
Understanding Object-Relational Mapping: A Framework Based Approach

Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh
Department of Computing

The Open University
Milton Keynes, UK

e-mail: cji26@student.open.ac.uk, (D.S.Bowers, M.A.Newton, K.G.Waugh)@open.ac.uk

Abstract - Object and relational technologies are grounded in
different paradigms. Each technology mandates that those
who use it take a particular view of a universe of discourse.
Incompatibilities between these views manifest as problems
of an object-relational impedance mismatch. In a previous
paper we proposed a new conceptual framework for the
problem space of object-relational impedance mismatch and
consequently distinguished four kinds of impedance
mismatch. Here we show how that framework provides a
mechanism to explore issues of fidelity, integrity and
completeness in the design and implementation of an
existing object-relational mapping strategy. We propose a
four-stage process for understanding a strategy. Using our
process we show how our framework helps to identify new
issues, understand cause and effect, and provide a means to
address issues at the most appropriate level of abstraction.
Our conclusions reflect on the use of both the framework
and the process. The information arising from the use of our
framework will benefit standards bodies, tool vendors,
designers and programmers, as it will allow them to address
problems of an object-relational impedance mismatch in the
most appropriate way.

Keywords: Object-Relational; Impedance Mismatch;
ORM; Framework

I. INTRODUCTION

In [1] we provide a new framework for understanding
the problem space of object-relational impedance
mismatch. If we address the root cause of an object-
relational impedance mismatch problem rather than the
symptoms as we do today, we will reduce the cost of
software development by avoiding the quagmire described
by Neward [2] and discourage others (such as [3]) from
reinventing solutions.

A paradigm is a particular way of viewing a universe
of discourse. Each paradigm comes with its own particular
abstractions, organising principles and prejudices. There
are a number of different paradigms in computing. Each
paradigm has influence on both the process and artefacts
of software design and development.

The combination of technologies based on different
paradigms presents a set of problems for those responsible
for the design and implementation of an application. We
refer to each such problem as an impedance mismatch
problem. People are inventive and proponents of one
paradigm may believe that they have solved an impedance
mismatch problem. Such a solution will typically involve
using a subset of concepts from one paradigm to represent

a concept in the other. It then becomes received wisdom
within a community that there is a solution to a problem
and that all those concerned understand the solution.

The relational paradigm has proven popular in the
development of databases whilst at the same time the
object paradigm has underpinned a number of
programming languages and software development
methods. The popularity of technologies that embody
different paradigms in these two separate but essential
aspects of software development means that inevitably
they will be used together. Differences in abstraction,
focus, language etc. between paradigms however leads to
problems when these technologies are combined in a
single application.

An object-relational application combines artefacts
from both object and relational paradigms. Essentially an
object-relational application is one in which a program
written using an object-oriented language uses a relational
database for storage and retrieval. A programmer must
address object-relational impedance mismatch
(“impedance mismatch”) problems during the production
of an object-relational application. For some authors [4]
however there is no impedance mismatch. This is true for
those developing an entire application using a single
programming language such as Visual Basic, C++, Java or
SQL-921 (“SQL”) because each language is based on a
single paradigm. Those who have to combine object and
relational technologies and must work across paradigms
have a different experience [5], [2]. The received wisdom
is that these impedance mismatch problems are both well
understood and resolved by current solutions based on
SQL. For each such impedance mismatch problem
however there is a choice of solution. We refer to each
such solution as an Object-Relational Mapping (ORM).
Each ORM strategy addresses problems of an impedance
mismatch in a different way. We seek to understand the
most appropriate way to address a problem.

During the development of an object-relational
application based on SQL-92, the resolution of impedance
mismatch problems involves many different roles and
takes time and effort to achieve [2]. Neward [2] labelled
the problem of impedance mismatch “the Vietnam of
Computer Science” because initial quick wins based on the
received wisdom are rapidly replaced by a quagmire of

1 This work is presented in the context of mapping from an
OOPL to SQL-92, which does not include Object Relational (OR)
extensions. Future work will analyse the effectiveness of the OR
extensions to SQL in addressing ORIM problems.

202

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



issues. Keller in [6] claims that twenty five to fifty percent
of object-relational application code is concerned with
problems of an impedance mismatch. The popularity of
object and relational technologies, the plethora of solutions
and technologies for the resolution of an impedance
mismatch, and the existence of guidelines [7] and metrics
[8] for selecting a strategy also suggest that problems of an
impedance mismatch are neither uncommon nor trivial.

In this paper we propose a four-stage process for
understanding a strategy. Using our process we show how
our framework helps to identify new issues with a strategy,
understand cause and effect, and provide a means to
address those issues at the most appropriate level of
abstraction.

The rest of the paper is structured as follows. Section II
presents the impedance mismatch problem space; Section
III presents an analysis of current approaches to ORM;
Section IV presents our framework; Section V relates our
framework to ORM strategies; Section VI presents our
process for using the framework; Section VII provides a
worked example; and Section VIII presents our
conclusions and future work.

II. PROBLEMS OF AN OBJECT-RELATIONAL

IMPEDANCE MISMATCH

In the context of object-relational application
development, one objective of an ORM strategy is to
isolate a programmer using an object-oriented
programming language (OOPL) from the need to
understand the SQL language, the schema of an SQL
database, and its implied semantics. A programmer need
not focus on how to store an object but on what to store
and when to store it, and what to retrieve and when to
retrieve it.

Such a strategy is typical of ORM products such as
Hibernate [9] and Oracle TopLink. They provide a
programmer with a virtual object database, presenting data
in a relational database as if it were a collection of objects.
However, ORM does not isolate a relational database from
an object-oriented program. The design of a relational
database must address issues such as data redundancy, data
integrity, data volumes, access control, concurrency,
performance and auditing. Impedance mismatch problems
occur when these requirements are at odds with the design
of an object-oriented program. These problems have been
described by writers such as [2] and [5]. In Table I we
have catalogued the issues emerging from their work as
problems of an object-relational impedance mismatch
(ORIM).

TABLE I. PROBLEMS OF AN OBJECT-RELATIONAL IMPEDANCE

MISMATCH

Problem Description of the problem and typical
questions raised

Structure A class has both an arbitrary structure and an
arbitrary semantics defined through methods. A
class may also be part of a class hierarchy. SQL-92
does not provide an analogy for a class hierarchy or
support repeating groups within a column. How

then do we best represent the structure of a class
using SQL?

Instance To conform to relational theory, a row is a
statement of truth about some universe of
discourse, but an object is an instance of a class and
may have an arbitrary structure. How does a row
correspond to an object and where is the canonical
copy of state located? Essentially, how much of an
object must we maintain in a database?

Encapsu-
lation

The state of an object is accessed via methods. The
state of a row has no such protection and may be
modified by other applications. How do we ensure
consistency of state between an object and a row?

Identity An object has an identity independent of its state.
This in-memory identity will be different between
two executions of a program. Within the same
execution, two objects with the same state are
different if they have a different identity. The
primary key of a row is part of the state of that row.
How do we uniquely identify a collection of data
values across both object and relational
representations?

Process-
ing
Model

An object model is a network of interacting discrete
objects and access is based on navigation. The
relational model is declarative and access is set-
based. The object and relational models represent
references in different directions. A transaction may
not require all the data about an object. How do we
represent in, maintain in, and retrieve from a
database a sufficient set of in-memory objects?

Owner-
ship

A class model is owned by a programming team, a
relational schema is ultimately owned by a database
team, it may hold legacy data and may also be used
by other applications. When things change how do
we maintain the necessary correspondence
between a class model and a database schema?

III. OBJECT-RELATIONAL MAPPING

In the literature and in practice we find many examples
of ORM ([3],[10],[11],[12],[13], and [14]). Essentially an
ORM strategy is how we address each problem of an
impedance mismatch but in research and practice the term
ORM is used to refer to a number of different things: for
Fussell [11] it is a transformation process; for others ORM
is something defined in the configuration of a mapping
tool such as Hibernate [9]; whilst to others it is a pattern
[13] or canonical mapping [14] used as the basis for a
design transformation.

Practitioners recognise ORM as both a process and a
mechanism ([5], p225) by which an impedance mismatch
is addressed. As a process, ORM is the act of determining
how objects and their relationships are made persistent in a
relational database: in essence the selection of one or more
patterns [13]. These patterns are based on the assumption
that an object model is used as the basis for a database
schema and that schema confirms to SQL-92. They do not
help with the development of an object-based application
that uses a legacy relational database.

As a mechanism, ORM forms the definition of
correspondence necessary for the successful
implementation of a particular pattern as one or more
mappings. A mapping relates two representations in
different implementation languages. In order to address an

203

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



impedance mismatch, this mapping is codified as one or
more transformations within some part of an application.
For the developer of an object-oriented application that
must use a relational database for persistence ORM may
be all of these, impedance mismatch is also a fact of life
[13]. We observe from this variety that there is no
consensus on a single strategy for ORM and by
implication how we address impedance mismatch. Each
strategy addresses a different aspect of impedance
mismatch. Some strategies focus on equivalence between a
class and a table [13] (what to map) whilst others propose
a unified query language [15] (how to map) or software
architecture [11] (where to map). It is not clear whether
any of these strategies address the root case of an
impedance mismatch problem or whether they make do
with the facilities available. Evidently when these writers
use the term “impedance mismatch” they are not talking
about the same thing. We require some form of organising
principle which goes beyond received wisdom to facilitate
an understanding and comparison of strategies, and which
also recognises an essential aspect of the problem: the
different levels of abstraction.

It is evident from Table I that impedance mismatch is
not a single, well-defined problem. The different
interpretations of ORM also indicate there is no single,
well-defined solution. If we are to understand impedance
mismatch we must understand the nature of these different
problems and how they are addressed by different
approaches to ORM. At a detailed level this understanding
provides the motivation for our conceptual framework and
classification.

IV. A CONCEPTUAL FRAMEWORK OF OBJECT-
RELATIONAL MAPPING

In this section we consider how we might organise the
different views of ORM. Other models such as [11] and
[16] focus on client/server software architecture.
Essentially they help inform where one might perform a
mapping. Hohenstein [12] considers programming
language issues and helps to inform a C++ programmer
how to perform a mapping.

The rationale and the motivation for our framework
and classification were established in [1]. Our framework
comprises four levels of abstraction common to both
object and relational technologies. The classification
allows us to organise the different issues at each level.
These levels (Table II) allow us to understand why we are
performing a mapping and allow us to identify the root
cause of a problem. Object and relational silos span all
four levels. Within each level there are therefore both
object and relational contributions. We summarise our
framework in Figure 1.

The levels are labelled using terms that may
themselves have alternative interpretations and therefore
require clarification. A paradigm is one particular way of
viewing a universe of discourse ([17], pA-6). A language
is used to produce an abstract description of a universe of
discourse. We consider a concept to be some identifiable
collection of things from a universe of discourse. A

schema is a description (representation) of some concept
from a universe of discourse, expressed using a particular
language. We consider program source code the schema
for an executing program just as an SQL script is the
schema for a relational database. Finally an instance is
data about some thing from the universe of discourse set
within a particular schema.

Figure 1. Our conceptual framework

The relationship between the levels of our conceptual
framework is one of context. A paradigm sets the context
for the semantics of a language. A language provides data
and processing structures for describing the semantics of a
universe of discourse in the form of a schema. There are
many possible schemata. A schema sets the structure into
which data about some thing from a universe of discourse
must fit. Conversely a schema sets constraints on what it is
we can represent about some thing from a universe of
discourse.

TABLE II. OUR CONCEPTUAL FRAMEWORK OF OBJECT-
RELATIONAL MAPPING

Level ORM is concerned with…

Paradigm Issues relating to the incompatibilities between the
two different views of a concept from a universe of
discourse: one as a network of interacting objects and
the other as a set of relations.

Language Issues relating to the incompatibility of data
structures between object and relational based
languages. ([14], p182) refer to this as a canonical
mapping. In this paper we will use the term pattern in
the context of [13] as an outline description of a
solution.

Schema Issues relating to the maintenance of two
representations of a particular concept described in
different languages.

Instance Issues relating to the storage and retrieval of an
object in the context of an object-relational
application.

204

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



Contextualisation has implications for choices made
during the development of an object-relational application.
A development language brings with it not only an
implicit choice of paradigm but also a set of structures and
patterns that may be used ([5], [12], and [13]). The
maintenance of a legacy application may dictate the use of
a particular language. Choices made during the design of
an object model and an SQL schema dictate the content of
a mapping schema. During the development of an object-
relational application, the teams responsible for program
and database schema development will make their own
choices based on their own agenda.

A programmer has many technologies and algorithms
from which she may choose in order to implement a
transformation: for Java alone there is a choice of JDBC,
Hibernate, JDO and Oracle TopLink to name a few. All
levels of our conceptual framework have influence on the
work a programmer must do in order to resolve an
impedance mismatch. When we use the term ORM we
must recognise that an impedance mismatch problem has
its source at any of these levels, and understand how and at
what level(s) a problem is best addressed.

Analysis of ORM strategies in the literature such as
[13] have focussed on consequences in implementation
rather than understanding the underlying issues with a
strategy. Our framework provides an organising
mechanism that allows us to explore issues in the design
and implementation of existing and new ORM strategy
choices. Achieving an understanding of the underlying
issues is an important contribution of our framework.

V. ORM STRATEGIES AND OUR FOUR LEVEL

FRAMEWORK

Our framework provides a new way to think about the
problem of impedance mismatch and how we go about
resolving it. Each level provides a different way of
thinking about an ORM strategy. In this section we
explore the relationship between problems of an
impedance mismatch and the layers of our framework. For
each strategy we provide illustrations from the literature.

A. Paradigm

An ORM strategy at the paradigm level involves the
reconciliation of different perspectives of a universe
provided by the object and relational paradigms. Different
aspects of an object-relational application are grounded in
each paradigm. Typically the object paradigm influences
program design and the relational paradigm database
design. ORM in this context is the act of bridging the
differences between these two paradigms. This is the
essence of the impedance mismatch problem. It is
therefore important to understand the nature of these
differences.

There is no consensus of terminology. Each paradigm
uses a different set of building blocks to describe a
universe of discourse. Although there is no single agreed
definition of an object-based representation (the UML is
one attempt but there are others [18]), such a
representation will typically include concepts such as

class, subclass, object, attribute, and association. There is
however a single definition of what constitutes a relational
representation [19]. A relational representation of the same
universe will include concepts such as relation, tuple and
domain.

There is some correspondence between the building
blocks. The relational paradigm does not prescribe the
domains that may be used. Neither does an object
paradigm prescribe the objects that may be used. A
relation represents an assertion (a predicate) about a
universe of discourse involving one or more domains and
a tuple of a relation is formally a statement of truth about
that universe. There is however no equivalent
representation in the object paradigm. An object is not a
representation of a statement of truth about a universe of
discourse. Furthermore an object has identity and
encapsulates its state whereas a tuple does not. A class
defines the allowable attributes and behaviour of an object
but its definition is not based on predicate logic. Whereas
the relational model is concerned with statements of truth,
an object has arbitrary semantics. The behaviour of an
object is defined using methods and a valid state is defined
using a constraint. In this respect a tuple may be
considered inert in so far as it has no intrinsic behaviour.
Instead a tuple may be the target of a relational operator
such as project, restrict or union. A lack of correspondence
between two perspectives on a universe of discourse
materialises as an impedance mismatch. We label this kind
of impedance mismatch a conceptual mismatch and it is
addressed using an ORM reconciliation strategy.

A reconciliation strategy must address differences in
perspective, terminology and semantics. The designer of
an object representation and the designer of a relational
representation view and describe aspects of a universe of
discourse in different ways. The designer of an object-
relational application must identify correspondence and
reconcile differences between these two perspectives.

One example of the reconciliation of object and
relational semantics is provided by Date [20]. He
emphasises that relational theory is not at odds with the
ideas of object-orientation. Just as the semantics of a class
are arbitrary, the relational model does not prescribe the
data types that may be defined. There is therefore scope
for addressing a conceptual mismatch.

B. Language

An ORM strategy at the language level is concerned
with identifying general patterns of correspondence
between the data structures available in an OOPL such as
Java, and those structures available in SQL.

Each language reflects the paradigm on which it is
based. The outline structure of a Java program is a
collection of classes. A class may be viewed as a template
for the creation of an object at run-time. An SQL schema
is a description of a collection of tables. A table
corresponds to a relation. Whereas, formally, a tuple is a
statement of truth, the semantics of a row are less strict. A
row represents data about some thing from a universe of
discourse. Each row corresponds to a tuple.

205

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



A significant difference between Java and SQL is the
extensibility of their type systems. Whereas a class is an
essential part of the extensibility of the Java type system
there is no equivalent extensibility in the SQL type system.
Implementing a representation of a relation in an OOPL
[21] or an SQL like syntax within an OOPL [15] may
move the primary focus of ORM activities to the schema
level, but it does not address this extensibility issue or
remove the need for an ORM strategy.

Generally a class is part of the type system of an
object-oriented program. Using SQL a class is something
that may be represented, it is not an extension of the type
system and also not a first-class citizen. This is the essence
of a structure problem and there exist a number of patterns
to help resolve this [13]. Aspects of an object-oriented
design such as a class and an object fit into a
representation that must be described using the existing
features of SQL. A column is a scalar value and cannot
adopt the type of a class represented in such a way. This
representation is limited as it may only be used to store the
state and not the behaviour of an object. In an object-
oriented application at run-time an object has a unique
identity independent of its state. The value of a primary
key is part of the state of a row. This is the essence of the
identity problem. The mismatch between two descriptions
of a concept materialises as an impedance mismatch. We
label this kind of impedance mismatch a representation
mismatch and it is addressed using an ORM pattern
strategy.

A pattern provides a way to describe correspondence
between data structures. SQL provides an approximation
of the data structures mandated by the relational paradigm,
just as Java provides an approximation of those mandated
by the object paradigm. The syntax and grammar for SQL
is defined by standard and is implemented in vendor-
specific languages such as Oracle and SQLServer. None of
these languages is a pure implementation of SQL but
nevertheless may be classified as a relational language. In
practice we must address not only differences between
languages as defined by their respective standards but also
differences between vendor implementations. A pattern
strategy must provide one or more patterns (such as [13])
that address issues of structure and identity.

C. Schema

An ORM strategy at the schema level will produce a
mapping between two representations of a concept. Our
emphasis here is on design issues. The description of a
concept within an object-relational application will involve
at least two schemas: one based on class and the other
based on table. These two representations of a concept are
different not just because they are phrased in a different
language, but because the purpose of those designing a
class model is different from the purpose of those
designing an SQL schema. Whilst those designing a class
will focus on the cohesive representation of a network of
interacting objects, the focus of those designing a SQL
schema is typically data volume, data integrity, and
notably the removal of redundant data. A UML class

model may only be familiar to one part of a development
team: the programmers. Database designers will conceive
a different solution based on tables that may not have a
one-to-one correspondence to that class model. This
difference of focus is the essence of the ownership
problem and produces a kind of impedance mismatch that
we label an emphasis mismatch. An emphasis mismatch is
addressed using an ORM mapping strategy.

A mapping strategy is concerned with correspondence
between two different descriptions of a concept. In order
to address the ownership problem, this correspondence
must be documented, published and implemented.
Although the detail is application specific, a mapping
strategy will generally provide a mechanism for
identifying, documenting, and implementing the
correspondence of structure and identity between specific
entries in a class model and entries in an SQL schema.
Hibernate [9] uses XML whilst [22] make use of meta-
data stored in SQL tables. This information forms an
important part of the design of an object-relational
application.

D. Instance

One issue that lies at the heart of ORM practice is the
treatment of an object. The problem is that an object is
conceptualised as an atomic unit when in practice it has a
number of subdivisions. A Java object has subdivisions of
structure, state and behaviour. The schema and instance
levels of our conceptual framework show how these
subdivisions are fragmented (Figure 2). The structure of an
object is defined both in a class and an SQL schema (the
ownership problem), the behaviour of an object is defined
in a class and a valid state of an object must be maintained
and enforced both in-memory and across one or more rows
in one or more tables, giving rise to encapsulation and
identity problems.

In practice fragmentation is addressed using a
transformation but there are problems. Data about an
object may not transform cleanly to a row of a table or an
individual slot ([20],p3) (the instance problem). The
structure of an object may not transform to a single table
(the structure problem). The SQL-92 standard does not
support the behavioural aspects of an object and so the
behaviour of an object must be implemented within a Java
class at the schema level. The later introduction of
persistent stored modules in SQL provided an opportunity
for the fragmentation of behaviour. At run-time it may not
be necessary to retrieve all the data about an object for a
user to complete a transaction. This combined with
fragmentation of the universe of objects required to
complete a transaction, is the essence of the processing
model problem and provides another driver for ORM
transformation activities. Fragmentation in the
implementation of an object is a significant characteristic
of an impedance mismatch. We label this kind of
impedance mismatch an instance mismatch and it is
addressed using an ORM transformation strategy. A
programmer must reconcile fragmentation when
developing an object-relational application.

206

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



Figure 2. Fragmentation of the subdivisions of an object

The degree of state fragmentation that is characteristic
of an instance mismatch is influenced by the ORM
mapping strategy employed to produce the structure of an
SQL schema. The design of that SQL schema is influenced
by the ORM pattern strategy chosen to address a
representation mismatch. Choices made within a level of
our framework therefore have consequences in other
levels.

An instance mismatch transformation strategy must
address the consequences of fragmentation in behaviour
and state. Such a strategy must deal with the processing
model, encapsulation, and instance problems. The SQL
standard does not provide support for the definition of
behaviour within an SQL schema although relational
database vendors have provided such facilities for some
years. The valid state of object data may be enforced by
rules defined within a class method or as a database
constraint. Ambler ([5],p228) describes shadow
information that is one strategy for the fragmentation of
state, and scaffolding attributes that are one strategy for
the fragmentation of structure.

The novel perspective provided by our framework
produces new insights in areas such as how to exploit the
strategic options available when translating a concept
between paradigms and latent issues in solutions that cross
over levels of abstraction. In providing an understanding
of the issues with an ORM strategy based on levels of
abstraction, our framework should provide standards
bodies, tool vendors, designers and programmers with new
insights into how to address problems of impedance
mismatch both at the most appropriate level of abstraction
and in the most appropriate way.

VI. A FRAMEWORK BASED APPROACH

One objective of our framework is to understand the
issues and implications of a particular ORM strategy
(“strategy”). Our framework does not assume that an
object model drives the development of a database
schema, nor does it prescribe where to start the analysis of
a strategy. In the rest of this paper we show how to use our
framework to understand the issues and implications of a
strategy and what we can do about them.

Figure 3 is an outline of a four-stage process that
provides context and guidance for the use of our
framework. Our framework is concerned with the artefacts
of object-relational design. The process uses our

framework to identify issues with a strategy and to frame
solutions to these issues. As such the process augments
any software development cycle at the point where a
choice of strategy must be made.

The process provides guidance for a change in the way
we think about a strategy. Following the process shifts our
thinking about a strategy from issues of implementation
within the ORIM problem space into the new space
provided by our framework. Our framework asks that we
think about a strategy in terms of different levels of
abstraction. This perspective facilitates new insights into a
strategy, an understanding of cause and effect, and
suggestions for improvements at the most appropriate level
of abstraction.

Our process starts with the strategies in the ORIM
problem space. Each strategy addresses one or more
problems in the implementation of an object-relational
application (Table I). The existence of a problem is the
main driver for the use of a strategy. The literature
provides some guidance on a choice of strategy based on
costs and benefits. Future choices will also be informed
by the outcomes from using our framework. The process
then proceeds clockwise through the stages of
comprehending a strategy, analysis of that strategy,
understanding cause and effect in relation to issues with
that strategy, and finally reflecting on the issues and
suggesting changes to the strategy or the context in which
it operates.

In the following sections (A through D) we describe
each of the stages of our process. We show that using our
process to understand available strategies facilitates a more
informed choice of strategy. The objective of the first
stage of our process is to comprehend a chosen strategy.

A. Comprehend a Strategy

The issue to be explored is how a strategy achieves its
objective. In the first instance this comprehension will be
based on the published literature and practical experience.
We illustrate our approach using a case study that provides
a context for strategy analysis. A case study helps clarify
the semantics of a strategy, explain issues and highlight
outcomes. Applying a strategy to a case study provides a
worked example, demonstrates comprehension and
cements understanding. A case study and worked example
also provide material for illuminating issues in other stages
of the process. Once we have an understanding of a
strategy our process asks that we now move from the
ORIM problem space and think in terms of our
framework. In the next stage of the process we use our
framework to analyse a strategy.

B. Analyse a Strategy

The objective is to provide new insights into a strategy.
Issues to be explored include: whether a strategy is
consistent in terms of our framework, whether a strategy
correctly represent a data structure and its semantics, and
whether the assumptions a strategy involves are safe
assumptions to make. The resulting issues are then
structured in terms of our framework.

207

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



Figure 3. A Framework Based Approach

208

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



The issues must be phrased using terms at the
appropriate level of abstraction. Each level provides a
different focus for analysis and hence, a different set of
terms (Table III). For any discourse between silos to be
consistent and valid it is important that the corresponding
set of terms are used. In the next stage of our process we
identify the cause, effect and consequences of these issues.

TABLE III. GUIDELINES FOR THE TERMS USED WITHIN EACH LEVEL

OF OUR FRAMEWORK

Level Terminology
Conceptual Terms relating to a particular world-view, irrespective of

how it is actually described or implemented. Example
terms include class, object, message, relation, tuple and
union.

Language Terms relating to language semantics, syntax and
grammar, irrespective of a design. Example terms include
UML class, Java Class, SQL table and column.

Schema Terms relating to specific design choices including
anything from a universe of discourse. Example terms
include Order, Customer, Trade and Equity

Instance Terms relating to data values. Example terms include
instance, row, value and cast.

C. Understand Cause and Effect

Our framework is used to provide structure both to the
analysis and the results. Issues to be explored include:
whether an issue is related to the strategy or the context in
which the strategy operates, whether the issue is local to a
particular level, and if not what is the cause of an issue. An
issue at the schema level may for example, be caused by
an omission at the language level. This omission may be a
limitation of a particular language or it may be caused by a
conceptual difference. Such a conceptual difference would
be beyond the scope of an object-relational application
project to resolve. In order to correctly address a
conceptual difference, the discourse would need to involve
at least product vendors, standards bodies and possibly
research bodies. Our framework provides the structure
necessary to correctly identify and communicate both the
cause and the consequences.

D. Reflect on Issues and Suggest Changes

Once we understand cause, effect and consequences
we are in a position to suggest improvements to a strategy
or to the context in which that strategy operates. In the
final stage of our process we use the framework to identify
options for change. Each level of our framework provides
an opportunity to address an issue in a different way. The
issues to be explored include: whether it is appropriate to
make an improvement at a particular level, what change
we need at that level in order to resolve an issue, and
whether we change the strategy such that an issue is
avoided. In order that others benefit and to avoid wasted
effort, suggestions and improvements should be fed back
into the wider discourse through changes to ORM tools,
standards and the patterns used to describe strategy.
Through the use of common abstractions and consistent
terminology, our framework provides the structure
necessary to communicate these improvements and to

facilitate a coherent discourse for their implementation
across cultures [23].

In the next section we provide an example of how the
process and framework are used together to understand
and improve a strategy.

Figure 4. Financial Instrument Class Hierarchy

VII. USING OUR PROCESS – A WORKED EXAMPLE

Figure 4 presents a small class hierarchy for a financial
instrument that provides a case study for our worked
example.

There are two distinct and mutually exclusive kinds of
instrument: Equity and Debt. Each is identified by an
International Securities Identifying Number (ISIN) code.
The ISIN code is defined under ISO 6166 and is unique
across all financial instruments. In order to simplify the
example, no associations or aggregates have been used.

We anticipate that such a hierarchy would form the
basis for a Java application that would maintain data about
financial instruments. The design of that Java application
is beyond the scope of this paper but for now we will
assume that Figure 4 provides a suitably accurate
description of the class model.

Our requirement is to provide a means to store data
about the objects of class Equity and class Debt in a
relational database. We need to produce a data structure
using SQL that corresponds to a Java data structure based
on Figure 4. There are a number of strategies that take as
their starting point a class hierarchy and produce an SQL-
92 based representation. Three such strategies are [13] p9-
17:

a) A single table per class hierarchy

b) A single table per concrete class

c) A single table per leaf class

Let us consider strategy (a) (“the strategy”). This
strategy combines the definition of all classes in a
hierarchy to form a single SQL table. A row of this table
will store data about an instance of a class in the hierarchy.
We are considering this strategy because Keller [12]
recommends it as a strategy for a small application and

209

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



Ambler [24] recommends it for systems with a shallow
class hierarchy. Ambler [5] suggests that during the
development of an object-relational application refactoring
is used to implement a change of strategy should it prove
necessary. We will use SQL-92 for our example because
no description of this strategy uses the additional facilities
available in later versions of SQL.

In the following sections we show how in the context
of our process, our framework is used to understand and
improve the strategy. The outcomes of using our strategy
could be used to compare strategies in order to choose the
most suitable one. We do not show such a comparison in
this paper but focus instead on improving a strategy.

A. Comprehend the Strategy

In the previous section we established our rationale for
using the strategy. Here we show how the strategy
achieves our objective to store object data.

1) Applying the Strategy to our Case Study
The process of applying the strategy is summarised as

follows:
 Create a single table (Ambler suggests using the

name of the root class as the table name).
 Create a column for each attribute.
 The data type of a column must correspond to the

type of an attribute in so far as it must accept all
possible values of that attribute.

 Each column representing a subclass attribute
must accept NULL regardless of its definition in
the class model.

Applying the strategy to Figure 4 produces the SQL-92
table definition presented in Figure 5. Note that a single
row in this table will represent data about either an object
of class Equity or an object of class Debt. The columns
NUMBER_OF_SHARES, DIVIDEND_DATE and
INTEREST_RATE must therefore accept NULL even
though for their respective classes they are mandatory.

2) Assumptions
Descriptions of the strategy in Keller [13] and Ambler

[24] make the following assumptions:
 It is not necessary to maintain the parent-child

relationship between a class and a subclass in the
database. This relationship is used to identify the
attributes necessary for the definition of a table.

 An object can be fully described using a single
row.

 The data types of a class attribute and a column
are compatible.

 Only that column corresponding to an attribute of
a class to which an instance belongs is set for a
row. All other columns will be set to NULL.

 The mapping of a class attribute to a column is
documented in some form or at least is somehow
known by those who must use it.

 If the data type of a class member attribute is
changed, regardless of the topological position of
the class in the hierarchy, that change applies to all
rows of the table.

3) Costs and Benefits
The main benefits of this strategy are [24]:
 Data about all objects is accessible from a single

table;
 There is only one table for a programmer to

consider;
 The mapping from a class hierarchy to a single

table is a “simple approach”;
 It is easy to add a new class should requirements

change.

create table INSTRUMENT(
ISIN CHARACTER(12) PRIMARY KEY,
NAME CHARACTER(20),
DESCRIPTION CHARACTER(40),
NUMBER_OF_SHARES INTEGER NULL,
DIVIDEND_DATE DATE NULL,
INTEREST_RATE FLOAT NULL)

Figure 5. The SQL-92 table derived from the Instrument class
hierarchy

Ambler and Keller describe a number of issues with
this strategy. One such issue relates to classification. In
order to maintain the class member semantics of a
collection of data values in the context of table
INSTRUMENT, there must be some means to differentiate
between data for an object of class Equity and data for an
object of class Debt. There are at least three options for
achieving this:

a) Infer the class of a row from the existence of
values for its attributes [13], p13. For example only the
row for an object of class Equity will have a value for
NUMBER_OF_SHARES. For a Debt object this column
would have a NULL value.

b) Augment the table definition with a new column
the value of which indicates the class of data to which a
row belongs [24]. For a row representing data about an
object of class Equity for example, this column would
have the value “EQUITY”.

c) Use a discriminator value from the universe of
discourse in order to differentiate the class of data stored
in a row [13], p13. Similar to option “a” but here we look
at the actual value not its presence, and option “b” but
use the values stored in an existing column rather than
creating a new one. All Debt ISIN codes could include the
character “D” at a certain position. This character
indicates that the ISIN code is non-atomic and identifies
data about an object of class Debt.

Let us consider option (a) because it does not require
the maintenance of additional data. A user of the table
INSTRUMENT must know how to infer class
membership.

Other issues documented in [13] and [24] include
potential wasted space in the database through the use of
NULL, the consequences of certain changes to the class

210

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



hierarchy, locking issues because all data is the same
space, and indexing issues because secondary indexes are
required.

With as full grasp of the current knowledge about a
strategy as space allows, and a worked example based on a
case study to cement this understanding, we are now in a
position to start our analysis. This analysis will identify the
cause of these implementation issues and highlight new
issues.

B. Analysis of the Strategy

The observations and insights we have gained during
our analysis of the strategy are described in the following
subsections. They are not listed in any particular order but
they are categorised using the levels of our framework.

1) Conceptual Insights
We need to represent a class hierarchy in a SQL

schema in order to provide for requirements and design
traceability. It is essential to understand the semantics of a
particular class hierarchy before applying the strategy. The
strategy does not make clear which definition of a class is
being used.

In mapping a class to a table, the strategy mixes levels
of abstraction (the shaded boxes in Figure 6). The term
“table” is a language level construct within the relational
silo. The term “class” is a conceptual level construct
within the object silo. This strategy should either map a
class to a relation or map a class in a particular object-
oriented programming language, e.g., Java to a table. This
is an important distinction because the semantics of a Java
class are not the same as those of a C++ class at the
language level. A C++ class for example supports multiple
inheritance.

Figure 6. Mixing levels of abstraction

A relation represents a kind of fact. In combining the
definitions of all subclasses into a single relation this
strategy overloads the semantics of a relation. A relation
must now represent more than one kind of fact although
each tuple represents a single fact.

2) Language Insights
The strategy employs a class hierarchy as the basis for

the definition of a table, but the actual hierarchy is not
represented in the database. We therefore lose
requirement and design traceability.

SQL-92 provides no explicit support for a hierarchy in
the definition of a table. Support for a hierarchy can be
designed into a table but the strategy does not require, nor
the SQL-92 based representation (Figure 5) preserve, the
parent-child relationship between a class and a subclass.

To ensure data integrity and to enforce the semantics
of a disjoint subclass, there must be some way of
identifying to which class the data in a row belongs.

A column in a table represents an attribute of a class.
The assumption is that they are of equivalent data types.
SQL-92 has a predefined set of data types. The type of a
class attribute may be another class although that is not
shown in this example. The definition of that class is a
schema level decision so there is no guarantee of type
compatibility at the language level and casting must be
used. The strategy does not describe how to address
differences in type or scale.

3) Schema Insights
The classes Equity and Debt are disjoint. Class

Instrument is abstract. These are design features built into
our class model (Figure 4). The SQL table INSTRUMENT
is formed from the union of the attributes of the class
Instrument and the subclasses Equity and Debt. These
attributes are represented as columns of the table
INSTRUMENT. Data about each object is stored in a row
of the table INSTRUMENT. As the primary key, ISIN
provides the semantics of a disjoint subclass because it is
unique across all financial instruments.

Instrument is an abstract class. Although no object of
this class should exist, for reasons of data integrity it is
important to prevent the insertion of a row of this class in
the table INSTRUMENT.

The data type of each column of the table
INSTRUMENT has a trivial correspondence to the type of
the corresponding attribute of each class. This
correspondence is not always so trivial. Some attributes
may be derived or use names which are not the same as or
similar to the column name. A user of the schema must
understand that a row of the table INSTRUMENT
represents data about one of two kinds of object. They
must also know how to differentiate those kinds of data.

4) Instance Insights
The class of data stored in a row may be determined in

a number of ways. The choice must be made clear to those
who use the table. In this example we have chosen to infer
the class from one or more column values.

The semantics of the Instrument class hierarchy are not
represented in the table INSTRUMENT and so it is not
straightforward to query over a subclass of Instrument and
all its subclasses. In our simple example classes Equity
and Debt do not have a subclass. If they did a programmer
must understand the conditions for returning only those

211

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



rows belonging to each object of each subclass in which
they have an interest.

TABLE IV. INSIGHTS INTO THE STRATEGY FROM USING OUR

FRAMEWORK

Level Insights into the Strategy
Conceptual Mix levels of abstraction.

A relation has no explicit semantics of hierarchy.
Overload the semantics of a relation.

Language Omit the subclass relationship.
Issues of type or scale between an attribute and a column.

Schema Enforce the semantics of a subclass.
Enforce the semantics of an abstract class.
Make explicit the correspondence between attributes and
columns.
Differentiate the class of data held in a row.

Instance Identifying the class to which the data in a row belongs.
Query a sub-hierarchy.

5) Summary
We have used our framework to question the strategy

at a number of levels of abstraction. Table IV summarises
the insights that thinking about the strategy in terms of our
framework provides. Each level of our framework has
focused attention on a different aspect of the nature of the
strategy. Our framework has helped us to see new issues
and relationships. In the next section we use our
framework to explore these relationships and their
consequences.

C. Understand Cause and Effect

Here we provide two examples of cause and effect
relationships based on the conceptual issues of overloaded
semantics and support for the semantics of hierarchy.

1) Overloaded Semantics
In Table V we use the levels of our framework to show

the consequences of overloading the semantics of a
relation.

The strategy is described in [13] p9-17 using terms that
we generally recognise within the language level of our
framework, for example a class corresponds to a table and
an attribute corresponds to a column. This strategy does
not address the root cause of this problem only the
symptoms. Our framework shows that we must look to the
conceptual level for the cause of the overloaded semantics
problem.

The results of applying our framework (Table V)
clearly show that the conceptual problem of representing
more than one kind of fact using a relation has
consequences within the levels below. The strategy
confronts this conceptual problem at the language level by
requiring a way to differentiate the data stored in a row.
The choice of mechanism for differentiation will impact
the definition of the table INSTRUMENT at the schema
level. Ultimately at the instance level, a programmer
working with data in a row of table INSTRUMENT must
understand how to differentiate between data about an
Equity object and data about a Debt object.

Using our framework we relate the consequences of
this conceptual problem back to the implementation

problem of wasted space described by Amber and Keller
(see Section VII.A). The overloading of a relation
necessitates NULL valued columns. WHERE clause
complexity is another consequence of overloading the
semantics of a relation.

TABLE V. OVERLOADING THE SEMANTICS OF A RELATION

Level Consequences
Conceptual In our example a relation must represent two kinds of

fact. There must be some way to differentiate the class of
data held in a relation.

Language An SQL table is a representation of a relation. The SQL
language requires that all rows in a table share the same
definition provided by that table. The strategy necessitates
we compromise by (i) providing some way to
differentiate a row, and (ii) accepting that a column
corresponding to a subclass attribute must accept NULL.
Preservation of semantics requires that the SQL language
support a form of constraint.
There must be a mechanism to document the
correspondence between a column and a class attribute.

Schema The definition of table INSTRUMENT must provide
some way to differentiate a row. A row may represent
data about an object of class Equity and an object of class
Debt. We chose to infer class membership from column
values.
The columns NUMBER_OF_SHARES,
DIVIDEND_DATE and INTEREST_RATE must accept
NULL even though for their respective classes they are
mandatory. A database constraint must ensure attributes
are populated correctly based on class.

Instance Our chosen option for identifying class membership does
not require additional columns but class membership is
not explicit. A user of the table INSTRUMENT must
understand how to differentiate the class of a row based
on the value or one or more columns. Differentiating a
row based on multiple columns adds complexity to a
WHERE clause.
Using another method for identifying class membership
requires more data be maintained but would make class
membership more explicit.
A program must ensure that the correct columns are
populated for each subclass. A DBA must enforce this
using a constraint.
The use of NULL values can result in wasted space in a
database but this depends on vendor implementation.

2) Omitting the Semantics of Hierarchy
In Table VI we use the levels of our framework to

show the consequences of omitting the semantics of
hierarchy.

We must look to the conceptual level of our framework
for the root cause of the hierarchy problem. The semantics
of hierarchy are not present in a relation. The strategy does
not attempt to address this problem at the language level.
As a result at the schema and instance levels it is necessary
to encode the semantics of a hierarchy outside the table
INSTRUMENT.

A consequence of omitting the semantics of hierarchy
is that these semantics are encoded in database constraints
and in each query that needs to make use of them. Should
the hierarchy change, all places where these semantics are
encoded must also be identified and changed. We must
encode the semantics of hierarchy because they are not

212

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



present in the table INSTRUMENT. They are not present
because an SQL table does not have explicit support for a
hierarchy and the strategy does not address this. An SQL
table has no support for hierarchy because it is based on
the concept of a relation which itself supports no notion
hierarchy. If we had adopted the approach of [3] and
focused solely on aspects covered by the schema an
instance levels of our framework, we would not have
identified the real cause of this problem.

We have identified new issues, traced their cause, and
shown that they have consequences for those developing
an object-relational application. Our framework can also
be used to understand an existing issue and to provide one
possible chain of cause and effect. Table VI shows that
whilst providing a means to query the Instrument
hierarchy, this strategy introduces problems if one wishes
to query any hierarchy below that (an issue not present in
our case study).

TABLE VI. OMITTING THE SEMANTICS OF HIERARCHY

Level Consequences
Conceptual The semantics of a class hierarchy are well defined, but

the actual semantics in use depend on the context
provided by a class model and the intention of the
designer. A relation has no explicit semantics of
hierarchy.

Language An SQL-92 table also has no explicit semantics of
hierarchy. The strategy does not provide a means to
address this.

Schema The semantics of the Instrument class hierarchy are not
present in the table INSTRUMENT. In order to preserve
data integrity, a DBA must encode these semantics in one
or more database constraints.

Instance In terms of the class hierarchy, all we can say about a
single row is that it belongs to a given class and to the
hierarchy rooted at class Instrument. Information
regarding the topological position of that class in the
hierarchy is not present in either the data or the definition
of the table INSTRUMENT. A position may be inferred
[25] but this should not be necessary and is prone to
ambiguity. As a consequence, to correctly form a
polymorphic query over a sub-tree, a programmer must
encode the semantics of the Instrument hierarchy in a
query. The deeper the hierarchy one represents using a
single table, the more complex the WHERE clause
becomes. This is particularly true if one wishes to query
data for objects belonging to a leaf class.

Our framework can also be used to clarify received
wisdom. Contrary to Keller’s suggestion in [13], p13, it is
not sufficient to only identify to which class a row of data
belongs. The query must also include the semantics of that
hierarchy. Table VI uses our framework to show why a
query must include these semantics.

The root cause of an issue is not always at the
conceptual level of our framework. We have assumed that
there is a direct correspondence between a class hierarchy
and a table. A schema provides the context necessary for
normalisation. Normalisation is a process within the
relational silo that breaks down correspondence at the
schema level. This issue must be resolved within the
design of a schema.

3) Summary
We have shown that our framework provides a way to

understand both the cause of an issue with a strategy and
the consequences of that issue. The root cause of an issue
may be at any one of the levels of our framework and its
effect may materialise in different ways. In the next
section we use our framework to reflect on this new
understanding and suggest opportunities for improvement.

D. Reflect on Issues and Suggest Changes

We have identified two issues with the strategy:
overloading the semantics of a relation, and omitting the
semantics of hierarchy. We can improve the strategy in
two ways: either indirectly by addressing the symptoms of
an issue or directly by addressing the context.

The context of any given level of our framework is
those levels above it, so for the schema level the language
and conceptual levels provide the context. The cause of an
issue may be at any level of our framework. Our
framework also provides a means to understand at which
level symptoms emerge and for thinking about the most
appropriate approach to address them.

Understanding cause and effect is not the only
requirement for change. The ability to effect change
depends on the power and influence of those involved.
Ideally the root cause of an issue should be addressed, but
this is not always an option for those developing an object-
relational application. Their influence will typically
concern the schema and instance levels although the use of
dynamic languages such as Ruby and Groovy [26] may
change this. If an issue is best resolved at the conceptual or
language levels they will still have to adopt an indirect
approach and therefore only address the symptoms of an
issue. Those involved with the definition of a standard or
the design of a programming language will have influence
to affect change at the language level. Research bodies
and the community in general are best placed to deal with
a conceptual issue. They have the power and influence to
adopt a direct approach.

1) Indirectly
An indirect approach takes context as given and will

not address the root cause of an issue. A solution at the
schema level must work within the constraints of the
languages used and as a result also accept any conceptual
problems. The root cause of both our issues is at the
conceptual level. A direct approach in this case will
therefore involve avoidance or mitigation at best. Table
VII summarises some of the indirect options available for
addressing aspects of each issue.

Ultimately it may be more appropriate to use a
different strategy. In order to address the first issue we
could use a strategy that involves creating a separate
relation for each concrete class [24]. This would remove
some of the WHERE clause complexity in terms of class
identification and joins, wasted space and the need to

213

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



maintain additional data but would go against the spirit of
the strategy: to represent all data in a single table.

TABLE VII. INDIRECT OPTIONS

Level Suggestions
Schema Use a different strategy. One that produces a separate

relation for each concrete class.
Create a database view for each class.
Add a column PARENT_CLASS that indicates the parent
class.

Instance Using a different strategy avoids maintenance of additional
data.
Use a database view to realise data for a subclass.
Infer class membership from attribute values.
Set the value of PARENT_CLASS to be the classifier value
for the parent class.

One solution that does not involve a change of strategy
is to retain the single base table INSTRUMENT but
represent each subclass or subclass hierarchy as a database
view. Using a database view hides WHERE clause
complexity for a schema user and the semantics need only
be defined in one place. This solution does not address the
need to maintain additional data or the problem of wasted
space in the base table (although this is arguably a
database vendor implementation issue). The use of a
database view would increase the space required but only
marginally if a materialised view is not stored. We can
avoid the maintenance of additional data if we continue to
infer class membership from the existence of data values
or use an existing discriminator value from the universe of
discourse.

Neither approach addresses the omission of the
semantics of hierarchy. Adding a column
PARENT_CLASS does not solve the problem because it
confuses intent and extent. The semantics of a hierarchy
are mixed with the data representing an object. This messy
implementation fudge is not a viable solution because it is
still necessary to know how the hierarchy is structured and
there are problems with an abstract class or any class
where no rows (yet) exist.

2) Directly
Here we use the levels of our framework to suggest

changes to the context in which the strategy operates. In
Table VIII and Table IX are options for addressing both
issues at each level of our framework. We do not propose
a complete solution. Our objective is two fold. First to
show that there are options at the conceptual and language
levels, and second to highlight that these provide different
options at other levels of our framework.

In the case of both issues, the root cause of the problem
is at the conceptual level of our framework. This is
therefore the most appropriate level at which to make
improvements, but changes at this level are the most
fundamental. A change at the conceptual level will have
far reaching consequences, will require input from
researchers and standards bodies, and consequently will
take time to implement. Such a change is out of scope for
any object-relational application development project.

We note that work to address these issues by changing
context has already started. The majority of the solution
described in Table IX is possible using the object-
relational features introduced in SQL:1999 (“OR-SQL”).
Only the ability to insert data into the table
INSTRUMENT and have a row created in an appropriate
sub-table is not supported. Although counterintuitive, this
facility may be important for a programmer because it
maintains the single table nature of the solution provided
by the original strategy.

TABLE VIII. DIRECT OPTIONS FOR ADDRESSING OVERLOADED

SEMANTICS

Level Suggestions
Conceptual Recognise that a relation may represent more than one

kind of fact.
Language Provide a classifier mechanism in the definition of a

table.
Extend the SQL language or its implementation to
support optional columns based on this classifier.

Schema Do not represent Equity and Debt as subclasses. Use a
single class Instrument. This is not in the spirit of the
object model and may cause issues in the object silo.
Represent each class using a separate table. Again, this is
not in the spirit of the strategy.

Instance Provide access to the classifier mechanism above within a
query.
Insert only the data values required based on the
classifier. Omit a column if it is not relevant to a
particular kind of row.

In Section VII.A.3 we listed some of the benefits of the
strategy. These benefits come at a cost. Storing data about
all objects in a single table may be a “simple approach”
[24] but it has costs in terms of work on database
constraints and queries. Whilst it may be easy to add a new
class, such a change has consequences including the
maintenance of database constraints and queries. Our
framework has drawn attention to these problems and
provided a way to think about improving the situation.
The information emergent from the use of our framework
and process is therefore of benefit to those who must
choose and implement this strategy.

TABLE IX. DIRECT OPTIONS FOR ADDRESSING THE OMISSION OF

HIERARCHY

Level Suggestions
Conceptual Recognise the possibility of a hierarchy of relations.

Support the concept of an abstract relation.
Language Support a hierarchy of tables and permit a single query

over the hierarchy of tables. That query does not need to
include the names of all sub-tables.

Schema Create a separate table for classes Instrument, Debt and
Equity but each table is part of a hierarchy of tables.
Each table may be queried individually or as part of a
hierarchy.

Instance Create a row in the corresponding base table or by
inserting into table Instrument. Query the entire
hierarchy or part thereof using a single statement.

3) Summary
Our analysis has demonstrated that this ORM strategy

does not address two conceptual problems because it is a

214

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



solution at the language level of our framework. The
strategy does not attempt to mask these problems and this
results in work for those who use it to implement an
object-relational application.

There are indirect options open to those developing an
object-relational application. Whilst these do not address
the fundamental problem they will improve the situation in
the short term leaving time for conceptual issues to be
addressed through a direct approach.

There are a number of strategies for any impedance
mismatch problem. It may be that using another strategy is
more appropriate for those developing an object-relational
application. We anticipate that effecting change at the
conceptual and language levels of our framework will be
more difficult than at the schema or instance levels.
Changing the definition or implementation of SQL for
example is not feasible for those developing an object-
relational application. Our framework provides a basis for
making the decision to change by asking that we think
about cause, effect and consequences. That information
helps when selecting amongst alternatives. At this point
we have come full circle in our process (Figure 3).

VIII. CONCLUSION AND FUTURE WORK

Our conclusions concern the framework used to
understand a strategy and the process by which we used
the framework to suggest improvements to a strategy.

1) The Framework
We have demonstrated that understanding a strategy at

different levels of abstraction does identify the root cause
of an issue. Our framework is not concerned with the
issues of implementation that have driven work by Ambler
[24] and Fussell [11]. We have also demonstrated that in
order to address an ORIM problem at the most appropriate
level of abstraction we must understand the real issues that
underpin that problem.

In our framework we have a new way to understand an
ORM strategy. If we think about a strategy at a number of
levels of abstraction we find new insights into a strategy.
These insights provide an opportunity to improve a
strategy and the context in which a strategy operates. If the
outcomes appear obvious it is because of the new
perspective provided by our framework. A perspective that
takes context as given, is driven by a single problem, or
which views a solution as an exercise in software
architecture ([16], [11]) will not produce the same results.

Ambler [16] suggests software architecture as a means
to shield a programmer from the details of a strategy. In
terms of our framework this is predominantly a schema
level activity within the object silo. Fussell [11] suggests a
separation based on client and server. This separation
corresponds loosely to the object and relational silos of our
framework. Fussell’s emphasis is on decoupling but
impedance mismatch problems occur when we try to
combine object and relational artefacts. Neither
perspective provides the same scope or a means to
facilitate an analysis of cause and effect and an
understanding of consequences that we have achieved
from the use of our framework. Taking a step back from

the detail of implementation, our framework allows us to
address the cause of a problem, not its symptoms, at the
most appropriate level of abstraction.

The information elucidated through the use of our
framework will be of use to standards bodies, tools
vendors and those who define a strategy. Thinking about
the consequences of a strategy provides information
necessary to choose between alternatives. Those working
on an object-relational application can now make a more
informed choice of strategy. Those working on database
and programming language standards see the impact of
past choices and the need for change. Researchers in
object and relational concepts see the consequences of
their work and that there is still work to be done to cross
the chasm [27].

The framework helps bridge the cultural impedance
mismatch [23]. Through the use of common levels of
abstraction our framework facilitates a discourse between
proponents of object and relational perspectives. A
specific set of terms must be employed at each level of the
framework although further work is required to develop a
formal ontology of terms based on Table III. We are now
in a position to address problems of an ORIM in a
structured and consistent way, not just across levels of
abstraction but also between silos. We can now think in an
integrated way, for example how decisions made in the
design of Java correspond to structures in SQL or vice
versa. We also have a way to understand the impact of
these changes for those designing both an object and a
relational schema and programming an object-relational
application.

Another opportunity for our framework is to
understand the impact and potential of changes introduced
in OR-SQL on the current ORM strategies. In terms of our
framework, OR-SQL appears to characterise a language
level change in the relational silo. Further work is required
to understand the opportunities these changes present for
new or enhanced ORM strategies with languages such as
Java, LINQ [15] and Ruby [26].

A generalised form of our framework could help to
understand issues at the junction of any two paradigms in
computing or other disciplines.

2) The Process
We have demonstrated that our process provides the

necessary guidance to improve a strategy. We have
identified options for change that are linked to a
conceptual problem not a symptom of an implementation.
We have also demonstrated that our process supports a
shift in thinking away from implementation issues because
we start by understanding a strategy and issues of
implementation, but finish by suggesting solutions at a
number of levels of abstraction.

REFERENCES

[1] Ireland, C., Bowers, D., Newton, M., Waugh, K.: A Classification
of Object-Relational Impedance Mismatch. In: Chen, Q.,
Cuzzocrea, A., Hara, T., Hunt, E., Popescu, M. (eds.): The First
International Conference on Advances in Databases, Knowledge
and Data Applications, Vol. 1. IEEE Computer Society, Cancun,
Mexico (2009) p36-43

215

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/



[2] Neward, T.: The Vietnam of Computer Science
(http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Comp
uter+Science.aspx) (6th February 2007)

[3] Stathopoulou, E., Vassiliadis, P.: Design Patterns for Relational
Databases. Vol. 2009. ODMG (2009)

[4] Meijer, E.: There is No Impedance Mismatch (Language Integrated
Query in Visual Basic 9). OOPSLA. ACM, Portland, Oregon
(2006)

[5] Ambler, S.W.: Agile Database Techniques - Effective Strategies
for the Agile Software Developer. Wiley (2003)

[6] Keller, A.M., Jensen, R., Agarwal, S.: Persistence Software:
Bridging Object-Oriented Programming and Relational Databases.
In: Buneman, P., Jajodia, S. (eds.): ACM SIGMOD international
conference on management of data, Vol. 22. ACM Press,
Washington, D.C (1993) 523-528

[7] Marguerie, F.: Choosing an object-relational mapping tool
(http://weblogs.asp.net/fmarguerie/archive/2005/02/21/377443.asp
x) (14th November, 2007)

[8] Holder, S., Buchan, J., MacDonell, S.G.: Towards a Metrics Suite
for Object-Relational Mappings. COMMUNICATIONS IN
COMPUTER AND INFORMATION SCIENCE 8 (2008) 43-54

[9] Hibernate: (www.hibernate.org)

[10] Biswas, R., Ort, E.: The Java Persistence API - A Simpler
Programming Model for Entity Persistence
(http://java.sun.com/developer/technicalArticles/J2EE/jpa/index.ht
ml) (25th September 2007)

[11] Fussell, M.L.: Foundations of Object Relational Mapping
(http://www.chimu.com/publications/objectRelational/) (25th
September 2007)

[12] Hohenstein, U.: Bridging the Gap between C++ and Relational
Databases. In: Cointe, P. (ed.): European Conference on Object-
Oriented Programming, Vol. Lecture Noted on Computer Science
1098. Springer-Verlag, Berlin (1996) 398-420

[13] Keller, W.: Mapping Objects to Tables: A Pattern Language. In:
Bushman, F., Riehle, D. (eds.): European Conference on Pattern
Languages of Programming Conference (EuroPLoP), Irsee,
Germany (1997)

[14] Lammel, R., Meijer, E.: Mappings Make Data Processing Go
'Round: An Inter-paradigmatic Mapping Tutorial. Lecture Notes in
Computer Science 4143 (2006) 169-218

[15] Schwartz, J., Desmond, M.: Looking to LINQ
(http://reddevnews.com/features/print.aspx?editorialsid=707) (23rd
October 2007)

[16] Ambler, S.: The Design of a Robust Persistence Layer for
Relational Databases
(http://www.ambysoft.com/downloads/persistenceLayer.pdf) (10th
May 2007)

[17] Griethuysen, J.J.v. (ed.): Concepts and Terminology for the
Conceptual Schema and the Information Base. ISO, New York
(1982)

[18] Coad, P., Yourdon, E.: Object Oriented Analysis. Yourdon Press
(1990)

[19] Codd, E.F.: A relational model of data for large shared data banks.
Communications of the ACM 13 (1970) 377-387

[20] Kalman, D.: Moving forward with relational: looking for objects in
the relational model, Chris Date finds they were there all the time.
DBMS, Vol. 7 (1994) 62(66)

[21] Meijer, E., Schulte, W.: Unifying Tables, Objects, and Documents
(http://research.microsoft.com/~emeijer/Papers/XS.pdf) (21st
August 2007)

[22] Sutherland, J., Pope, M., Rugg, K.: The Hybrid Object-Relational
Architecture (HORA): an integration of object-oriented and
relational technology. ACM/SIGAPP symposium on Applied
computing: states of the art and practice. ACM Press, Indianapolis,
Indiana, United States (1993)

[23] Ambler, S.: The Cultural Impedance Mismatch Between Data
Professionals and Application Developers
(http://www.agiledata.org/essays/culturalImpedanceMismatch.html
) (10th May 2007)

[24] Ambler, S.: Mapping Objects to Relational Databases: O/R
Mapping In Detail
(http://www.agiledata.org/essays/mappingObjects.html) (12th
April 2007)

[25] An, Y., Borgida, A., Mylopoulos, J.: Discovering the Semantics of
Relational Tables Through Mappings. LNCS 4244 - Journal on
Data Semantics VII (2006) 1-32

[26] Richardson, C.: ORM in Dynamic Languages. Communications of
the ACM 52 (2009) 48-55

[27] Brown, K., Whitenack, B.G.: Crossing Chasms: A Pattern
Language for Object-RDBMS Integration "The Static Patterns"
(http://www.ksc.com/articles/staticpatterns.htm) (30 December
2008)

216

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/


