that arenected

We present here only a very small fragment of the AsmM the ASMETA environment.
whose complete description can be found in [53], [55]. Fig.

5 shows the backbone of basic ASM An instance of

the root classAsm represents an entire ASM specification.

According to the definition given in Sect. VI, a basic ASM We here describe how the ASM formal method can be
has anane and is defined by aHeader (to establish exploited as helper language to define a forraamantic
the signature), eBody (to define domains, functions, andframework to provide languages with their (possibéxe-
rules), amai n rul e, and a set of initial states (instances otutablg semantics natively with their metamodels. We also
thel nitialization class). All possible initial states aredescribe how the ASM tool-set provides a concrete support
linked to an ASM by the association endhi ti al St ate for model analysis.

and one initial state is elected dsfault (see the association
enddefaul t1nitial State). ASM rule constructors are
represented by subclasses of the cRusise, not reported here.

~+domaininitialization

M

+initalState B

Fig. 5: Backbone

VIIl. ASM s FOREMF

A. Language semantics definition

Recall, from Sect. 1V, that the problem of giving the seman-
tics of a metamodel-based languagés reduced to define the
function M : A — A’, being A and A’ the language and the

From the AsmM, by exploiting the MDE approach andhelper language abstract syntaxes, respectively. Letsisras
its facilities (derivative artifacts, APIs, transformati li- the ASMs as helper language satisfying the requirements,
braries, etc.), we obtained in a generative manner (i.ei-semiven in Sect. 1V, of having a mathematical well-founded se-
automatically) several artifacts (an interchange formd|s, mantics and a metamodel-based representation. The semanti
etc..) for the creation, storage, interchange, access amibm domains 4.,/ is the first-order logic extended with the logic
ulation of ASM models [58]. The AsmM and the combinatiotior function updates and for transition rule constructafreed
of these language artifacts lead to an instantiation of té& E in [52] and thesemantic mapping{s : AsmM — Sasmm
metamodeling framework for the ASM application domairtp relate syntactic concepts to those of the semantic domain
the ASMETA framework that provides a global infrastructurés given in [58].

B. ASMETA tool-set
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R 1) Model validation: Simple model validation can be per-
Meta-metamodel MoF E@j—j _ formed bysimulatingASM models with the ASM simulator
N e WO (see Section VII-B) to check a system model with respect
/ AsmM to the desired behavior to ensure that the specificatioyreal
metamodel el G reflects the user needs and statements about the system, and
R R ED R, ey ‘ to detect faults in the specification as early as possibla wit
4 ' ntizaton, limited effort.
model | FE/% \ The AsmetaS simulator can be used in a standalone way
PR e — — to provide basic simulation of the overall system behavsr.
mL L e > 1 o \} key features for model validation, AsmetaS supp@ttom
: d? checkingo check whether axioms expressed over the currently

Fig. 7: Semantic hooking executed ASM model are satisfied or nodnsistent updates

checkingor revealing inconsistent updateandom simulation

where random values for monitored functions are provided by

The semantics of a metamodel-based language is expreégngdenwrgncrjngr:tlnte{_ac'jlvz 3|_mula_t|or?N?en req duwed f_lnput

in terms of ASM transition rules by providing the buildingare provided interactively during simuiation, and con @Je.
loggingfacilities to inspect the machine state. Axiom checking

function M : A — AsmM. As already mentioned, the d q imulati I h f draft
definition of the functiom\/ may be accomplished by different?d random simu 3“0” allow the ‘user .to periorm a dra
system validation with minimal effort, while interactivars

techni 42]), which differ in th terminal miod>7>" ) X
echniques (see [42]), which differ in the way a terminal relo H@tlon, although more accurate, requires the user irtierac

is mapped into an ASM. As example of such techniques, t S ; .
i P d The most powerful validation approach is tilseenario-

semantic hookingechnique is presented below. This technique o . .
is used in Section 1X-B to provide behavioral semantics ef t ased validation[61] by the ASM validator (see Section

language in our case study. VII-B). The AsmetaV validator is based on the AsmetaS simu-

Thesemantic hookingndows a language metamodelith lator and on the Avalla modeling language. This last pravide
a semantics by means of a unique ASM for any model cofionstructs to express execution scenarios in an algogthmi
forming to A. By using this technique, designetsokto the way as interaction sequences consistingaionscommitted

language metamod#@l an abstract state machiig, which is by the user actorto set .the environment (i.e. the values
an instance oAsmMand contains all data structures modelinglc moknlftoriﬂlshared {_unctl?ns),tt:_jﬁetck thf maclhlne St?jtet‘
elements ofd with their relationships, and all transition rules” fas (t)r: eexr?_cu !f[)n h(‘)t cer akln raé15| lon rifes, anc to
representing behavioral aspects of the languiigedoes not e? (?[rce be ;nac met ! Sle o ma t('e o8 fet'?] (or ? seql:_ence
contain the initialization of functions and domains, whigi ~ ©' S'€PS bySt€p ‘unti ) as reaction of the actor actions.

depend on the particular instance Af The function which th Asmeta\/_ read_s at user sietr;]arlz erlltten Itn sz”?’b't builds
adds the initialization part is called Formally, the building € scenario as Instance of the Avalla metamodel by means

function M is given by M(m) = ta(T'a,m), for all m of a parser, it transforms the scenario and the Asmetal
conforming toA AV AT specification which the scenario refers to, to an executable

T'a: AsmM, is an abstract state machine which contairésm'vI model. Then, AsmetaV invokes the AsmetaS inter-

only declarations of functions and domains (the signatane) preter to simula_lte thg scenario. During simulation the user
the behavioral semantics &fin terms of ASM transition rules. 27 Pause the simulation and waich the current state and valu

iai AsmM x A — AsmM, properly initializes the of the update set at every step, through a watching window.
maéﬁine L4 is defined on an AS’Mz and a terminal model During simulation, AsmetaV captures any check violatiod an
m instance of4; it navigatesm and sets the initial values for"‘fpz\%n; /‘?F(fluL’r’S It g.nltsk(ljes_wnthh a PASS. verd|_ct. iesu;(tes a
the functions and the initial elements in the domains dedar . _verdict, auring Ihe scenario running Asmata
in the signature ofi. The .4 function is applied td" 4 and to collects in a final report some information about tteverage
the terminal modekn for which it yields the final ASM of the original model; this is useful to check which trarsiti
Examples of applying the semantic hooking technique {Hles have been exercised.

define the semantics of a metamodel-based language car} Model checking The ASMETA tool-set provides support

found in [42] for a metamodel of Finite State Machines and’ temporal properties verification of ASM models by means

in [1] for a metamodel of the Petri net formalism. The latter iOf the model checker AsmetaSMV [60], which takes in input

also reported in Appendix A and can be viewed as an exam
which facilities the reader in understanding our approauctes
the semantics of Petri nets is well-known.

A' M models written in AsmetalL and maps these models into
Fgpeciﬁcations for the model checker NuSMV [62].

AsmetaSMV supports both the declaration@dmputation
Tree Logic(CTL) andLinear Temporal Logi¢LTL) formulas.
CTL/LTL properties to verify are declared directly into the
B. Formal analysis ASM model as (special) axioms of the form:

The ASM-based semantic framework supports formal anal-
ysis of ASM models by exploiting thesMETA tool-set (see
Section VII-B for details) for model validation and verifica where the over section specifies jifis a CTL or a LTL
tion. formula. No knowledge of the NuSMV syntax is required to

axiom overlctl | Itl] . p
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— ASM model
model benchmark hooking — models El Square Zenumerations s

function

PASS/FAIL L .
00 [] 0 I i 2qUATE) = gymbol ; Skind £ Skind
ﬂ % AsmetaV 3 —
Y
D COVERAGE 3 |squarelnRow = nought
= cross

scenarios

Fig. 8: Semantic validation by AsmetaV

drow OV o

k DQ R;W 2.4

the user in order to use AsmetaSMV. row
3) Language semantics validatiorThe ASMETA tool-set

and the validation techniques can also be useddoguage Fig. 9: A metamodel for Tic-Tac-Toe
semantics validationdeed, this activity is performed through
the validation of the hooking functioh/ presented in Section X X X[x x[x]o] [x[x][o] [x]x]o
VIII-A by applying it to a collection of meaningful examples 0 0 o o o
The ASM models obtained form the application & to x| | OIx
the examples can be validated in different ways providing Fig. 10: Examples of Tic-Tac-Toe boards

increasing degrees of confidence in the semantics corsectne

Random simulatiomllows checking if errors like inconsistent

updates and type errors, occunteractive simulationcan Each square is contained in one row and one vertical row.
provide evidence that the semantics captures the inteneled $ome squares may be contained in more than one row. The
havior, but it requires the user to provide the correct is@untd square in the center, for example, is contained in the middle
to judge the correctness of the observed behavior. The muettical row and horizontal row, and in the two diagonal rows
powerful validation approach is tteeenario-based validation All these structural constraints can be expressed in OCL. Fo
As shown in Fig. 8, a suitable set of models are selectedample, the following OCL invariant

as benchmark for language semantic validation; these modglyntext: Board

are translated into ASM models by the hooking functigh inv RowColumnCommonSquares:

moreover, a set of scenarios specifying the expected bathaws elf . hrow . squarelnRow>

of the models must be provided by the user and are usethtersection(self.vrow.squarelnRowysize ()=1

for validation. These scenarios can be written from scraich states that an horizontal row and a vertical row can only have
the Avalla language, or alternatively, if the languaBehas exactly one square in common.

already a simulator, these scenarios may be derived from the=jg 10 shows (using a graphical concrete syntax) examples

execution traces generated by such a simulator. The sec@fdfic-Tac-Toe boards as instances (terminal models) of the
approach is useful to check the conformance of the semanti¢s. Tac-Toe metamodel in Fig 9.

implemented byLgs with respect to the semantics defined
by the hooking functionM. The ASM validator provides

) : : 'I? Tic-Tac-Toe semantics definition

also useful information about the coverage obtained by thé ) ’ ) ) )
scenarios. According to the hooking teghnlque, fII’St. we have to specify

an ASM TI'ri._Tac—Toe CONtaining the signature and the
IX. THE TIC-TAC-TOE EXAMPLE behavioral semantics of the Tic-Tac-Toe metamodel in terms

. i of ASM transition rules. Listings 1 (for the signature), 2
As a case study, we consider Tic-Tac-Toe as a language . : .
nd 3 (for the transition rules) report portions of a possibl

where a Tic-Tac-Toe board is an instance of the langua gichachoe in Asmetal for a computer (symbol O) vs user

\é\éesgfet.'c\)/lnDli'nbas:detg??QgI_(I)_%_e_l_sa?_l% flnzsemzazrqﬁgi?&ymbol X) Tic-Tac-Toe game. The complete ASM model is
Ipti guag : game, eported in Appendix B.

ggrze:ntsissm;n;E(I;?:jni\(l)vrwll(af?rrw th(ian(c:jli fé?r;t'osoﬁ:egieﬁ;:t'onThe signature (see Listing 1) introduces domains and func-
(for playing) 9 tions for representing a board such as the enumer&tomd,

ing by validation and verification. domains for squares and rows as subsets of the predefined
) I nt eger domain, and so on. The signature also provides
A. Tic-Tac-Toe abstract syntax domain and functions for managing the overall game. Each
Fig. 9 shows the metamodel for the Tic-Tac-Toe. It describetayer takes alternating turns (see the funct®hat us)
the static structure of a board (tlBoar d class) maintain- trying to earn three of their symbols in a row horizontally,
ing data seen by users: rows (tiRew class) and squaresvertically, or diagonally. The game can end with a player
(the Squar e class). A board has (see referendesows, winning (represented by thehoWon function) by getting
vrows, and dr ows): three horizontal rows, three verticalthree of his/her symbol in row (as denoted by the function
rows, and two diagonal rows. Totally, in a board there ateasThreeC) or end in a draw, i.e. no spaces left on the
nine squares (see the referersmpuar e), three per each row board with none winning (as denoted by th@Squar eLef t
(thesquar el nRowreference). Th&Ki nd enumeration type function). The winner is determined by position of board; no
denotes the kind of symbols a square can contain (crobgtory needs to be recorded (only board position before and
nought, empty). The default symbol is empty. after turn). If there is no winner after nine clicks, thereais
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Listing 2: T'ric—Tac—Toe transition rules for game management

asm Tictactoe

signature:
/[For representing a board
enum domain Skind = {CROSS|NOUGHT|EMPTY}
domain Squaresubsetofinteger
domain Row subsetofinteger
static squaresinRow: Prod(Row,Integer)> Square
controlled symbol: Square-> Skind

/[For managing the game

enum domain Finalres = {PLAYERX|PC|TIE}

enum domain Status = {TURNX|CHECKX|TURNPC|CHECKPC
|GAMEOVER}

monitored playerX:Square/ move of X

controlled status: Status

controlled whoWon: Finalres

derived noSquareLeft : Boolean

derived hasThreeOf: Prod(Row,Skind}> Boolean

/IFor PC strategies

controlled count: Integer

derived openingPhase: Boolean
controlled lastMoveX: Square
static isCorner: Square-> Boolean
static isEdge: Square-> Boolean
static isCenter: Square-> Boolean

asm Tictactoe

rule r_movePC =par
r_tryStrategy[NOUGHT]
count := count + 1
status := CHECKPC
endpar

rule r_movePlayerX =f symbol(playerX)= EMPTY

then par
symbol(playerX):= CROSS
count := count + 1
lastMoveX := playerX
status := CHECKX

endpar
elsestatus := TURNX
endif

rule r_checkForAWinner($symbaoh Skind) =
/IGAME OVER WITH A WINNER?
if (exist $rin Row with hasThreeOf($r,$symbolthen
par
status := GAMEOVER
if $symbol = CROSShen whoWon:= PLAYERX
elsewhoWon:= PC

derived hasTwo: Row—> Boolean endif
static opposite: Square-> Square endpar
/IGAME TIE?
else if ( noSquareLeft )
then par
status := GAMEOVER
tie. Note that the square selected by the player X (the user) i endoar whoWon := TIE
represented by a monitored functiomveX, and therefore is else P

uter
J to
are
ie main rule r_Main =

if status = TURNXthen r_movePlayerX[]

else if status = CHECKXthen r_checkForAWinner[CROSS]
else if status = TURNPQGhen r_movePC[]

else if status = CHECKPQhen r_checkForAWinner[NOUGHT]
endif endif endif endif

if $symbol = CROSShen status:= TURNPC
elsestatus:= TURNX
endif endif endif

provided at each step as input value to the ASM; the comp
move (the square to mark) is instead calculated accordin
some playing strategies. Further domains and functions
introduced in the signature to implement these PC strateg
as better explained later in the text.
The behavior of the overall game is provided by the ma
rule r_Main (see Listing 2) where at each step a check fo
winner or a tie (rule_checkForAWinnéror a move of a player
is executed depending on the status of the game. The two rules
r_movePlayerXandr_movePCspecify the execution behavior
of the two players. The behavior of the user (player X) is

straightforward as the square to mark is provided intevalti poard, we will find that in the first turn, every corner mark
through the monitored functionoveX. The behavior of the s strategically equivalent to every other corner mark. The
computer depends instead by the chosen strategy as foetalizame is true of every edge mark. For strategy purposes, there
by the invokedr_tryStrategyrule. are therefore only three possible first marks: corner, edge,
Listing 3 reports the definition of the tryStrategyrule and center. The computer can win or force a draw from any of these
of the invoked macro rules for making a computer play thgtarting marks; however, playing the corner gives the oppbn
game. To this goal, we formalize by ASM rules a children’the smallest choice of squares which must be played to avoid
strategy that is divided in two phasepening phasgopening losing. In ther_opening_strategyule, the computer chooses
of the game) andiraw phase(after opening of both players). therefore a corner (see the rulgplayACorne) in case of first
Note that to build an unbeatable opponent (especially if wgtayer. As second player, the computer must respond to X’s
want to learn a computer to play it), we need to useiaimax opening mark in such a way as to avoid the forced win. The
approach of Game Theory. We remark that this is out of th@mputer (player O) must always respond to a corner opening
scope of this work. So, here we limit to express a childrengith a center mark, and to a center opening with a corner
strategy. mark. An edge opening must be answered either with a center
For the opening phase (see thepening_strategyule in  mark, a corner mark next to the X, or an edge mark opposite
Listing 3), as first player the computer has three possibiee X. For semplicity, in this case we play always the censer a
positions to mark during the first turn. Superficially, it hig formalized in the_opening_strategsule. Any other responses
seem that there are nine possible positions, correspondimyi allow X to force the win. Once the opening is completed,
to the nine squares in the board. However, by rotating ti@s task is to follow the below draw strategy in order to force

AN

a
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Listing 3: T'ric—Tac—Toe transition rules for the game strategies Listing 4: A winning scenario for player O

asm Tictactoe 1 scenario winPC
. 2 load Tictactoe.asm
/IA very naive player: choose an empty square and mark it. 3 set playerX = 2;
rule r_naive_strategy ($symbah Skind)= 4 step until status = TURNPC;
choose$sin Squarewith symbol($s)=EMPTY 5 step until status = TURNX;
do symbol($s):= $symbol 6 check symbol(2)=CROSS;
7 check symbol(5)=NOUGHT;
rule r_playACorner($symboin Skind) = 8 set playerX :=1;
choose$sin Squarewith (symbol($s)=EMPTY and isCorner($s)) 9 step until status = TURNPC;
do symbol($s):= $symbol 10 step until status = TURNX;
L1 check symbol(1)=CROSS;
//Opening strategy 2 check symbol(3)=NOUGHT;
rule r_opening_strategy ($symbui Skind)= L3 setplayerX :=8;
if (count=0)//first mark L4 step until status = GAMEOVER;
then r_playACorner[$symbol] L5 check symbol(7)=NOUGHT;
else//second mark L6 check whoWon = PC;

if symbol(5) = EMPTYthen symbol(5):=$symbol/play the center
elser_playACorner[$symbol}/we play a corner
endif

endif

full board). In this case,ric_Tac—Toe IS t0 be intended as a
constant function always producing in the target ASM model
the same ASM initial state. One possible, for example, is as
follows:

/IMark with $symbol the last empty square within row $r

rule r_markLastEmpty ($in Row, $symbolin Skind) =

choose$x in {1,2,3} with symbol(squaresinRow($r,$x))=EMPTY
do symbol(squaresinRow($r,$x)) := $symbol

default init sO:

function symbol($sin Square) = EMPTY

/A polite computer: it allows the user (X) to play first
function status = TURNX

function count = 0

//Draw strategy (with no fork creation/block)
rule r_draw_strategy ($symbah Skind) =
choose$wr in Row with hasTwo($wr)
do r_markLastEmpty[$wr,$symbol]1. Win or 2. Block
ifnone
if (symbol(5)=EMPTY)
then symbol(5):=$symbol/3. Center
else if (isCorner(lastMoveX) and symbol(opposite(lastMove)XgMPTY)
then symbol(opposite(lastMoveX)):= $symb@#. Opposite corner
else choosésin Squarewith (symbol($s)=EMPTY and isCorner($s))C. Tic-Tac-Toe semantic validation
do symbol($s):= $symbal/5. Empty Corner
ifnone r_naive_strategy[$symbol]6. Empty edge
endif endif

The validation of the semantics of the Tic-Tac-Toe case
study consists in checking that the mapping function defined
in IX-B really captures the intended semantics of the case
study language. Among the semantics validation techniques
discussed in Section VIII-B, we have used interactive and
scenario-based simulation. By interactive simulation,hage
used the ASM specification and the AsmetaS simulator to
interactively play Tic-Tac-Toe (player vs computer) aneéah
that the ASM model actually captures the desired behavior.

For scenario-based simulation, Listing 4 reports a scenari
in Avalla corresponding to the board configurations shown in
Fig. 10. In this scenario, the player opens by crossing cell
2 (line 3), the PC responds in the cell 5 (line 7), and the

layer crosses cell 1. At this point the PC correctly resgond
by occupying cell 3 (line 12). If the player puts the cross in
el 8 (line 13), the PC takes advantage of that and wins. This

/IComputer strategy selection

rule r_tryStrategy ($symboh Skind) =
if openingPhaséhen r_opening_strategy [$symbol]
elser_draw_strategy[$symbol]

endif

the draw, or else to gain a win if X makes a weak play.

For the draw phase (see thedraw_strategyule in Listing
3), the PC try adraw strategywith no fork creation or block.
Essentially, the computer can play Tic-Tac-Toe if it ch@os
the move with the highest priority in the following list:

1. Win: you have two in a row, play the third to get three i

g r%‘?" K th t has two i lav the third tscenario shows the smart opening of the PC (as second player)
biockoc - the opponent has two in a row, piay the third 18,4 that the PC is able both to block the player to win and to

take advantage of the opportunity to win.
3. Center: Play the center. v g ppOTiUNIy to Wi

4. Opposite Corner: the opponent is in the corner, play the

opposite corner.
5. Empty Corner: Play an empty corner.
6. Empty Side: Play an empty edge.

D. Tic-Tac-Toe formal verification

Once we were confident that the semantics of the Tic-Tac-
Toe as specified really captures the intended behavior,ieg tr
to model angrovesome formal properties. The first one states

For this example, the functiony;._r.._710c that adds to that the specification is fair and allows both player to wia. T
T'ric—Tac—Toe the initialization necessary to make the ASMmodel this fact, we have introduced in the specification the
model executable do not present variability among terminfllowing three temporal properties written in Computatb
models (unless one want to start playing from a partialljree Logic (CTL).
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MDE .\apply MDE to FM FM‘_ rule constructors, etc.). Further domains and functiores ar
R (1) S introduced to denote run-time concepts like locationsyes)|
: ‘. updates, etc., according to the theoretical definitionsrgiv
. " [52] to construct theun of the ASM model under simulation.
apr;y FM to MDE (2) “a® A supporting execution engine has to keep the current state
of the ASM model and, on request, evaluates the values of
Fig. 11: Closing the in-the-loop integration terms and computes (and applies) the update set to obtain the
next state. To this purpose, an abstract doméhue and
its sub-domains are introduced to denote all possible salue
/lthe player can win of ASM terms. The functioreval computes the value for
axiom over CTL: EF(whoWon=PLAYER) every term (expression) in the current ASM state. The atistra
/lthe computer can win domain Locat i on represents the ASM concept of basic
axiom over CTL: EF(whoWon=PC) object containers (memory units), namedations abstracting
/lthe match can terminate tie from particular memory addressing and object referencing
axiom over CTL: EF(whoWon=TIE) mechanisms. Functionsi gnt and el ement s denote, re-

The meaning ofEF(¢) is given by theE (exis) operator SPectively, the pair of a function namf which is fixed by
which means along at least one path (possibly) and tHte signature, and an optional argument .. ., v,), which is
F operator which means finally: eventually has to hold formed by a list of dynamic parameter valugsof whatever
(somewhere on the subsequent path). We have automatichfe. forming a location. Two functionsurrent St at e,
proved the three properties via model checking by using tM&lich represents the state of an ASM, anddat eSet,

AsmetaSMV component [60]. which represents an update set, are used as tables to denote
We wanted also to prove that the match always finishes alf§ation-value pairgloc, v) (updates) and are the basic units
we added the following property: of state change. Thassi gnnment function maps location

) variables to their values for variable assignment in a state
axiom over CTL: AF((status = GAMEOVER)) The very crucial task is that of computing at each step
It means that on all paths) starting from the initial state, the ASM update set. To this purpose, there exist a rule
status will eventually ) become GAMEOVER This was Vi sit(Rul eType R) foreveryRul eType subclass of the
proved false by the model checker which provided a countgyl! € class of the AsmM. Given a rulB, the matching visit
example for it. Analyzing the counter example, we notice@ethod is invoked accordingly to the type Rfto obtain the
that the player can indefinitely postpone the end of a game Wdate set oR. As example of such a kind of rule, Listing
keeping to try to put a cross in an already occupied cell. 5 reports the rule _vi si t to compute the update set for an

update-rule type.
X. CLOSING THE LooP One has also to define a functian which adds to
)gAsmM the initialization necessary to make the ASM model

This section shows a portion of the definition of the e )
ecutable. Any model transformation tool can be used to

ecutable semantics of the AsmM metamodel itself by us\iArgijt tize th g b rieving data f
the ASM-based semantic framework outlined in Sect. IV. omatiz€ e 4smar Mapping by Tetrieving data from a

apply the semantic hooking approach on a small portion of tﬁ%rminal modeln and creating the corresponding ASM initial

AsmM metamodel concerning the interpretation of the aAsgptate in the target ASM model. A model transformation engine

update-rule. In this way, we close the in-the-loop inteigrat may implement such a mapping. Essentially, for each class

between the formal method (ASM) and the MDE frameworiPStance of the terminal model, a static 0-ary function is
(EMF), as depicted in Fig. 11 created in the signature of the ASM modeél,, ;s in order

to initialize the domain corresponding to the underlyinassl.

Moreover, class instances with their properties valuediakd

are inspected to initialize the ASM functions declared ia th
We have to specify, in general, an ASMy,,y (.. ASM signature.

a model conforming to the AsmM metamodel) containing

declarations of functions and domains (the signature) bad t i o

behavioral semantics of the AsmM metamodel itself in ternfs ASMM semantics validation

of ASM transition rules. We applied the scenario-based approach for the validation
ASM rule constructors are represented in the AsmM metaf the semantics. We initially collected a set of Asmetal

model by subclasses of the cldgl e. Fig. 12 shows a subsetexamples representing all ASM constructs. In order to build

of basic forms of a transition rule under the class hierarclan extensive set of scenario specifying the expected bahavi

rooted by the clasBasi cRul e: update-rule, conditional- of the system, instead of writing the scenario by hand, we

rule, skip, do-in-parallel (block-rule), extend, etc. simulated the original examples with AsmetaS (the simulato
Listing 5 reports a fragmerit 45,2, in Asmetal notation, of AsmetaL models, see Sect. VII) itself, parsed the log files

for the interpretation of an ASM update-rule. It containproduced by AsmetaS in order to obtain valid scenario files in

domains and function declarations induced from the AsmMe Avalla syntax. Then we run the validator with the scevsari

metaclasses themselves for static/structural conceptmgt and the translation of the input examples by the semantic

A. AsmM semantics
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+elseRule 0..1 ——
| Rule

+doRule
+thenRule
0..1 | +extendRule
‘CondiﬁonalRuIe ‘ ‘ UpdateRule ‘ ‘SkipRuIe ‘ BlockRule ExtendRule
+ules:RuleCollection
+updatingTerm l-location +extendRule sextendRule
0.1

1 0.1

Term
+guard1

+boundvar 1-* 1 textendedDomain
VariableTerm AbstractTD

(from ASMETA::Terms::BasicTerms)

(from ASMETA::Definitions::Domains)

Fig. 12: A fragment of the AsmM metamodel for function ternmsl aipdate-rules

Listing 5: T Asmum

asm AsmM_hooking

signature:

/I Signature induced from the AsmM metamodel:
abstract domain Function

abstract domain Term

concrete domainVariableTermsubsetofTerm
concrete domainFunctionTermsubsetofTerm
concrete domainLocationTermsubsetofFunctionTerm

abstract domain Rule
concrete domainUpdateRulesubsetofRule

controlled updatingTerm: UpdateRule-> TupleTerm
controlled location: UpdateRule-> Term

/I Signature for run-time concepts:

abstract domain Value

abstract domain Location

controlled signt: Location—> Function
controlled elements: Location-> Seq(Value)
/[Function for the evaluation of ASM terms
static eval: Term—> Value

/[Functions for the current state of the ASM and memory wgxlat
controlled currentState: Locatior-> Value

controlled updateSet: Location-> Value

controlled assignment: VariableTerm> Value

definitions:
rule r_visit($rin UpdateRule) =
let ( content = eval(updatingTerm($r)in
if isLocationTerm(location($r))
then extend Locatiorwith $I do
par
signt($!):= funct(location($r))
elements($l):= values(eval(arguments(location($r))))
updateSet($l):= content
endpar
else if isVariableTerm (location($r))
then assignment(location($r)):= content
endif
endif
endlet

proposed above. In this way we have checked the conformance
of AsmetaS with the semantics of the ASM as defined by the
hooking function} .

XI. CONCLUSION AND FUTURE DIRECTIONS

On the basis of our experience in developing ASVMETA
toolset, we believe a formal method can gain benefits from the
use of MDE automation means either for itself and toward the
integration of different formal techniques and their taatier-
operability. Indeed, the metamodel-based approach has the
advantage of being suitable to derive from the same metamode
several artifacts (concrete syntaxes, interchange farmdatls,
etc.). They are useful to create, manage and interchange
models in a model-driven development context, settlingreh
fore, a flexible infrastructure for tools development anigiin
operability. Moreover, metamodeling allows to establish a
“global framework” to enable otherwise dissimilar langaag
(of possibly different domains) to be used in an inter-opkra
manner by defining preciskbridges (or projection§ among
different domain-specific languages to automatically exec
model transformations. That is in sympathy with tB&I
Evidential Tool Bus ided63], and can contribute positively
to solve inter-operability issues among formal methodsirth
notations, and their tools.

On the other hand, the definition of a means for specifying
rigorously the semantics of metamodels is a necessary step
in order to develop formal analysis techniques and tools
in the model-driven context. Along this research line, for
example, we are tackling the problem of formally analyzing
visual models developed with the SystemC UML Profile [64].
Formal ASM models obtained from graphical SystemC-UML
models can potentially drive practical SOC model analykés |
simulation, architecture evaluation and design explorati

In conclusion, we believe MDE principles and technologies
combined with formal methods elevate the current level of
automation in system development and provide the widely
demanded formal analysis support.
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'LZT‘SFX?TSPtGaI“Obn :—-2%83“95 ag‘i 354'\/'- Fernandes, Eds. Norwell, MAgnd r_PetriNetReact which formalizes the firing of a non-
: obal, » Pp. 24-54. deterministic subset of all enabled transitions. The mala r
executes all nets in thiet set.
APPENDIXA One has also to define a functiosr which adds td”" p7 the
BASIC PETRINETS SEMANTICS initialization necessary to make the ASM model executable.

A concrete example is here provided by applying tHAny model transformation tool can be used to automatize the

semantic hooking technique to a possible metamodel for ther Mapping by retrieving data from a terminal modeland
Petri net formalism. The results of this activity are exeble Creating the corresponding ASM initial state in the targBivA

semantic models for Petri nets which can be made availafi@del- We adopted the ATL model transformation engine to

in a model repository either in textual form using AsmetalMPlement such a mapping. Essentially, for each classrosta

or also in abstract form as instance model of the Asmff the terminal model, a static 0-ary function is createdhia t
metamodel. signature of the ASM model'pr in order to initialize the
Jlomain corresponding to the underlying class. Moreovesstl

Fig. 13 shows the metamodel for the basic Petri net f . : . : .
malism. It describes the static structure of a net consié’t‘-Stances with their properties values and links are irtspito

ing of places and transitions (the two clasg@sace and initialize the ASM functions declared in the ASM signature.

Transi ti on), and of directed arcs (represented in terms &°' €xample, for the Petri net.pr shown in Fig. 14, the
associations between the clas&sce andTransi ti on) ‘P7 Mapping would automatically add to the origindpr

from a place to a transition, or from a transition to a placéhe ipitial state (and therefore tr_le.initial ma”,‘if‘g) _Iemylito
The places from which an arc runs to a transition are call final ASM model shown in Listing 7. The initialization of

the input places of the transition; the places to which anes rthe abstra(_:t doma!nEslet , Transi tion, and Pl ace, and
from a transition are called the output places of the tramsit of all functions defined over these domains, are added to the

original T'pr.

Place inputPlaces [7] Transition

places [7] | tokens: Integer

outputPlaces [*]

transitions []

Fig. 13: A metamodel for basic Petri nets

Places may contain (see the attribtitkens of the Pl ace
class) any non-negative number of tokens, i.e. infinite ciypa
Moreover, arcs are assumed to have a unary weight. Fig. 14
shows (using a graphical concrete syntax) an example of Petr
net (with its initial marking) that can be intended as ins&n
(a terminal model) of the Petri net metamodel in Fig 13.
According to the semantic hooking approach, first we have
to specify an ASM pr (i.e. a model conforming to the AsmM
metamodel) containing only declarations of functions and
domains (the signature) and the behavioral semantics of the
Petri net metamodel in terms of ASM transition rules. Ligtin
6 reports a possibl€ pr in Asmetal notation. It introduces
abstract domains for the nets themselves, transitions, and
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Listing 6: T pr

asm PT_hooking

signature:
abstract domain Net
abstract domain Place
abstract domain Transition

/I[Functions on Net
controlled places: Net—> Powerset(Place)
controlled transitions: Net—> Powerset(Transition)

/[Functions on Place
controlled tokens : Place-> Integer

/[Functions on Transition
controlled inputPlaces: Transitior-> Powerset(Places)
controlled outputPlaces: Transitior> Powerset(Places)
static isEnabled : Transition-> Boolean

definitions:
function isEnabled ($in Transition) =
(forall $p in inputPlaces($twith tokens($p)>0)

rule r_fire($tin Transition) =
seq
forall $i in inputPlaces($tylo tokens($i) := tokens($#) 1
forall $oin outputPlaces($tlo tokens($o) := tokens($o)+1
endseq

rule r_PetriNetReact($im Net) =
choose$transSein Powerset(Transitions($n))
with (forall $tin $transSetwvith isEnabled($t))do
iterate let ($t = chooseOne($transSet)) par
remove($t,$transSet)
if isEnabled($txhen r_fire[$t] endif
endpar endlet

/IRun all Petri nets
main rule r_Main =forall $nin Netdo r_PetriNetReact[$n]
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APPENDIXB
ASM SPECIFICATION FORTIC-TAC-TOE

Listing 8: I'1ic—Tac—Toe - the complete signature

Listing 7: cpr(Tpr, mpr)

asm PT_hooking
signature:

static myNet: Net
static P1,P2,P3,P4:Place
static t1,t2:Transition

default init sO:

/[Functions on Net

function places($nn Net) = at({myNet—> {p1,p2,p3,p4}},$n)
function transitions($nin Net) = at({myNet—> {t1,t2}},$n)

/[Functions on Place (the "initial marking")
function tokens($pin Places) =
at{pl—>1,p2->0,p3->2,p4->1},$p)

/[Functions on Transition

function inputPlaces($in Transition) =
at({tl—>p1,t2—>{p2,p3}},%t)

function outputPlaces($in Transition) =
at({tl—>{p2,p3},t2—>{p4,p1}},%t)

asm Tictactoe
signature:

/[For representing a board

enum domain Skind = {CROSS|NOUGHT|EMPTY}
domain Squaresubsetofinteger

domain Row subsetofinteger

domain Threesubsetofinteger

static squaresinRow: Prod(Row,Three)> Square
controlled symbol: Square-> Skind

/[For managing the game

enum domain Finalres = {PLAYERX|PC|TIE}
enum domain Status = {TURNX|CHECKX|TURNPC|CHECKPC

|GAMEOVER}

monitored playerX:Squard/ move of X

controlled status: Status

controlled whoWon: Finalres

derived noSquareLeft : Boolean

derived hasThreeOf: Prod(Row,Skind)> Boolean
/IFor PC strategies

domain Countsubsetofinteger

controlled count: Count

derived openingPhase: Boolean

controlled lastMoveX: Square

static isCorner: Square-> Boolean

static isEdge: Square-> Boolean

static isCenter: Square-> Boolean

derived hasTwo: Row—> Boolean

static opposite: Square-> Square

definitions:
domain Square = {1..9}
domain Count = {0..9}
domain Row = {1..8}
domain Three = {1..3}

function squaresinRow($in Row,$xin Three) =

if $r = 1then if $x = 1then 1 else if $x = 2 then 2 else 3 endif endif
else if $r = 2 then if $x = 1then 4 else if $x = 2 then 5 else6 endif endi
else if $r = 3 then if $x = 1then 7 else if $x = 2 then 8 else 9 endif endi
else if $r = 4 then if $x = 1then 1 else if $x = 2 then 4 else 7 endif endi
else if $r = 5then if $x = 1then 2 else if $x = 2 then 5 else8 endif endi
else if $r = 6 then if $x = 1then 3 else if $x = 2 then 6 else 9 endif endi
else if $r = 7 then if $x = 1then 1 else if $x = 2 then 5 else 9 endif endi
else if $x = 1 then 3 else if $x = 2 then 5 else 7 endif endif

endif endif endif endif endif endif endif

function noSquareLeft = not(exist §8 Squarewith symbol($s)=EMPTY

function hasThreeOf ($in Row, $symbolin Skind) =
(symbol(squaresinRow($r,0)) = $symbol) and
(symbol(squaresinRow($r,0)) = symbol(squaresinRovj$r.and

(symbol(squaresinRow($r,0)) = symbol(squaresinRo2§$r,

function openingPhase = count=0 or count=1

function isCenter($sn Square) = $s =5
function isCorner($sn Square) = $s =1 or $s=3 or $s=7 or $s=9
function isEdge($sn Square) = $s =2 or $s =4 or $s=6 or $s=8

/Ireturn true iff $r has two equal symbols and the third squar EMPTY
function hasTwo($rin Row) =
(exist $ilin Three, $i2in Three, $i3in Three
with ($i1!=%i2 and $i1!=$i3 and $i2!=$i3 and
(symbol(squaresinRow($r,$i1)) = symbol(squaresinRo\§({$))) and
(symbol(squaresinRow($r,$i1)) != EMPTY) and
(symbol(squaresinRow($r,$i3)) = EMPTY)))

function opposite($sn Square) =
if $s=1then 9 else if $s=3then 7 else if $s=7then 3
else if $s=9then 1 endif endif endif endif
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Listing 9: TI'1ic—Tac—Toe transition rules

/IA very naive player: choose an empty square and mark it.
rule r_naive_strategy ($symbah Skind)=
choose$sin Squarewith symbol($s)=EMPTY
do symbol($s):= $symbol

rule r_playACorner($symboin Skind) =
choose$sin Squarewith (symbol($s)=EMPTY and isCorner($s))
do symbol($s):= $symbol

//Opening strategy
rule r_opening_strategy ($symbui Skind)=
if (count=0)then r_playACorner[$symbol]
else if symbol(5) = EMPTYthen symbol(5):=$symbol/play the center
elser_playACorner[$symbol}/we play a corner
endif endif

/IMark with $symbol the last empty square within row $r

rule r_markLastEmpty ($in Row, $symbolin Skind) =
choose$x in {1,2,3} with symbol(squaresinRow($r,$x))=EMPTY
do symbol(squaresinRow($r,$x)) := $symbol

//Draw strategy (with no fork creation/block)
rule r_draw_strategy ($symbah Skind) =
choose$wr in Row with hasTwo($wr)
do r_markLastEmpty[$wr,$symbolf1. Win or 2. Block
ifnone
if (symbol(5)=EMPTY)then symbol(5):=$symbol/3. Center
else if (isCorner(lastMoveX) and symbol(opposite(lastMove)XE4PTY
then symbol(opposite(lastMoveX)):= $symbi#. Opposite corner
else choosébs in Squarewith (symbol($s)=EMPTY and isCorner($s)
do symbol($s):= $symbal/5. Empty Corner
ifnone r_naive_strategy[$symbol]6. Empty edge
endif endif

/IComputer strategy selection

rule r_tryStrategy ($symbah Skind) =

if openingPhaséhen r_opening_strategy [$symbol]
elser_draw_strategy [$symboBndif

rule r_movePC =par r_tryStrategy[NOUGHT]
count := count + 1
status := CHECKPC
endpar

rule r_movePlayerX =f symbol(playerX)= EMPTY
then par symbol(playerX):= CROSS
count := count + 1
lastMoveX := playerX
status := CHECKX
endpar
elsestatus := TURNXendif

rule r_checkForAWinner($symbaoh Skind) =
/IGAME OVER WITH A WINNER?
if (exist $rin Row with hasThreeOf($r,$symbolthen
par status := GAMEOVER
if $symbol = CROSShen whoWon:= PLAYERX
elsewhoWon:= PCendif
endpar
else if ( noSquareLeft YYJGAME TIE?
then par status := GAMEOVER whoWon := TIEndpar
else if $symbol = CROSShen status:= TURNPC
elsestatus:= TURNXendif endif endif

main rule r_Main =if status = TURNXthen r_movePlayerX][]
else if status = CHECKXthen r_checkForAWinner[CROSS]
else if status = TURNPQhen r_movePC[]
else if status = CHECKPQhen r_checkForAWinner[NOUGHT]|
endif endif endif endif
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