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Abstract— Real-time dimensioning depends on the Worst Case
Execution Time (WCET) of its tasks. Using estimated WCETs
for the dimensioning is less conservative but execution
overruns are more likely to happen. Fault tolerant mechanisms
must be implemented to preserve the real-time system from
timing failures, associated to late task termination deadlines
misses, in the case of WCETs overruns. We show in this article
how to compute the extra duration (allowance) on the WCETs
that can be given to faulty tasks while still preserving all the
deadline constraints of the tasks. This allowance is used on-line
to tolerate WCET overruns. We present a mechanism called
the Latest Execution Time (LET) using the allowance of the
tasks for the temporal robustness of real-time systems. This
mechanism only requires classical timers. Its benefits are
presented in the context of a java virtual machine meeting the
Real-Time Specification for Java (RTSJ) with estimated
WCETs.

Real-time System; fault tolerance; estimated WCET;
allowance; slack time; temporal robustness

I. INTRODUCTION

Real-time scheduling theory can be used at the design
stage for checking the timing constraints of a real-time
system, whenever a model of its software architecture is
available. In specific cases, standard real-time scheduling
analysis techniques can significantly shorten the
development cycle and reduce the time to market. The
correct dimensioning of a real-time system depends on the
determination of the Worst Case Execution Time (WCET) of
the tasks.

Based on the WCET, a feasibility condition (e.g.
[2][3][4]) can be established to ensure that the deadlines of
all the tasks are always met, whatever their release times.
The computation of the WCET can be performed either by
analyzing the code on a given architecture or by
measurement of the execution duration [5]. In both cases, the
correctness of the WCET is hard to guarantee. The WCET
depends on the condition of execution; the type of
architecture, memory or cache. This can lead to an imprecise
WCET. Also a very complex analysis may be necessary to
obtain it. The obtained WCET can therefore be either
pessimistic or optimistic compared to the exact execution
duration obtained at run time. In the first case, we have
reserved CPU resources that may not be used, leading to a
pessimistic dimensioning of the system but the deadlines can
always be guaranteed. In the second case we might have
execution overruns, i.e. task durations exceeding their

WCET but more CPU resources left to deal with such a
situation. We are interested in this paper in the second case
observing that an execution overrun does not necessarily lead
to a deadline miss. With enough free CPU resources, a
system can self stabilize and still meet the deadlines of all
the tasks. So the problem consists of determining how much
time may be allocated to the execution overrun.

In this paper, we consider that the WCETs are estimated
by benchmark on a given architecture. The lack of precision
on the WCETs is taken into account in this paper with the
concept of allowance introduced in section 3.

We consider two types of faults captured by two errors:
the ExecutionOverrun error and the DeadlineMiss error. In
the first case, the task execution duration exceeds its WCET
while in the second case the task does not meet its deadline.
Yet, among all possible execution overruns, only those
leading to a deadline miss, if nothing is done to correct the
system, should be considered. We therefore need to
determine how long we can let a faulty task proceed with its
execution without compromising the deadlines of all other
tasks. We call this duration the allowance of the task. Based
on the allowance, we can determine when an execution
overrun error should be raised.

In this paper, we consider a set τ = {τ!, τ2,..., τn} of n
sporadic or periodic tasks with timeliness constraints.

A task τi, is defined by:
 Ci, the estimated Worst Case Execution Time
 Ti, the inter-arrival time also called the period
 Di, the relative deadline (a task released at time t

must be executed by its absolute deadline t + Di. We
consider in this paper, that for any task τi , Di ≤ Ti

 Pi, the priority

In this paper, we first present a short description of
related work (see Section 2). We then focus on the
allowance of the WCETs in Section 3 when tasks are
scheduled with Fixed Priority/highest priority first (FP/HPF)
scheduling (e.g. [3][4][6]). We then show how to use the
allowance on-line, with a mechanism called the Latest
Execution Time (LET), in Section 4. The LET analysis was
first introduced by Bougueroua and al. in [7]. Moreover [1],
extends this analysis further by considering the EDF
scheduling. In Section 5 we give results of some
simulations, obtained from a tool we developed, so as to
compare the different execution overrun management
mechanisms. We do this firstly for a task deadline miss, and
secondly for a task execution overrun, showing the benefits
of the LET mechanism. Finally, we give some conclusions.
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II. RELATED WORK

Most fault tolerant real-time systems present solutions to
deal with deadline miss by stopping the execution of the
tasks that miss their deadlines. In the case of overloaded
systems, the idea is to stop some tasks so as to prevent the
others from missing their deadlines and to come back to a
normal load condition. Tasks are scheduled according to
their importance: Locke's Best Effort Scheduling Algorithm
in [8], D-Over in [9] and Robust EDF in [10]. The problem
with this solution is that a task missing its deadline might
already have had cascading effects on the other tasks of the
system. The reaction might be too late.

In fact, a task which does not respect its deadlines might
result in unacceptable delays on other lower priority tasks.

Several approaches have been considered in the state of
the art: either in the dimensioning phase or on-line.

A. In a dimensioning phase:

In a dimensioning phase, a sensitivity analysis can be
used to compute the maximum acceptable deviations on the
WCETs, Period on Deadlines preserving the schedulability
of the tasks (e.g. [11][12][13]). Most of the existing solutions
to the sensitivity problem consider only one parameter can
change. We place ourselves in this context for this article by
considering the WCETs overrun. The reader interested by
multidimensional analyses of sensitivity will be able to refer
to work of Racu in [14] and [15], where a stochastic
approach is proposed to deal with the variations of several
parameters.

Bini in [13] shows how to calculate the maximum value
of the multiplicative factor λ, applied to the set of tasks. In
this case when scheduling FP of n periodic tasks, if for any
task τi, Di ≤ Ti, then for any task τi, its WCET becomes Ci +
λCi.

λ is the maximum value so that the set of tasks is
schedulable. If for a set of tasks given, λ < 0 then initial set
of tasks is not schedulable and it is necessary to reduce the
WCET of λCi so that the tasks set become schedulable.

The computation complexity of λ is pseudo-polynomial.
The authors in [13] Show also how to calculate λ for a subset
of tasks.

However, the use of a multiplicative factor λCi for any
task τi, gives more allowance to the task τi when its Ci is
large, a choice which inevitably does not reflect the
importance of the task.

In [16], the authors show how to determine for a
scheduling FP, in the case Di ≤ Ti, the feasibility domain to n
dimensions of WCETs (called C-space). They show that
when the number of tasks is reasonable, it is possible to
express the parametric equation of the WCETs feasibility
domain in the form of a set of inequations to be tested. This
approach is useful in a phase of dimensioning but from its
polynomial pseudo complexity (the number of inequation is
pseudo polynomial), is not applicable on line to determine if
it is possible to continue the execution of a task exceeding its
WCET.

Slack time analysis has been extensively investigated in
real-time systems in which aperiodic (or sporadic) tasks are
jointly scheduled with periodic tasks (e.g. [17][18][19]). In

these systems, the purpose of slack time analysis is to
improve the response time of aperiodic tasks or to increase
their acceptance ratio. Yet, those approaches require high
time overheads to determine the available slack time at a
given time. Some research has been proposed to approximate
the slack time (e.g. [19] and [20]). Nevertheless, the slack is
computed for a single aperiodic task occurrence whereas the
allowance is valid for all the requests of a periodic task.
Computing the slack time for every periodic request would
be time consuming.

B. On-line:

Some solutions consist of adapting the task parameters to
the context of execution (e.g. approaches based on the
variation of the periods (e.g. [21][22][23]) to obtain more or
less precision). In the context of a network transmission,
some transmission failures have been considered with the
(m,k)-firm model [24] to tolerate m transmission failures
among k.

This algorithm is classified as a best effort algorithm. In
[25], the authors propose an extension of the model (m,k)-
firm called Weakly-hard to consider non-consecutive
failures.

The allowance on the WCETs proposed in Section 3 is
computed with a sensitivity analysis with a sliding windows
fault model. Yet, applying an identical scaling factor to a
subset of tasks leads to providing more allowance to the
tasks having higher WCETs. We remove this constraint by
analyzing several allowance sharing strategies in Section 4.
We then propose a fault prevention mechanism to prevent an
execution overrun error from leading to a deadline miss
error. We present the concept of Latest Execution Time a
task can proceed with its execution without compromising
the real-time constraints of all the tasks. The use of estimated
WCET for the dimensioning of a real-time system enables us
to be less conservative. However, it is necessary to take into
account the faults that result in WCETs overruns and to
guarantee the temporal robustness of the system in the case
of execution overrun faults. The temporal robustness in our
context is defined as follows: a faulty task should not have
any influence on the other correct tasks. In our context, this
means that an execution overrun of a task should not lead to
a deadline miss of any other correct task.

III. ALLOWANCE ON WCETS – PRINCIPLES

The processor utilization corresponding to a task set τ is

defined in [2]: 



n

n i

i

T

C
U

1

. From this definition, 100U

represents the percentage of processor utilization. A
necessary condition for the feasibility of a task set is: U ≤ 1.

We are considering a real-time system based on the
preemptive Fixed Priority, highest priority first (FP)
scheduling algorithm with an arbitrary priority assignment.
Preemptive scheduling means that the processing of any task
can be interrupted by a higher priority task.

We define for any task τi scheduled with FP:
 hp(i) - the set of tasks except τi having a priority

higher than or equal to τi except τi;
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 lp(i) - the set of tasks having a lower priority than τi;
 hpR(i) and lpR(i) which denotes at any time the

tasks released, respectively in hp(i) and lp(i).
The allowance consists of computing the allowance in

the WCET tolerated by the system. It represents the
maximum execution time that can be added to the WCET of
a task without compromising the deadlines of all the tasks.
We now give a more formal definition of the task allowance.

Definition 1:
A temporal fault (WCET overrun) of a task τi is said to

be isolated if it does not result in any deadline miss of the
other tasks.

Definition 2:
The task allowance is the maximum available CPU

resources allotted to a faulty task when it exceeds its WCET.
In addition, it represents the maximum duration that can be
added for the execution of a task without compromising the
execution of other tasks.

A. Identification of the available CPU Resources

The identification of CPU resources consists in
computing from the available system resources the
maximum extra execution duration that can be given to
faulty tasks without missing the deadline of any task. The
computation of available resources must be carried out
during the worst case scenario thus minimizing the
allowance of the tasks. Considering timeliness constraints,
the worst-case scenario for the respect of the task deadlines
occurs for FP scheduling in the synchronous scenario, i.e. all
tasks are at their maximum rate and released synchronously
at time t=0 (e.g. [4]).

We now show that the available CPU resources are also
minimized in the synchronous scenario.

Let 00 
i

t be the first activation request time of the task

τi in an arbitrary processor busy period. The duration of free
CPU resources left available by the system at any time t ≥ 0
is given by:

i

n

i i

i C
T

tt
t 
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This duration is minimum for   ,0,,1 0  itni

corresponding to the synchronous scenario. In this paper, we
are therefore interested only in the synchronous scenario for
the computation of the allowance on WCETs as the
synchronous scenario is a possible scenario. According to
figure 1, representing the execution of the three tasks (the
task parameters are defined in table 1). We would draw your
attention to the availability of many free CPU intervals
resulting from processor idle times.

Let us suppose that none of the three tasks have exceeded
its execution duration. In this case, the average processor
utilization of the available resources Ufree is equal to:





n

n i

i
free

T

C
U

1

1

TABLE 1. Average duration of free CPU resources

Task Ci Di Ti Qi Pi

 400 1000 1000 325 High

 200 1600 1600 520 Medium

 300 2000 2000 650 Low

Those idle times could be used by faulty tasks. However,
the amount of free resources, for each task, is not constant
for each activation of the task. The average duration of free
resource for a task τi is given by the following equation:

ifreei TUQ 

Table 1 gives the value of Qi for all the three tasks τ1, τ2

and τ3.

B. Discussion - margin analyzes

The use of the average duration of free CPU resources
does not guarantee the respect of task deadlines. For
example, in figure 2(synchronous scenario for the set of tasks
given in table 1), during the first activation of task , the
CPU resources which are really available for this task, in the
event of a fault, are 300 units of time. This is less than the
average quantity of available resource during future
executions. (Q2 = 520). The use of Q2 leads to a temporal
failure for task  activated at t=0.

We can use the total free resources during the lcm (least
common multiple) of the periods of the tasks (also called the
hyper period). The amount of available free resource during
the hyper period is represented by the following equation:

),...,( 1 nfreehp TTlcmUQ 

We obtain Qhp = 2600 units of time in our example.
However, this solution cannot guarantee the respect of the
timeliness constraints of the tasks. In fact, task as it has the
greatest priority can use more CPU resources and this can
result in deadline misses for lower priority tasks. Our goal is
to use from amongst the available resources those which will
not lead to deadline miss failures for all the tasks.

Figure 2. Available resources sharing

Figure 1. Available resources in the system.
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C. Allowance computation

The allowance on WCETs is related to the scheduling
policy used by the system. In this article we are interested in
FP scheduling with an arbitrary priority assignment. A
classical feasibility condition for FP scheduling is obtained
by calculating the worst-case response time Ri for any task τi.
Ri is defined as being the longest duration time between
release time and termination time [3]. A Necessary and
Sufficient Condition (NSC) for the feasibility of Task Set
Scheduled FP is then:

i = 1..n, Ri Di and U  1
Many results showing the computation of the worst-case

response time in a preemptive context are available [3][4]. In
order to optimize the computation of the worst-case response
time, [3] has proven that in the case of FP scheduling, when
the deadlines are lower than or equal to the periods, the
worst-case response time is obtained in the first activation of
each task when all the tasks are released in the synchronous
scenario.

Theorem 1: [3]
The worst-case response time Ri of a task τi of a non-

concrete periodic, or sporadic, task set (with Di ≤ Ti, i [1,
n]) is found in a scenario in which all tasks are at their
maximum rate and released synchronously at a critical
instant t=0. Ri is computed by the following recursive
equation (where hp(i) denotes the set of tasks with higher
priority than τi):



















)(

1

ihpj
j

j

m
i

i
m
i C

T

R
CR

The recursion ends when
i

Rm
i

Rm
i

R 1 and can be

solved by successive iterations starting from iCiR 0 .

We can easily show that m
iR is not decreasing.

Consequently, the series converges or exceeds Di. In the
latter case, task τi is not schedulable.

Remark:
A task is said to be non-concrete if its request time is not

known in advance of its execution. In this paper, we only
consider only non-concrete request times.

The computation of the allowance on WCETs can be
carried out:

 In the dimensioning phase or on-line. Subsequently
the tasks are activated by admission control, as
long as the deadlines of the tasks can always be
met. This is called the static approach.

 At each execution overrun detection. This is called
the Dynamic approach.

 Once the static allowance is consumed then the
dynamic computation is activated. This is called
the Hybrid.

The computation of the allowance has a pseudo-polynomial
time complexity (see property 1). Because of this we have
adopted an approach based on a static computation of the
allowance.

We consider in this paper a temporal fault model [m/n]
corresponding to a fault model where there can be at most
m≤n faulty tasks exceeding their WCET on a sliding
window W = min (T1,…, Tn). The allowance on the WCET
of a task is related to the number of faulty tasks.
Firstly let us look at the case where m=1. The general case
will be given in a later section. The allowance of a periodic
or sporadic task τi, when only one task is faulty, called Ai,1,
is obtained from the Necessary and Sufficient Condition
(NSC) established in theorem 1.

Lemma 1:
The maximum allowance that can be given to the

periodic or sporadic task τi, under the fault model [1/n], is
equal to the maximum duration that can be added to the
WCET of the tasks τi without missing the deadline of any
task.
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Proof:
Let τi be the faulty task. By assumption, the maximum

execution duration of τi is then Ci + Ai. Applying theorem 1
with the new execution duration of τi we find the formula
(1) of lemma 1. Formula (2) is similar to formula (1) but
relates to the tasks with lower priority than τi. It consists of
checking that their response time is always lower than their
relative deadline when τi uses its allowance. Formula (3) of
the lemma is the Necessary Condition for the feasibility of
the task set taking into account the allowance of the faulty
task.

Example:
The allowance computation is done for all the tasks

given in the previous example (see table 1). The following
table gives the allowance values for each task:

TABLE 2. Margin Ai,1 - temporal fault model [1/n]

Task   
Ai,1 250 300 500

For example, when a fault occurs, task will be able to
use an allowance equals to 300 time units. Figure 3
illustrates the synchronous scenario.
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These 300 time units guarantee that the other non faulty
tasks will not be penalized by the faulty task and will
respect their temporal constraints, as long as the faulty task
does not consume more than its proper allowance.

IV. THE ALLOWANCE SHARING POLICY

Giving all the available resources to a faulty task is not
an optimal solution in itself, as this can use up the totality of
the resources without even correcting the fault. Worse than
that, when consuming its allowance, the faulty task will
reduce the allowance of more important tasks to zero. In that
case, the recommended solution is the share of the available
resources between the tasks. The resource sharing can be
done in the following ways:

 Fair sharing allowance: this consists of allotting
identical additional execution time to each faulty
task, without taking into consideration the task
parameters like: priority, importance and response
time.

 Balanced allowance: this is based on tasks
preference, i.e. when a task causes a fault, the
available resources will be attributed according to
importance of this task. In this case, a new parameter
will be used: the weight, which will be attributed to
each task according to its importance. The total
amount of assigned weight must be equal to 1.

A. Fair sharing allowance

Let us look at the faulty tasks model [m/n]. In this
section, we suggest an equal share of the static allowance
between the m faulty tasks. For a task τi, we identify the set
of (m-1) faulty tasks minimizing the allowance allotted to τi.

Lemma 2:
The maximum allowance that can be given to the faulty

task τi, when using [m/n] fault model, is equal to the
maximum duration that can be added to the execution of the
faulty tasks. There are two conditions which must be
fulfilled; firstly, (m-1) other faulty tasks must be taken into
account and secondly, all deadlines must be respected.
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Where dis(i,m) = set of (m-1) which comprises the most
unfavorable task execution time for the task τi in the event of
faults. The most unfavorable task execution time is that
which occurs when tasks are liable to consume most of the
available resources, i.e. tasks which maximize the quantity of

work












j

i

T

R
).

Proof:
Let τi be the faulty task. Let us suppose that there exists,

at the most, m faulty tasks. In the case of equal shares, for a
faulty task τi, each faulty task τj has an allowance Ai,m added
to its WCET. The tasks set with priority higher than the task
τi will be divided into two sub-groups according to fault
model of the task (faulty or not faulty). Applying theorem 1
with the new execution duration of τi we find the formula (4)
of lemma 2.

The formula (5) consists of checking that the response
time, of tasks with low priority than τi, is always lower than
their relative deadline when τi consumes its allowance. The
formula (6) of the lemma is the Necessary Condition for the
feasibility of the task set taking into account the allowance of
the faulty tasks.

Example:
We consider the parameters of the previous example (see

table 1):
 The execution is carried out in a scenario in which

all tasks are at their maximum rate and released
synchronously at time t=0.

 The tasks , and  have decreasing priorities.
 Any task can be faulty.

The following table gives the allowance values for each
task:

TABLE 3. Margin value - temporal fault model [m/n]

Task
Ai,m

m=1 m=2 m=3

 250 125 100

 300 125 100

 500 166 100

Figure 3. Task Margin – example
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Figure 4 illustrates the scenario in which all the tasks are
faulty, in this case no task misses its deadline if the faulty
tasks do not consume more than their allowance.

Property 1:
The computation of the allowance, using FP and [m/n]

fault model, has a pseudo-polynomial time complexity.

Proof:
The formula (6) of lemma 2 limits the maximum

allowance for a task τi:
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Furthermore, we know that the deadline Di is considered
as an upper bound on the iteration number for the
computation of the task response time (Ri ≤ Di). This
computation is carried out for a task τi and for all the tasks
with lower priority than τi.

Thus we have 
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The complexity is polynomial for each task, it takes O(n
maxi=1..n(Di) maxi=1..n(Ti)) time, thus the whole computation
for n tasks takes O(n2 maxi=1..n(Di) maxi=1..n(Ti)), thus the
complexity becomes pseudo-polynomial.

B. Balanced allowance

The share of the available free resources between faulty
tasks should not be always being fair. A balanced approach
takes into account the importance of a task. In that case, an
additional parameter is used to balance the allowance among

faulty tasks: a weight ( i ) associated to task τi. The higher

weight, the greater the importance.

Lemma 3:
The maximum allowance that can be given to the faulty

task τi, when using [m/n] fault model, is equal to the
maximum duration that can be added to the duration of the
faulty tasks according to their weight.
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Where dis(i,m) = set of the (m-1) minimizing the allowance
of task τi in the case of execution overrun faults. This set

comprises tasks which maximize the quantity
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Proof:
Let τi be the faulty task. Let us suppose that there exist at

most m faulty tasks. In the case of balanced allowance
sharing, for a faulty task τi, each (m-1) faulty tasks τj with

higher priority than τi has an allowance equal to 
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added to its WCET. If we apply the modifications to the
theorem 1 replacing the values of Ci by the Ci plus
allowance, we will find equations (7) and (8) of lemma 3.
Equation (9) of the lemma is the Necessary Condition for the
feasibility of the task set, taking into account the allowance
of the faulty tasks.

Example:
We consider the parameters of the previous example (see

table 1):
 The execution is carried out in a scenario in which

all tasks are at their maximum rate and released
synchronously time t=0.

 The tasks , and  have decreasing priorities.
 Any task can be faulty (m=n).
 The WCET is the degree of importance of the task:



















 

n

j j
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C
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The following table gives the allowance values for each
task:

TABLE 4. Margin value - Balanced allowance

Task i Ai,3

1 44 133

2 22 66

3 33 100

Figure 4. Margin example - fair sharing allowance

364

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/



Figure 5 illustrates the scenario in which all the tasks are
faulty. We observe that each task meets its deadline as long
as the tasks do not consume more than their allowance.

V. LATEST EXECUTION TIME - LET

In order for static allowance to work properly execution
overruns must be detected when they occur. This requires the
presence of a detector in the system. This does not
necessarily mean that available resource will be immediately
consumed by a faulty task as a task with a higher priority
may be running.

From this detector (WCET overrun), an approach using a
budget manager (as in the approaches for management of the
aperiodic tasks) is possible. [26] studies various strategies for
budget management (differed server, polling server) for the
allowance use with WCETs.

These solutions impose on each task a strict use of their
allowance and do not allow tasks to recover the unused
allowance of the other tasks. Moreover, when a task has an
execution time lower than its WCET, it is impossible to
recover the used duration to allocate it to other faulty tasks.
Concerning the real-time java environment, the specification
(RTSJ: Real-Time Specification for Java) proposes the use
of handlers for the detection of the execution overrun
(CostOverRunHandler) and for the detection of the deadline
miss (DeadlineMissHandler) [27].

However, the execution overrun handler is rarely
implemented in real-time systems (for example on
JbedRTOS of the Esmertec Company [28]). In the current
minimum implementation of RTSJ, the CostOverrunHandler
is ignored, but a handler which detects an absolute deadline
miss is provided. Thus we propose a new approach with an
implicit recovery of resources not used by a task τi for all the
tasks with lower priority than τi. Moreover, this approach
solves the problem of the lack of overrun handlers.

It consists of using classical timers which are initialized
with their Latest Execution Time (LET), computed
according to the assumption that all the allowances have
been consumed as well as the WCETs. The LET principles
are described in the following subsections. We introduce the
static and the dynamic LET. The first can be used for soft
real-time systems; the second provides hard real-time
guarantees.

A. Static Latest Execution Time

The static LET (called: LETi,m) of a task τi corresponds to
the worst-case response time of τi by supposing that all the m
faulty tasks consume their allowance.

Lemma 4:
The static LET of a faulty task τi can be seen as a

relative deadline of execution (a task released at time t must
be executed by its absolute LET: t + LETi,m), beyond which
the risk of deadline miss is very high. Notice that with this
approach, we cannot guarantee deadline respect (see figure
7). The static LET should therefore be used in a soft real-
time context. It is equal to the worst-case response time of
the task when all the faulty tasks consume their allowance. It
is calculated as follows:

  1U:,1(12)

:)()11(

)10(

),(

,

)( ),(
,

,,
,





 

































 

ij

j k

midisLet j

mi

kkik

ihp midisLet
mk

k

mi
j

j

mi
miii

T

A
ni

DLETUilp

A
T

LET
C

T

LET
ACLET



 



Where disLet (i,m) = set of the (m-1) tasks minimizing the
allowance of task τi in the event of faults (tasks suspected to
consume the most free resources, i.e. tasks which maximize

the quantity of work mk
k

mi
A

T

LET
,

,














).

Proof:
Let us suppose that there exist m faulty tasks. In this

case, the WCET of each task is increased with a value equal
to the allowance which is computed according to resource
sharing mode (fair or balanced). Equation (10) corresponds
to the formula of the worst-case response time computation.
According to lemma 3, the new response time values must be
lower than the tasks deadlines: Ri ≤ LETi,m ≤ Di, which
respects the formula condition (11). The formula (12) of the
lemma is the Necessary Condition for the feasibility of the
task set.

Example:
We consider three tasks τ1, τ2 and τ3 scheduled with FP,

having decreasing priorities and we suppose at most m=n=3
faulty tasks. We attribute to each task τi, i=1..3, the
allowance values of Ai,3 and LETi,3 (see table 5).

 The execution is carried out in a scenario in which
all tasks are at their maximum rate and released
synchronously at time t=0.

 Any task can be faulty.

The following table gives the allowance values for each
task according to an equal share of the allowances between
the m faulty tasks:

TABLE 5. Margin value - Static LET

Task Ci Di Ti Ai,3 3,iLET

 1 7 7 1 2

 2 11 11 1 5

 4 17 17 1 17

Figure 5. Margin example - balanced allowance
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In figure 6, we can see that the first activation of task may
use several time units when it exceeds its WCET instead of
the one granted by the allowance. With the LET mechanism,
the unused allowance can be recovered by the faulty tasks.

Advantages of this solution:
 This mechanism improves system performance by

the use of the allowance without requiring a cost
overrun handler.

 The unused allowance of non faulty tasks can be
recovered. Indeed, when a task does not use its
allowance, all these saved resources (time CPU) can
be used by all the other tasks.

In spite of its good performance, the LET static has a
drawback; it does not guarantee the isolation of temporal
faults. The computation of the static LET for task τi supposes
that the tasks with higher priority are present in the system.
This represents the worst-case scenario with the use of fixed
priority driven schedulers. However, during execution, it is
possible that a task with an intermediate priority can
consume the allowance of task, with higher priority, not
present in the system at that time. This has a knock-on effect
on the execution of the task with lower priority (see figure
7). We identify this problem in the following example.

Example:
We consider three tasks τ1, τ2 and τ3 scheduled with FP,

having decreasing priorities and we suppose at most m=n=3
faulty tasks. We attribute to each task τi, i=1..3, the
allowance values of Ai,3 and LETi,3 (see table 6).

 The execution is carried out in a scenario in which
all tasks are at their maximum rate and released
synchronously at time t=0.

 Any task can be faulty.

The following table gives the allowance values for each
task according to a fair share of the allowances between the
m faulty tasks:

TABLE 6. Margin value - Static LET - example 2

Task Ci Di Ti Ai,3 3,iLET

 2 12 12 1 3

 2 15 15 1 6

 3 10 10 1 10

Figure 7 shows that there are possible cases where non
faulty tasks (task  in figure 7) exceed their deadlines
following faults generated by tasks with higher priority
(tasks  and in figure 7).

For example at t1 = 30, the task is running and has a
LET deadline at t2 = 36, (calculated with the presence of task
) whereas  will not be activated until t = 36. The fact that
has the greatest priority in the interval [t1, t2] authorizes the
task to be executed up to t = 35 (see figure 7). It then takes
all available CPU resources, and delays the execution of the
task . At t2, starts its execution and leaves insufficient
resources for task (only one unit in this example). The
failure of the task at t3 = 40 is due to an overconsumption
of CPU resources by task , which by consuming its
allowance, plus a part of that of has indirectly used a part
's allowance.

The problem with the static LET is thus that it is not
possible to guarantee for periodic or sporadic tasks the
isolation of temporal faults. However, it enables us to
anticipate a deadline miss. The majority of real-time systems
propose only one detector in the event of a deadline miss.

The problem with this solution is that a task which has
missed its deadline may already have had a cascading effect
on the other tasks of the system. The correction may come
too late. Static LET, with its preemptive correction, is a
possible solution for fault prevention. Here is the dynamic
LET, which solves the problems brought to our attention by
the use of the static LET.

B. Dynamic Latest Execution Time

Definition:
Let task τi be a new task released at time ti. The dynamic

Latest Execution Time of all the tasks in )(ilpi  released

at time tj and FP scheduled is computed as follows:
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Where:
 tj: is the last request time of task tj

 lpR(i): denotes the set of tasks released and still in
the system with priority lower than i.

 hpR(i): denotes the set of tasks released and still in
the system with priority higher than i.

Lemma 5:
The dynamic LET guarantees the isolation of temporal

faults in the event of WCETs overrun, as long as the faulty
tasks do not exceed their dynamic LET.

Proof:
The dynamic LET is updated for all tasks with priority

lower than or equal to task i. It takes into account the
released tasks with higher priority than i. The dynamic LET

Figure 6. Execution example - Static LET

1

Execution durationLatest Execution Time Margin Deadline miss

time

Figure 7. Execution example - Static LET limit
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of the task i corresponds to its completion time, after the
execution of all the released tasks in hp(i). For the task i, the
maximum number of requests for tasks activations with
higher priority than i is the maximum possible for the first
activation of i in the synchronous scenario. The response
time of the first activation of i in the synchronous scenario
is the maximum limit of the response time of any instances
of the task i in any scenario. Thus we have:
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Where Ri is the response time, computed according to
lemma 2, extended to the case m=n, including the
allowances on WCETs, and respecting the condition: Ri ≤ Di.

Thus we find: iiinii DttLETt  )(,0 ,

Consequently all the tasks will respect their deadlines
provided that they are not run after their dynamic LET. An
execution overrun is then isolated as long as the tasks do not
exceed their dynamic LET.

Example:
We consider three tasks ,  and with FP scheduling,

having decreasing priorities and we suppose at most m=n=3
faulty tasks. Each task i, i=1..3, has allowance values of Ai,3

(see table 7).
 The execution is carried out in a scenario in which

all tasks are at their maximum rate and released
synchronously at time t=0.

 Any task can be faulty.

The following table gives the allowance values for each
task according to fair allowance sharing between the m=n
faulty tasks:

TABLE 7. Fair Allowance - Dynamic LET

Task Ci Di Ti Ai,3

 4 10 10 1

 2 16 16 1

 3 20 20 1

At t=0, the dynamic LET of each task is equal to Ci + Ai

(values equal to: 5, 3 and 4 respectively). During the
activation of 2, its LET is updated when a higher priority
task is released into the system (task 1 in this example).
When t=10, 1 activates and recalculates the LET of task 3,
the LET of 3 changes from 12 to 17. At t=16, task 2

modifies the LET of task 3 up to the value of its deadline.

The CPU resources not used by higher priority tasks can
be exploited by task 3.

The advantages of the dynamic LET are shown in the
following points:

 Error prevention: this is based on the determination
of the maximum execution time that can be added to the
EWCET of a faulty task without compromising the real-time
constraints of all the tasks in the system.

 Failure prevention: our solution makes it possible to
anticipate the failures. This leaves us a precious time to make
a decision before the deadline miss and to guarantee the
isolation of the fault if it occurs.

 Efficient resource management: unused resources
can be recovered by faulty tasks automatically without needs
of additional calculation (implicitly recovered).

 Independence of platform type: the dynamic LET
is a solution, based on the use of timers' handlers, which is
easily implemented on all real-times systems.

 Isolation of the faulty task: the dynamic LET
guarantees the isolation of temporal faults in the event of
EWCETs overrun, as long as the Dynamic LET is not
exceeded by the faulty tasks.

C. Latest Execution Time implementation

We show in this section how to implement the
allowance use in a real-time system. The following diagram
(see figure 9-a) shows the possible execution states for a
task.

 Admission state: ready to accept a new task i. This
state is only used for the first activation of the task. In this
state, admission control, based on theorem 1, must be
requested to check feasibility. If the new task set  of n
sporadic tasks, including i is declared feasible; all the task
deadlines can be met. The system then determines the
allowance sets Aj, j=1..n based on lemma 2. Task i can be
started and then the scheduler will place the task into a
Ready state. This means the task is ready to run. If task i

cannot be admitted, its execution state changes to Halted.
The system will be notified of the admission failure. We
will not deal in this paper with the treatment of this
exception.

 Running state: based upon the behavior of the other
tasks and threads in the system, a task is scheduled to begin
executing, at which point it enters it’s Running state.

 Finished state: while the task is running, the
scheduler may preempt it and switch execution to another
task. If this occurs, the Running task returns to a Ready
state. Alternatively, the scheduler may decide to continue to
execute the task. When the task has finally completed
executing its run method, it enters a finished state.

 Ready state: in addition to the normal execution
states, a task can enter a Waiting state if it needs resources
which are not currently available. The scheduler may
reschedule another task to begin execution. When the
resources become available, the original task is return to a
Ready state where it will be rescheduled.

Figure 8. Execution example - Dynamic LET
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The diagram b (see figure 9) shows the possible
execution states of tasks:

 Correct state: if the task completes normally before
the LET, its state changes to end state. Alternatively, the
task becomes faulty and then the scheduler changes the task
state to error state.

 Error state: different strategies can be used to deal
with such a situation: stop the faulty task or execute it in the
background (when no others tasks require execution). In the
experiments carried out in the following section, we have
chosen to stop the faulty task to prevent cascading effects on
the other tasks. The state of the faulty task is set to failure
state and an exception is used to inform the system of the
failure.

VI. TESTS AND RESULTS

A. Tests per simulation

In order to make a comparative study on the robustness
of the various solutions, it should be noted that in the
following tests, we consider that the faulty tasks have real
execution times which can exceed their execution time plus
their allowance. We then obtain temporal failures and we
compare the capacity of the various algorithms to contain
these failures. Indeed, if all the tasks did not consume more
than their allowance, we would not observe a temporal
failure with the dynamic LET. In these simulations, we
consider the following conditions:

 Given a set of 10 periodic tasks: 1, 2...10

scheduled with FP.
 The execution is carried out in a scenario in which

all tasks are at their maximum rate and released
synchronously at time t=0.

 The task 1 will have the greatest priority with very
large execution duration.

 The tasks 1...10 will have very short execution
duration.

 The tasks 1, 2...10 have decreasing priorities.
 The margin value for each task is calculated

according to equal resource sharing between tasks.

We assume that every task can cause faults; we simulate
this by modifying the task execution time according to the
Normal law during each period. We carried out the test 100
times in order to study the failure tendency. In this
experiment, we consider the tasks set  with a processor
utilization U=0.848. The goal of these simulations is to
compare the performances between the various techniques
of allowance management and a mechanism being satisfied
to detect the deadline (NTD: nothing to be done in the case
of faults).

The values represented on the x-axes indicate the
number of simulations carried out (see figures 10, 11, 12
and 13). Each simulation corresponds to an execution
scenario. The duration of the test is higher than the lcm of
the periods of the tasks (14000 units of time).

The allowance value Ai,10,  ,10,1i is equal to 22 time
units. The following table (see table 8) gives the static LET
values for each task according to an equal share of the
allowances between tasks:

TABLE 8. Simulation example - 10 tasks

Task Ci Di Ti Pi LET i,10

1 120 200 200 10 122

2 20 300 300 9 144

3 20 300 300 8 166

4 20 300 300 7 188

5 5 500 500 6 195

6 5 500 500 5 390

7 5 500 500 4 397

8 5 800 800 3 547

9 5 800 800 2 554

10 5 800 800 1 561

A task has an indirect failure when it does not exceed its
WCET but misses its deadline. The deadline miss is then
due when other faulty tasks exceed their WCET. This can
only happen when no allowance mechanism is used.
Without the allowance mechanism, we observe the
multiplication of indirect failures.

Figure 10 shows that in the case of task fault, nothing to
be done i.e. let the faulty task continue its execution, does
not guarantee the task against a temporal failure but exposes
the other tasks in the system to successive cascading
failures. Only one task fault can cause several failures on the
level of the other tasks. The use of allowance preserves the
system from cascading effects. We remark also that the
static allowance is less powerful than the LET techniques.

When the faulty tasks consume their entire allowance or
if a task reaches it LET deadline, we put the execution of
these tasks in background. The results obtained in this case
(see figure 11) show the benefits of the solutions using the
allowance. The performances (reduction of failures) of the
solutions are always in the same order: the static LET gives
the best results, followed by the dynamic LET and finally
the equitable allowance.

Error

End

Start,x=0
LET miss, x>LET

FailureCorrect

(a)

(b)

Ready

Finished

Waiting

Start
RunningAdmission

Admission
Admission

failure

Deadline miss,
x>D

, x ≤D, x ≤LET

Figure 9. State diagram - Dynamic LET
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In the following simulation test, we increase the number
of tasks in the system. We consider a set of 20 periodic tasks
1,.., 20. The first task will have the greatest priority. The 19
remaining tasks will have very short execution duration with
decreasing priorities.

We assume that every task can cause faults, which is
made possible by modifying the task execution time
according to the Normal law during each period. We remake
the test 100 times in order to study the failure tendency. In
this experimentation, the processor utilization is equal to
U=0.7766. The goal of this simulation is to study the effect
of the increase on the number of tasks in the failure rate.
The most important remark on this simulation (see figure
12) resides in the fact that the failure rate is considerably
reduced if we use the allowance compared to the solution
nothing to be done (NTD).

The increase in the number of tasks in the system
amplifies the risk of the indirect failures. The results of the
tests on the simulator show that the use of the allowance,
whatever the adopted solution, makes it possible to reduce
the number of failures in the system. We focused our tests
on the LET mechanism which can be installed on a real-
time platform. The results of simulations confirmed that the
use of the static LET, in spite of some indirect failures,
makes it possible to reduce the number of failures.

B. Practical Tests

The static LET mechanism has been tested on RedHat
Linux 8 with kernel 2.4.18 and on the TimeSys RT/Linux 4
[29].

In this test, we compare the correction rates obtained by
the static LET mechanism by simulation and on real
platforms.

With the objective of to comparing like with like, we
used the same example of tasks tested on the simulator (see
table 8). The test was carried out on the platform described
in the preceding point. In our test (see figure 13), we
obtained on average, a 17% less good results of fault
correction by using practical LET mechanism compared to
the results obtained by simulation. In fact, we obtained a
correction rate of faults, equal to 84% during the tests on the
simulator and 67% during the tests on a real-time platform.
We suspect the garbage collector of Java to be partly
responsible for this degradation. The practical tests
confirmed the benefits of the use of the allowance concept.

In the last experiment, we consider the same set of tasks;
the difference resides in the execution duration of the task 1

which varies between 900 and 1500. This corresponds to a
utilization ratio of the processor which varies between 0.533
and 0.883.

The tests were carried out in a synchronous scenario for
a length of time equal to 10 times the lcm of the tasks
(120000 time units). For each test, we take the average of 10
executions, which corresponds approximately to twenty
minutes per test.

The test objective is to analyze, on a real-time platform
Jtime (TimeSys), the influence of the processor utilization
rate on the performances of the static LET mechanism (see
figure 14).

Figure 12. Failures comparison - LET and NTDFigure 10. Failures comparison - stop after margin exceeds

Figure 11. Failures comparison - background after margin exceeds

Figure 13. Correction rate - LET simulation vs. LET practice
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We can notice that the number of failures is more
important when the static LET is used, which is not the case
with solution NTD. The tests of the solutions on the
simulator show the improvements made by the use of the
allowance. The decrease of the performances in practice is
explained by the system cost of the allowance mechanism.

VII. CONCLUSION

In this article we have considered the problem of fault
prevention in a real-time system. The faults correspond to
WCETs overruns resulting from the use of estimated
WCETs. This enables us to consider an open architecture,
independent of the operating system. The use of a virtual
machine such as Java allows this independence. In this
context, the worst case execution times are not easily
determinable by a static analysis due to portability issues.
The design of real-time system then requires techniques to
tolerate an uncertainty on the WCET. The solution that we
propose is based on the determination of the acceptable
deviations on the WCETs which is called the allowance.
The allowance enables us to reduce the failure rate of the
real-time tasks and to make the system more robust in the
event of temporal fault. This mechanism permits the
recovery of free CPU resources in the event of temporal
fault. We propose equations to compute the allowance in the
case of a fixed priority scheduling. We proposed an
implementation based on the computation of the Latest
Execution Time (LET) preserving the timeliness constraints
of the tasks. Simulations carried out and the studies on a real
platform enabled us to conclude that this mechanism is
interesting to limit the impact of temporal faults of the
WCETs overruns by increasing the rate of their correction.
Furthermore, the LET provides an implicit recovery of the
unused allowance.

ACKNOWLEDGMENT

The authors gratefully acknowledge Siân Cronin at
ESIGETEL for providing linguistic help.

REFERENCES

[1] L. Bougueroua, L. George, S. Midonnet, Dealing with execution-
overruns to improve the temporal robustness of real-time systems
scheduled FP and EDF. The second International Conference on
Systems – ICONS 2007.Sainte-Luce, Martinique, 22-28 April 2007.

[2] Liu, C.L., Layland, J.W., Scheduling Algorithms for
multiprogramming in a Hard Real Time Environment; Journal of
Association for Computing Machinery, Vol. 20, N° 1, (Jan 1973).

[3] Joseph, M., Pandya, P., Finding reponse times in a real-time system ;
BCS Computer Journal, 29(5), (1986) 390-395.

[4] Lehoczky, J.P., Fixed priority scheduling of periodic task sets with
arbitrary deadlines; Proc. 11th IEEE Real-Time Systems Symposium,
Lake Buena Vista, Floride, USA, (Dec 1990) 201-209.

[5] Puaut, I., Méthodes de calcul de WCET (Worst-Case Execution
Time) Etat de l'art; 4ème édition Ecole d'été temps-réel(ECR), Nancy,
(Sep 2005) 165-175.

[6] Tindell, K., Burns, A., Wellings, A. J., An extendible approach for
analyzing fixed priority hard real time tasks ; Real-Time Systems,
Vol. 6, N°2, (Mar 1994)133-151.

[7] L. Bougueroua, L. George and S. Midonnet, An execution overrun
management mechanism for the temporal robustness of java real-time
systems. The 4th workshop on Java technologies for Real-Time and
Embedded Systems (JTRES) 11-13 October 2006, Paris.

[8] Locke, C.J., Best effort decision making for real-time scheduling;
PhD thesis, Computer science department, Carnegie-Mellon
university, (1986).

[9] Koren, G., Shasha, D., D-over: An Optimal On-line Scheduling
Algorithm for over loaded real-time system; technique report 138,
INRIA, (Feb 1992).

[10] Buttazo, G., Stankovic, J.A., RED: A Robust Earliest Deadline
Scheduling; 3rd international Workshop on responsive Computing,
(Sept 1993).

[11] Buttazzo, G., Lipari, G., Abeni, L., Elastic Task Model for Adaptive
Rate Control; Proc. IEEE Real-Time Systems Symposium, Madrid,
Spain, (Dec 1998) 286-295.

[12] Buttazzo, G., Lipari, G., Caccamo, M., Abeni, L., Elastic Scheduling
for Flexible Workload Management; IEEE Transactions on
Computers, Vol. 51, No. 3, (Mar 2002) 289-302.

[13] Bini, E., Di Natale, M., Buttazzo, G., Sensitivity Analysis for Fixed-
Priority Real-Time Systems; Proc. 18th Euromicro Conference on
Real-Time Systems, ECRTS'06, (2006).

[14] Racu, R., Jersak, M., Ernst, R., Applying sensitivity analysis in real-
time distributed systems; Proc. 11th Real-Time and Embedded
Technology and Applications - RTAS'05, (2005).

[15] Racu, R., Hamann, A., Ernst, R., A formal approach to multi-
dimensional sensitivity analysis of embedded real-time systems; Proc.
18th Euromicro conference on realtime systems - ECRTS'06, (2006).

[16] Bini, E., Buttazzo, G., Schedulability Analysis of Periodic Fixed
Priority Systems; IEEE Transactions On Computers, Vol. 53, No. 11,
(Nov 2004).

[17] Lehoczky, J. P., Ramos-Thuel, S., An Optimal Algorithm for
Scheduling Soft-Aperiodic Tasks Fixed-Priority Preemptive systems;
Proc. Real-Time System Symposium, (Dec 1992) 110-123.

[18] Davis, R.I. Scheduling Slack Time in Fixed Priority Pre-emptive
Systems; Proc. 14th Real-Time Systems Symposium, (1993) 222-231.

[19] Spuri, M., Buttazzo, G., Scheduling aperiodic tasks in dynamic
priority systems; Journal of real time systems, vol. 10, (1996) 179-
210.

[20] Caccamo, M., Lipari, G., Buttazzo, G., Sharing resources among
periodic and aperiodic taskc with dynamic deadlines; Proc. 20th IEEE
Real Time System Symposium, (1999).

[21] Kuo, T.W., Mok, A.K., Load Adjustment in Adaptive Real-time
Systems; Proc. 12th IEEE Real-Time Systems Symposium, (Dec
1991).

[22] Nakajima, T., Tezuka, H., A Continuous Media Application
Supporting Dynamic QoS Control on Real-Time Mach; Proc. ACM
Multimedia, (1994).

[23] Seto, D., Lehoczky, J.P., Sha, L., Shin, K.G, On Task Schedulability
in Real-Time Control Systems; Proc. IEEE Real-Time Systems
Symposium, (Dec 1997).

Figure 14. Failures - utilization rate of the processor

370

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/



[24] Hamdaoui, M., Ramanathan, P., A dynamic priority assignment
technique for streams with (m,k)-firm deadlines; IEEE Transactions
on Computers, vol. 44(12), (1995) 1443-1451.

[25] Bernat, G., Burns, A.A.L., Weakly Hard Real-Time Systems; IEEE
Transactions on Computers, (2001).

[26] Bougueroua L., Conception de systèmes temps réel déterministe en
environnement incertain; PhD thesis, vol 1, n° 2007PA120004, SI
(Mar 2007).

[27] Bollela, G., Gosling, Brosgol, Dibble, Furr, Hardin and Trunbull, The
Real-Time Specification for Java; Addison Wesley, 1st edition,
(2000).

[28] Esmertec, jbedRTOS: Java Bulding Embedded Operating System;
http://www.esigetel.fr/images/stories/Recherche/SITR/spec-jbed-
rtos.pdf.

[29] TimeSys, TimeSys' real-time Java Virtual Machine (JVM);
http://www.timesys.com.

371

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/


