
Visualizing Conceptual Schemas with their Sources and Progress

Christian Kop
Applied Informatics

Alpen-Adria-Universitaet Klagenfurt
Klagenfurt, Austria

chris@ifit.uni-klu.ac.at

Abstract - Conceptual modeling for database design is more
than just a “drawing” of the database architecture which is
readable for specialists. Instead it must be a means for com-
munication between the database designers and the other
stakeholders. Even the specialists are not only interested in the
graphical representation. There is also a need that the data-
base designers and end users get an overview if the focus of the
database schema under development still reflects the expecta-
tions of the end users. Stakeholders are also interested in the
current working state (progress) of the model. Therefore, it
needs simple and easy to use techniques for gathering and
presenting different kind of information. In this paper, a com-
bination of such techniques is presented. Firstly, it will be
proposed how a glossary based representation together with a
graphical representation and a verbalization of concepts can be
used for communication with the end user. In the remaining
parts of this paper these techniques will be applied to give
database designers an overview of the focus of the schema, the
current progress state as well as an overview to the sources
which are related to the model elements.

Keywords - conceptual modeling; verbalization; glossary; pro-
gress information; important concept;

I. INTRODUCTION
A database is the backbone of information systems. There-
fore, conceptual database design is a very important aspect
of information systems development. Wrong conceptual
models can lead to serious problems since the software
depends on the right concepts and correct relationships
between these concepts. Later changes in the database de-
sign can lead to numerous changes in the information sys-
tems software or to unforeseen errors. Much effort must be
spent on the communication and negotiation process with
all the stakeholders to get a validated conceptual database
schema. Thus, it would be good to work with a presentation
technique that is easy to understand and as many stake-
holders as possible feel comfortable when using such a
technique. Unfortunately this is not possible because of the
different skills and knowledge of the stakeholders. Some of
them are domain experts with no knowledge in computer
sciences, others have a little knowledge. The problem is
even worse since it is also situation depended. Thus, a sin-
gle representation technique that is perfect for all stake-

holders does not exist. A solution could be a mixture of
representation techniques. Hence, the success of database
projects strongly depends on a good mixture to gather the
information from the end users as well as to present this
information to them.

The most commonly used representation of conceptual
models is a graphical representation. Since the beginnings
of conceptual modeling (i.e. entity relationship modeling)
models were represented with a graphical language (e.g.,
entity types as rectangles). This has not changed over the
time. Some parts of the Unified Modeling Language (UML)
have still a graphical language (i.e. classes appear as rectan-
gles, associations as lines etc.). However, over the time
computer scientists got aware that such graphical languages
are good for IT professionals but typical end users are not
able to understand them. Therefore solutions to verbalize
the conceptual schema were introduced. Verbalization
means that the graphical language is transformed back into
natural language descriptions. Beside the classical graphical
representation and verbalization, in this paper it is proposed
that in addition a glossary representation should be consid-
ered as a third possibility. All these three representation
techniques together can help the stakeholders to understand
the conceptual schema.

For computer scientists, there are still good reasons to
use graphical modeling languages. They provide a good
spatial overview over all the concepts and their relation-
ships. Furthermore a graphical language with a well defined
grammar and defined notions is better suited to generate a
logical model for the database.

 Natural language descriptions of a diagram can better
explain concepts and their relationships. Finally, if glossa-
ries are used as check lists, they can support the negotiation
process. Using these three representation techniques to-
gether can compensate the weaknesses of a single represen-
tation technique. Hence, the best solution would be to have
all the three representation techniques under one roof. This
can give all the stakeholders the opportunity to read that
representation which is the best for them in a certain situa-
tion.

Most of the tools for conceptual modeling are focused on
the graphical view. Some tools and approaches only provide
at most two main views (graphical view and natural lan-

245

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

guage descriptions). Glossaries, natural language descrip-
tions and diagrams together are not used in the context of
database design, since most researchers rely on diagrams
only.

Independent from the representation technique, the
schema itself is only part of a greater design context. Every
element within the schema must be traced back to a re-
quirements source. During the design process, different
elements in a schema will have a different working state.
Whereas some elements are nearly completely modeled
some elements still have to be finished. For some elements
the designer must still ask questions or has open tasks in the
task list, for other elements there are no more questions or
tasks to do. There should be also the possibility to view
concepts according to their importance in the schema. This
is another kind of structuring mechanism to avoid that the
stakeholders get lost within the network of concepts.

Therefore the paper is structured as follows. In Section
2, the related work is discussed. Section 3 gives an over-
view of two projects which were accomplished. Learning’s
of this project and the approval of previous research ideas
and assumptions for the selection of the visualization strate-
gies are presented in Section 4 namely graphical representa-
tion, verbalization and a glossary representation. Section 5
and 6 present additional visualization techniques based on
the three basic visualization strategies. Section 7 shows
parts of the tool. Section 8 summarizes this contribution.

II. RELATED WORK
Graphical representation (e.g., diagrams) is the most estab-
lished type of representation for conceptual modeling in
general and database modeling in particular. In the begin-
ning of conceptual modeling, graphical languages like the
Entity Relationship approach were proposed for both end
users and database designers.

According to the underlying paradigm of how a stake-
holder perceives the “world”, two types of conceptual mod-
eling approaches can be distinguished:
• Entity type and object oriented approaches,
• fact oriented approaches.
In the first paradigm the “world” is seen as a world of ob-
jects which have properties. Therefore a clear distinction is
made between object and object types respectively and their
properties. Representatives of this paradigm are the classical
ER approach and UML. Fact oriented approaches on the
other hand see the “world” as a world of facts. Facts de-
scribe objects and their roles within a relationship. No dis-
tinction is made between objects and properties. Every con-
cept is treated equally. Representatives of this kind of para-
digm are NIAM [14] and its successor ORM [8],[9]. Both
approaches have pros and cons. Object oriented approaches
look very compact. In a typical object oriented class dia-
gram attributes are embedded in the class representation. No
additional connections between classes and attributes are
necessary which would expand the diagram. On the other

hand, many revisions must be made if such a diagram is
used too early in the design phase. Due to information that
is collected, classes might become attributes and attributes
might become classes. According to [8][9] this is a reason
why fact oriented approaches are better suited for concep-
tual modeling.

Nowadays there are doubts that currently used graphical
representations will support the communication between
end users [13]. Therefore, it is proposed that more effort
must be spent to produce good “diagrams” for user commu-
nication. Some researchers even state [4] [10] that the
graphical representation of a conceptual model should be
transformed back to natural language. In particular, they
argue that this transformation better helps the end users to
understand the very compact and sometimes formal graphi-
cal notation. As a solution for the transformation result, they
often provide a restrictive form of natural language called
controlled language [6]. Hence, the purpose of such a trans-
formation (verbalization) step is to comment and explain the
more formal graphical representation of relationships and
concepts.

The use of glossaries and dictionaries was proposed
since the 70. The first work on “glossaries” was done by
Parnas [15]. He used tabular representations for the repre-
sentations of functions. In the 80s the DATA ID approach
[2] used glossaries as a central concept in their methodol-
ogy. Requirements were distributed to data, operation- and
event glossaries. The glossaries were the basis for tradi-
tional conceptual schema generation (ER diagrams and Petri
nets). The KCPM approach [12] continues and extends this
representation idea. It combines this idea with the fact ori-
ented paradigm.

 A similar technique to glossaries namely forms and
templates were introduced for the description of use cases
[3]. Another approach using form templates for functional-
ity and navigation is NDT. It is described in [5]. In addition,
the need for glossaries to describe also ontologies is pro-
posed in [11].

Diagrams, verbalization strategies as well as glossaries
can help to communicate with the stakeholders. Since the
type of representation strongly depends on the skills of the
stakeholder and the situation, a combination of all three
representation techniques is always better as one representa-
tion alone. A lean modeling language which only consists of
concepts and not of classes and attributes prevents that the
database schema must undergo many changes.

Beside the communication to the end users it is also nec-
essary that the designer knows the current working state
within the model. Furthermore, he must know if each con-
cept in the schema is related to at least one requirements
source. Finally it would be good if he is supported in the
question: “Do I still focus on the right things?”

Measures for the progress of requirements are given in
[21]. These measures are based on the IEEE quality stan-
dards for requirements. Also in [20] an approach for meas-

246

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

uring the progress of requirements was discussed. This
approach mainly depends on the decomposition of require-
ments and the number of statements like “to be completed”.
However, this could lead to two problems:

• when to end with the decomposition and
• forgotten “to be completed” statements

As a consequence, in [22] measurement is based on tem-
plates and not on natural language requirements as de-
scribed in the two other approaches. Particularly glossaries
are used. With this strategy the “to be completed” state-
ments become superfluous. Hence, there is no problem if
the designer forgets them. Instead any gap (empty cell) in
the glossary is a hint for missing information.

The best practice to visualize the relationships to re-
quirement sources is a traceability matrix [24].

Related research results which can help to determine if
the designer still focus on the right things were found in the
area of schema clustering [16][17]. In this field so called
centered entities are used as a basis for the clustering. Other
ideas were presented in the domain of ontologies [18][19].
Key concepts were mainly used to give one measure for the
quality of an ontology.

To summarize the related work: Different representation
techniques are proposed in literature. However, usually only
one technique or a combination of two techniques is pro-
posed. This paper proposes to combine the three representa-
tion techniques, namely a glossary based representation
with a graphical representation and a verbalization. Fur-
thermore it proposes to use the combination of these three
representation techniques not only for the schema itself but
for a specific content aspect (i.e. important concept) as well
as for context information (progress information, relation-
ship to sources). Hence, it is the aim that the stakeholders
get a holistic view on the database schema.

III. PRACTICAL EXPERIENCES
Before the approach of different visualization techniques is
described, two real projects are presented in this section as
an additional motivation to the literature study. The two
projects were accomplished in two different domains. The
first project dealt with the management of cancer cases.
Each province has an appointment from the government,
that a central institution should collect the appearance of
cancer cases. These are used by the government for statisti-
cal analysis. Usually a central institution located in one of
the public hospitals takes care of this. The order was to
support this institution during requirements elicitation and
analysis. The institution worked already with an information
system for managing cancer cases since the nineties. How-
ever, as the reader can imagine, within ten years, knowledge
about cancer cases has grown and requirements of manag-
ing data and especially statistical data about cancer has
changed. Therefore it was necessary to develop a new sys-
tem.

The second project is located in the area of electrical
power plants (mainly hydroelectric power production). A
central institution monitors all the plants in the province. It
checks if all plants work correctly and it has to react if an
accident happens (i.e. to assign a team to fix the problem) or
the plant is switched off (e.g., because of maintenance). The
crew which monitors all the plants has to note all the events
so that there is a traceable logged documentation if there is a
shift changeover of the crew. Also for the management it is
interesting to see what is going on, which accidents hap-
pened and the reasons for switch offs. Although the moni-
toring crews have access to different data sources, they need
a summary of all these information in a central database.

Beside their differences, both projects can be character-
ized by the following similarities:

• The projects had a strong data centric aspect. Data
was needed to get statistical information and to sup-
port the decision making in both cases. Conceptual
modeling to design the new database and communi-
cation with the stakeholders were important tasks.

• The project was not built from scratch. Either the
data in the old system (cancer cases project) had to
be considered or the new system has to gather and
“summarize” data from different data sources (power
plant project). However in both cases there was not
such an amount of data that the development of a
data warehouse was justifiable.

• In particular, it was also necessary and useful to ana-
lyze the type of data available in the old database or
other data sources.

• In both projects the stakeholders agreed that a new
system with new features is necessary. For the “can-
cer case” project, the old database system was out-
dated. Only those data which has proved to be inter-
esting over all the years was kept together with new
information that was needed because of the new
knowledge. For the power plant systems the stake-
holders needed a new database system which stores
the integrated data from the different data sources.

• Because of the different skills, background and
knowledge of the end user it was not possible to de-
scribe the needed data with class diagrams only.

Especially the last mentioned similarity underlines the
proposals found in literature and was a motivation to think
about a combination of three representation techniques and
to apply these techniques also for specific purposes (i.e.
progress information, relationship to sources). Since the two
projects were data centric, the remainder of the paper fo-
cuses on visualization strategies for a conceptual database
schema and will not discuss any other aspect of a software
system (i.e. function, behavior, user interface, non func-
tional requirements etc.)

247

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

IV. THE THREE VIEWS

A. The model elements and graphical representation
Before describing the several views the model is briefly
introduced here. It is based on the ORM paradigm (facts
instead of entity types). Therefore no distinction between
classes and attributes is made.

concept

perspective

relationship

model element

1

*

1

2..*
hasis involved in

concept

perspective

relationship

model element

1

*

1

2..*
hasis involved in

Figure 1: excerpt of the meta-model

The excerpt of the meta-model in Figure 1 illustrates this
fact oriented paradigm. A concept is connected to a rela-
tionship via perspectives (roles in ORM). Both concept and
relationship are model elements.

A concept itself is every term which is important in a
certain domain. A concept can be a material or immaterial
thing. It is also a term which would be modeled as an attrib-
ute in UML (e.g., first name). This supports the idea that
designers shall elicit important concepts without thinking if
they will become classes or attributes. Such distinction can
be delegated to the tool.

Although the meta-model follows the fact oriented para-
digm which allows that a relationship has more than 2 per-
spectives (e.g., ternary relationship) the representation of
relationships is more similar to UML. Perspectives (roles)
are hidden in the representation of a relationship. They are
mainly used to specify the relationship. In this aspect it
differs from ORM which strongly focus on roles also in the
graphical representation. Especially special relationships
(e.g., aggregation) are defined by pre-defined perspectives
(e.g., aggregate_of, part of). Beside the well known rela-
tionships like aggregation, composition and generalization
also an identification relationship and a hasProperty-
relationship are part of the approach. The hasProperty-
relationship which was introduced in [23] can be used to
indicate that A has the property B. That B is a property of A
does not necessarily mean that B is an attribute of A, if A
and B would be mapped to an UML class diagram. B will
only become an attribute if B does not have relationships to
any other concept in the schema. On the other hand A can
be transformed immediately to an UML class since it was
specified with the hasProperty-relationship that A has a
property. With this relationship alone a graph of concepts
can already be easily transformed to an UML class diagram.

The hasProperty-relationship is drawn with a directed edge
pointing from the object representative to the representative
of the property. Whereas the perspectives are predefined
(“has”, “belongs_to”) the whole relationship can be labelled
individually. The “identifies” relationship is used if the
designer knows that the value of a concept identifies an-
other concept. The predefined perspectives of this relation-
ship are “identifies” and “is-identified-by”. The whole rela-
tionship is presented as an edge with two lines crossing the
edge at the position of the identifier. With the two crossing
lines, the relationship should appear like a “key”. The cross-
ing lines represent the teeth of the key. The identify rela-
tionship must be used to model concepts (attributes) which
will become key candidates in the database schema. If no
special relationship is applicable, then also a (simple) binary
relationship can be used with no special meaning. It is rep-
resented as an edge with no additional graphical features.
The user freely can label the two perspectives as well as the
whole relationship or leave the labels empty. Figure 2
shows the appearances of the different relationships.

patient patient ID

cancer
case

icd 10

cancer
case

after care

is described by

patient person

a) identifies-relationship

b) hasProperty-relationship

c) simple binary relationship

d) generalization

hospital department

e) aggregation

book chapter

f) composition

patient patient ID

cancer
case

icd 10

cancer
case

after care

is described by

patient person

a) identifies-relationship

b) hasProperty-relationship

c) simple binary relationship

d) generalization

hospital department

e) aggregation

book chapter

f) composition
Figure 2: representation of relationships

Multiplicities must be defined for the normal binary re-

lationship, the aggregation and for the hasProperty-
relationship. There is no need to specify the multiplicity at
the composite perspective of a composite relationship since
the composite relationship has the same multiplicity seman-

248

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

tic as the composite association in UML. There is also no
need to specify multiplicities at all for the “identifies-” and
“generalization-”relationship. Because of their special se-
mantics the multiplicities are implicitly defined.

Another difference to UML, ER diagrams and ORM is
the management of additional concept information (e.g.,
examples, quantity descriptions, synonyms, value con-
straint). Since this information is well suited for a glossary
view, it will be described in detail in the section which
treats the glossary view.

Because of the semantic relationships, the information
gathered in the glossaries (e.g., value constraint), informa-
tion about multiplicities, concept name analysis and rela-
tionship name analysis, the approach allows an easy trans-
formation to an Entity relationship or UML diagram. Hence,
like ORM the approach is stable against changes in the
model but can be transformed to UML. For a more detailed
description of the model and the mapping, the reader is
referred to [12] and [23].

B. Glossaries
Glossaries should not compete with the other representation
techniques but try to complement them. Whereas graphical
representations are good for a (spatial) overview and natural
language descriptions explain formal notations to end users,
the aim of a glossary should be a detailed but compact de-
scription of concepts. They should provide the negotiation
process and also the process of collecting concepts from the
stakeholders. Especially during the first stage of database
development, a database designer is more like a medical
doctor or a pilot who must work with check lists in order to
get new information or validate old information. With glos-
saries the collected concepts will appear in a very compact
format which is still readable and understandable for all the
stakeholders.

Most often a concept glossary only has a column for the
name of the concept and a column for the definition of that
concept. With this kind of information a glossary would
only play a minor role.

With additional glossary columns, different stakeholders
can be incorporated (e.g., typical end users with no techni-
cal knowledge and persons with technical knowledge about
the old system).

For instance, in the cancer case project there was a per-
son who maintained the old system and of course the typical
end users like physicians, nurses and secretaries. In the
electrical power project, a project member from the cus-
tomer’s side had knowledge about the existing data sources
from which the data should be extracted. If it is interesting
in particular to represent information for all the stakeholders
like it was in these projects, then such a glossary must not
only consist of a concept name and definition column. In-
stead the following additional columns are necessary:

• Examples for the concepts,
• quantity description,

• synonyms,
• value constraint,
• data source constraint.

Figure 3 shows the part of the meta-model that manages a
detailed description of concepts. It is visualized with the
model elements presented here.

concept

example quantity description

constraint
description

*
1

1

0..1

0..1

main
concept

1

subordinate
concept

*

data source
constraint

value
constraint

0..1 0..1

definition 1
0..1

is Synonym of

1
has

has

has

has

concept

example quantity description

constraint
description

*
1

1

0..1

0..1

main
concept

1

subordinate
concept

*

data source
constraint

value
constraint

0..1 0..1

definition 1
0..1

is Synonym of

1
has

has

has

has

Figure 3: concept information

According to its name, instances and values are stored in the
example column. (e.g., “pathological institute” for the
concept “department name”).

Quantity description specifies the amount of instances
a concept will have (e.g., “500 patients”). It can be further
refined with an indicator that tells if it is an average, a mini-
mum or a maximum value (e.g., “in average 500 patients”).
Additionally, with a second descriptor it can be specified
that the quantity increases within a certain period (e.g., “10
additional patients per year”).

Synonyms refer to other names of the same concept.
(e.g., institute as a synonym for department if department
was chosen as the main working concept). Usually syno-
nyms have no internal hierarchy or ordering. If a notion N1
is synonym of a notion N2, then also N2 is synonym of N1.
For conceptual modeling it is necessary to decide which
concept will be further used. This is selected as the main
concept in the list of synonymous concepts. The other con-
cepts are still necessary but only in the sense that they rep-
resent variants of the main concept. Therefore in the syno-
nym relationship of the meta-model the perspectives (roles)
main concept and subordinate concept were introduced.

The value constraint consists of the sub information
format and data type. The data type column specifies the
data type a value can have. It can be a simple data type
(String, Integer, Date etc.) or an Enumeration. It is intended
that also smart business objects can appear in this column.
Smart business objects as proposed in [7] are specific data
types which are restricted to a certain format and specific
features and operations (e.g., a type “e-Mail address”). In
the format column, the appearance of the values is specified.
The simplest form is the definition of the length of a value

249

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

(e.g., a String or an Integer value). The length is encoded
with the character L. Thus, a string value with 50 characters
is encoded with L50 and has the entry “String” in the data
type column. If a concept like diagnosis date is based on the
data type “DATE”, then this data type appears in the data
type column. If such a data has a specific format (e.g.
“YYYY/MM/DD”) then this is collected in the format col-
umn.

The data source constraint consists of the same infor-
mation. In addition it has the column data source. The data
source constraint column was introduced since often an old
database system exists which has to be replaced by a new
one. It cannot be expected, that the data types and formats
will stay the same in the new version of the system. If data
from the old system is migrated into the new system, possi-
ble differences of data types and formats must be considered
in advance. The additional column “data source” specifies
the source and the structure of a concept in the old system
from which data has to be migrated. The expression “<table
name>.<attribute>” is used for it. If the concept is only a
table in the old database, then only “<table name>” can be
used. Table 1 in the appendix shows how such a representa-
tion can look like.

C. Verbalization
For verbalization it is assumed, that class names and con-
cept names respectively are in singular form. Relationship
names are verbs in 3rd person singular form. These verbs
can be either given in active or passive voice.

Usually a verbalization of a diagram is made by para-
phrasing the graphical content. In particular, the approach
described in [10] uses the label of object types, the labels of
the roles and the multiplicity information. This information
is concatenated together with fillers (e.g., articles, quantifi-
ers) to form a natural language sentence. Especially the
multiplicity information must be translated from a number
representation (e.g., numbers in brackets [0..1]) to its textual
representations. Short cuts like “exactly 2” for [2..2] must
be considered.

As mentioned above a concept name is written in singu-
lar in the graphical representation. In the resulting sentence
of a verbalization, it can be left in singular if it is the subject
of the sentence. If it is the object in the sentence then it has
to be decided if this concept name must be transformed to
the plural form. The decision is based on the multiplicity
information (e.g., N as the maximum multiplicity).

The verbalization strategy also takes the special relation-
ships between the concepts into account. Beside the com-
monly used special relationships like “Generalization” and
“Aggregation”, the model also offers the special relation-
ships “hasProperty” and “Identification”. These additional
special relationships make it easier to verbalize the graphi-
cal representation of the relationship. In the “hasProperty”
relationship the verbs has/belongs_to are taken as default
paraphrases for the relationships between the concepts, but

the designer always can use another word (e.g., owns, buys
etc.) instead of has. In this case the word with which the
user defines the relationship is taken in the verbalization
step. The special relationship “Identification” provides two
roles. These roles are thing identifies (another) thing and
(another) thing is identified by thing. They are taken for
verbalization. The place holder “thing” is replaced by the
concrete involved concepts of the identification-
relationship. If no special relationships are used, then it is
recommended, that the user specifies the name of the rela-
tionship. Otherwise, the relationship is verbalized into a
simple “is related to” phrase.

In addition to relationship verbalization, also a verbali-
zation of some of the concept columns (quantity description
column, format column and value constraint column) is
provided. Special sentence pattern are used. A sentence
pattern like “There are [in average | at least | at most]
<quantity> [additional] <concepts> [per year]” can al-
ready support the verbalization of a quantity description.
The phrases in square brackets are optional. The minimal
specification of a quantity is “There are <quantity> <con-
cepts>”. This is equivalent to “There are in average <quan-
tity> <concepts>.” If there is an upper limit that can be
reached, then “at most” is taken. If the quantity will never
fall under a minimal limit then “at least” is used. If not the
total quantity is meant but a quantity that rises per year then
“additional” together with “per year” is added.

To specify the format column a sentence like “The for-
mat of the <concept> is <format description>” can be
used. If enumerations are defined in the value constraint
column of a concept a sentence like “<concept> must be
either <value> or <value> or <value> …” is generated.

 V. VISUALIZING IMPORTANT CONCEPTS

In the last section the three basic presentation strategies
were introduced. This section builds on the three presenta-
tion strategies. They are used to visualize important con-
cepts. Information about important concepts is useful to get
a quick overview of the schema focus. Especially the two
questions are of interest:

• Is the focus of the schema still the focus which was
expected by all the stakeholders at the beginning of a
database design project?

• Is a certain concept specified enough?
These questions can be broken down to the question of
important concepts within a schema. If the important con-
cepts modeled in a schema are not the same as expected by
the stakeholders, then it is possible to detect a defect. For
instance, such a situation can appear if an important concept
is still underspecified. This can happen due to a misunder-
standing between the designer and end users. Particularly,
the designer concentrates on the description of concepts
which are not so important for the stakeholders.

250

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

In order to get this information, it is necessary that the
tool itself can automatically determine important concepts
on the basis of already modeled information. An adjustment
can then be made between the generated proposal of the tool
and the expectations of the stakeholders.

This section will discuss this topic. After defining what
important concepts are and how they can be calculated, it
will be explained how the different views can visualize this
kind of information.

A. What are important concepts?
The notion “important concept” is based on the idea, that
they are well described in a conceptual schema. They make
up the centers of the schema and other concepts (supporting
concepts) are used to describe them. Synonymous notions
for important concept are “centered entity” and “key con-
cept”.

[16] has introduced the notion “centered entity” for us-
ing it as a basis for a clustering algorithm. Entities are de-
scribed in terms of relationships in which they are involved.
Hence, the more an entity has connections to other entities;
the more the entity can be seen as a centered entity. This
definition of a centered entity is very pragmatic, based on
the analysis of a graph. It has the advantage that it can be
done automatically by the tool [16], [17].

Most important for the approach introduced here is a re-
search result achieved by the same author some years later
[17]. A study with students was made. One part of the study
focused on the centered entities itself. The question was
examined, if entities with more relationships are perceived
as more important. The study showed that this is the case.

In the research area of ontologies the notion “key con-
cept” was introduced in [19]. It was part of an approach
which checked the quality of an ontology. Once again rela-
tionships were used for the calculation of key concepts.
Here, the relationships are weighted higher, if more implicit
relationships in the lower sections of the generalization
hierarchy can be derived from them. In [18] only the chil-
dren of a concept in a specialization hierarchy were
counted.

B. How to calculate importance?
Since database design is more focused on relationships
between concepts than on a generalization/specialization
taxonomy, this approach follows the idea of [16][17]. It
differs and extends this previous approach since it considers
the type of relationship between the concepts. The calcula-
tion consists of two sub steps:

• Counting of connections to other concepts
• Categorizing a concept.
Counting step: For the approach presented here, the

counting is done as follows: For each binary undirected
relationship a concept has, the counter is increased by 1. For
each special generalization relationship a concept is in-
volved, the counter of that concept is increased by 1. If a

concept is involved in the special aggregation relationship
then the counter is increased only if it has the aggregation
role. This is based on the idea, that aggregates more repre-
sent the main concepts than their parts since otherwise it
would not be necessary to model the aggregate but it can be
concentrated on the parts only. The two additional semantic
relationships identification and hasProperty are also
counted differently. The counter is increased for a concept
if it is identified by another concept. The counter is not
increased for the concept which identifies, since this con-
cept can be understood as a (database key candidate) attrib-
ute. The hasProperty relationship is a directed relationship
between a concept and its property representation (once
again a concept). For each hasProperty relationship where
the concept is in the role to have the property and not in the
role to be the property the counter is increased by 1.

Counting in other approaches (UML, ER, ORM):
For the sake of completeness, the step is also explained for
UML, ER and ORM schemas. The counting of importance
depends on the paradigm which is used.

For UML or ER the counting could be as follows: All at-
tributes in an UML class diagram or Entity Relationship
diagram get the count value 1. For each class, entity type
respectively, their numbers of attributes are counted. For
instance, if a certain class (entity type) has 12 attributes,
then its initial count result is 12. For each binary (n-ary)
undirected association, a class / entity type is involved in;
the count result is increased by 1 for that class / entity type.
For each generalization relationship a class / entity type is
involved in, the count result is increased by 1. For each
aggregation- or composition relationship a class / entity type
is involved in as an aggregate the count result for that class /
entity type is increased by 1. UML class diagrams provide
two additional features, which are interesting for counting.
Associations can be extended with a reading and navigation
direction. In these two cases the count result is increased by
1 only for those classes which are the source (starting point)
for the reading or navigation direction. It can be argued that
the source of the navigation or reading direction is focused.
Hence, it is more likely that it is an important concept than
the target of the directed association.

For an ORM diagram the counting is as follows: For
each role of an object type, the counter is increased by one.
If the object type in addition has a key attribute, then the
counter is increased by 1 once more. Aggregation is treated
in the same way as shown for UML.

Categorization step: The result of the counting for each
concept is now taken as an input for the categorization step.
Additionally the concept with the maximum counting result
is selected out of the list of concepts. This is the first de-
tected important concept. The counting results of all other
concepts are compared with this maximum.

The comparison returns to which category a concept be-
longs. The approach is restricted to the three categories:

251

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

very important concepts, important concepts and unimpor-
tant (supporting) concepts.

The distinction into which category a concept falls is de-
termined by the percentage of counted connections a con-
cept has with respect to the maximum counting result in a
certain schema. If a concept reaches a percentage value >=
66 % then it is a very important concept. If the percentage
value PV is 33 % <= PV < 66 % then it is an important
concept. Finally, if the percentage value is below 33 % then
it is only a supporting (unimportant) concept.

Let a concept C1 have a count of 50, meaning it was able
to increase the counter by 1 for 50 relationships it is in-
volved in. Let us further assume 50 is also the maximum
counting result that appears in this schema S. Let another
concept C2 in S have a counting result of 20. The type of the
concept is then calculated by 20 / 50 and the result is 0.4 (40
%). With this 40 % the concept belongs to the category of
important concepts. Let a third concept C3 have the value of
40 which means, it reaches the maximum with 80 %. Hence,
C1 and C3 belong to the very important concepts.

 After this introduction what main concepts are and how
they can be detected in the schema, the next section dis-
cusses how such information can be offered to the user in
the different representation techniques presented in this
paper.

C. Visualization
For the graphical representation a strategy was cho-

sen, which is a combination of enlarging the rectangular
dimensions of a concept together with a coloring strategy.
The very important concepts appear as the biggest concepts
on the screen. The color of this concept is deep green which
emphasize their importance. Important concepts are also
enlarged but not as much as very important concepts. They
appear in a yellow color. This gives them a more transpar-
ent and pale touch. The color and the size signalize that they
must be considered as important, but they are not among the
most important. Finally the supporting concepts are not
enlarged at all, but appear as they are. They have a white
color, which underlines their supporting character. The
spatial information is not distorted as it is only necessary to
show which concept is very important, important or unim-
portant.

In the verbalization view all unnecessary information is
filtered out to avoid textual bulk. Like in a news paper,
book chapter or any other linear textual description an ab-
stract or summary of what has been specified is provided to
the reader. For those kinds of concepts which are important
according to their specifications the user gets a very detailed
and insight look. On the other hand he will not be bothered
with details of supporting concepts. They only appear in the
textual summary as long as they help to describe at least one
of the (very) important concepts. Such a verbalization can
start with a textual introduction template like: “The most
important concepts of this schema are <list of very impor-

tant concepts> followed by <list of important concepts>”.
Afterwards each of the (very) important concepts is verbal-
ized according to the strategies described in the verbaliza-
tion section.

The glossary content can be sorted. For sorting, an ad-
ditional glossary column is introduced. In this column, the
counting results are presented. If the glossary rows are
sorted according to these columns in a descending order,
then the very important concepts appear before the impor-
tant concepts and the supporting concepts.

To summarize, if for instance “after care” is seen as an
important concept in the medical (cancer) domain then such
visualization strategies can help to detect a defect. For this
example, the reader is referred to Figures 5 and 8. In Figure
8, “after care” is only presented as an unimportant concept.
In the textual summary it only appears in the description of
cancer case but is not itself described. In a glossary repre-
sentation it will not be among the first listed concepts.
Hence, if this concept is important for the stakeholders they
will be surprised on one hand but on the other hand they
will get aware that something (i.e. a better description of
after care) is missing.

VI. VISUALIZING THE PROGRESS AND SOURCE
Up to now visualization of model elements were described
only. In fact a concept is not only related to another concept
but it is also “related” to sources from which it was derived
and it is related to a certain working state (progress). If the
stakeholders need a holistic view of the model, then also
their relationships to the sources and the working progress
of the model is information that must be visualized appro-
priately. Figure 4 shows the relationships between a model
element to its sources and its progress information.

In this section it will be firstly defined what is meant
with source and progress. Then it will be explained how
such information can be visualized.

A. Source
A source is any thing or media from which a model element
like a concept can be derived.
In this approach three kinds of sources are distinguished

• natural languages requirement sentences,
• documents
• involved persons
A natural language requirement sentence is the smallest

unit of source from which a model element (here a concept)
can be derived. The requirement sentence itself can be se-
lected from a document.

A document is any type of media in which a model ele-
ment was found.

An involved person is any stakeholder who mentioned
the model element.

Instead of using very small units of single requirements
sentences only, this approach also allows to relate a model

252

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

element to the more coarse grained sources “document” and
“involved person”.

involved person sentence

source

document

model element

open question open task

*

*

*

*

*

*

0..1 *selected from

related to

has

has

explicit progress information

involved person sentence

source

document

model element

open question open task

*

*

*

*

*

*

0..1 *selected from

related to

has

has

explicit progress information

Figure 4: model element, progress and source

B. Progress
It might be surprising that progress, which is a certain

state or snapshot of the modeling process, is specified in the
meta-model. However “progress” can be divided into ex-
plicit progress information and implicit progress infor-
mation. In this approach an explicit progress state is given
if the designer declares that there are still some open ques-
tions or open tasks for a certain model element or a source.
An implicit progress cannot be declared explicitly but is
derived from the grade of completeness of the schema.
Therefore the meta-model only specifies the explicit work-
ing progress. Nevertheless, the details of implicit progress
information are also given here.

The explicit progress information (open questions and
open tasks) is necessary for the following reasons:

• Conceptual modeling is always driven by decisions
(i.e. decision to model certain information in a cer-
tain way, decisions to select and gather some infor-
mation whereas other information is ignored etc.).
Some of them can be made by the designer itself
whereas other decisions need communication with
end users. If the designer is not sure if he has made
the right decision, then a possibility must exist to
make a remark for asking the end user. Furthermore
this remark must be related to the respective model
element. Such a remark is not only a hint for the de-
signer to ask somebody something, but also a con-
crete hint that the element is not yet finished.

• Not every task can be done at once. Some tasks must
be done later. The open task remark helps the de-
signer to remember these tasks (e.g., “I must col-
lected detailed information for the concept patient”).

Once again this remark is a concrete hint that some-
thing is not yet finished.

The implicit progress information can be derived by
answering the following two questions:

• Is each column in the glossary view filled with a
value?

• Is each concept related to at least one other concept
and is the multiplicity information within each rela-
tionship specified for a certain concept.

The answers for the first question can be found inside
the schema structure itself. In [22] a general method to cal-
culate the progress was already introduced. Therefore this
paper concentrates on the visualization part which was not
the scope in [22]. The customization of the general method
is only explained to the extend that is necessary to under-
stand the visualization. Imagine a matrix similar to table 1
in the appendix. Each row describes a concept. Each col-
umn is reserved for a specific aspect of a concept (e.g., its
examples, its definition, its value constraint, its quantity
description – see Figure 3). A cell of a certain row and col-
umn can be empty or filled. The concept definition and the
example column are two kind of information that must be
filled out in order to be complete. The progress can be cal-
culated by counting only those cells of columns which are
filled with a value and dividing them by the total number of
columns which must be filled out. If the total number of
columns would be 2 (i.e. concept definition column and
example column) and if only one is filled out for a certain
concept at a certain point in time, then the progress state
would be 50 %.

Additionally, the approach also considers the columns
for value constraint and quantity descriptions. For the calcu-
lation of the progress state of these concept aspects, the
general method described in [22] was customized and re-
fined. The quantity description is not needed for every con-
cept. Therefore it is optional. However, if a quantity (nu-
meric value) is specified for a concept, then all the other
information must also be specified (e.g., aver-
age/maximum/minimum, increasing per period or not). The
data type entry in the value constraint depends on the state
of the concept. If the concept is already categorized as an
attribute, then the data type must be filled out. If it is a class
then it must not be filled out. If it is a concept which is not
yet categorized to a class or an attribute and if the data type
is empty, then the implicit progress information for that
concept is defined as 0.5. This gives a hint that there might
be still something missing.

Consider a concept which is a class. It has a quantity de-
scription and all the necessary information for this quantity
description is specified. A concept definition is specified but
no examples are given. In this case the progress state is 2 / 3
(~ 66 %). On the other hand if it is an attribute that has a
data type entry but no (concept) definition and no examples
then the state is 1 / 3 (~ 33 %). Finally if there is a concept
which is not already categorized as a class or an attribute

253

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

and it has examples and a concept definition but no value
constraint then the progress is calculated as 2 / 2.5 (~ 80
%).

 The answer of the second question can be calculated by
determining if a concept has at least one relationship to
another concept. Then for every relationship which does not
have predefined multiplicities (e.g., “identifies” relation-
ship) the multiplicity information of the concept to its re-
lated concept is examined. The state of completeness for
relationships and multiplicity information is defined as
follows:

• If the concept has no relationship then the implicit
progress information for the relationship progress
state (RP) is 0. This means incomplete.

• If the concept has at least one relationship to other
concepts, then the relationship progress state (RP) is
determined by:

No. of specified multiplicities

No. of relationships for a concept
RP =

For example, if the concept cancer case has 10 relation-

ships to other concepts (e.g., start location, histology de-
scription etc.) but only for 4 of these relationships the mul-
tiplicities to the other concepts are defined, then RP = 0.4
(40 %).

The whole implicit progress information is calculated by
building a sum of RP and the other progress state informa-
tion (e.g., progress of example, concept definitions etc.).
This is then divided by the possible number of progress
information. The result is the overall progress state in per-
centage. As a continuation of the previous example, let us
assume that cancer case would have an RP of 40 %. Fur-
thermore it is categorized as a class and has examples and a
concept definition. In this case the whole implicit progress
state is 80 %. If all the relationships also have specified
multiplicity information then the progress state is 100 %.

Implicit and explicit progress information is visualized
separately, because situations can occur where a schema is
already finished according to the implicit progress informa-
tion, but it is not finished according to the explicit progress
information. An example for such a situation is the follow-
ing: The designer has already filled out and modeled the
necessary information but in one case he is not quite sure if
his design decision is correct. Since he has to ask one of the
end users, he makes a note (open question) to ask some-
body. In other words, from a structural point of view a cer-
tain model element in the schema is complete but it is not
yet validated by the end user.

C. How to view the Progress information
There are several ways to graphically view the implicit
progress information. One is to resize the concept. The more
information about a concept reaches the state “complete”,
the bigger it appears in the graphical view. Alternatively the
more a concept is not completed, the bigger it could appear

in the graphical view. As a third possibility the concepts can
appear in the different colors of a traffic light. The seman-
tics of the colors are:

• green: concept is largely specified or even complete
(>= 66 %);

• yellow: concept needs more information (>= 33 %)
• red: concept is barely specified (< 33 %)

It was decided to use this third possibility. For instance if
the first alternative would have been chosen, then incom-
plete concepts only appear very small although the focus of
the users attention should be directed to these incomplete
concepts. On the other hand, if incomplete concepts are
drawn very large then the mistake can occur that these con-
cepts are seen as complete concepts.

Explicit progress information is graphically visualized in
the same way:

• red: there is at least one open question or one open
task respectively.

• green: no open questions; no open tasks.
Glossaries itself are a good view to visualize on a very

detailed level that something is missing, since in this case
the cell of a row and column is empty. If an overview of the
progress is needed, then this can be achieved by a table
consisting of four columns. The first column contains the
concept names in each row. The second column contains the
progress of this concept using a progress bar (see Figure 6).
In the third column each cell is colored green if no open
question is stored for a concept. If at least one open question
exists, then the cell has a red color. In the fourth column the
same visualization strategy is applied for open tasks.

A good strategy for verbalizing the progress was not
found. Of course, there is always the possibility to verbalize
the percentage of progress for each concept or to name the
columns of a concept which are not filled out. However,
glossaries or a graphical view are much better in such a
situation since verbalization is a strategy which presents
content itself and not the gaps.

D. How to view the relationship to the sources
In the same way as the amount of relationships to other
concepts is visualized graphically, the strategy can be ap-
plied to visualize the relationship to sources. However, it
cannot be concluded from such a counting strategy, that a
concept with more relationships to sources is more impor-
tant than a concept with fewer relationships. It might hap-
pen that a concept was only (but completely) found in one
document or was specified by a single person. Hence, if in
the graphical view a concept appears in a bigger size it only
tells, that it has more relationships to different sources.

In the glossary view, the relationship can be viewed with
the already well established strategy of a traceability matrix.
In its most general form, there is one column for the con-
cepts and columns for each kind of source (involved person,
document and sentence). In the cell where a column and a
row cross, a number indicates to how many sources of a

254

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

certain kind (e.g., document) a concept is related. Once
again no adequate strategy was found actually for the ver-
balization view.

VII. THE TOOL

A. General Views
A tool (see Figure 7 in the appendix) was implemented to
meet the requirement that verbalization, graphical represen-
tation and a glossary view must be combined.

The left upper part of the tool presented in Figure 7 is
the verbalization view. Here the diagram appears as a de-
scription written in controlled language. These sentences are
generated from the information of all the relationships and
concepts. Relationship information include involved con-
cept names, the name of the relationship (e.g., is a, identi-
fies, has, owns etc.), and multiplicity constraints. Concept
information is information about the value constraint, the
format and the quantity description specified for a certain
concept.

The right upper part of the tool is dedicated to the
graphical representation. This is the classical form of repre-
sentation used in conceptual modeling languages.

At the bottom the set of modeled concepts appear in a
glossary style. The user has the advantage to use the list of
concepts like a check list. He can look which columns are
filled out and which are empty.

To ensure that the user will not be overburdened with
three different views, of course it is possible for him to
switch off one view completely. The user can also resize the
different views to get a larger glossary view, a larger
graphical view or a larger textual view.

Currently the model elements can only edited in the
graphical view. The textual view offers only the possibility
to insert controlled language sentences or read these sen-
tences from a file. With a button in the text view panel,
these sentences can then be transferred to the graphical
view.

B. Visualization of Important Concepts
The visualization of important concepts currently is im-

plemented in the following way. For the graphical view of
important concepts, the designer has to click on the button
with the “spyglass” icon. Then he gets a popup window
with a menu of several possibilities. One option is to choose
the visualization of important concepts. After he has se-
lected this option, important concepts appear as described in
three different sizes and colors (see Figure 8 in the appen-
dix). If he wants to see a natural language summary of the
important concepts, then he must select the tool menu op-
tion “Views” in the menu bar. Afterwards he must select the
submenu item “Summary”. Finally a window is popped up
and displays the textual summary (see Figure 5). If he
wants to see the glossary view then he also has to select the
“Views” menu. Finally he must select the sub menu “Impor-

tant concepts listing”. A window is popped up where the
concepts are ordered according to their importance.

C. Visualization of progress and sources
The graphical representation of the progress of concepts

and their relationships to sources can be reached through the
button with the “spyglass” icon in the graphic panel. The
designer must then chose the corresponding option, depend-
ing of what he wants to see:

• Visualization of explicit and implicit progress infor-
mation

• Visualization of relationships to sources
The right upper graphical part of the tool gives the required
view as described (i.e. traffic light coloring paradigm for
explicit and implicit progress information; three sizes and
colors for concepts to visualize the number of relationships
to sources).

Figure 5: summary report

In order to get a glossary representation of progress in-
formation, the designer must navigate from the menu bar
item “Views” to the sub menu “Progress information” and
“Traceability overview” respectively. For each of the two
options, a window is popped up which contains the neces-
sary information (see Figure 6 for implicit and explicit pro-
gress information).

Verbalization strategies of progress information and
sources are not supported at the moment.

255

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Figure 6: progress information

D. Technical aspects
The tool was implemented in Java and all the information

of the concepts and their relationships are stored in a
MySQL database.

The Model-View-Controller (MVC) architecture was
used to manage the changes between the graphical and the
glossary view. Inserting and updating of concepts and rela-
tionships is done in the graphical view. The user gets a
property window for relationships and concepts. In these
property pop up window he can insert and edit the details.
Whenever details of a concept are changed then the graphi-
cal and glossary view is notified.

The verbalization is not trigged by these changes since
the textual area in the left upper part of the tool (Figure 7) is
also used as a simple editor for inserting a list of controlled
English sentences which can then be transferred into the
graphical and glossary representation. Instead a button in
this area generates the verbalization from the model. The
verbalization strategy itself is implemented within the MVC
model classes for concept and relationship. Each of these
classes has a public method “verbalize”. Hence each object
of these classes knows how to describe itself textually. The
verbalization process itself is simply implemented by going
through the entire concepts and relationships in a domain
and by calling their method “verbalize”.

VIII. CONCLUSION AND FUTURE WORK
It is very important that the result of conceptual modeling

is negotiated with all the stakeholders. Since the stake-
holders have different skills and knowledge background,
different representation techniques should be used for the
communication.

 In this paper three representation techniques were com-
bined to give all stakeholders the possibility to choose the
most adequate one in a given situation. These visualization
strategies were then applied to “structure” the schema be-
tween important and non important concepts in order to
detect defects in the schema.

Since a schema must be seen in a greater context not only
the visualization of the schema itself is relevant, but also the
relationships of certain model elements to their sources as
well as their actual progress of design. Both, overview of
relationships to sources and progress information can help
stakeholders to get a better picture about the current concep-
tual modeling state.

These strategies are based on previous research results, a
survey of the literature and learning’s made in projects.

In future, more special relationships might be added to
this approach. Further special representation techniques for
special purposes together with the existing techniques (i.e.
progress or relationship to sources) should be studied for
their optimal usability.

REFERENCES
[1] Ch. Kop, ”Towards a Combination of Three Representation Tech-

niques for Conceptual Data Modeling”, First International Confernce
on Advances in Databases, Knowledge, and Data Applications,
2009, pp.95-100.

[2] S. Ceri, (Ed.) Methodology and Tools for Database Design, North
Holland Publ. Comp., 1983.

[3] A. Cockburn, Writing Effective Use Cases. Addison Wesley Publ.
Comp., 2000.

[4] H. Dalianis, “A method for validating a conceptual model by natural
language discourse generation”. In P. Loucopoulos (Eds.), Pro-
ceedngs of the Fourth International Conference CAiSE’92 on Ad-
vanced Information Systems Enginering. Lecture Notes in Computer
Sciences (LNCS) Vol. 594, Springer Verlag, pp. 425-444.

[5] M. Jose Escalona, G. Aragon, NDT. A Model-Driven Approach for
Web Requirements IEEE Transactions on Software Engineering,
Vol. 34, No. 3, 2008 pp. 377 - 390.

[6] N.E. Fuchs, S. Höfler, K. Kaljurand, F. Rinaldi and G. Schneider,
“Attempto Controlled English: A Knowledge Representation Lan-
guage Readable by Humans and Machines” In Norbert Eisinger N.
and Maluszynski, J. (eds.): Reasoning Web, First International
Summer School 2005, Lecture Notes in Computer Science (LNCS)
Vol. 3564, Springer Verlag, 2005 pp. 213-250.

[7] X. Liang, and A. Ginige, “Smart Business Object - A New Approach
to Model Business Objects for Web Applications”, In Proceedings of
the first international Conference on Software and Data Technolo-
gies (ICSOFT 2006), Setúbal Portugal 2006, Springer Verlag, pp.
30-39.

[8] T. Halpin, ‘UML Data Models from an ORM Perspective-Part 1’,
Journal of Conceptual Modeling, No. 1, 1998, www.orm.net.

[9] T. Halpin, A. Bloesch, “Data modeling in UML and ORM: a com-
parison”, Journal of Database Management, 10 (4), 1999, 4 - 13.

[10] T. Halpin, M. Curland, “Automated Verbalization for ORM 2”, In
Proceedings, OTM 2006 Workshops -On the Move to Meaningful
Internet Systems 2006, Lecture Notes in Computer Science (LNCS
4278), Springer Verlag, pp. 1181 – 1190.

 [11] M. Jarrar, “Towards the notion of gloss, and the adoption of linguis-
tic resources in formal ontology engineering” In Proceedings of the

256

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

15th International World Wide Web Conference (WWW2006). Edin-
burgh, Scotland, ACM Press, pp. 497-503.

[12] H.C. Mayr, C. Kop, “A User Centered Approach to Requirements
Modeling”, Proc. Modellierung 2002, Lecture Notes in Informatics
LNI p-12, GI-Edition, 2002, pp. 75-86.

[13] D. Moody, “What Makes a Good Diagram? Improving the Cognitive
Effectiveness of Diagrams in IS Development”. In. G. Magyar, G.
Knapp, W. Wojtkowski, W.G. Wojtkowski, J. Zupancic (Eds), Ad-
vances in Information Systems Development – New Methods and
Practice for the Networked Society, Vol.2, Springer Verlag, 2007,
pp. 481-492.

[14] G.M. Njjssen, T.A. Halpin, Conceptual Schema and Relational
Database Design – A fact oriented approach. Prentice Hall Publ.
Comp. 1989.

 [15] J. Ryszard, D.L. Parnas, J. Zucker “Tabular Representations in
Relational Documents”, In Hoffman D., Weiss D.M. (Eds.) Software
Fundamentials – Collected Papers by David Parnas. Addison
Wesley Publishing Comp. 2001, pp. 71- 85.

[16] D.L. Moody, A., Flitman, “A Methodology for Clustering Entity
Relationship Models – A Human Information Processing Approach”,
In. Proceedings of Conceptual Modeling (ER 1999), Lecture Notes
in Computer Science (LNCS), Vol. 1728, 1999, Springer Verlag,
Berlin, Heidelberg, pp. 114-130.

[17] D.L. Moody., “Entity Connectivity vs. Hierarchical Levelling as a
Basis for Data Model Clustering: An Experimental Analysis” In
DEXA 2003 Proceedings, Lecture Notes in Computer Science
(LNCS), Vol. 2736, 2003, Springer Verlag, Berlin, Heidelberg, pp.
77-87.

[18] D. Bezerra, A. Costa, K. Okada, SwTOI (Software Test Onotlogy
Integrated) and its applicaton in Linux Test. In Proceedings of the
3rd International Workshop on Ontology, Conceptualization for In-
formation Systems, Software Engineering and Service Science,
CEUR-WS, Vol 460, http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/, pp. 25 – 36.

 [19] N. Huang, Sh. Diao, “Structure-Based Ontology Evaluation” In
IEEE International Conference on e-Business Engineering
(ICEBE06), pp. 1- 6.

[20] R.J. Costello, D.-B. Liu, “Metrics for Requirements Engineeing, in
Journal of Systems and Software, 1995, pp. 39 – 63.

[21] Ch. Pikalek „Messbare Qualität von Anforderungsdokument“,
Javamagazin, No. 1, 2006, pp. 75 – 81.

[22] Ch. Kop, ”Work Progress Estimation from Structured Requirements
Specifications“, In Ch. Barry, K. Conboy, M. Lang, G. Wojtkowski,
W. Wojtkowski (eds.). Information Systems Development, Springer
Verlag, Vol. 2, 2009, pp. 909 – 922.

[23] Ch. Kop, “Conceptual modeling tool for novice designers”, In Inter-
national Journal of Metadata, Semantics and Ontologies, Vol. 3(2),
April 2008, pp. 151 – 165.

[24] G. Kotoyna, I. Sommerville, Requirements Engineering – Processes
and Techniques,Wiley Publ. Comp. 1998.

APPENDIX

TABLE 1 excerpt from the concept glossary
Concept name Format Datatype DataSource SrcFormat SrcDatatype
cancer case CCSTD
cancer case id L5 Number CCSTD.ID L5 Dezimal(5)
diagnosis date YYYY/MM/DD Date CCSTD.DDATE L10 CHAR(10)
icd10 value L5 String
icdO3 value L5 String
starting location {left, right,

unknown }

histology id L5 String
histology
description

 Text

patient PSTD
patient id L6 Number PSTD.PNUMBER L5 Dezimal(5)
first name L30 String PSTD.FNAME L21 CHAR(21)
last name L30 String PSTD.LNAME L21 CHAR(21)
address L255 String PSTD.ADDRESS L150 CHAR(150)
municipality
code

L5 Number

doctor
person

257

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Figure 7: tool with the three presentation views

Figure 8: presentation of important concepts

258

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

