
Composition of context aware mobile services using a semantic context model

João Paulo Sousa
Departamento de Informática e Comunicações

Instituto Politécnico de Bragança
Bragança, Portugal

jpaulo@ipb.pt

Benjamin Fonseca
CITAB/Universidade de Trás-os-Montes e

Alto Douro
Vila Real, Portugal

benjaf@utad.pt

Eurico Carrapatoso
Faculdade de Engenharias/INESC Porto

Universidade do Porto
Porto, Portugal
emc@fe.up.pt

Maria da Graça Campos Pimentel
Departamento de Ciências de Computação

Universidade de São Paulo
São Carlos-SP, Brazil

mgp@icmc.usp.br

Renato de Freitas Bulcão-Neto
Innolution Sistemas de Informática

Ribeirão Preto-SP, Brazil
rbulcao@innolution.com.br

Abstract— Context-awareness has been regarded as an
important feature for mobile services. However, only a few
services are sensible to context and the features that are
context-aware are still limited. Composition of Web services
has received much interest in business-to-business or
enterprise application, but not so much interest in business-to-
consumer applications. This paper presents iCas, a novel
architecture that enables the creation of context-aware services
on the fly, and discusses its main components. We compare our
approach with similar systems and point out the main
differences and advantages. To explore context-awareness to
support service composition, iCas uses SeCoM, a semantic
model to represent context. The main parts of this model are
explained as well the advantages of using a semantic model to
represent context. We also describe the use of our approach in
an university campus to provide pedagogical features and
assist the socio-pedagogical interaction of various types of
users.

Keywords: Context-aware, Services composition, Semantic
Web, Web Services

I. INTRODUCTION
It is predictable that in the near future the network mobile

environment will be characterized by interaction between
services and that those services will be provided to users
dynamically and transparently. In this scenario, the use of
captured contextual information related to issues such as
location, current activities, objects in the neighbourhood and
device features plays a crucial role in the simplification of
the interaction between humans and the digital world.

Often users only assume the role of consumers of
services provided by third parties. For those users a set of

useful services and information is provided, but they are
aimed at a general market, leaving aside users that would
like to take advantage of more personalized services. This
paper proposes and describes a service oriented open
infrastructure for a mobile network environment. We call
this architecture iCas and it allows a user to receive in his
mobile device (e.g. PDA, netbook, notebook) context-aware
information (e.g. location, time, neighborhood, user profile)
and have a set of useful services that are sensitive to his
current context. The user can also compose services
dynamically in real time to create a new highly personalized
envirementwith more features and use or share it as many
times as he wants [1].

The remainder of this paper is structured as follows:
section 2 discusses related work, section 3 presents some
definitions of context, and section 4 introduces the SeCoM
semantic model to describe and to provide reasoning about
context. Section 5 discusses the several approaches to
composing Web Services and the main innovations of our
proposal, followed by the description of the OWL-S
ontology to support semantic Web Services. Section 6
presents the iCas, a Service Oriented Architecture (SOA) and
describes the details of each of itscomponent. Section 7
presentsa scenario for using iCas, a university campus, where
iCas will be used to allow users to compose in a had-hoc
way new services for enhancing everyday campus life.
Section 8 describes the first performance evaluation. Finally,
we provide some conclusions and suggestions future work,
in section 9.

275

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

II. RELATED WORK
A number of context-aware systems has been developed

to demonstrate the usefulness of context-aware technology,
such as ParcTab [2], which was one of the first systems to
offer a general context-aware framework and ContextToolkit
[3], which presents a modular context-aware framework with
reusable components. Which allows programmers to build
more easily interactive context-aware systems based on
sensors. These systems donot have an open context model
because often the context is described in an object-oriented
basis and so the information is strongly coupled tothe
programming model.

More recently several studies appeared to support
context-aware composition of services, one more generic and
others dedicated to mobile environments [4][5][6][7][8].

In [4] the authors present a distributed architecture and
associated protocols for service composition in mobile
environments. This study emphasizes some factors that allow
the composition of services in ad-hoc networks such as
mobility, dynamic changing service topology, device
heterogeneity, fault tolerance and reliability.

In [5] the authors propose a framework for dynamic
composition of context-aware mobile services. The main
features are service adaptation to devices and networks, and
service adaptation to the user preferences and user location.
However the study does not specify which approach is used
to compose new services.

SOCAM [6] presents a middleware architecture for
rapidly building context-aware services. It provides support
for discovering, acquiring, interpreting and accessing context
information. It also presents one of the first ontologies that
define the main classes of context: person, location, activity
and computer entity. Nevertheless, this architecture does not
allow the composition of services. MyCampus [7] is a
semantic web environment that uses agents that are able to
find context information to improve users’ campus life. The
MyCampus architecture is composed by eWallets (static
knowledge containers), which support automated discovery
and access to the context. The users can subscribe task-
specific agents to assist them in different context tasks using
the semantic information in eWallets. These agents are able
to discover, execute and compose automatic semantic Web

services using the Semantic Markup for Web Services
(OWL-S) [9].

In [8] the authors present CACS a framework that
enables context-aware composition of Web Services. This
framework supports capability matches and goal-driven
composition services flow. The CACS architecture uses
software agents to discover, compose, select, and
automatically execute Web Services using OWL-S.

In [4][5][7][8] we saw that these systems do nothave an
open model to describe context, which causes some
limitations on sharing context knowledge and context
reasoning with external systems. The studies[4][5][8] present
architectures that support the automatic composition of
services. The user makes a request to the architecture, most
of the times to a software agent, whichcollects context
information and tries to find the most suitable service, which
agrees with the request description. If the agent doesnot find
the service or it doesnot exist, then the software agent
decomposes the request into multiple sub-goals in order to
find the matching services.

In all the cases that use automatic composition, it is a
hard task to maintain the details about the rules of services’
invocation. These approaches also do not have an open
model to describe context, which causes some limitations
regarding the sharing of context knowledge and context
reasoning with external systems.

III. CONTEXTUAL INFORMATION
The development of an architecture that uses context

information requires the perception of the meaning of
context and how it can be used. A phenomenon that is
observed when someone is asked about what context is that
most of the people understand what it is, but they feel that it
is hard to explain. For this reason many timescontext
definitions are done by enumeration of examples or by
choosing synonyms for the context.

The term context was introduced for the first time in [10],
referring it location, people, hosts and accessible devices
nearby, as well as changes to such things. On [11], the
authors define context as location, people in the
neighborhood of the user, time and temperature, among
others. In [12]context is defined as being the user location,

Figure. 1 An overview of the SeCoM model [16].

276

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

environment, identity and time information. In [13] the
authors have the following interpretation of context:
“Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a
user and an application, including the user and the
applications themselves”. The authors in [14] present another
understanding of context. They define it as everything that
affects the computation except the explicit input and output
data.

There are more context definitions, some described by
examples, others described generically and some other in a
more explicit way. After we made the review about the
meaning of context, we understood context as all the
information captured in a non-explicit way and used to create
dynamic rules that change the way that services and
information are provided to an actor. An actor can be a
human or a software agent.

IV. THE USE OF A SEMANTIC MODEL
Contextual information models based on ontologies have

been explored in several architectures that support context-
aware services (e.g. [6][15][16]). These models allow the
cooperation among objects and the discovering, acquisition,
inference, and distribution of contextual information. An
ontology is defined by R. Gruber as an explicit and formal
specification of a conceptualisation of a domain of interest
[17]. Ontologies consist of concepts (known as classes),
relations (properties), instances and axioms, and on the
computing context.Ontologies provide a shared
understanding between applications of a domain, typically
the common sense about that domain.

To describe the context, we decided to use the semantic
model SeCoM (Semantic Context Model), presented in [16].

The use of a semantic model brings about several
advantages:

• the possibility of having a high degree of
expressiveness and formalism to represent concepts
and relations in a context-aware scenario; it allows
reasoning about context;

• the use of a semantic information context model,
based on Semantic Web standards, makes the
exchange, reuse and sharing of context information
between context-aware applications easier;

• it decouples the information context model from the
programming model, unlike some architectures
presented in the section II.

SeCoM is composed of six main ontologies: Actor,
Activity, Space, Spatial Event, Temporal Event, Device,
Time, and six support ontologies, Contact, Relationship,
Role, Project, Document, Knowledge. Fig. 1 shows the
SeCoM ontologies and their relationships.

A. The SeCoM Model: An Overview
Considering context modelling, we have developed the

Semantic Context Model (SeCoM) [16, 18], which
represents the semantics of context information through a set
of semantic web ontologies. From the perspective of a

context information model, the following is the list of
SeCoM's main characteristics:

• it is an effort towards a domain-independent model
for context-aware computing ;

• it models classical types of context information such
as who (identity), where (location), when (time),
what (event and activity) and how (device) [19];

• it is semantic-oriented with high level of
expressiveness and formality borrowed from the
Description Logics (DL) [20], which is a mature
knowledge representation technique representing a
subset of first-order logic;

• it is based on ontologies as formalism of context
information representation, which is, in turn, based
on DL expressiveness and decidability;

• it is a modular model, where each type of context
information is represented in a particular ontology to
facilitate both its reuse and extension;

• it reuses concepts from general
consensusandstandardized Semantic Web
ontologies;

• it allows inference of new facts from previous
context information due to its ontological semantics;

• it uses Semantic Web standards for representing the
structural, semantic and logic views of context
information such as Resource Description
Framework (RDF) [21] and Web Ontology
Language(OWL) [22];

• it is a two-layered context information model,
whichfacilitates the task of an application developer
to reuse and/or extend the most general concepts of
SeCoM.

B. The SeCoM model: A Detailed View
The main ontologies composing the SeCoM context

information model are briefly presented next. Further
information on the SeCoM model found elsewhere [16, 18,
23].

1) ACTOR ontology: it models the profile of entities
performing actions in an ubiquitous computing environment
such as people, groups and organizations.

2) TIME ontology: it models temporal information in
terms of time instants and time intervals (two or more not
null time instants), relations between time instants and
intervals (temporal mereology), relations between time
intervals (mainly based on Allen's Temporal Algebra [24]),
and calendar and clock information (time duration, day of
week, month of year, etc.).

3) TEMPORAL EVENT ontology: it models events with
temporal extensions such as instant or interval events. It is
an extension of the Time ontology because temporal events
are defined assubclasses of the class time:TemporalThing.
In other words, it is able to represent temporal methology
between instant and interval events, and temporal relations
between interval events. In addition, this ontology also
represents information about periodic temporal events such

277

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Figure. 2 The Activity ontology.

as the frequency of an event, or even the time duration
between occurrences of an event.

4) SPACE ontology: it describes the whereabouts of
actors. It models virtual and real-world indoor (e.g. Room)
and outdoor (e.g. Street) places, mereological (e.g.
spatiallyContains) and spatial (e.g. isSpatiallyConnectedTo)
relations between places, geographic coordinates (e.g.
latitude) and directions (e.g. north) and administrative
regions (e.g. City).

5) SPATIAL EVENT ontology: it models events with
spatial extensions called spatial events, which are subclasses
of spl:SpatialThing defined in the Space ontology. Spatial
events can be represented by two main disjoint subclasses:
physical events, which are those occuring in a physical
location (e.g. entrance in a meeting room), and virtual
events, which include those occuring in a virtual location
(e.g. entrance in a chat room). In general, both physical and
virtual spatial events inherit all properties, relations and
axioms from the classes spc:PhysicalLocation and
spc:VirtualLocation, respectively.

6) DEVICE ontology: it describes computational
devices that can be used in ubiquitous computing
interactions. The main concern is to represent those devices
in terms of their hardware and software platforms,
mereological relations between their components, and
mobile computing aspects needed for context-aware
computing. In general, it models information about storage
and battery capacity, multimedia support, wireless and
wired network connectivity, operating systems and browsers
supported, virtual machines installed, among others.

7) ACTIVITY ontology: it describes activities as sets of
spatiotemporal events including the corresponding actors
and devices involved in. Thus, this ontology directly
imports the Actor, Spatial Event, Temporal Event and
Device ontologies, as depicted in Fig. 2. Being modeled as
spatiotemporal events, activities reuse the same attributes
and relations of both spatial and temporal events. In other
words, it is possible to interrelate activities in terms of
mereological and spatial relations between their
physical/virtual locations, or even in terms of temporal
relations between their corresponding time instants and
intervals. Besides, it also models activities as of two disjoint
types: impromptu and scheduled. The former represents
activities occuring in an informal manner (e.g. cocktail
meetings), whereas the latter represents activities planned in
terms of time and space (e.g. lectures at a conference room).
The following is an RDF excerpt of a Computer Science
Conference activity represented as a scheduled activity
occuring at the “DVR-001” Da Vinci room, which is located
on the Conference floor at a university. CS conference
started at 10 am on March 7, 2009, and it took two hours
long. Activities' participants are described by means of the
property actvy:hasParticipant. The actvy: prefix is used to
represent the XML namespace for the Activity ontology. In
terms of temporal and spatial reasoning, a reasoner could
infer that this computing conference still took place at 11
am on the Conference floor.

278

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

<actvy:CSConference rdf:ID="cmeeting19">
<rdf:type rdf:resource=
"&actvy;#ScheduledActivity"/>
<actvy:hasParticipant rdf:resource="#person19"/>
<sEve:isLocatedIn rdf:resource="#room82"/>
<time:beginPointOf rdf:resource="#bpo67"/>
<time:intervalDurationDescriptionDataType
 rdf:datatype="&xsd;#duration">PT2H
</time:intervalDurationDescriptionDataType>
</actvy:CSConference>
<act:Person rdf:ID="person19">
<act:hasName>Claus Ana</act:hasName>
</act:Person>
<spc:DaVinciRoom rdf:ID="room82">
<rdf:type rdf:resource="&spc;#Room"/>
<spc:placeName>DVR-001</spc:placeName>
<spc:isSpatiallyPartOf rdf:resource="#floor4"/>
</spc:DaVinciRoom>
<spc:ConferenceFloor rdf:ID="floor4">
<rdf:type rdf:resource="&spc;#Floor"/>
<spc:placeName>Conference floor
</spc:placeName>
<spc:isSpatiallyPartOf df:resource="#ipb"/>
</spc:ConferenceFloor>
<time:InstantThing rdf:ID="bpo67">
<time:instantCalendarClockDataType
 rdf:datatype="&xsd;#dateTime">
 2007-03-07T10:00
</time:instantCalendarClockDataType>
</time:InstantThing>

V. WEB SERVICES COMPOSITION
The composition of services allows developers and users

to create new services or applications, based on a Service
Oriented Architecture (SOA) that supports description,
discovery and communication. One of the most used SOA
technologies is Web Services, due to the advantages already

known to the scientific community [25][26][27].
Web Services have often been used for the composition

of services. Nowadays there are six approaches to the Web
Services composition [28]: WSBPEL [29], Semantic Markup
for Web Services (OWL-S) [30], Web Components [31],
Algebraic Process Composition [32], Petri Nets [33] and
Model Checking and Finite-States Machines [34]. The
previous approaches intended to solve the problems found in
services composition such as syntax and semantic
verification, resource reservation, QoS or deadlocks. In [28]
and [35] the authors compare several solutions, based on
characteristics such as automatic composition, composition
verification, scalability, goal satisfaction, connectivity and
non-functional properties.

When the purpose is to implement the composition of
mobile services, we have to consider some concerns such as
the complexity of the services to be built. For this purpose,
wemust find a compromise between simplicity in service
creation and flexibility:a more flexible service requires more
complex rules and probably specific technical knowledge. In
this case the simplicity offered to end users is lost.

To achieve this goal, we chose to compose services in an
interactive way: the user gradually generates the composition
with ad-hoc forward or backward selection of services.
Using this approach for composing Web services requires
that they understand their features and how they interact
together. The Web Services Definition Language (WSDL)
[36] specifies a standard way to describe the interfaces of a
Web Service at the syntactic level. However, WSDL does
not support the semantic description of services. OWL-S has
appeared to fulfill this limitation and uses the OWL language
to describe Web Services. OWL-S provides Web services
with a set of markup language constructs for describing the

Figure. 3 Overview of iCas architecture.

279

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

properties and capabilities in anunambiguous interpretable
form to the software agents. OWL-S is a framework that
enables automatic discovery and matchmaking tasks, and
composition and execution of Web Services.

OWL-S consists of the following classes: ServiceProfile -
specifies how the services are announced to the world;
ServiceModel - specifies how to interact with the service;
ServiceGrounding - specifies the details of how an agent can
access the service.

VI. PROPOSED ARCHITECTURE AND
IMPLEMENTATION

To support the composition of context-aware services on
the fly and provide context-aware information to the users,
we propose a Service Oriented Architecture (SOA) based on
ontologies. We divide the architecture into four essential
engines to explore the potential of context, showed in Fig. 3.

When a user choosesthe service composition IDE, the
service discovery component gets the preferences,
parameters and interests. With this information and the
OWL-S services descriptions, the service discovery and
selection selects the services from the service repository to
perform a context-based selection, and then delivers it as a
list to the IDE.

When a user starts a composition, maybe he knows
clearly which tasks he wants to achieve with the composition
or perhaps he starts to compose, choosing compatible
services that can suggest the creation of a new service. In
either situation the service composition is an ongoing
process, where the user can add or remove services
interactively.

Each time a service is selected to be part of the
composition, the service discovery and selection module
searches for services (Fig. 4) using data collected from the
context engine core and returns further possibilities based on
the current context and user policies. The search and

selection is only possible due to the OWL-S service
description, which allows creating relationships with other
ontologies that can describe details about a service type and
its features.

The search is performed using the description of the
ServiceProfile class, which contains what the services can
do, and specifies the input/output types, preconditions and
effects. The first selection of services is carriedusing the
ServiceProfile hierarchies, which choose the services from a
particular category. Then a matching is performed, selecting
the services whose input is syntactically compatible with the
output of the current service.

Finally a scoring is carried out using the weights of the
evaluation parameters defined in the ServiceProfile and a
particular evaluation policy, which depends on the service
category.

The ongoing user composition is supported by the service
composition function, which generates a workflow of
services calls. Fig 5 shows an overview of the interactions
between the components from the several engines and the
GUI , when a composition is accomplished.

By the time that a user finishes the composition, the
entity service composition has created a composite service
that contains a workflow. This workflow is a composite
service that has the three key descriptions of an OWL-S
service: service profile, grounding and model, as mentioned
in the end of section V. This newly composed service can be
saved, executed or used in another service composition task.
To store the service, the service composer uses the service
management component, and to execute the service it calls
the service execution component.

The service management component deals with the
services stored in the services container, providing
operations such as adding, removing and sharing services
using the policies properties. The service container only
stores the OWL-S description of the service (service profile,

Figure. 4 Service selection mechanism.

Overview of iCas architecture. v

280

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

model and grounding). The service functionality is still
provided by a third party (e.g. e-learning platform Web
service).

The service execution module, using the OWL-S API,
provides an execution engine to invoke atomic processes
described by WSDL or Universal Plug and Play (UPnP) [37]
groundings, and composite processes that use control
constructs sequences, unordered, and split. All execution
processes that depend on conditional statements, such as if-
then-else and repeat-until, are not supported by the API.
When the service execution promotes a composition, it
follows a workflow to call each individual service and
exchange data between them, according to the flow defined
by the user.

The context engine is responsible for managing all
related context data and for reasoning about context. All
context information is stored in a permanent OWL ontology
storage system. The context engine core uses the Jena API to
store the RDF models of SeCoM using a Postgre DB. This
engine is also responsible for extracting knowledge from the
SeCoM ontology, using RDF Query Language and Protocol
(SPARQL) [38] queries and for making inferences to derive
additional statements that are not described explicitly in the
SeCoM model. The following code is a SPARQL query to
the persistent ontologies, to get all the events related with the
Computing subject and their location.
PREFIX rdf: <http://w3.org/1999/02/rdf-syntax-ns#>
PREFIX acti:<http://icas.ipb.pt/activity.owl#>
PREFIX spac:<http://icas.ipb.pt/spatial.owl#>
SELECT DISTINCT ?event ?subjectIsLocatedIn ?hasName
 WHERE {
 ?subjectIsLocatedIn spac:hasName ?hasName
 ?hasColocatAction acti:subIsLocatIn ?subIsLocatIn
 ?event acti:hasColocatAction ?hasColocatAction
 ?event a acti:ScheduledActivity
 ?event acti:hasSummary ?hasSummary

 ?event acti:validationStatus true
 FILTER regex(?hasSummary, "Computing")
 }

Using OWL’s capabilities also enables to make
inferences using the Pellet reasoner, (e.g. “if a user is located
in the library, he is in university campus”, or if a user has
interests in “ontologies”, and because ontologies has a
transitive properties with “semantic web” and this one also
related with “context-awareness”, hence the user is also
interested in “context-awareness”).

The context aggregators keep in memory (non-persistent)
highly changing dynamic data that is captured from various
sources related to an entity (e.g. user, object). For each entity
an instance is created that relates that entity with data from
the sources (e.g. user’s location and data sensor). This
component moves the computational charge caused by the
frequent data updates into the persistent ontology.

The profiles and preferences management component is
responsible for managing the explicit user profile and
interests information. Using the administration panel this
component allows the user or administrator to manage
explicit context such as insert, update and remove profile
parameters and user preferences.

The actions history storage component captures each
action performed by the context engine core and stores it in
the actions history DB. The main actions are search, insert,
update and remove, and they are stored in the following
format: Action + target Triplet (e.g. update: Bob
isMemberOf the Sciences Students Group).

The profile and preferences learning component can
change preferences and profile data using historic
information of user actions (e.g. if a student queries many
times a particular book in the library services, the theme
category of that book is added to the hasInterestesIn property
of the knowledge ontology). The profile and preferences

Figure. 5 Composition sequence diagram.

281

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

learning is an independent component. It searches for
particular actions stored in the actions history DB, and
counts the number of times that an action appears and,
accordingly, changes specific parameters defined to be
learned. Although this is not an optimal approach, a good
solution can only be achieved with a large-scale utilization of
iCas architecture and the collecting of user feedback. In the
future this mechanism may also evolve to an AI algorithm,
searching for patterns in the database.

The context data acquisition engine collects data from
several sources, such as location devices, sensors and
external services, and prepares the data to be used by the
content engine and context engine (e.g. convert units values
from a data sensor, or transform the coordinates user’s
location to a referential location (room 2.1)).

The content engine is composed by two components: the
content selection is a timer function that periodically selects
the user interests information from the context engine and
delivers it to the content adaptation module for
transformation. To be able to consult information in arbitrary
devices, the information content must be provided in a
device-independent way. iCas provides the context
information as RSS feeds that are adapted by the content
adaptation component. To do that this component adapts the
information to the user’s device features, using XHTML
Modularization [39].

The iCas system is implemented integrally in Java (JDK
1.6.0). The iCas middleware architecture is composed of:

• Composition engine and context information system:
Glassfish v2, JAX-WS 2.1, JAXB 2.1, Jena 2.5.4
and OWL-S 1.1.

• Context, profiles and preferences management DB:
Postgre 8.2.8.

• Actions history storage management DB: Postgre
8.2.8.

• Ontologies models: SeCoM and OWL-S.

All four engines are implemented in the Glassfish v2
application server, which provides the functions to the GUI
client through HTTP, as Web Services. This configuration
was chosen to support the ad-hoc composition of services in
mobile devices, bringing the reasoner’s computational
requirements to the server side.

VII. EXAMPLE OF APPLICATION
We have chosen a university campus as a scenario for

using iCas (Fig. 6). This architecture aims the support
students and teachers in their campus life, helping them to
keep updated and improve their social and pedagogical
interaction.

When a student arrives at the campus and connects his
mobile device to the wireless network he will have to
authenticate. This authentication is used to identify the user
in a WiFi campus system and in the iCas architecture.

The campus university already has a location system
based on the wireless network, which is used to locate the
users inside the campus. Besides the service location, the
campus also has other services that can provide useful
information integrated to the iCas system. Some of the most
important services are: an e-learning platform that provides
news about lessons, classes contents and others pedagogical
information; library services and administrative services.

To implement a scenario we developed an iCas Client
application. Fig. 7, shows the iCas client adapted from the
Web Service Composer application [40], under the terms of
the GNU Lesser General Public License. The main features
of iCas consist of providing context-aware information and
the dynamic composition of services. For this purpose the
user’s GUI client has four panels: informative, services
composition, maps and administration.

In the information panel the user can access campus
information based on his context (e.g., activities, events,

Figure. 6 iCas usage scenario in a university campus.

282

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

news). To compose services in an ad-hoc away the user can
use the services composition panel. If the user uses any
service that has location output format, information will
appear on the maps panel. Any task related with
administration, such as changing user profile data and other
explicit information, has to be done in the administration
panel.

A typical example of this usage scenario is the Friends’
Awareness Location Service, in which the user combines the
following set of services to get information about the
activities of friends that are located in the campus: User’s
Activities – information gathered by analyzing the user’s
profile and Users Location Service – provides users locations
based on the information gathered on the campus location
system aforementioned.

Fig. 8 shows the previous composition built in the
composer panel, with Friends’ Activities service and Users

Location service selected.
When a user starts to compose a new service he selects

the composition panel and a list of the available services is
presented to him, sorted by the service selection mechanism
shown in Fig 5, and described in section VI. During the
search for available services he sees two services that might
fit his needs: the Friends’ Activities service and Users
Location service. So, he starts to compose the services and
chooses first the Friends’ Activities service but when he tries
to select the next service to join, he realizes that the User’s
Location doesnot appear in the list of available services. This
happens because itoccurred an incompatible matching
betweenthe output of the User’s Location (GPSCoord) and
the input of Friend’s Activities (Activity). So he starts again,
selecting first the User’s Location service. Next he can find
the Friend’s Activities service in the list of available service.

The service is available to join for composition, because

Figure. 7 iCas client prototype – composition panel

Figure. 8 iCas client prototype – maps panel

283

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

now the output and input parameters are syntactically
compatible. Next the user writes a wildcard in the input box
to know all the activities of his friends. The output (users
activities and location) of the service composition is
presented in Fig. 8. In the end the user also can save the new
composed service to use next time or share it with other
users.

VIII. PERFORMANCE EVALUATION
The implementation presented in the section VI is

ongoing work. To get the first performance evaluation, we
tested some components that we consider critical to evaluate
the performance of iCas architecture.

A. Testing Scenario
As seen in the previous section a limited client prototype

was implemented which despite being tested by some users it
was not ready for a survey-based evaluation. The difficulties
in simulating real conditions for the user context, and the
composition of services based on the current user context,
lead us to evaluate the performance of that components that
present more challenges or even problems.

In our test scenario we used two computers connected to
the campus wireless network (IEEE 802.11g).

Computer 1 (C1) is an Intel Core 2 Duo 7400 (2.4Ghz)
3GB DDR2 with OS X 10.5.5, and runs the iCas architecture

middleware described in Section VI.
The Glassfish, that runs third party Web Services, is

installed in computer 2 (C2), an Intel Core 2 Duo T8600
4GB DDR2 with Linux (kernel 2.6.24) as its operating
system. Some of the third party services installed in this
machine are services provided by the library, and e-learning
platform.

B. Context Engine Core test
In this test we intended to get the first performance

results from the following main components that are exposed
to computationally and I/O intensive processes: context
engine core (inserting data and querying for derived
contexts), service composition and service execution. We
excluded services discovery and selections because the
selection is highly dependent on the context engine core.

Table 1 presents the results performed in C1. For each
result three measures were made and the table shows the
average time in milliseconds (ms) of theses measures.

The graphic in Fig. 9 shows the average time consumed
by the Context Engine Core to execute one query, which
saves context information into the persistent ontology
database. It is possible to observe that the Context Engine
performs well in terms of the data volume to store and the
variation is gradual and linear. During these tests the
persistent ontology database has reached 1GB in disk space.

Number of entries Add People
(ms)

Add Places
(ms)

Add Devices
(ms)

Add Schedule
Activities (ms)

Sum
(ms)

Add All
(ms)

Upate User
Location (ms)

500 2688 3451 2562 4804 13506 19905 9560

1000 5251 6960 5668 10694 28573 34897 35036

2000 9822 14014 11755 20237 55827 66283 41036

5000 24555 34071 26363 51972 136961 154992 97773

10000 52232 71400 57125 110720 291477 300574 130370

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

500	 1000	 2000	 5000	 10000	

T
im
e	
(m
s)
	

Number	 of	 entries	

Add	 People	

Add	 Places	

Add	 Devices	

Add	 Schedules	
Activities	
Sum	

Add	 All	

Figure 9 Times to insert context using the Context Engine Core.

Table 1 Times to insert context usingthe Context Engine Core.

284

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

It can be observed that the Context Engine Core is able to
support intensive loads and that the use of persistent
ontologies s not a problem, but it seems to be a good option.
Nevertheless, this performance could be improved either by
optimizing the DB engine parameters or by using a faster
computer to host iCas and the database management system.

To test the reasoning component we executedtwo types
of SPARQL queries:

• The first one was a simple query that returns the
interests of a specific person and the time average to
execute this query was 10ms.

• The second was a more complex query described in
the section VI. This query, returns all the events
related with a subject and where they are happening.
The average time to execute this query was 80ms.

Finally an inference using the Pellet reasoner was
executed to explore the resources of OWL language, more
specifically the transitive property, already explained in
Section VI. In this example the user location was inferred
and the average time do to this operation was 304ms.

C. Service Composition and Execution test
Table 2 presents the results of testing the Service

Selection Mechanism,described in Section VI. The second
column shows the time to load the services descriptions and
to check its consistency for different numbers of services,
specified in column 1. It should be noted that this delay only
occurs when iCas is initialized and the services are loaded,
which not demand a quick response of this operation as
occurs on the services selection process.

When a new service is added or removed to the services
repository only that service ontology is added or unloaded,
which is a fast operation. The third column shows the time
consumed to select the services to deliver to the user.

Table 2 Times of the Selection Mechanism

Number of
Services

Time to load and check
the consistency (sec)

Services
Selection (ms)

10 8,9 25,0
20 31,0 45,0
38 80,7 97,0

The graphic of the Fig. 10 shows the average time needed

to load each service. Fig 11 illustrates the average time
required to make a service selection.

In Fig. 10, it's possible to observe that the time required
to select the services islow which enables to give a quick
response to the users’ requests.
Observing both figures, it's also possible to realise that the
consumption of time per service, required for loading and
checking it, and to the services selection, has a minimal
increment as the number of services to use increases.

Figure 10 Load and check services process.

Figure 11 Service selection process.

To test the service composition and service execution we
ran a client in C1, which launched a number of threads. Each
thread intended to simulate a user that orders a service
composition and its execution. Table 3 shows the test results
of the Service Composition and Service Execution
components.The test consisted in the variation of two
parameters: the number of services used in a composition
and the number of requests to perform the composition and
its execution.

 Each thread is responsible to make a unique request and
to wait for the response.

The composition of services was the result of services
joined in pipeline. The services that were part of this
composition were provided by the application server running
in the C2 machine, and had an execution time of 20ms. Our
intention was to figure out how thesecomponents performed

with differentloads of service composition and execution.
The maximum number of services used in a

0	

0,5	

1	

1,5	

2	

2,5	

10	 20	 38	

Ti
m
e	
(m
s)
	

Number	 of	 Services	

2,15	
2,2	
2,25	
2,3	
2,35	
2,4	
2,45	
2,5	
2,55	
2,6	
2,65	

10	 20	 38	

Ti
m
e	
(s
)	

Number	 of	 Services	

285

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

composition was 16, joint sequentially and the time
consumedto execute this composition was 927ms.

To test limit conditions, we used this last composition(16
services)for a load of 100 requests and this component
wasnot able to respond and it halted. Analyzing the time
consumption of each thread to execute the composition of 12
services, it was 337ms, less than the time a unique thread
took to execute the same composition (780ms). It's also
possible to see that before the iCas frizzed the time to make
and execute a service increased linear and gradually with the
increase of the number of services used to make a
composition.This problem willbe analyzed in future.

Using a composition of 8 services, this component was
able to compose and executed requests made by 500 threads
with the average time less than 300ms. In the future we also
intend to test parallel compositions and the mix of pipelined
and parallel workflow composition.

IX. CONCLUSION
In this paper we have presented iCas, a service-oriented

architecture that uses an ontological context model to
provide personal and contextual information and to support
the composition of context-aware services. The two major
contributions of our work are the joint use of a semantic
context model (SeCoM), to describe and explore the
expression of contextual information, along with the support
of dynamic composition, of context-aware services by the
user.

A prototype of the iCas platform has been implemented
and functional tests have been conducted. Some
experimental setups for services composition have been
made using the iCas client prototype.

We also present the first performance evaluation in
which we tested some of the main components of iCas, and
found that the results of having a central server architecture
to provide the had-hoc composition of services were
encouraging.

A. Limitations
The current iCas implementation has some limitations.

One is the granularity of services, i.e., which level of
granularity the services should have to provide the best
services to the user’s needs. A fine-grained service addresses
small units of functionality or exchange small amounts of
data. Consequently, it will be more complicated to the user to
build a service and to the architecture to orchestrate more

services. Otherwise the coarse-grained services encapsulate
more functionality reducing the number of services to make
a composition, but they also hide the high level of
functionality under one single interface and usually exchange
more complex data, which might be harder to deal with.

Another problem is the transformation of standard web
services into OWL-S services. There are tools to perform this
task, but they have very limited functionality regarding
service inputs, outputs and the range of these parameters,
which are described by the service profile. If a service has
complex datatypes (ex. structures, data collections), these
tools are not able to perform that transformation. Some of
these complex datatypes have to be described by the user,
using the OWL and the service parameters can also be
transformed using XSLT transformations, which are very
susceptible to syntax errors.

For now, it is not possible to provide execution
processing that depends on conditional statements, such as
if-then-else and repeat-until, because they are not supported
by the API. The API authors already announced the intention
to include such functionalities in future versions.

Until now we have not tested the service composition in
devices with limited resources, and the client prototype uses
the standard Java Virtual Machine and Web Services.

There are also other limitations and challenges related
with services compositions and the issues discussed in [28,
41], such as composition correctness, services dynamic
availability and services trust,

B. Future Work
In the future we intend to finish the implementation of

iCas and test it in a real scenario on a university campus. In
this scenario we intend to determine how the context-aware
mobile technologies can be used to assist pedagogical
features and the socio-pedagogical interaction of various
types of users.

REFERENCES
[1] J. P. Sousa, E. Carrpatoso, and B. Fonseca, "A Service-Oriented

Middleware for Composing Context Aware Mobile Services," in
Internet and Web Applications and Services, International Conference
on, Venice, Italy, 2009, pp. 357-362.

[2] R. Want, B. Schilit, N. Adams, R. Gold, K. Petersen, D. Goldberg, J.
Ellis, and M. Weiser, "The Parctab Ubiquitous Computing
Experiment," Mobile Computing, pp. 45-101, 1996.

1 thread
(ms)

100 threads
(ms)

100 threads (time
per thread (ms))

500 threads
(ms)

500 threads (time
per thread (ms))

2 287,8 26843 268,4 133058 266,1
4 410,5 27339 273,3 135900 271,8
8 528,8 28511 285,1 141471 282,9

10 642,0 30619 306,1
12 780,0 33702 337,0
14 820,0 X
16 927,8 NT

Table 3 Times of Services Composition

286

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

[3] D. Salber, A. Dey, and G. Abowd, "The Context Toolkit: Aiding the
Development of Context-Enabled Applications," 1999, pp. 434-441.

[4] D. Chakraborty, A. Joshi, T. Finin, and Y. Yeshadoi, "Service
Composition for Mobile Environments," Mobile Networks and
Applications, vol. 10, 2005.

[5] S. Panagiotakis and A. Alonistioti, "Context-Aware Composition of
Mobile Services," IT Professional, vol. 08, pp. 38-43, 2006.

[6] T. Gu, H. Pung, and D. Zhang, "A service-oriented middleware for
building context-aware services," Journal of Network and Computer
Applications, vol. 28, pp. 1-18, /01// 2005.

[7] M. Sheshagir, N. Sade, and F. Gandon, "Using Semantic Web
Services for Context-Aware Mobile Applications," in MobiSys 2004
Workshop on Context Awareness, Boston, 2004.

[8] L. Nan, Y. Junwei, L. Min, and S. Yang, "Towards Context-Aware
Composition of Web Services," in Fifth International Conference on
Grid and Cooperative Computing, Washington, DC, USA, 2006, pp.
494–499.

[9] W3C, "OWL-S: Semantic Markup for Web Services," 2004.
[10] B. Schilit, N. Adams, and R. Want, "Context-aware computing

applications," in Mobile Computing Systems and Applications, 1994.
Proceedings., Workshop on, 1994, pp. 85-90.

[11] P. J. Brown, "The Stick-e Document: a Framework for Creating
Context-aware Applications," in Proceedings of EP'96, Palo Alto,
1996, pp. 259-272.

[12] N. S. Ryan, J. Pascoe, and D. R. Morse, "Enhanced Reality
Fieldwork: the Context-aware Archaeological Assistant," in
Computer Applications in Archaeology, Oxford, 1998.

[13] G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, and P. Steggles,
"Towards a Better Understanding of Context and Context-
Awareness," in HUC '99: Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing, London, UK,
1999, pp. 304-307.

[14] H. Lieberman and T. Selker, "Out of context: computer systems that
adapt to, and learn from, context," IBM Syst. J., vol. 39, pp. 617-632,
2000.

[15] H. Chen, F. Perich, T. Finin, and A. Joshi, "SOUPA: standard
ontology for ubiquitous and pervasive applications," in Mobile and
Ubiquitous Systems: Networking and Services, 2004.
MOBIQUITOUS 2004. The First Annual International Conference
on, 2004, pp. 258–267.

[16] R. F. Bulcão Neto and M. G. C. Pimentel, "Toward a Domain-
Independent Semantic Model for Context-Aware Computing," in 3rd
Latin American Web Congress (LA-Web’05), Argentina, 2005, pp.
61-70.

[17] T. R. Gruber, "A translation approach to portable ontology
specifications," Knowl. Acquis. %@ 1042-8143, vol. 5, pp. 199-220,
1993.

[18] R. F. Bulcão Neto and M. G. C. Pimentel, "Performance evaluation of
inference services for ubiquitous computing," in XII Braziliam
Symposium on Multimedia and Web Systems, Brazil, 2006, pp. 27-
34.

[19] G. D. Abowd, E. D. Mynatt, and T. Rodden, "The human
experience," IEEE Pervasive Computing, vol. 1, pp. 48-57, 2002.

[20] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, The Description logic handbook: Theory, implementation,
and applications: Cambridge University Press, 2003.

[21] D. Brickley and R. V. Guha, "RDF Vocabulary Description Language
1.0: RDF Schema," W3C, 2004.

[22] G. Schreiber and M. Dean, "OWL: Web Ontology Language
Reference. W3C Recommendation," 2004.

[23] R. F. Bulcão Neto, A. A. Macedo, J. A. Camacho-Guerrero, and M.
G. C. Pimentel, "Configurable semantic services leveraging
applications context-aware," in Proceedings of the 11th Brazilian
Symposium on Multimedia and the web, Brazil, 2005, pp. 1-9.

[24] J. Allen, "Maintaining knowledge about temporal intervals,"
Communications of the ACM, vol. 26, pp. 832–843, 1983.

[25] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, "Web Services -
Concepts, Architectures and Applications," 2003.

[26] H. K. Cheng, Q. C. Tang, and J. L. Zhao, "Web Services and Service-
Oriented Application Provisioning: An Analytical Study of
Application Service Strategies," Engineering Management, IEEE
Transactions on, vol. 53, pp. 520-533, 2006.

[27] M. P. Papazoglou, "Service-oriented computing: concepts,
characteristics and directions," Web Information Systems
Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on, pp. 3-12, 2003.

[28] N. Milanovic and M. Malek, "Current Solutions for Web Service
Composition," IEEE Internet Computing, vol. 8, pp. 51-59, 2004.

[29] Oasis, "UDDI v3.0 Ratified as OASIS Standard," 2005.
[30] A. Ankolekar, "DAML-S: Web Service Description for the Semantic

Web," 2002.
[31] J. Yang and M. Papazoglou, "Web Component: A Substrate for Web

Service Reuse and Composition," in CAiSE '02: Proceedings of the
14th International Conference on Advanced Information Systems
Engineering, London, UK, 2002, pp. 21-36.

[32] R. Milner, F. L. Bauer, W. Brauer, and H. Schwichtenberg, "The
polyadic pi-calculus: a tutorial," in Logic and Algebra of
Specification: Springer-Verlag, 1993, pp. 203-246.

[33] R. Hamadi and B. Benatallah, "A Petri net-based model for web
service composition," in ADC '03: Proceedings of the fourteenth
Australasian database conference, Darlinghurst, Australia, Australia,
2003, pp. 191-200.

[34] T. Bultan, X. Fu, R. Hull, and J. Su, "Conversation specification: a
new approach to design and analysis of e-service composition," in
WWW '03: Proceedings of the 12th international conference on
World Wide Web, New York, NY, USA, 2003, pp. 403-410.

[35] B. Srivastava and J. Koehler, "Web service composition - current
solutions and open problems," in ICAPS 2003 Workshop on Planning
for Web Services, 2003.

[36] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, "Web
Services Description Language (WSDL) 1.1. W3C Note," World
Wide Web Consortium (W3C), 2001.

[37] UPnP.org, "UPnP Forum - Standards," in Standards, 2009.
[38] E. Prud'hommeaux and A. Seaborne, "SPARQL Query Language for

RDF," W3C, 2008.
[39] W3C, "XHTML™ Modularization 1.1, W3C Proposed

Recommendation," 2008.
[40] E. Sirin, J. Hendler, and B. Parsia, "Semi-automatic Composition of

Web Services using Semantic Descriptions," in Proc of Web Services:
Modeling; Architecture and infrastructure workshop in conjunction
with ICEIS2003, 2003.

[41] M. Bourimi, F. Kühnel, and D. e. D. I. Abou-Tai, "Tailoring
collaboration according privacy needs in real-identity collaborative
systems," in CRIWG 2009 - 15th Collaboration Researchers’
International Workshop on Groupware Peso da Régua, Douro,
Portugal, 2009.

287

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

