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Abstract—Time-triggered execution of periodic tasks provides 

the cornerstone of dependable real-time systems. In addition, 

there is often a need for executing event-triggered activities 

while the system would be otherwise idle. We first present the 

foundation of a time-triggered system based on the Timing 

Definition Language (TDL). Then we introduce event-

triggered activities as an extension of the purely time-triggered 

programming model. If time-triggered and event-triggered 

activities exchange information among each other, the data 

flow must be synchronized such that reading unfinished output 

data is avoided. The paper describes a lock-free solution for 

these synchronization issues that is based exclusively on 

memory load and store operations and can be implemented 

efficiently on embedded systems without any operating system 

support. We also discuss the implications of our synchroni-

zation approach for the semantics of combined time-triggered 

and event-triggered execution in a dependable real-time 

system. A case study of an Inertial Navigation System (INS) 

illustrates these extensions. 

Keywords—Lock-free; Synchronization; Time-triggered; 

Event-triggered; Synchronous; Asynchronous; Activity; TDL 

I. INTRODUCTION 

A dependable real-time system performs safety critical 
tasks by periodic execution of statically scheduled activities 
[18]. The pre-computed schedule guarantees that the timing 
requirements of the system will be met in any case by taking 
the worst case execution time into account. Such operations 
are called time-triggered (alias synchronous) activities. The 
timing requirements of such activities are typically in the 
range of milliseconds or sometimes even below. 

In addition, many dependable real-time systems execute 
event-triggered (alias asynchronous) activities that are, for 
example, triggered by the occurrence of an external hardware 
interrupt or any other kind of trigger. In the context of a 
dependable real-time system such asynchronous activities 
are considered to be not as time critical as synchronous tasks 
are, and can therefore be executed in a background thread 
while the CPU is otherwise idle. 

Adding asynchronous activities to a time-triggered 
system could be done in a platform specific way by directly 
programming at the level of the operating system or task 
monitor. However, this approach has two drawbacks: (1) it is 
highly platform dependent and (2) it does not support proper 

synchronization of data exchanged between synchronous and 
asynchronous activities. 

In order to tackle both problems we extended a tool chain 
[2, 3] for time-triggered systems by asynchronous activities. 
This tool chain supports the Timing Definition Language 
(TDL), which allows one to specify the timing behavior of a 
real-time system in a platform independent way. TDL 
separates the specification of the timing behavior from the 
implementation of the tasks. We extended TDL by a notation 
for asynchronous activities and provided a runtime system 
for this extended TDL on a number of target platforms [4]. 

The resulting lock-free approach for data flow 
synchronization [1] is not specific for TDL but—we 
believe—can be applied to other time-triggered systems that 
need to be extended with asynchronous activities. Our 
synchronization approach can be implemented efficiently 
without any operating system support such as monitors [5] or 
semaphores [6] and it avoids the need for dynamic memory 
allocation and the danger of deadlocks and priority 
inversions. It also keeps the impact of event-triggered 
activities on the timing of time-triggered activities as low as 
possible. For more information on non-blocking 
synchronization techniques please refer to [7, 8]. 

Note: This paper represents an extended version of [1]. It 
presents (1) the lock-free synchronization approach for data 
flow between event-triggered and time-triggered activities in 
the context of the TDL project, where the approach had been 
developed, and it adds (2) a non-trivial example that shows 
the integration of event-triggered and time-triggered 
activities. We shall start with an explanation of TDL’s time-
triggered programming model and language features that are 
relevant for understanding the proposed extensions and the 
example. 

II. TIME-TRIGGERED ACTIVITIES IN TDL 

A particularly promising approach towards a high-level 

component model for real-time systems has been laid out by 

the introduction of the so-called Logical Execution Time 

(LET [12]), which abstracts from the physical execution 

time on a particular platform and thereby abstracts from 

both the underlying execution platform and the 

communication topology. Thus, it becomes possible to 

change the underlying platform and even to distribute 

components between different nodes without affecting the 

313

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/



overall system behavior. LET means that the observable 

temporal behavior of a task is independent from its physical 

execution. It is only assumed that physical task execution is 

fast enough to fit somewhere within the logical start and end 

points.  
Figure 1 shows the relation between logical and physical 

task execution. The inputs of a task are read at the release 
time and the newly calculated outputs are available at the 
terminate time. Between these, the outputs have the value of 
the previous execution. LET provides the cornerstone to 
deterministic behavior, platform abstraction and well-defined 
interaction semantics between parallel activities. It is always 
defined which value is in use at which time instant and there 
are no race conditions or priority inversions involved. 

TDL is a LET-based language. The basic construct that 
represents an executable entity is called a task. Several tasks 
can be executed in parallel and each task invocation may 
have its specific LET and execution rate. As real-time 
systems typically exhibit various modes of operations, TDL 
allows the specification of such modes. A TDL mode 
consists of a set of periodically executed activities. In 
addition to task invocations, an activity can also be an 
actuator update or a mode switch. The LET of a task is 
always greater than zero, whereas actuator updates and mode 
switches are executed in logical zero time (LZT). As the top-
level structuring concept, TDL provides the notion of a 
module. Figure 2 sketches a sample module with two modes 
containing two cooperating tasks each. 

TDL modules support an export/import mechanism 

similar to modern general purpose programming languages 
such as Java or C#. A service provider module may export 
e.g. a task’s outputs, which in turn may be imported by a 
client module and used as inputs for the client’s 
computations. Every module provides its own distinguished 
start mode. Thus, all modules execute in parallel or in other 
words, a TDL application can be seen as the parallel 
composition of a set of TDL modules. It is important to note 
that LET is always preserved, that is, adding a new module 
will never affect the observable temporal behavior of other 
modules. It is the responsibility of internal scheduling 
mechanisms to guarantee conformance to LET, given that 
the worst-case execution times (WCET) and the execution 
rates are known for all tasks.  

Parallel tasks may depend on each other, i.e. the output of 
one task may be used as the input of another task. All tasks 
are logically executed in sync and the dataflow semantics is 
defined by LET. There is always a distinguished time base 
which drives all time-triggered activities and that is why they 
are also called synchronous activities. 

The following TDL source code corresponds with the 
schematic representation of the module in Figure 2. 

 

 
 
The module is named Sample. It declares a sensor s1 and an 
actuator a1, both of type integer. The sensor value is 
provided by the external getter function getS1 and the 
actuator value is written by the external setter function setA1. 
Functionality code such as getters, setters, or task 
implementation functions are not implemented in TDL but 
must be provided in a conventional programming language 
such as C. The module declares three tasks task1, task2, and 
task3. The module further declares two modes Init and 
Operation. The mode Init has a period of 25ms and it executes 
task1 with a frequency of 5 (=200Hz) and task2 with a 
frequency of 1 (=40Hz). The actuator a1 is also updated 5 
times per mode period with the new value of output port o1 
of task task1. Once every 25ms the external boolean function 
toOperation decides whether to resume with the initialization 

module Sample { 
 
  sensor int s1 uses getS1; 
  actuator int a1 uses setA1;  
 
  task task1 { 
    input int i1; int i2; 
    output int o1; 
    uses t1Impl(i1,i2,o1); 
  } 
 
  task task2 { 
    input int i1; 
    output int o1; 
    uses t2Impl(i1,o1); 
  } 
 
  task task3 { 
    input int i1; 
    output int o1; 
    uses t3Impl(i1,o1); 
  } 

 

  start mode Init [period=25 ms] { 
    task 
      [freq=5] task1(task2.o1,s1); 
      [freq=1] task2(task1.o1); 
    actuator 
      [freq=5] a1 := task1.o1; 
    mode 
      [freq=1] if toOperation(s1)  
                    then Operation; 
  } 
 
  mode Operation [period=10 ms] { 
    task 
      [freq=5] task1(task3.o1,s1); 
      [freq=1] task3(task1.o1); 
    actuator 
      [freq=5] a1 := task1.o1; 
    mode 
      [freq=1] if toInit(s1)  
                    then Init; 
  } 
} 

Figure 2. Schematic representation of a TDL module 
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or to switch to the second mode Operation. The mode 
Operation executes the tasks task1 and task3 and also updates 
the actuator a1. 

III. ADDING EVENT-TRIGGERED ACTIVITIES 

We assume that time-triggered activities have the highest 
priority in a dependable real-time system. The runtime 
system executes a pre-computed schedule and reads inputs 
and writes outputs at well-defined time instants, which are 
synchronized with a global time base such as the clock of a 
time-triggered bus system. 

Asynchronous activities must not interfere with the 
timing properties of synchronous activities. This is achieved 
by running asynchronous activities in a thread with lower 
priority than synchronous activities. However, things get 
more complicated when synchronization of the data flow is 
involved, as will be described below. 

A. Asynchronous activities in TDL 

TDL supports three kinds of synchronous activities. Task 
invocations and actuator updates also give sense when 
triggered asynchronously and should therefore be supported. 
Mode switches affect the time-triggered operation of a 
module and are therefore not supported as asynchronous 
activities. 

An asynchronous task invocation consists of (1) reading 
input data (also called input ports), (2) execution of the 
task’s body, and (3) writing of output data (also called output 
ports). With respect to synchronization issues, actuator 
updates do not introduce new problems because they can be 
seen as a special case of a task invocation. Figure 3 shows 
the task model that we assume. 

The execution of a task’s body is independent of the 
environment if input reading and output writing are separated 
from the implementation. Therefore we assume that internal 
copies of all input and output ports are maintained by the 
system. The task’s body operates exclusively on these 
internal port copies. 

Reading of input data may involve a sequence of 
memory copy operations that could be preempted by a 
hardware interrupt or by a time-triggered operation, which 
has higher priority. Therefore we need to synchronize input 
data reading with the rest of the system such that all input 
ports are read atomically. 

Like input data reading, writing of output data is a 
sequence of memory copy operations that could be 
preempted by a hardware interrupt or by a time-triggered 
operation. It needs to be synchronized with the rest of the 
system such that all output ports are updated atomically. 

B. Triggers for asynchronous activities 

Asynchronous activities may be triggered by different 
events. We have identified the following three kinds of 
trigger events, which are consequently supported in our 
extension of TDL: 

1) Hardware interrupt 
A (non-maskable) hardware interrupt has the highest 

priority in the system. It may even interrupt synchronous 
activities. We must therefore take care that the impact of 

hardware interrupts on the timing of synchronous activities is 
minimized. Hardware interrupts may be used e.g. for 
connecting the system with asynchronous input devices. 

2) Asynchronous timer 
A periodic or a single-shot asynchronous timer may be 

used as a trigger. Such a timer is independent from the timer 
that drives the synchronous activities because it introduces 
its own time base. An asynchronous timer may for example 
be used as a watchdog for monitoring the execution of the 
time-triggered operations. 

3) Port update 
Updating an output port may be considered an event that 

triggers an asynchronous activity. We assume that both a 
synchronous and an asynchronous port update may be used 
as a trigger event. In case of a synchronous port update, i.e. a 
port update performed in a time-triggered activity, we must 
take care that the impact on the timing of the synchronous 
activities is minimized. Port update events may e.g. be used 
for limit monitoring or for change notifications. 

C. Semantics of asynchronous activities 

Obviously, the triggering of an asynchronous activity 
must be decoupled from its execution. In addition, reading 
input ports for an asynchronous activity must be done at the 
time of execution, not at the time of triggering. Thereby we 
move as much work as possible into the asynchronous part 
and minimize the impact of trigger events on the timing of 
synchronous activities, which is particularly important for 
hardware interrupts and synchronous port updates. 

If multiple different asynchronous activities are triggered, 
the question arises whether they should be executed in 
parallel or sequentially in a single thread. We opted for the 
sequential case because (1) on some embedded systems there 
is no support for preemptive task scheduling and (2) because 
data flow synchronization is simplified as will be shown 
later. In practice, we expect this not to be a severe restriction 
because time critical tasks will be placed in the synchronous 
part anyway. 

We assume that asynchronous activities that are 
registered for execution may have different priorities 
assigned. The set of registered events thus forms a priority 
queue where the next activity to be processed is the one with 
the highest priority. 

If one and the same asynchronous activity is triggered 
multiple times before its execution, the question arises if it 
should be executed only once or multiple times, i.e. once per 
trigger event. We opted for executing it only once because 
this avoids the danger of creating an arbitrary large backlog 
of pending activities at runtime if the CPU cannot handle the 
workload. In addition this decision also simplifies the 

1. 

read 
 

2. 

execute 
 

3. 

 write 
 

internal port copy data flow 

Figure 3. Assumed task model 
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mechanism for registering trigger events as will be shown 
later. 

The following list summarizes our design decisions: 

• Triggering of an asynchronous activity is decoupled 
from its execution. 

• Reading input ports for an asynchronous activity is 
done at the time of execution, not at the time of 
triggering. 

• Asynchronous activities are executed sequentially. 

• The execution order of asynchronous activities is 
based on priorities. 

• If one and the same asynchronous activity is 
triggered multiple times before its execution, it is 
executed only once. 

IV. THREADING AND SYNCHRONIZATION 

Figure 4 outlines the threads involved including their 
priority and the critical regions. The time-triggered activities 
are represented by a thread named TT-machine. This thread 
may need further internal threads but we assume that all 
synchronization issues are concentrated in a single thread 
that coordinates the time-triggered activities. It should also 
be noted that an asynchronous timer thread could also run at 
a lower priority as long as it is higher than the priority of the 
asynchronous activities. 

The following situations that need synchronization can be 
identified and will be described below in more details: (1) 
Access to the priority queue of registered events. (2) Reading 
the input ports for an asynchronous activity. This must not be 
interrupted by the TT-machine. (3) Updating the output ports 
of an asynchronous activity. This must be finished before the 
TT-machine uses the ports. 

A. The priority queue of registered events 

As mentioned before, asynchronous events are not 
executed immediately when the associated trigger fires but 
need to be queued for later execution by the background 
thread. Since asynchronous events may be associated with a 

priority, we need a data structure that allows us to register an 
event and to remove the event with the highest priority. Such 
a data structure is commonly referred to as a priority queue. 
It provides two operations enqueue and dequeue, which 
insert and remove an entry with the property that the element 
being removed has the highest priority. A number of 
algorithms exists for implementing priority queues with 
logarithmic behavior of the enqueue and dequeue operation. 
However, in our case it is more important to minimize the 
run time of enqueue in order to minimize its impact on the 
timing of synchronous activities. 

Elements are enqueued when an asynchronous event 
occurs and the event is not yet in the queue. As mentioned 
earlier, an event can be a hardware interrupt, an 
asynchronous timer event, or a port update event. Port 
updates may origin from an asynchronous task or from a 
synchronous task that is executed by the TT-machine. 
enqueue will never be preempted by dequeue, however, 
enqueue may be preempted by another enqueue operation. 

Elements are dequeued by the single background thread 
that executes asynchronous activities. This thread may be 
preempted by interrupts and by the TT-machine. Thus, 
dequeue may be preempted by enqueue operations. 

As shown by the example in Figure 5 we chose an array 
representation of the triggerable events because this is both 
thread safe and provides for a fast and constant time 
enqueue operation. We use a Boolean flag per event that 
signals that an event is pending. The flag is cleared when an 
event is dequeued. From that time on it may be set again 
when the associated trigger fires. The flag remains set when 
the same trigger fires again while the flag is already set. The 
thread-safe enqueue operation boils down to a single 
assignment statement and the dequeue operation becomes a 
linear search for the event with the highest priority over all 
pending events. Registering an event from a non-maskable 
interrupt or from a synchronous port update thereby has only 
a negligible effect on the timing behavior of synchronous 
activities. The linear search in the background thread is 
expected to be acceptable for small to medium numbers of 
asynchronous events (< 100), which should cover all 
situations that appear in practice. 

It should be noted that the array representation of the 
priority queue does not impose any restriction on the number 
of events the system can handle. There is one array element 
for every trigger and the number of triggers is known 
statically. Thus, the array can always be defined with the 
appropriate size. 

on port update 
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timer: highest priority 
 

synchronous activities (TT-

machine): high priority 

asynchronous activities (back-
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Figure 4. Threads and critical regions 
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The background thread for executing asynchronous 
operations is a simple infinite loop that runs with lower 
priority than the TT-machine thread. For a particular target 
platform there may be some refinements with respect to the 
CPU load, which is increased to 100% by permanently 
polling the event queue. 

 
  static Thread asyncThread = new Thread() { 
    public void run() { 
      for (;;) { 
        int next = dequeue(); 
        if (next >= 0) { 
          executeEvent(next); 
        } 
      } 
    } 
  }; 
 
The procedure executeEvent is supposed to execute the 

asynchronous activity identified by next. Within its 
implementation there will be synchronization issues with 
respect to reading input ports and writing output ports as 
described below. Instead of showing the complete 
implementation, which depends on the particular 
environment, we will focus on the synchronization issues 
only. 

B.  Reading the input ports for an asynchronous task 

While performing asynchronous reading of input ports 
the following situation may arise: An asynchronous input 
port reading involving multiple input ports (or at least 
multiple memory load operations) has been started. The first 
port has been copied. The second port has not yet been 
copied but the TT-machine preempts the background thread 
and updates the source ports. When the background thread 
continues it would read the next port, which has a newer 
value than the first port. Moreover, this situation may in 
principle occur multiple times when the TT-machine 
preempts the background thread after the second port has 
been read, etc. We have to make sure that reading all of the 
input ports is not preempted by the TT-machine. Since 
asynchronous activities don’t preempt each other, we know 
that there can only be one such asynchronous input port 
reading that is being preempted. Therefore we can introduce 
a global flag that is set by the TT-machine in order to 
indicate to the background thread that it has been preempted. 
The background thread then has to repeat its reading until all 
of the ports are read without any preemption. The following 
Java code fragments outline a possible implementation. 

Asynchronous port reading within executeEvent uses a 
loop in order to wait for a situation where input port reading 
is not preempted by the TT-machine. Therefore, our solution 
does not qualify as a wait-free nonblocking algorithm [7]. It 
should be noted, however, that (1) starvation cannot occur in 
the TT-machine and (2) in practice it does also not occur in 
the background thread because even in the unlikely case that 
the TT-machine’s schedule reserves 100% of the CPU, this 
refers to the worst case execution time, which typically will 
not always be required. 

 

  do { 
    ttmachineExecuted = false; 
    //copy input ports 
    ... 
  } while (ttmachineExecuted); 

 
The relevant TT-machine code, which is assumed to be 

placed in a central procedure of the TT-machine named 
ttmachineStep may look like this: 

 
  void ttmachineStep() { 
    ttmachineExecuted = true; 
    //perform operations for this time instant 
    ... 
  } 

C. Updating the output ports of an asynchronous task 

In the case of asynchronous output port updates the 
following situation may arise: An asynchronous output port 
update involving multiple output ports (or at least multiple 
memory store operations) has been started. The first port has 
been copied. The second port is not yet copied but the TT-
machine preempts the background thread and reads both 
output ports. Now one port is updated but the second is not. 
Since this interruption cannot be avoided, we must find a 
way for proper synchronization. 

Since we assumed earlier that updating the output ports is 
separated from the implementation of a task, we can 
encapsulate the output port update operations of a task in a 
helper procedure that we call the task’s termination driver. 
Since asynchronous activities don’t preempt each other, we 
know that there can only be one such termination driver 
being preempted and it suffices to make that very instance 
available to the TT-machine by means of a global variable. 
Whenever the TT-machine performs its next step, it checks 
first if a termination driver has been interrupted. If so, it 
simply re-executes this driver! This means that the driver 
may be executed twice, once by the background thread and 
once by the TT-machine. This is only possible if the driver is 
idempotent and reentrant, i.e. its preemption and repeated 
execution does not change its result. Fortunately, termination 
drivers have exactly this property because they do nothing 
but memory copies and the source values are not modified 
between the repeated driver executions. The source values 
are the internally available results of the most recent 
invocation of this asynchronous task and only a new task 
invocation can change them. Such a task invocation, 
however, will not happen because the background thread 
executes all asynchronous activities sequentially. 

It should be noted that the property of idempotency does 
not hold for copying input ports as discussed in the previous 
subsection because a preemption by the TT-machine may 
alter the value of a source port that has already been copied. 
This means that we really need two ways of synchronization 
for the two cases. 

It should also be noted that setting the driver identity 
must be an atomic memory store operation. If storing e.g. a 
32 bit integer is not atomic on a 16-bit CPU, an additional 
Boolean flag can be used for indicating to the TT-machine 
that a driver has been assigned. This flag must of course be 
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set after the assignment of the driver’s identity. If this initial 
sequence of assignments is preempted, the TT-machine will 
not re-execute the driver and that is correct because the 
driver has not yet started any memory copy operations.  

The following Java code outlines the implementation of 
asynchronous task termination drivers and the corresponding 
code in the TT-machine. Setting, testing and clearing the 
driver identity is kept abstract because the details may vary 
between target platforms. Since Java lacks function pointers 
we use an integer id and a switch statement instead. 
Variations, e.g. using C function pointers or Java singleton 
classes, are of course possible. 

 
  void callDriver(int id) { 
    switch (id) { 
      ... 
      case X: //termination driver for async task X 
        assignAsyncTerminateDriverID(X); 
        //perform memory copy operations 
        ... 
        clearAsyncTerminateDriverID(); 
        break; 
      ... 
    } 
  } 
 
The relevant TT-machine code including the code intro-

duced in the previous subsections looks like this: 
 
  void ttmachineStep() { 
    ttmachineExecuted = true; 
    if (asyncTerminateDriverIDassigned()) { 
      callDriver(asyncTerminateDriverID); 
    } 
    //perform operations for this time instant 
    ... 
  } 
 
It suffices to clear the registered termination driver at the 

end of the termination driver itself. There is no need to do it 
after callDriver() in ttmachineStep because the driver’s re-
execution will clear it anyway. 

The resulting runtime overhead for supporting 
asynchronous operations in the TT-machine is the 
assignment of the ttmachineExecuted flag and the test for the 
existence of a preempted asynchronous task termination 
driver, which is acceptable because this happens only once 
per TT-machine step. In case of preempting such a driver the 
time for re-execution must be added. When a port update 
trigger is used, then the enqueue operation is also a small 
constant time overhead that affects the TT-machine. There is 
no other runtime overhead for integration of event-triggered 
activities in the TT-machine. 

V. MEASUREMENT RESULTS 

Table I shows the time needed for various operations on 
different platforms. The platform named MicroAutoBox uses 
a PowerPC 750FX CPU running at 800 MHz and the 
Microtec C compiler version 3.2 with optimization level 5. 
The platform runs the dSPACE Real-Time Kernel as its 
operating system. The platform named ARM uses an ARM7 

TDMI CPU running at 80 MHz and the GNU C compiler 
with optimization level 2 and runs without an operating 
system. The platform named RENESAS uses a Renesas 
M32C/85 CPU running at 24 MHz and the GNU C compiler 
version 4.1 with optimization level 3. The platform runs the 
Application Execution System (AES) provided by 
DECOMSYS and executes the programs from read-only 
memory, which slows down the execution. This system does 
not support external interrupts for user level programs. The 
platform named SHARC uses an Analog Devices SHARC 
ADSP-21262 CPU running at 200 MHz and the 
VisualDSP++ C compiler version 5.0 with maximum 
optimization level. 

TABLE I.  MEASUREMENT RESULTS [NANOSECONDS] 

Platform (MHz) Interrupt Port Update dequeue N 

MicroAutoBox (800) 420 8  11 * N + 60   

SHARC (200) 1030 72 30 * N + 110 

ARM (80) 700 200 287 * N + 500 

RENESAS (24) N.A. 1200  790 * N + 2500 

 
The column Interrupt shows the time needed for an 

external hardware interrupt trigger, which includes the 
interrupt handling overhead and the enqueue operation. The 
column Port Update shows the time needed for a 
synchronous port update trigger, which consists only of the 
enqueue operation. The column dequeue N shows the time 
needed for the search for the next event to be processed as a 
linear function of the array size N. All timings are given in 
nanoseconds. 

The values shown in the columns Interrupt and Port 
Update are critical for the timely execution of synchronous 
operations as they impose an overhead that may affect the 
TT-machine. Even on the slowest platform the required time 
is only slightly above one microsecond. In comparison with 
the ARM platform, the Interrupt time for MicroAutoBox 
shows that the operating system introduces a significant 
overhead. 

The values in the column dequeue N only affect the 
background thread and are not visible to the TT-machine. On 
the slowest platform a time of 81.5 microseconds results for 
N = 100, which means that response times in the range of 
milliseconds can easily be achieved for asynchronous 
operations. 

VI. IMPLEMENTATION 

We have implemented the proposed solution in the 
context of the TDL tool chain. Currently we support two 
networked target platforms, (1) the dSPACE MicroAutoBox, 
which is a widely used prototyping platform for embedded 
systems in the automotive industries, and (2) the NODE 
RENESAS platform provided by DECOMSYS (now 
Elektrobit). Furthermore, we are experimenting with 
standalone platforms including bare hardware based on an 
ARM7 and a SHARC processor.  

Both networked systems are programmed in C and 
support a FlexRay [19] bus interface and the time-triggered 
activities are synchronized with FlexRay’s global time base. 
The availability of a high-level description language (TDL) 
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for timing properties as well as for asynchronous activities 
allowed us to generate the required glue code such as the 
event table, the termination drivers and all the code needed 
for the background thread and for data flow synchronization 
automatically. Even when we added support for distributing 
the data flow across multiple nodes we relied on the data 
flow synchronization approach presented in this paper.  

In analogy to handling the execution of asynchronous 
activities in a background thread, network frames that 
communicate the outputs of asynchronous task invocations 
must be sent in a way such that they do not interfere with 
time-triggered frames, i.e. data sent by synchronous 
activities. Depending on the communication protocol being 
used, this can be done by configuring such asynchronous 
frames as low priority frames (if the bus protocol supports 
priorities) or by assigning them a designated section in the 
communication cycle (typically done when using time-
triggered protocols such as FlexRay or TTEthernet). 

Our implementations use the FlexRay communication 
protocol. FlexRay is a time-triggered protocol targeted at the 
automotive industry. It has a significantly higher bandwidth 
than other field bus protocols and is designed to handle 
safety critical applications such as steer-by-wire systems. A 
FlexRay communication cycle constantly repeats itself and it 
consists of a mandatory static part and an optional dynamic 
part. The static part is divided into equally sized slots which 
are statically assigned to specific nodes, thereby 
guaranteeing uninterrupted transmission. The dynamic 
segment also has a static size, but it is dynamically allocated 
to nodes upon runtime. We use the static segment for 
synchronous frames and the dynamic segment for 
asynchronous frames. 

VII. EXAMPLE 

As an example for a real-world TDL application, we 
present an augmented strap down inertial navigation system 
(INS) [13] designed for computing the position, velocity, and 
attitude of a sailing vessel at sea. The example is split into 
several modules and uses asynchronous activities for 
connecting asynchronous I/O with the time-triggered 
navigation system core. 

An INS determines the position of a vehicle with respect 
to some (inertial) reference system by measuring the three 
accelerations along and the three angular velocities around 
the vehicle’s axes with respect to the reference system, using 
three accelerometers and three gyroscopes which are firmly 
attached to the vehicle’s body. By solving the equations of 
motion the INS computes the position, velocity, and attitude 
of the vehicle. An augmented INS uses additional inputs, 
such as position information from a GPS receiver and 
compass headings, to correct the drift of the inertial sensors.  

A. Hardware 

The hardware (see Figure 6) for the augmented INS 
consists of an Analog Devices ADSP-21262 Signal 
Processor [14], a LAN interface with TCP/IP functionality in 
firmware, an ADIS family micromechanical inertial sensor 
[15] and a two axis fluxgate compass [16]. Besides a floating 
point signal processing core with a peak SIMD performance 

of 1.2 GFlops, the ADSP-21262 contains an I/O processor 
that is capable of managing several block transfers between 
memory and periphery simultaneously. The inertial sensor is 
connected to the signal processor using an SPI bus [17]. It 
samples the rotations around the three axes of the vehicle and 
the accelerations along these axes 819.7 times per second. 
The excitation coil of the fluxgate compass is attached to the 
ADSP-21262 using a sampling DA converter. The two sense 
coils of the compass are connected to two sampling AD 
converters. All three converters operate at 48K samples per 
second. For determining the heading of the vehicle the 
compass has to be excited periodically via the DA converter 
and its response measured via the two AD converters. 

B. TDL definitions 

A TDL module starts with its name and the list of 
imported modules. When importing a module it is possible to 
define an abbreviation for it:  
 

module INS { 
 

  import Kalman as K;  
 

  ... //constants, types, ports, tasks, modes, asyncs 

} 

 

Next, constants and types can be declared. Besides the basic 
types as in Java, TDL supports structures and arrays of 
constant size. By denoting a name public any importing 
module is allowed to refer to this name: 
  

  public const NavPeriod = 1220us; 
 

  public type Vector = struct { 

    float x, y, z; 

  }; 
 

  type FluxBuffer = int[120]; 

 

The sensor and actuator declarations that follow define the 
hardware inputs and outputs used by the module. With the 
uses clause one specifies the name of the external getter or 
setter function to access the hardware: 
 

  public sensor InSens in uses getInertial; 

 

The global output ports come next. Global output ports are 
not dedicated to an individual task but may be used by all 

Figure 6. INS Hardware 
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tasks in the module. A port is updated at the end of the LET 
of the task that writes it:  
 

  public output Vector pos; 

 

Next, the tasks with their input, output, and state ports are 
declared. In the uses clause the name of the external function 
providing the task’s functionality is specified. The last four 
parameters in the example below refer to global output ports: 
 

  task solveMotion { 

    input InSens in; Vector cPos; Vector cVel; Quaternion cAtt; 

    uses deadReconing(in, cPos, cVel, cAtt, pos, vel, att, time); 

  } 

 

A mode is a set of activities, i.e. task invocations, actuator 
updates and mode switches, which are executed periodically 
with the mode period p. For each activity a frequency f and, 
optionally, a guard can be specified. For a task invocation the 
LET of this invocation is p / f. In the following mode 
declaration, the period is set to NavPeriod. Both the 
solveMotion and acquireMagHandling tasks are invoked once per 
period so that the LET of both tasks is NavPeriod. The mode 
Navigation is declared as start mode which means that the 
execution of the module starts with this mode. 

The names of entities imported from some other module 
are qualified either by the name of the imported module or 
by its abbreviation (e.g. K.pos): 
 

  start mode Navigation [period = NavPeriod] { 

    task [freq = 1] solveMotion(in, K.pos, K.vel, K.att); 

    task [freq = 1] acquireMagHeading(); 

  } 

 

Finally, asynchronous activities can be specified as in the 
following code fragment. Once the interrupt named iGPS 
occurs, the task receiveGPS is enqueued for later processing 
and executed by a background thread. The mapping of the 
logical interrupt name iGPS to a particular interrupt line is 
platform dependent and must be specified outside the TDL 
source code. 
 

  asynchronous { 

    [interrupt = iGPS, priority = 2] receiveGPS(INS.time); 

  } 

C. Complete TDL modules 

In our hardware three independent asynchronous timing 
sources are visible to the software: the processor clock, the 
sampling events of the inertial sensor, and the sampling 
events of the DA and AD converters. Choosing the sampling 
events of the inertial sensor as the time base for the 
synchronous activities allows us to solve the equations of 
motion and to consider other sensor inputs using Kalman 
filters [16] synchronously with the inertial data stream. 

The module INS processes the inputs of the inertial 
sensor and of the fluxgate compass. For each new inertial 
measurement the task solveMotion advances the estimates for 
the position, the velocity, and the attitude of the vehicle. 
Quaternions are used for the representation of attitudes. 

The excitation of the fluxgate compass is supplied with a 
continuous data stream by the I/O processor of the ADSP-
21262. The data streams from the two sense coils are 
captured and transferred to buffers in memory by I/O 
processor. The size of the array type FluxBuffer is made large 
enough to hold the data acquired during one period of the 
mode Navigation for both sense coils. A state port (essentially 
a private static variable) containing two buffers, one for 
capturing and one for processing, is introduced for avoiding 
any array copy operations. Task acquireMagHeading is 
associated with two external functions (TDL task splitting), 
(1) a long running function integrateFluxGate, and (2) an LZT 
function exciteFluxGate indicated by the attribute release. The 
basic idea is that the LZT function is called first at the LET 
start and provides the new output values in a very short time, 
closely approximating LZT. The long running function is 
executed during the LET. The LZT function exciteFluxGate 
restarts the data stream to the fluxgate compass and switches 
between the two buffers at the start of the LET of task 
acquireMagHeading. By invoking acquireMagHeading in mode 
Navigation with the same frequency as solveMotion the compass 
is synchronized to the inertial sensor. 

The module INS counts the sampling events in the task 
solveMotion to provide a time base for the other modules. The 
period of 1220 microseconds for the mode Navigation is the 
time that passes between two consecutive samples of the 
inertial sensor. 
 

module INS { 
 

  import Kalman as K; 
 

  public const NavPeriod = 1220 us; 
 

  public type Vector = struct {float x, y, z;}; 

  public type Quaternion = struct {float x0, x1, x2, x3;}; 

  public type InSens = struct { 

    float aX, aY, aZ; 

    float omegaX, omegaY, omegaZ; 

  }; 
 

  type FluxBuffer = int[120]; 

  type FluxDoubleBuffer = struct { 

    byte bufState; FluxBuffer flux1, flux2; 

  } 
 

  public sensor InSens in uses getInertial; 
 

  public output Vector pos; Vector vel; Quaternion att; 

  public output long time; Vector mHead; 
 

  task solveMotion { 

    input InSens in; Vector cPos; Vector cVel; Quaternion cAtt; 

    uses deadReconing(in, cPos, cVel, cAtt, pos, vel, att, time);     

  } 
 

  task acquireMagHeading { 
    state FluxDoubleBuffer flux; 
    uses [release] exciteFluxGate(flux); 
    uses integrateFluxGate(flux, mHead); 
  } 
 

  start mode Navigation [period = NavPeriod] { 

    task [freq = 1] solveMotion(in, K.pos, K.vel, K.att); 

    task [freq = 1] acquireMagHeading(); 

  } 

} 
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The module GPS receives position and velocity information 
from a GPS receiver via the LAN interface typically once 
per second. The LAN interface chip has an internal memory 
buffer. It activates interrupt iGPS of the signal processor to 
demand service. 

To maintain a timing relationship with the inertial data 
each dataset from the GPS receiver is time stamped as soon 
as it is received.  
 

module GPS { 
 

  import INS; 
 

  public output INS.Vector pos; INS.Vector vel; long timeStamp;  
 

  public task receiveGPS { 

    input long time; 

    uses getGPSData(time, pos, vel, timeStamp); 

  } 
 

  asynchronous { 

    [interrupt = iGPS, priority = 2] receiveGPS(INS.time); 

  } 

} 

 

On power on, the module Kalman aligns the estimates for the 
vehicle’s position, velocity, and attitude. Once a good initial 
fix has been achieved, it switches to Filter mode. It then 
combines the inertial measurement, the GPS position and 
velocity, and the compass heading into an estimate of the 
vehicle’s position, velocity, and attitude. 
 

module Kalman { 
 

  import INS; GPS; 
 

  public output INS.Vector pos; INS.Vector vel;  

  public output INS.Quaternion att; long stamp; 
 

  public task align { 

    input INS.InSens in; INS.Vector mHead; long time; 

    uses doAlign(in, mHead, time, pos, vel, att, stamp);     

  } 
 

  public task filter { 

    input INS.Vector nPos; INS.Vector nVel; INS.Quaternion nAtt;  

    input INS.Vector mHead; long time; 

    input INS.Vector gpsPos; INS.Vector gpsVel; long gpsStamp; 

    uses doKalmanFilter(nPos, nVel, nAtt, mHead, time, gpsPos, 

                                      gpsVel, gpsStamp, pos, vel, att, stamp); 

  } 
 

  start mode Align [period = INS.NavPeriod] { 

    task [freq = 1] align(INS.in, INS.mHead, INS.time); 

    mode [freq = 1] if isAligned() then Filter;  

  } 
 

  mode Filter [period = INS.NavPeriod] { 

    task [freq = 1] filter(INS.pos, INS.vel, INS.att, INS.mHead, 

                             INS.time, GPS.pos, GPS.vel, GPS.timeStamp); 

  } 

} 

 

The module NavReporter finally communicates the 
navigational solutions to the outside world. Whenever a new 
measurement is available, indicated by a port update on the 
port Kalman.stamp, it makes it available on the LAN. The 
asynchronous operation uses the default priority, which is the 
lowest priority (0). Reading the input ports (K.pos, K.vel etc.) 
is an atomic operation. 
 

module NavReporter { 
 

  import Kalman as K; INS; 
 

  public task reportNav { 

    input INS.Vector pos; INS.Vector vel; INS.Quaternion att;  

       long stamp; 

    uses doReporting(pos, vel, att, stamp); 

  } 
 

  asynchronous { 

    [update = K.stamp] reportNav(K.pos, K.vel, K.att, K.stamp); 

  } 

} 

 

Figure 7 depicts the dataflow between the modules INS and 
Kalman. Arrows of the same style indicate measurements that 
are combined by the Kalman filter into one navigation 
solution. Note that it takes two sampling periods of the 
inertial sensor until the data arrives at the output ports of the 
Kalman filter. For slow moving vehicles like sailing vessels 
this deems satisfactory. For faster moving vehicles one 
would combine the two functions solveMotion and 
doKalmanFilter in one task. 

VIII. RELATED WORK 

The xGiotto language [9] also aims at the integration of 
time-triggered and event-triggered activities. xGiotto’s 
compiler is supposed to perform a static check for the 
absence of race conditions. Due to the specific design of 
xGiotto, a precise check is possible but not in polynomial 
time. Therefore, only a conservative check is done in the 
compiler. We do not need such a check at all as we defined 
appropriate semantics for event-triggered activities and use 
the proposed synchronization mechanisms for their 
integration into a time-triggered system. 

RT-Linux [10] is an extension of the Linux operation 
system which adds a high priority real-time kernel task and 
runs a conventional Linux kernel as a low priority task. Its 
interrupt handling mechanism is similar to what we propose 
for the event queue as all interrupts are initially handled by 
the real-time kernel and are passed to a Linux task only when 
there are no real-time tasks to be run. In our approach, the 
only immediate reaction to an interrupt is its registration in 

Figure 7. Data Flow 
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the priority queue so that it can be processed later when no 
time-triggered activity is executed. 

In [11] a non-blocking write (NBW) protocol is 
presented. The writer is executed by a separate processor and 
is not blocked. It updates a concurrency control field (CCF) 
which indicates whether it currently writes data to a shared 
variable. The reader uses the CCF to loop until no write 
operation is executed while it reads from the shared data 
structure. This relates closely to our synchronization strategy 
for reading input ports for an asynchronous activity. In our 
case the writer would be the TT-machine which is not 
blocked. 

A comprehensive overview of the field of non-blocking 
synchronization can be found in [8]. Among other 
techniques, it also describes a so-called roll-forward 
synchronization approach by means of a helper function, 
which looks similar to the one we used for synchronizing 
output port writing. 

IX. CONCLUSIONS 

We have presented the extension of a time-triggered 
system by event-triggered activities. Data flow between 
time- and event triggered activities must be carefully 
synchronized in order to avoid race conditions. We have 
shown that a non-blocking lock-free solution for data flow 
synchronization is indeed possible. Our solution does not 
need any operating system support such as monitors or 
semaphores and thereby avoids dynamic memory operations 
and the danger of deadlocks and priority inversions. There is 
also no need for switching off interrupts and the solution also 
works in a shared-memory multiprocessor system where the 
time-triggered and event-triggered activities are performed 
on separate CPUs. Our approach relies exclusively on atomic 
memory load and store operations, which are provided by 
every CPU in hardware. An appropriate semantics for 
asynchronous activities helped us to keep the solution simple 
and efficient. 
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