
Extending a Time-Triggered System

by Event-Triggered Activities

Josef Templ, Johannes Pletzer, Wolfgang Pree, Peter Hintenaus, Andreas Naderlinger

C. Doppler Laboratory Embedded Software Systems

University of Salzburg

Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract—Time-triggered execution of periodic tasks provides

the cornerstone of dependable real-time systems. In addition,

there is often a need for executing event-triggered activities

while the system would be otherwise idle. We first present the

foundation of a time-triggered system based on the Timing

Definition Language (TDL). Then we introduce event-

triggered activities as an extension of the purely time-triggered

programming model. If time-triggered and event-triggered

activities exchange information among each other, the data

flow must be synchronized such that reading unfinished output

data is avoided. The paper describes a lock-free solution for

these synchronization issues that is based exclusively on

memory load and store operations and can be implemented

efficiently on embedded systems without any operating system

support. We also discuss the implications of our synchroni-

zation approach for the semantics of combined time-triggered

and event-triggered execution in a dependable real-time

system. A case study of an Inertial Navigation System (INS)

illustrates these extensions.

Keywords—Lock-free; Synchronization; Time-triggered;

Event-triggered; Synchronous; Asynchronous; Activity; TDL

I. INTRODUCTION

A dependable real-time system performs safety critical
tasks by periodic execution of statically scheduled activities
[18]. The pre-computed schedule guarantees that the timing
requirements of the system will be met in any case by taking
the worst case execution time into account. Such operations
are called time-triggered (alias synchronous) activities. The
timing requirements of such activities are typically in the
range of milliseconds or sometimes even below.

In addition, many dependable real-time systems execute
event-triggered (alias asynchronous) activities that are, for
example, triggered by the occurrence of an external hardware
interrupt or any other kind of trigger. In the context of a
dependable real-time system such asynchronous activities
are considered to be not as time critical as synchronous tasks
are, and can therefore be executed in a background thread
while the CPU is otherwise idle.

Adding asynchronous activities to a time-triggered
system could be done in a platform specific way by directly
programming at the level of the operating system or task
monitor. However, this approach has two drawbacks: (1) it is
highly platform dependent and (2) it does not support proper

synchronization of data exchanged between synchronous and
asynchronous activities.

In order to tackle both problems we extended a tool chain
[2, 3] for time-triggered systems by asynchronous activities.
This tool chain supports the Timing Definition Language
(TDL), which allows one to specify the timing behavior of a
real-time system in a platform independent way. TDL
separates the specification of the timing behavior from the
implementation of the tasks. We extended TDL by a notation
for asynchronous activities and provided a runtime system
for this extended TDL on a number of target platforms [4].

The resulting lock-free approach for data flow
synchronization [1] is not specific for TDL but—we
believe—can be applied to other time-triggered systems that
need to be extended with asynchronous activities. Our
synchronization approach can be implemented efficiently
without any operating system support such as monitors [5] or
semaphores [6] and it avoids the need for dynamic memory
allocation and the danger of deadlocks and priority
inversions. It also keeps the impact of event-triggered
activities on the timing of time-triggered activities as low as
possible. For more information on non-blocking
synchronization techniques please refer to [7, 8].

Note: This paper represents an extended version of [1]. It
presents (1) the lock-free synchronization approach for data
flow between event-triggered and time-triggered activities in
the context of the TDL project, where the approach had been
developed, and it adds (2) a non-trivial example that shows
the integration of event-triggered and time-triggered
activities. We shall start with an explanation of TDL’s time-
triggered programming model and language features that are
relevant for understanding the proposed extensions and the
example.

II. TIME-TRIGGERED ACTIVITIES IN TDL

A particularly promising approach towards a high-level

component model for real-time systems has been laid out by

the introduction of the so-called Logical Execution Time

(LET [12]), which abstracts from the physical execution

time on a particular platform and thereby abstracts from

both the underlying execution platform and the

communication topology. Thus, it becomes possible to

change the underlying platform and even to distribute

components between different nodes without affecting the

313

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

overall system behavior. LET means that the observable

temporal behavior of a task is independent from its physical

execution. It is only assumed that physical task execution is

fast enough to fit somewhere within the logical start and end

points.
Figure 1 shows the relation between logical and physical

task execution. The inputs of a task are read at the release
time and the newly calculated outputs are available at the
terminate time. Between these, the outputs have the value of
the previous execution. LET provides the cornerstone to
deterministic behavior, platform abstraction and well-defined
interaction semantics between parallel activities. It is always
defined which value is in use at which time instant and there
are no race conditions or priority inversions involved.

TDL is a LET-based language. The basic construct that
represents an executable entity is called a task. Several tasks
can be executed in parallel and each task invocation may
have its specific LET and execution rate. As real-time
systems typically exhibit various modes of operations, TDL
allows the specification of such modes. A TDL mode
consists of a set of periodically executed activities. In
addition to task invocations, an activity can also be an
actuator update or a mode switch. The LET of a task is
always greater than zero, whereas actuator updates and mode
switches are executed in logical zero time (LZT). As the top-
level structuring concept, TDL provides the notion of a
module. Figure 2 sketches a sample module with two modes
containing two cooperating tasks each.

TDL modules support an export/import mechanism

similar to modern general purpose programming languages
such as Java or C#. A service provider module may export
e.g. a task’s outputs, which in turn may be imported by a
client module and used as inputs for the client’s
computations. Every module provides its own distinguished
start mode. Thus, all modules execute in parallel or in other
words, a TDL application can be seen as the parallel
composition of a set of TDL modules. It is important to note
that LET is always preserved, that is, adding a new module
will never affect the observable temporal behavior of other
modules. It is the responsibility of internal scheduling
mechanisms to guarantee conformance to LET, given that
the worst-case execution times (WCET) and the execution
rates are known for all tasks.

Parallel tasks may depend on each other, i.e. the output of
one task may be used as the input of another task. All tasks
are logically executed in sync and the dataflow semantics is
defined by LET. There is always a distinguished time base
which drives all time-triggered activities and that is why they
are also called synchronous activities.

The following TDL source code corresponds with the
schematic representation of the module in Figure 2.

The module is named Sample. It declares a sensor s1 and an
actuator a1, both of type integer. The sensor value is
provided by the external getter function getS1 and the
actuator value is written by the external setter function setA1.
Functionality code such as getters, setters, or task
implementation functions are not implemented in TDL but
must be provided in a conventional programming language
such as C. The module declares three tasks task1, task2, and
task3. The module further declares two modes Init and
Operation. The mode Init has a period of 25ms and it executes
task1 with a frequency of 5 (=200Hz) and task2 with a
frequency of 1 (=40Hz). The actuator a1 is also updated 5
times per mode period with the new value of output port o1
of task task1. Once every 25ms the external boolean function
toOperation decides whether to resume with the initialization

module Sample {

 sensor int s1 uses getS1;
 actuator int a1 uses setA1;

 task task1 {
 input int i1; int i2;
 output int o1;
 uses t1Impl(i1,i2,o1);
 }

 task task2 {
 input int i1;
 output int o1;
 uses t2Impl(i1,o1);
 }

 task task3 {
 input int i1;
 output int o1;
 uses t3Impl(i1,o1);
 }

 start mode Init [period=25 ms] {
 task
 [freq=5] task1(task2.o1,s1);
 [freq=1] task2(task1.o1);
 actuator
 [freq=5] a1 := task1.o1;
 mode
 [freq=1] if toOperation(s1)
 then Operation;
 }

 mode Operation [period=10 ms] {
 task
 [freq=5] task1(task3.o1,s1);
 [freq=1] task3(task1.o1);
 actuator
 [freq=5] a1 := task1.o1;
 mode
 [freq=1] if toInit(s1)
 then Init;
 }
}

Figure 2. Schematic representation of a TDL module

task1
200Hz

Init mode

a1s1

task2
40Hz

task1
500Hz

Operation mode

task3
100Hz

Mode Switch

Sample
Module

Sensor Actuator

Figure 1. Logical Execution Time abstraction

timetask invocation

Logical Execution Time (LET)

Logical

Physical

start stop (worst case)suspend resume

release terminate

314

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

or to switch to the second mode Operation. The mode
Operation executes the tasks task1 and task3 and also updates
the actuator a1.

III. ADDING EVENT-TRIGGERED ACTIVITIES

We assume that time-triggered activities have the highest
priority in a dependable real-time system. The runtime
system executes a pre-computed schedule and reads inputs
and writes outputs at well-defined time instants, which are
synchronized with a global time base such as the clock of a
time-triggered bus system.

Asynchronous activities must not interfere with the
timing properties of synchronous activities. This is achieved
by running asynchronous activities in a thread with lower
priority than synchronous activities. However, things get
more complicated when synchronization of the data flow is
involved, as will be described below.

A. Asynchronous activities in TDL

TDL supports three kinds of synchronous activities. Task
invocations and actuator updates also give sense when
triggered asynchronously and should therefore be supported.
Mode switches affect the time-triggered operation of a
module and are therefore not supported as asynchronous
activities.

An asynchronous task invocation consists of (1) reading
input data (also called input ports), (2) execution of the
task’s body, and (3) writing of output data (also called output
ports). With respect to synchronization issues, actuator
updates do not introduce new problems because they can be
seen as a special case of a task invocation. Figure 3 shows
the task model that we assume.

The execution of a task’s body is independent of the
environment if input reading and output writing are separated
from the implementation. Therefore we assume that internal
copies of all input and output ports are maintained by the
system. The task’s body operates exclusively on these
internal port copies.

Reading of input data may involve a sequence of
memory copy operations that could be preempted by a
hardware interrupt or by a time-triggered operation, which
has higher priority. Therefore we need to synchronize input
data reading with the rest of the system such that all input
ports are read atomically.

Like input data reading, writing of output data is a
sequence of memory copy operations that could be
preempted by a hardware interrupt or by a time-triggered
operation. It needs to be synchronized with the rest of the
system such that all output ports are updated atomically.

B. Triggers for asynchronous activities

Asynchronous activities may be triggered by different
events. We have identified the following three kinds of
trigger events, which are consequently supported in our
extension of TDL:

1) Hardware interrupt
A (non-maskable) hardware interrupt has the highest

priority in the system. It may even interrupt synchronous
activities. We must therefore take care that the impact of

hardware interrupts on the timing of synchronous activities is
minimized. Hardware interrupts may be used e.g. for
connecting the system with asynchronous input devices.

2) Asynchronous timer
A periodic or a single-shot asynchronous timer may be

used as a trigger. Such a timer is independent from the timer
that drives the synchronous activities because it introduces
its own time base. An asynchronous timer may for example
be used as a watchdog for monitoring the execution of the
time-triggered operations.

3) Port update
Updating an output port may be considered an event that

triggers an asynchronous activity. We assume that both a
synchronous and an asynchronous port update may be used
as a trigger event. In case of a synchronous port update, i.e. a
port update performed in a time-triggered activity, we must
take care that the impact on the timing of the synchronous
activities is minimized. Port update events may e.g. be used
for limit monitoring or for change notifications.

C. Semantics of asynchronous activities

Obviously, the triggering of an asynchronous activity
must be decoupled from its execution. In addition, reading
input ports for an asynchronous activity must be done at the
time of execution, not at the time of triggering. Thereby we
move as much work as possible into the asynchronous part
and minimize the impact of trigger events on the timing of
synchronous activities, which is particularly important for
hardware interrupts and synchronous port updates.

If multiple different asynchronous activities are triggered,
the question arises whether they should be executed in
parallel or sequentially in a single thread. We opted for the
sequential case because (1) on some embedded systems there
is no support for preemptive task scheduling and (2) because
data flow synchronization is simplified as will be shown
later. In practice, we expect this not to be a severe restriction
because time critical tasks will be placed in the synchronous
part anyway.

We assume that asynchronous activities that are
registered for execution may have different priorities
assigned. The set of registered events thus forms a priority
queue where the next activity to be processed is the one with
the highest priority.

If one and the same asynchronous activity is triggered
multiple times before its execution, the question arises if it
should be executed only once or multiple times, i.e. once per
trigger event. We opted for executing it only once because
this avoids the danger of creating an arbitrary large backlog
of pending activities at runtime if the CPU cannot handle the
workload. In addition this decision also simplifies the

1.

read

2.

execute

3.

 write

internal port copy data flow

Figure 3. Assumed task model

315

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

mechanism for registering trigger events as will be shown
later.

The following list summarizes our design decisions:

• Triggering of an asynchronous activity is decoupled
from its execution.

• Reading input ports for an asynchronous activity is
done at the time of execution, not at the time of
triggering.

• Asynchronous activities are executed sequentially.

• The execution order of asynchronous activities is
based on priorities.

• If one and the same asynchronous activity is
triggered multiple times before its execution, it is
executed only once.

IV. THREADING AND SYNCHRONIZATION

Figure 4 outlines the threads involved including their
priority and the critical regions. The time-triggered activities
are represented by a thread named TT-machine. This thread
may need further internal threads but we assume that all
synchronization issues are concentrated in a single thread
that coordinates the time-triggered activities. It should also
be noted that an asynchronous timer thread could also run at
a lower priority as long as it is higher than the priority of the
asynchronous activities.

The following situations that need synchronization can be
identified and will be described below in more details: (1)
Access to the priority queue of registered events. (2) Reading
the input ports for an asynchronous activity. This must not be
interrupted by the TT-machine. (3) Updating the output ports
of an asynchronous activity. This must be finished before the
TT-machine uses the ports.

A. The priority queue of registered events

As mentioned before, asynchronous events are not
executed immediately when the associated trigger fires but
need to be queued for later execution by the background
thread. Since asynchronous events may be associated with a

priority, we need a data structure that allows us to register an
event and to remove the event with the highest priority. Such
a data structure is commonly referred to as a priority queue.
It provides two operations enqueue and dequeue, which
insert and remove an entry with the property that the element
being removed has the highest priority. A number of
algorithms exists for implementing priority queues with
logarithmic behavior of the enqueue and dequeue operation.
However, in our case it is more important to minimize the
run time of enqueue in order to minimize its impact on the
timing of synchronous activities.

Elements are enqueued when an asynchronous event
occurs and the event is not yet in the queue. As mentioned
earlier, an event can be a hardware interrupt, an
asynchronous timer event, or a port update event. Port
updates may origin from an asynchronous task or from a
synchronous task that is executed by the TT-machine.
enqueue will never be preempted by dequeue, however,
enqueue may be preempted by another enqueue operation.

Elements are dequeued by the single background thread
that executes asynchronous activities. This thread may be
preempted by interrupts and by the TT-machine. Thus,
dequeue may be preempted by enqueue operations.

As shown by the example in Figure 5 we chose an array
representation of the triggerable events because this is both
thread safe and provides for a fast and constant time
enqueue operation. We use a Boolean flag per event that
signals that an event is pending. The flag is cleared when an
event is dequeued. From that time on it may be set again
when the associated trigger fires. The flag remains set when
the same trigger fires again while the flag is already set. The
thread-safe enqueue operation boils down to a single
assignment statement and the dequeue operation becomes a
linear search for the event with the highest priority over all
pending events. Registering an event from a non-maskable
interrupt or from a synchronous port update thereby has only
a negligible effect on the timing behavior of synchronous
activities. The linear search in the background thread is
expected to be acceptable for small to medium numbers of
asynchronous events (< 100), which should cover all
situations that appear in practice.

It should be noted that the array representation of the
priority queue does not impose any restriction on the number
of events the system can handle. There is one array element
for every trigger and the number of triggers is known
statically. Thus, the array can always be defined with the
appropriate size.

on port update

hardware interrupts, async

timer: highest priority

synchronous activities (TT-

machine): high priority

asynchronous activities (back-

ground thread): lowest priority

registered events

enqueue()

dequeue()

on port update

ports

 critical region thread data flow

on interrupt, on timer

Figure 4. Threads and critical regions

pending

event 0

event 1

event 2

event 3

priority

0

true

false

2

2

1

true

false

Figure 5. Array representation of trigger events

316

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

The background thread for executing asynchronous
operations is a simple infinite loop that runs with lower
priority than the TT-machine thread. For a particular target
platform there may be some refinements with respect to the
CPU load, which is increased to 100% by permanently
polling the event queue.

 static Thread asyncThread = new Thread() {
 public void run() {
 for (;;) {
 int next = dequeue();
 if (next >= 0) {
 executeEvent(next);
 }
 }
 }
 };

The procedure executeEvent is supposed to execute the

asynchronous activity identified by next. Within its
implementation there will be synchronization issues with
respect to reading input ports and writing output ports as
described below. Instead of showing the complete
implementation, which depends on the particular
environment, we will focus on the synchronization issues
only.

B. Reading the input ports for an asynchronous task

While performing asynchronous reading of input ports
the following situation may arise: An asynchronous input
port reading involving multiple input ports (or at least
multiple memory load operations) has been started. The first
port has been copied. The second port has not yet been
copied but the TT-machine preempts the background thread
and updates the source ports. When the background thread
continues it would read the next port, which has a newer
value than the first port. Moreover, this situation may in
principle occur multiple times when the TT-machine
preempts the background thread after the second port has
been read, etc. We have to make sure that reading all of the
input ports is not preempted by the TT-machine. Since
asynchronous activities don’t preempt each other, we know
that there can only be one such asynchronous input port
reading that is being preempted. Therefore we can introduce
a global flag that is set by the TT-machine in order to
indicate to the background thread that it has been preempted.
The background thread then has to repeat its reading until all
of the ports are read without any preemption. The following
Java code fragments outline a possible implementation.

Asynchronous port reading within executeEvent uses a
loop in order to wait for a situation where input port reading
is not preempted by the TT-machine. Therefore, our solution
does not qualify as a wait-free nonblocking algorithm [7]. It
should be noted, however, that (1) starvation cannot occur in
the TT-machine and (2) in practice it does also not occur in
the background thread because even in the unlikely case that
the TT-machine’s schedule reserves 100% of the CPU, this
refers to the worst case execution time, which typically will
not always be required.

 do {
 ttmachineExecuted = false;
 //copy input ports
 ...
 } while (ttmachineExecuted);

The relevant TT-machine code, which is assumed to be

placed in a central procedure of the TT-machine named
ttmachineStep may look like this:

 void ttmachineStep() {
 ttmachineExecuted = true;
 //perform operations for this time instant
 ...
 }

C. Updating the output ports of an asynchronous task

In the case of asynchronous output port updates the
following situation may arise: An asynchronous output port
update involving multiple output ports (or at least multiple
memory store operations) has been started. The first port has
been copied. The second port is not yet copied but the TT-
machine preempts the background thread and reads both
output ports. Now one port is updated but the second is not.
Since this interruption cannot be avoided, we must find a
way for proper synchronization.

Since we assumed earlier that updating the output ports is
separated from the implementation of a task, we can
encapsulate the output port update operations of a task in a
helper procedure that we call the task’s termination driver.
Since asynchronous activities don’t preempt each other, we
know that there can only be one such termination driver
being preempted and it suffices to make that very instance
available to the TT-machine by means of a global variable.
Whenever the TT-machine performs its next step, it checks
first if a termination driver has been interrupted. If so, it
simply re-executes this driver! This means that the driver
may be executed twice, once by the background thread and
once by the TT-machine. This is only possible if the driver is
idempotent and reentrant, i.e. its preemption and repeated
execution does not change its result. Fortunately, termination
drivers have exactly this property because they do nothing
but memory copies and the source values are not modified
between the repeated driver executions. The source values
are the internally available results of the most recent
invocation of this asynchronous task and only a new task
invocation can change them. Such a task invocation,
however, will not happen because the background thread
executes all asynchronous activities sequentially.

It should be noted that the property of idempotency does
not hold for copying input ports as discussed in the previous
subsection because a preemption by the TT-machine may
alter the value of a source port that has already been copied.
This means that we really need two ways of synchronization
for the two cases.

It should also be noted that setting the driver identity
must be an atomic memory store operation. If storing e.g. a
32 bit integer is not atomic on a 16-bit CPU, an additional
Boolean flag can be used for indicating to the TT-machine
that a driver has been assigned. This flag must of course be

317

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

set after the assignment of the driver’s identity. If this initial
sequence of assignments is preempted, the TT-machine will
not re-execute the driver and that is correct because the
driver has not yet started any memory copy operations.

The following Java code outlines the implementation of
asynchronous task termination drivers and the corresponding
code in the TT-machine. Setting, testing and clearing the
driver identity is kept abstract because the details may vary
between target platforms. Since Java lacks function pointers
we use an integer id and a switch statement instead.
Variations, e.g. using C function pointers or Java singleton
classes, are of course possible.

 void callDriver(int id) {
 switch (id) {
 ...
 case X: //termination driver for async task X
 assignAsyncTerminateDriverID(X);
 //perform memory copy operations
 ...
 clearAsyncTerminateDriverID();
 break;
 ...
 }
 }

The relevant TT-machine code including the code intro-

duced in the previous subsections looks like this:

 void ttmachineStep() {
 ttmachineExecuted = true;
 if (asyncTerminateDriverIDassigned()) {
 callDriver(asyncTerminateDriverID);
 }
 //perform operations for this time instant
 ...
 }

It suffices to clear the registered termination driver at the

end of the termination driver itself. There is no need to do it
after callDriver() in ttmachineStep because the driver’s re-
execution will clear it anyway.

The resulting runtime overhead for supporting
asynchronous operations in the TT-machine is the
assignment of the ttmachineExecuted flag and the test for the
existence of a preempted asynchronous task termination
driver, which is acceptable because this happens only once
per TT-machine step. In case of preempting such a driver the
time for re-execution must be added. When a port update
trigger is used, then the enqueue operation is also a small
constant time overhead that affects the TT-machine. There is
no other runtime overhead for integration of event-triggered
activities in the TT-machine.

V. MEASUREMENT RESULTS

Table I shows the time needed for various operations on
different platforms. The platform named MicroAutoBox uses
a PowerPC 750FX CPU running at 800 MHz and the
Microtec C compiler version 3.2 with optimization level 5.
The platform runs the dSPACE Real-Time Kernel as its
operating system. The platform named ARM uses an ARM7

TDMI CPU running at 80 MHz and the GNU C compiler
with optimization level 2 and runs without an operating
system. The platform named RENESAS uses a Renesas
M32C/85 CPU running at 24 MHz and the GNU C compiler
version 4.1 with optimization level 3. The platform runs the
Application Execution System (AES) provided by
DECOMSYS and executes the programs from read-only
memory, which slows down the execution. This system does
not support external interrupts for user level programs. The
platform named SHARC uses an Analog Devices SHARC
ADSP-21262 CPU running at 200 MHz and the
VisualDSP++ C compiler version 5.0 with maximum
optimization level.

TABLE I. MEASUREMENT RESULTS [NANOSECONDS]

Platform (MHz) Interrupt Port Update dequeue N

MicroAutoBox (800) 420 8 11 * N + 60

SHARC (200) 1030 72 30 * N + 110

ARM (80) 700 200 287 * N + 500

RENESAS (24) N.A. 1200 790 * N + 2500

The column Interrupt shows the time needed for an

external hardware interrupt trigger, which includes the
interrupt handling overhead and the enqueue operation. The
column Port Update shows the time needed for a
synchronous port update trigger, which consists only of the
enqueue operation. The column dequeue N shows the time
needed for the search for the next event to be processed as a
linear function of the array size N. All timings are given in
nanoseconds.

The values shown in the columns Interrupt and Port
Update are critical for the timely execution of synchronous
operations as they impose an overhead that may affect the
TT-machine. Even on the slowest platform the required time
is only slightly above one microsecond. In comparison with
the ARM platform, the Interrupt time for MicroAutoBox
shows that the operating system introduces a significant
overhead.

The values in the column dequeue N only affect the
background thread and are not visible to the TT-machine. On
the slowest platform a time of 81.5 microseconds results for
N = 100, which means that response times in the range of
milliseconds can easily be achieved for asynchronous
operations.

VI. IMPLEMENTATION

We have implemented the proposed solution in the
context of the TDL tool chain. Currently we support two
networked target platforms, (1) the dSPACE MicroAutoBox,
which is a widely used prototyping platform for embedded
systems in the automotive industries, and (2) the NODE
RENESAS platform provided by DECOMSYS (now
Elektrobit). Furthermore, we are experimenting with
standalone platforms including bare hardware based on an
ARM7 and a SHARC processor.

Both networked systems are programmed in C and
support a FlexRay [19] bus interface and the time-triggered
activities are synchronized with FlexRay’s global time base.
The availability of a high-level description language (TDL)

318

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

for timing properties as well as for asynchronous activities
allowed us to generate the required glue code such as the
event table, the termination drivers and all the code needed
for the background thread and for data flow synchronization
automatically. Even when we added support for distributing
the data flow across multiple nodes we relied on the data
flow synchronization approach presented in this paper.

In analogy to handling the execution of asynchronous
activities in a background thread, network frames that
communicate the outputs of asynchronous task invocations
must be sent in a way such that they do not interfere with
time-triggered frames, i.e. data sent by synchronous
activities. Depending on the communication protocol being
used, this can be done by configuring such asynchronous
frames as low priority frames (if the bus protocol supports
priorities) or by assigning them a designated section in the
communication cycle (typically done when using time-
triggered protocols such as FlexRay or TTEthernet).

Our implementations use the FlexRay communication
protocol. FlexRay is a time-triggered protocol targeted at the
automotive industry. It has a significantly higher bandwidth
than other field bus protocols and is designed to handle
safety critical applications such as steer-by-wire systems. A
FlexRay communication cycle constantly repeats itself and it
consists of a mandatory static part and an optional dynamic
part. The static part is divided into equally sized slots which
are statically assigned to specific nodes, thereby
guaranteeing uninterrupted transmission. The dynamic
segment also has a static size, but it is dynamically allocated
to nodes upon runtime. We use the static segment for
synchronous frames and the dynamic segment for
asynchronous frames.

VII. EXAMPLE

As an example for a real-world TDL application, we
present an augmented strap down inertial navigation system
(INS) [13] designed for computing the position, velocity, and
attitude of a sailing vessel at sea. The example is split into
several modules and uses asynchronous activities for
connecting asynchronous I/O with the time-triggered
navigation system core.

An INS determines the position of a vehicle with respect
to some (inertial) reference system by measuring the three
accelerations along and the three angular velocities around
the vehicle’s axes with respect to the reference system, using
three accelerometers and three gyroscopes which are firmly
attached to the vehicle’s body. By solving the equations of
motion the INS computes the position, velocity, and attitude
of the vehicle. An augmented INS uses additional inputs,
such as position information from a GPS receiver and
compass headings, to correct the drift of the inertial sensors.

A. Hardware

The hardware (see Figure 6) for the augmented INS
consists of an Analog Devices ADSP-21262 Signal
Processor [14], a LAN interface with TCP/IP functionality in
firmware, an ADIS family micromechanical inertial sensor
[15] and a two axis fluxgate compass [16]. Besides a floating
point signal processing core with a peak SIMD performance

of 1.2 GFlops, the ADSP-21262 contains an I/O processor
that is capable of managing several block transfers between
memory and periphery simultaneously. The inertial sensor is
connected to the signal processor using an SPI bus [17]. It
samples the rotations around the three axes of the vehicle and
the accelerations along these axes 819.7 times per second.
The excitation coil of the fluxgate compass is attached to the
ADSP-21262 using a sampling DA converter. The two sense
coils of the compass are connected to two sampling AD
converters. All three converters operate at 48K samples per
second. For determining the heading of the vehicle the
compass has to be excited periodically via the DA converter
and its response measured via the two AD converters.

B. TDL definitions

A TDL module starts with its name and the list of
imported modules. When importing a module it is possible to
define an abbreviation for it:

module INS {

 import Kalman as K;

 ... //constants, types, ports, tasks, modes, asyncs

}

Next, constants and types can be declared. Besides the basic
types as in Java, TDL supports structures and arrays of
constant size. By denoting a name public any importing
module is allowed to refer to this name:

 public const NavPeriod = 1220us;

 public type Vector = struct {

 float x, y, z;

 };

 type FluxBuffer = int[120];

The sensor and actuator declarations that follow define the
hardware inputs and outputs used by the module. With the
uses clause one specifies the name of the external getter or
setter function to access the hardware:

 public sensor InSens in uses getInertial;

The global output ports come next. Global output ports are
not dedicated to an individual task but may be used by all

Figure 6. INS Hardware

319

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

tasks in the module. A port is updated at the end of the LET
of the task that writes it:

 public output Vector pos;

Next, the tasks with their input, output, and state ports are
declared. In the uses clause the name of the external function
providing the task’s functionality is specified. The last four
parameters in the example below refer to global output ports:

 task solveMotion {

 input InSens in; Vector cPos; Vector cVel; Quaternion cAtt;

 uses deadReconing(in, cPos, cVel, cAtt, pos, vel, att, time);

 }

A mode is a set of activities, i.e. task invocations, actuator
updates and mode switches, which are executed periodically
with the mode period p. For each activity a frequency f and,
optionally, a guard can be specified. For a task invocation the
LET of this invocation is p / f. In the following mode
declaration, the period is set to NavPeriod. Both the
solveMotion and acquireMagHandling tasks are invoked once per
period so that the LET of both tasks is NavPeriod. The mode
Navigation is declared as start mode which means that the
execution of the module starts with this mode.

The names of entities imported from some other module
are qualified either by the name of the imported module or
by its abbreviation (e.g. K.pos):

 start mode Navigation [period = NavPeriod] {

 task [freq = 1] solveMotion(in, K.pos, K.vel, K.att);

 task [freq = 1] acquireMagHeading();

 }

Finally, asynchronous activities can be specified as in the
following code fragment. Once the interrupt named iGPS
occurs, the task receiveGPS is enqueued for later processing
and executed by a background thread. The mapping of the
logical interrupt name iGPS to a particular interrupt line is
platform dependent and must be specified outside the TDL
source code.

 asynchronous {

 [interrupt = iGPS, priority = 2] receiveGPS(INS.time);

 }

C. Complete TDL modules

In our hardware three independent asynchronous timing
sources are visible to the software: the processor clock, the
sampling events of the inertial sensor, and the sampling
events of the DA and AD converters. Choosing the sampling
events of the inertial sensor as the time base for the
synchronous activities allows us to solve the equations of
motion and to consider other sensor inputs using Kalman
filters [16] synchronously with the inertial data stream.

The module INS processes the inputs of the inertial
sensor and of the fluxgate compass. For each new inertial
measurement the task solveMotion advances the estimates for
the position, the velocity, and the attitude of the vehicle.
Quaternions are used for the representation of attitudes.

The excitation of the fluxgate compass is supplied with a
continuous data stream by the I/O processor of the ADSP-
21262. The data streams from the two sense coils are
captured and transferred to buffers in memory by I/O
processor. The size of the array type FluxBuffer is made large
enough to hold the data acquired during one period of the
mode Navigation for both sense coils. A state port (essentially
a private static variable) containing two buffers, one for
capturing and one for processing, is introduced for avoiding
any array copy operations. Task acquireMagHeading is
associated with two external functions (TDL task splitting),
(1) a long running function integrateFluxGate, and (2) an LZT
function exciteFluxGate indicated by the attribute release. The
basic idea is that the LZT function is called first at the LET
start and provides the new output values in a very short time,
closely approximating LZT. The long running function is
executed during the LET. The LZT function exciteFluxGate
restarts the data stream to the fluxgate compass and switches
between the two buffers at the start of the LET of task
acquireMagHeading. By invoking acquireMagHeading in mode
Navigation with the same frequency as solveMotion the compass
is synchronized to the inertial sensor.

The module INS counts the sampling events in the task
solveMotion to provide a time base for the other modules. The
period of 1220 microseconds for the mode Navigation is the
time that passes between two consecutive samples of the
inertial sensor.

module INS {

 import Kalman as K;

 public const NavPeriod = 1220 us;

 public type Vector = struct {float x, y, z;};

 public type Quaternion = struct {float x0, x1, x2, x3;};

 public type InSens = struct {

 float aX, aY, aZ;

 float omegaX, omegaY, omegaZ;

 };

 type FluxBuffer = int[120];

 type FluxDoubleBuffer = struct {

 byte bufState; FluxBuffer flux1, flux2;

 }

 public sensor InSens in uses getInertial;

 public output Vector pos; Vector vel; Quaternion att;

 public output long time; Vector mHead;

 task solveMotion {

 input InSens in; Vector cPos; Vector cVel; Quaternion cAtt;

 uses deadReconing(in, cPos, cVel, cAtt, pos, vel, att, time);

 }

 task acquireMagHeading {
 state FluxDoubleBuffer flux;
 uses [release] exciteFluxGate(flux);
 uses integrateFluxGate(flux, mHead);
 }

 start mode Navigation [period = NavPeriod] {

 task [freq = 1] solveMotion(in, K.pos, K.vel, K.att);

 task [freq = 1] acquireMagHeading();

 }

}

320

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

The module GPS receives position and velocity information
from a GPS receiver via the LAN interface typically once
per second. The LAN interface chip has an internal memory
buffer. It activates interrupt iGPS of the signal processor to
demand service.

To maintain a timing relationship with the inertial data
each dataset from the GPS receiver is time stamped as soon
as it is received.

module GPS {

 import INS;

 public output INS.Vector pos; INS.Vector vel; long timeStamp;

 public task receiveGPS {

 input long time;

 uses getGPSData(time, pos, vel, timeStamp);

 }

 asynchronous {

 [interrupt = iGPS, priority = 2] receiveGPS(INS.time);

 }

}

On power on, the module Kalman aligns the estimates for the
vehicle’s position, velocity, and attitude. Once a good initial
fix has been achieved, it switches to Filter mode. It then
combines the inertial measurement, the GPS position and
velocity, and the compass heading into an estimate of the
vehicle’s position, velocity, and attitude.

module Kalman {

 import INS; GPS;

 public output INS.Vector pos; INS.Vector vel;

 public output INS.Quaternion att; long stamp;

 public task align {

 input INS.InSens in; INS.Vector mHead; long time;

 uses doAlign(in, mHead, time, pos, vel, att, stamp);

 }

 public task filter {

 input INS.Vector nPos; INS.Vector nVel; INS.Quaternion nAtt;

 input INS.Vector mHead; long time;

 input INS.Vector gpsPos; INS.Vector gpsVel; long gpsStamp;

 uses doKalmanFilter(nPos, nVel, nAtt, mHead, time, gpsPos,

 gpsVel, gpsStamp, pos, vel, att, stamp);

 }

 start mode Align [period = INS.NavPeriod] {

 task [freq = 1] align(INS.in, INS.mHead, INS.time);

 mode [freq = 1] if isAligned() then Filter;

 }

 mode Filter [period = INS.NavPeriod] {

 task [freq = 1] filter(INS.pos, INS.vel, INS.att, INS.mHead,

 INS.time, GPS.pos, GPS.vel, GPS.timeStamp);

 }

}

The module NavReporter finally communicates the
navigational solutions to the outside world. Whenever a new
measurement is available, indicated by a port update on the
port Kalman.stamp, it makes it available on the LAN. The
asynchronous operation uses the default priority, which is the
lowest priority (0). Reading the input ports (K.pos, K.vel etc.)
is an atomic operation.

module NavReporter {

 import Kalman as K; INS;

 public task reportNav {

 input INS.Vector pos; INS.Vector vel; INS.Quaternion att;

 long stamp;

 uses doReporting(pos, vel, att, stamp);

 }

 asynchronous {

 [update = K.stamp] reportNav(K.pos, K.vel, K.att, K.stamp);

 }

}

Figure 7 depicts the dataflow between the modules INS and
Kalman. Arrows of the same style indicate measurements that
are combined by the Kalman filter into one navigation
solution. Note that it takes two sampling periods of the
inertial sensor until the data arrives at the output ports of the
Kalman filter. For slow moving vehicles like sailing vessels
this deems satisfactory. For faster moving vehicles one
would combine the two functions solveMotion and
doKalmanFilter in one task.

VIII. RELATED WORK

The xGiotto language [9] also aims at the integration of
time-triggered and event-triggered activities. xGiotto’s
compiler is supposed to perform a static check for the
absence of race conditions. Due to the specific design of
xGiotto, a precise check is possible but not in polynomial
time. Therefore, only a conservative check is done in the
compiler. We do not need such a check at all as we defined
appropriate semantics for event-triggered activities and use
the proposed synchronization mechanisms for their
integration into a time-triggered system.

RT-Linux [10] is an extension of the Linux operation
system which adds a high priority real-time kernel task and
runs a conventional Linux kernel as a low priority task. Its
interrupt handling mechanism is similar to what we propose
for the event queue as all interrupts are initially handled by
the real-time kernel and are passed to a Linux task only when
there are no real-time tasks to be run. In our approach, the
only immediate reaction to an interrupt is its registration in

Figure 7. Data Flow

INS

Kalman Kalman

INS

Kalman

INS

Inertial Data

time

Other Sensors

321

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

the priority queue so that it can be processed later when no
time-triggered activity is executed.

In [11] a non-blocking write (NBW) protocol is
presented. The writer is executed by a separate processor and
is not blocked. It updates a concurrency control field (CCF)
which indicates whether it currently writes data to a shared
variable. The reader uses the CCF to loop until no write
operation is executed while it reads from the shared data
structure. This relates closely to our synchronization strategy
for reading input ports for an asynchronous activity. In our
case the writer would be the TT-machine which is not
blocked.

A comprehensive overview of the field of non-blocking
synchronization can be found in [8]. Among other
techniques, it also describes a so-called roll-forward
synchronization approach by means of a helper function,
which looks similar to the one we used for synchronizing
output port writing.

IX. CONCLUSIONS

We have presented the extension of a time-triggered
system by event-triggered activities. Data flow between
time- and event triggered activities must be carefully
synchronized in order to avoid race conditions. We have
shown that a non-blocking lock-free solution for data flow
synchronization is indeed possible. Our solution does not
need any operating system support such as monitors or
semaphores and thereby avoids dynamic memory operations
and the danger of deadlocks and priority inversions. There is
also no need for switching off interrupts and the solution also
works in a shared-memory multiprocessor system where the
time-triggered and event-triggered activities are performed
on separate CPUs. Our approach relies exclusively on atomic
memory load and store operations, which are provided by
every CPU in hardware. An appropriate semantics for
asynchronous activities helped us to keep the solution simple
and efficient.

ACKNOWLEDGMENT

We want to thank Gernot Turner for providing us with
the hardware for the INS.

REFERENCES

[1] J. Templ, J. Pletzer, W. Pree, “Lock-Free Synchronization of Data
Flow Between Time-Triggered and Event-Triggered Activities in a
Dependable Real-Time System,” In Proceedings of the 2nd

International Conference on Dependability (DEPEND 2009), Athens,
Greece, 2009.

[2] W. Pree and J. Templ, “Modeling with the Timing Definition
Language (TDL),” Proceedings ASWSD 2006, LNCS 4922, 133-144,
Springer, 2008.

[3] J. Templ, “Timing Definition Language (TDL) Specification
1.5,” Technical Report, University of Salzburg, 2008,
http://softwareresearch.net/pub/T024.pdf.

[4] J. Templ, J. Pletzer, and A. Naderlinger, “Extending TDL with
Asychronous Activities,” Technical Report, University of Salzburg,
2008, http://softwareresearch.net/pub/T022.pdf.

[5] C. A. R. Hoare, “Monitors: An Operating System Structuring
Concept,” Comm. ACM 17 (10), 549–557, 1974.

[6] E. W. Dijkstra, “Cooperating sequential processes,” in “Programming
Languages,” Academic Press, New York, 1968.

[7] M. P. Herlihy, “A Methodology For Implementing Highly Concurrent
Data Structures,” Proceedings of the Second ACM Symposium on
Principles and Practice of Parallel Programming, ACM, New York,
1990.

[8] M. B. Greenwald, “Non-Blocking Synchronization and System
Design,” PhD Thesis, CS-TR-99-1624, Stanford U., 1999.

[9] A. Ghosal, T. A. Henzinger, C. M. Kirsch, and M. A. A. Sanvido,
“Event-driven programming with logical execution times,” in
“Hybrid Systems Computation and Control,” Lecture Notes in
Computer Science 2993, Springer, 2004.

[10] V. Yodaiken and M. Barabanov, “A Real-Time Linux,” Proceedings
of the Linux Applications Development and Deployment Conference
(USELINUX), Anaheim, CA, 1997.

[11] H. Kopetz and J. Reisinger, “The non-blocking write protocol NBW,”
Proceedings of the 14th IEEE Symposium on Real-Time Systems,
131-137, IEEE, New York, 1993.

[12] T. Henzinger, B. Horowitz, C. Kirsch, “Giotto: A time-triggered
language for embedded programming,” In Proc. of EMSOFT, LNCS
2211, pages 166–184. Springer, 2001

[13] D. H. Titterton and J. L. Weston, “Strapdown inertial navigation
technology,” 2nd Ed. IEEE radar, sonar, navigation and avionics series
17, 1996. ISBN 978-0863413582

[14] Analog Devices, “SHARC Embedded Processor ADSP-
21261/ADSP-21262/ADSP-21266, Data Sheet, Rev. E. 2008,“
Analog Devices, USA.

[15] Analog Devices, “Six Degrees of Freedom Inertial Sensor
ADIS16364, Data Sheet, Rev PrA. 2008,” Analog Devices, USA.

[16] Autonnic, “AR45 Two Axis Magnetometer Component with Floating
Core, Data Sheet, 2008,” Autonic Research, Great Britain.

[17] Freescale Semiconductor, “Serial Peripheral Interface (SPIV3) Block
Description”.

[18] H. Kopetz, “Real-Time Systems - Design Principles for Distributed
Embedded Applications,” ISBN 0792398947, Springer, 2007.

[19] R. Makowitz, C. Temple, “FlexRay - A Communication Network for
Automotive Control Systems,” Proc. WFCS 2006, pp. 207–212.

322

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

