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Abstract 
 

Software Product Line (SPL) engineering is one 
approach for addressing customization and variability 
for software products. However, current state-of-the-
art often focuses on feature modeling and component 
variability while insufficiently addressing data model 
variability difficulties and their associated complexity. 
Various software qualities, such as correctness, 
reusability, maintainability, testability, and 
evolvability, are negatively impacted. 

In this article the Approach for Data Model 
Variability (ADMV) is described which provides a 
unified and systematic methodology for providing a 
consistent view to capture data variability in data 
models. Adapter generation hides and decouples 
components from superfluous data elements and 
supports SPL data integration with the potentially 
multifarious external systems and devices that a SPL 
may need to consider. An eHealth SPL case study is 
presented supporting adapter generation with 
differential data conversion and data integration with 
medical devices. The results show that with this 
approach, data model variability and data integration 
can be effectively addressed and desirable software 
qualities preserved. 
 

Keywords - Data Modeling; Data Integration; 
Variability; Software Product Lines; Unified Modeling 
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1. Introduction 
 

One approach that promotes the systematic reuse of 
software components for different but similar software 
products (typically products in the same domain) is 
SPL Engineering (SPLE). Typically the commonalities 

and variability of the products in the product line are 
captured and then the development is split into domain 
(commonalities) and application (additional individual 
features for the final product). Products are then built 
by integrating the common artifacts (usually a 
platform) and optionally configuring them with 
product-specific artifacts [11] [14]. 

Significant work and various methodologies for 
domain analysis and variability modeling for SPLs 
with a focus on features are, for instance, Feature-
Oriented Domain Analysis (FODA) methodology [9], 
FeatuRSEB [8], PuLSE [2] and “the notion of 
variability” [25]. Typical feature models in SPLs allow 
for many (~10x) possible permutations. Considering 
that an artifact may influence the data model (e.g., adds 
new data or relations), all artifacts must be able to 
handle multiple data variants, although they themselves 
make no use of the available differences. Yet the 
aforementioned methodologies do not sufficiently 
support and address variability in the data models. The 
Orthogonal Variability Model (OVM) [14] does go 
beyond features to addressing variability in artifacts, 
but is an abstract approach missing a notation that can 
be used by automation for data models (also known as 
schemata). While the challenging issue of data model 
variability has been previously studied under schema 
integration [13], data conversion, data and metadata 
heterogeneity, schema evolution, enterprise application 
integration, etc., a holistic approach for SPLE is 
absent.  

The Approach for Data Model Variability (ADMV) 
described in this paper provides a unified methodology 
for SPLE to consistently view and edit the data within 
the data model, capture the variability, as well as shield 
artifact developers from extraneous differences. 
Additionally, constraint checking support for data 
integration variability in SPLs via views and adapter 
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generation is considered, expanding on our previous 
work [1]. 

To motivate and demonstrate the features of the 
ADMV, a case study in the medical domain for an 
eHealth SPL derived from a third party served as the 
research basis. It is presented in simplified form for 
this article. In the following section the scenario and 
solution requirements are presented. In Section 3, the 
ADMV is presented and then applied in Section 4 to an 
eHealth SPL scenario to exemplify the approach. 
Section 5 considers alternative approaches and Section 
6 evaluates the solution against qualities. Related work 
is then discussed in Section 7. A conclusion and future 
work discussion follows in Section 8. 
 
2. Scenario and requirements 
 

In eHealth, an increasing market demand for 
integrated medical information systems and solutions 
exists, with globalization in the market and 
customization demands spanning national boundaries. 
The difficulties for developing and supporting such 
systems become apparent in time-to-market, labor 
costs, and error-proneness when aligning and 
supporting the various data models and data integration 
needed for such systems. To support a variety of 
markets, an SPL approach allows the medical 
information platform customer to select arbitrary 
features as add-ons to the base product, e.g., date-
definition, record repository, security, etc. This entails 
various challenges, among them that the overall 
product instance-specific data model will change 
depending on the features selected, and another 
challenge being the integration requirements with 
medical devices and other medical systems. 

For example, a medical information system shall 
work in different hospital environments. Patient data 
are stored in folders representing a single hospital stay 
(“clinical record”). All documents created during a 
later hospital stay are stored in a different folder. In 
another environment (e.g., triggered by the electronic 
case record (eCR) specification in Germany [19]) a 
new folder level “case record” is introduced on the top 
level. Beneath, the structure follows the previously 
described “clinical record”. All clinical records are 
sorted by a disease code into the different “case 
record” folders. That way, explicit access can be 
granted to medical personnel based on the medical 
issue (an orthopedic physician treating a broken leg 
would have no or restricted access to the psychological 
problems of the same patient). The product line shall 
be applicable in both types of domains.  

Another requirement is the integration of various 
measurement devices for blood pressure, body 

temperature, etc., see Figure 2.1. The devices deliver 
semantically comparable values, but in different data 
formats, different scales (e.g., °C/°F) and different 
protocols. Nonetheless, the application must be able to 
manage that data in a consistent way, abstracting from 
the differences in detail. 
 

Measurement 

-measuredBy : MedicalPerson
-calibExp : date
-measureTime : String

BodyTemperature

-location : TempLocation
-celsius : float

Pulse

-bpm : int
-type : PulseType

BloodPressure

-systolic : int
-diastolic : int

Sugar

-mgpdl : int

 
Figure 2.1. UML class diagram of the 

Measurement data model 
 
A feature of the medical application includes, for 

instance, the calibration expiration management of the 
measurement devices. This requires each measurement 
to carry the information if the measurement was made 
beyond the calibration expiration and ideally, the 
expiration date itself (to leave the interpretation to the 
physician). 

Optionally - depending on the environment (e.g., 
ambulatory vs. stationary), a history of data changes 
(measured values, patient demographics, etc.) must be 
recorded, which can be seen as a cross-cutting 
concern/requirement on domain objects. 

Implementing these features and their variability 
has many effects on the data model of the product 
instances. E.g., modules for presentation of patient 
measurements should be programmed with a stable 
view on the relevant data, ignoring various formats of 
data delivery (date in long or String format), data 
interpretation (°C/°F), and additions like history. This 
reduces the dependency of such modules on the data 
model and other components that can vary in the 
product line instances, thus relieving developers from 
dealing with this (from their perspective impertinent) 
variability. 

 
2.1. Requirements 
 

The deficiencies in the examples above illustrate the 
following requirements that are imposed on the 
solution to cope with variability in data models: 

1) Modeling of the data objects in the solution space 
must be consistent and provided in a central view 
(analogous to the feature tree in the problem space that 
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shows a central view of the variants of the product 
line). This allows developers and engineers to keep the 
overview and consistency of the possible product 
instances and the corresponding data models. The 
individual products must be derived from this model. 

2) Developers of artifacts shall be shielded from the 
effects of the many possible variants on their code 
(API and structure of the domain objects) while 
retaining the compile-time safety that getter/setter 
navigation in the domain object model guarantees. This 
includes the demand for loose coupling not only for the 
functionality of components, but also for the data 
exchanged between those services.  

3) Interoperability of artifacts shall be supported 
automatically over the SPL lifetime even if the 
development takes place at different times and 
disparate locations, thus implying support of multiple 
versions of the artifacts. 

4) In support of correctness, data integrity, data 
security, and other data-related requirements across the 
multitude of possible SPL variations, constraints on 
model consistency and runtime checks shall be 
supported. Examples are dependency checks of the 
resulting instance data model (consistency) and 
authorization constraints for accessing data elements 
(runtime). 

5) Desirable qualities, motivated by SPLE in 
general, should be supported including consistency, 
correctness, comprehension, maintainability, usability, 
efficiency, portability, integration, interoperability, 
reusability, testability, and traceability.  

Although this case study comes from the eHealth 
domain, the issues are representative and applicable to 
data variability in SPLs in general. 
 
3. Solution 
 

This section provides a general description of the 
ADMV process and details on the utilization of 
fundamental concepts. The approach will then be 
illustrated by applying the ADVM to an eHealth SPL 
in Section 4. 
 
3.1 ADMV-Process 
 

The ADMV Process is an UML standards-based 
approach for SPL data modeling and data integration 
usable with common Model-Driven Software 
Development (MDSD) tooling, integrated with feature 
modeling, and supporting desirable software qualities 
during SPL development. Unified Modeling Language 
2.x (UML2) class diagrams were selected for modeling 
due to the extensibility via stereotypes (in contrast, 
e.g., to the entity-relationship diagram) and the 

plethora of tools available to process the UML model 
further. 

 

Figure 3.1. ADMV Process 
 
The ADMV process (Figure 3.1) defines several 

steps in domain engineering and application 
engineering. These steps are: 

 
1. Requirements Analysis. The ADMV starts in the 

Domain Engineering phase with requirements 
analysis. Through the analysis of the problem 
domain, common and variable requirements are 
collected. 

2. Feature Modeling. Each variable requirement 
results in a String which is used as feature name. 
Dependencies of the features are analyzed and 
structured in a Feature Model (e.g., using FMP 
[23]). 

3. Data Modeling. A Data Model is created in 
UML2 XMI (XML Metadata Interchange) [30] 
that includes variations. The first step before 
integrating variability is the definition of all the 
common parts. Then, for each feature, the 
variation points and variants are identified. 
Eventually the variants are associated with the 
variation points in connection with an adequate 
variability type. The ADMV addresses three types 
of variability: positive - adding new fields, data or 
relations to the core model; negative - eliminating 
fields, data, or relations from the core model; and 
structural - varying the type, cardinality, or 
naming of elements. 

4. Configuration. At the start of the Application 
Engineering phase, a product configuration is 
created, e.g., in FMP.  

5. Artifact Generation. Product artifacts are 
generated such as adapters, converters, views and 
runtime checks. To accomplish this, the current 
ADMV Generator implementation uses the 
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configuration in FMP as well as the Data Model as 
inputs (e.g., using openArchitectureWare (oAW) 
[12]) to create a Data Model Instance based on the 
ADMV metamodel (e.g., an Ecore metamodel 
[26]), from which the required code artifacts are 
generated (e.g., using Xpand, oAW’s template 
language for code generation). 

6. Generated Artifact Customization. Complex 
Conversions which the ADMV Generator cannot 
automatically resolve are implemented manually. 
In addition, the exceptions for the generated 
runtime checks are implemented manually to 
fulfill certain tasks when a runtime check fails. 

7. Artifact Integration. Artifacts are integrated into 
the build of the data layer and other components. 

 
3.2 Variability types 
 

Negative variability. Negative variability starts 
from a maximal description (e.g., a UML (Unified 
Modeling Language) model containing all possible 
elements of the product line) and deletes the elements 
that are not connected to selected features. By this 
reduction, the final model of the selected product 
instance will be the result. Thus the complete model 
can be viewed, which may be advantageous if a 
product instance usually consists of mostly selected 
features such that the resulting model is close to the 
complete model (the delta to the complete model is 
small). On the other hand, it might result in 
information overload - especially if the product 
instances consist of only a few selected features such 
that the resulting models are small (the delta to the 
complete model is large). 

Depending on the selected features, model elements 
can be removed to derive different product instances. 
This is reflected in the data model by tagging the 
different types with the stereotype <<Variation>>. The 
condition for which it is generated for the product 
instance is defined by the tagged value {feature = “any 
feature condition”}. This indicates to the generation 
process that the elements associated with the feature 
condition are only generated if the condition evaluates 
to true, otherwise they are removed. 

This is called negative variability since the starting 
point is a superset of the data model definition and the 
unnecessary elements are stripped away according to 
the features selected. 

Positive variability. In contrast to negative 
variability, positive variability starts from a minimal 
description (a core model, containing only the common 
parts) and, depending on selected features, additional 
elements (classes/members/associations) are added to 
the core model. The parts to merge are described in 
different places, which may make comprehension of 

the overall model difficult. This is especially true if 
there are many additional parts, which is often the case 
in non-trivial product lines. 

Positive variability is useful if cross-cutting 
concerns should be modeled that cannot be effectively 
modeled by common base classes and negative 
variability. As this approach separates the data 
definition (class plus cross-cutting concerns described 
outside the class), it contradicts Requirement 1 in 
Section 2.1. The necessity and benefits in certain 
circumstances may be reasonable, but we recommend 
the technique be applied rarely, e.g., due to its potential 
negative effect on understandability. One technique for 
applying positive variability in an efficient way is 
described in [18].  

Structural variability. Structural variability 
describes a change in the model dependent on some 
feature selection. The element is already contained in 
the model, but its structure (type, cardinality, 
association) may vary. Structurally changing the data 
model is achieved by adding the stereotype 
<<modify>> to the elements that should be structurally 
changed and by setting predefined tagged values. 
Possible tagged values are, e.g., feature, type, 
cardinality, name and initialValue.  

In the resulting data model, the corresponding 
property is changed. This can also be used to redirect 
associations by changing the type of the association. 
An example is given in Section 4 regarding the 
introduction of additional folder structures due to the 
electronic case record (eCR) feature. 

 
3.3 Check-Constraints 

 
Constraints are a common concept in modeling and 

many approaches exist, for instance the Object 
Constraint Language (OCL). Constraints are used in 
many different ways: for consistency checks, such as 
the model itself (e.g., cardinality); for runtime checks 
(valid references, consistent instantiations); or for 
optimization [28]. 

Constraint checking and their languages are a 
known and powerful capability in assuring modeling 
correctness, which is especially important when 
supporting data model variability in a SPL. The 
ADMV encourages the application of constraint 
capabilities at the most appropriate points across the 
tools used in the process. For instance, feature 
modeling constraints can be utilized to determine the 
validity of a certain combination of features; data 
modeling constraints can be applied using active 
validation (e.g., via OCL or binaries as available in 
some UML 2 modeling tools) before transformation; 
transformation constraints can be applied to check 
conditions (e.g., ensuring that the domain and feature 
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model are not inconsistent with each other) before or 
during the generation process; and runtime checks can 
be automatically included by generators. Thus 
preconditions, invariants, and postconditions can be 
specified and carried through the process and applied 
at the appropriate points. 

Consistency checks. The ADMV applies a variety 
of checks at different phases of the process to ensure 
the consistency of the models. At modeling time a 
UML2 tool applies constraints to check the validity of 
the data model. The uniqueness of members within a 
class is an example.  

To ensure the consistency between the feature 
model and the data model, additional modeling time 
checks can be defined. When associating model 
elements to features, the checks can ensure that the 
feature model also contains these features. 

Aside from ensuring model consistency, the model 
transformation for deriving product line instances must 
also be checked. This is done during the generation 
phase by applying, e.g., oAW-Checks. To ensure that 
the transformation was correct, oAW-Checks can test 
if the respective variation points are bound to variants 
and if the resulting data model is still valid after 
transformation.  

Accessor constraints. To support the verification 
of certain conditions at run time, the ADMV 
additionally extends the support of the definition of 
constraint checks for accessor methods (also known as 
getters and setters). These constraints can be expressed 
with a constraint language such as oAW Check. The 
ADMV Generator transforms these constraints into 
methods which implement the oAW Check constraints. 
Every time a getter or setter is called, the associated 
constraints are successively executed. If one check 
fails, a runtime exception will be thrown. If all 
constraints are evaluated to true, the accessor method 
will be executed.  

The analysis of the constraint-string is currently 
done in the ADMV implementation by the Xtend 
Parser which is part of the oAW framework. The 
Xtend Parser returns an abstract syntax tree (AST) 
which is the input for the ADMV Generator. 

 
3.4 Views 
 

View concepts are known from database systems, 
model-driven approaches, etc. The way views are 
considered in the ADMV is from the perspective of the 
view that a product-line component has on the data 
model. Certain components may be interested in 
viewing only parts of entities and shall be shielded 
from their further development because those 
components are considered stable and should not have 

to be adjusted just because the product-line data model 
changes. 

A view is defined as a variant of an entity, which 
might be shared among several product line instances, 
or is specific to only one of these instances. An entity 
can have many views, each of them defining a set of 
child elements. All child elements have several 
attributes such as name, type, cardinality, etc. The 
definition of the view is done in the data model. For 
each entity there is exactly one complete view (which 
is the only one potentially persisted in a database) and 
an unlimited number of projected views. The complete 
view can be converted to any other projected view and 
vice versa. The child elements of the projected view 
can be arbitrarily filled with the source data. In this 
way it is possible to distribute the content of the source 
element over multiple elements of the projected view. 
Vice versa, it is possible to join the source element’s 
data and assign it to a single element of the projected 
view. In addition, the datatype or properties of the 
target element can be different from the source 
element. Thus the structure and content of a projected 
view and the complete view can be disparate. 

Functional components should be shielded from any 
differences in the data models, which can be achieved 
with adapters. However, manually written adapters 
place an additional burden on the developer: besides 
the initial development, they must be kept consistent 
with the changes in the data model over time. The 
ADMV models those adapters together with the data 
model and generates the code normally automatically – 
at least for members with the same name. For more 
difficult conversions, only the getter and setter are 
generated – the implementation must be added 
manually. To preserve manual code upon a later update 
of the data model with subsequent re-generation of the 
source-code, the Generation Gap pattern [27] may be 
applied. This is a step towards a consistent view on the 
data model over the whole SPL over time and it allows 
the exchange of data between components with 
different views on those artifacts. 

Introducing “Views” gives those types of 
components a stable, reduced view on the data model. 
The actual designers and programmers need not be 
concerned about a variation; they are shielded by their 
view of an entity.  

Note that if modules execute write access to the 
data, a reverse mapping from the projected view to the 
complete view must be defined. 

 
Adapters. Adapters are based on the original data 

object of the product instance and provide a more 
stable view on the data for components that only 
require a subset. The adapters provide multiple data 
views to components and utilize a common data model, 
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thus conversions are required at runtime. In Figure 3.2a 
the conversion relationships between views to support 
the differing projected views desired by components 
are illustrated, with a maximum number of 
unidirectional converters required being n(n -1) where 
n is the number of views required. The maximum 
number of converters required can be reduced to a 
linear 2(n-1) if the direct conversions between 
projected views are avoided and only conversions to 
and from a complete view are utilized (a star topology) 
(see Fig 3.2b). This incurs a higher runtime cost of two 
conversions (once to the common view and then to the 
desired view) vs. only one, but benefits maintenance 
and evolution due to the reduced number of conversion 
methods. The runtime impact is dependent on the 
number of elements and complexity of conversion. 

 

 
 

Figure 3.2. Projected view conversions 
 

Data integration via adapters. The view concept 
supports integration in that it makes different formats 
and semantics explicit and generates the different 
adapters. 

Advantages of this approach versus manual adapter 
implementation include the management of data 
structures from a single unified model, the retention 
and utilization of the core data model and its variability 
information by generators when conversion code is 
generated (the generators use the variability), and the 
automatic generation of conversion skeleton code and 
trivial body code (for simple conversions).  

 
3.5 Artifact generation 

 
The process of artifact generation is shown in the 

Figure 3.3. The data model and the configuration 
model are the input of the ADMV Generator. While 
any realization could be used, the current 
implementation is now described. 

The two models are transformed by the template 
“models2Ecore” to a new data model which is based 
on an Ecore metamodel. The Ecore-based metamodel 
is less complex than the UML2 metamodel, making it 
is easier to define templates for transformation and 
generation. Initially the variability is not bound in the 
Ecore data model. It will be bound by the template 
“toProductModel”. This is a model-to-model 

transformation where all variation points are bound to 
the configured variants, creating the data model for the 
configuration. The derived data model is the input for 
code generation. The views, adapters, and runtime 
checks are generated by Xpand. 

 

 
Figure 3.3. ADMV generation process 

 
4. eHealth SPL example 
 

Based on the scenario described in Section 2, the 
ADMV will now be illustrated.  

After requirements analysis (Step 1), a feature 
model will be defined from the collected features (Step 
2). This is the foundation for the product 
Configuration, defining how features can be combined 
during the configuration. Figure 4.1 shows the 
(reduced) Feature Model (FM) for the example domain 
using the Czarnecki-Eisenecker notation [4]. Hollow 
circles describe optional features, hollow arcs describe 
alternative features and filled arcs describe an “or”-
relation (select one or more of associated features). A 
simplified form is used here, e.g., containing functional 
and non-functional features without explicit 
constraints, to show the possibilities of the ADMV. 

 

 
Figure 4.1. Feature model 
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Four topics were chosen to illustrate the approach: 
the change in the folder structure due to support of the 
eCR capability; support for various medical sensors 
and their different reporting formats (e.g. temperature 
in °C or °F); security in the sense of authorization of 
access to data; and a history of data changes. Different 
variability types can now be chosen to translate the 
related features into the solution space. 

Figure 4.2 shows the FMP representation of the 
feature model from Figure 4.1 with an example product 
configuration (Step 4).  

 

 
Figure 4.2. Feature model instance 

 
Negative variability (Step 3). Variation points that 

will be bound through negative variability are marked 
with the stereotype <<Variation>> on class, 
association, or member level. An appended condition 
(using bracket: {}) describes which features in the 
feature model must be selected in order for this part to 
appear in the data model of the product instance. Note 
that Boolean expressions are allowed, e.g., Feature1 
AND NOT Feature2.  

Negative variability is shown here to adapt the 
maximized data model to the resulting instance data 
model. Figure 4.3 shows the reduced data model. 

The presented variation points are the four 
subclasses and the member calibExp (calibration 
expiration) of the superclass Measurement. Because 
Pulse and Sugar were not selected, the resulting data 
model shown in Figure 4.4 only contains the 
measurement types BloodPressure and 
BodyTemperature. Because the feature Calibration 

is selected, the resulting data model contains the 
member calibExp.  

 

<<Variation>>
Measurement

-measuredBy : MedicalPerson
<<Variation>>-calibExp : date{feature = "calibration"}

...

<<Variation>>
BloodPressure

{feature = "Blood  Pressure"}

-systolic : int
-diastolic : int

<<Variation>>
BodyTemperature
{feature = "Body  Temp"}

-location : TempLocation
-celsius : float

<<Variation>>
Sugar

{feature = "Sugar" }

-mgpdl : int

<<Variation>>
Pulse

{feature = "Pulse" }

-bpm : int
-type : PulseType

Patient

-patientID : int
-name : String
-firstName : String
-socialSecurityNo : String

-measurements
*1

 
Figure 4.3. Data model with negative 

variability 
 

Patient

-patientID : int
-name : String
-firstName : String
-socialSecurityNo : String

Measurement

-measuredBy : MedicalPerson
-calibExp : date

BloodPressure

-systolic : int
-diastolic : int

BodyTemperature

-location : TempLocation
-celsius : float

*1

 
Figure 4.4. UML diagram of the example 

data model instance 
 
Positive variability (Step 3). Positive variable is 

demonstrated by the history feature, where the changes 
to each domain object over time should be tracked. 
Each domain object receives an additional member 
variable “history” containing  previous entries and 
several operations. In ADMV, positive variability is 
realized by the stereotype <<add>> and the feature 
condition in brackets. Figure 4.5 shows an example.  

The elements which will be added to the variation 
points by positive variability are composed in the class 
HistoryElements. To implement these elements 
via positive variability, the owner class is assigned 
with the stereotype <<add>> and the feature condition 
“History”. The example reveals a scenario when 
positive variability is appropriate. Using negative 
variability to achieve the same behavior is more 
complex, especially the more members depend on the 
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cross-cutting feature: it would have to be repeated in 
each class that could potentially have that feature 
enabled and would have to be tagged with 
<<Variation>>. By choosing positive variability, the 
elements have to be modeled only once.  

 

<<add>>
HistoryElements

{feature = "History" }

+addHistory( userID : String, history : History<T> )
+getLastHistory() : History<T>
+getHistories( userID : String ) : History<T>"[]"
+getHistories( from : Timestamp, until Timestamp ) : History<T>"[]"

-history : History<T>"[]"

History<T>

-changeTimestamp : Timestamp
-previousElement : T

Document

ClinicalRecord

-diagnosis : Diagnosis

-documents*

1

 
Figure 4.5. Positive variability 

 
Structural variability (Step 3). Structural 

variability is tagged using the sterotype <<modify>>, 
introducing the condition and type modification (again, 
in brackets: {}). For instance, see the association 
records from class Patient to 
ClinicalRecord in Figure 4.6. 
 

<<Variation>>
Measurement

-measuredBy : MedicalPerson
<<modify>>-measureTime : String{type = "long", feature = "Epoch"}

...

Patient

-patientID : int
-name : String
-firstName : String
-socialSecurityNo : String

ClinicalRecord

Document

<<Variation>>
CaseRecord

{feature = "eCR" }

<<modify>>
{type = "CaseRecord" , 
feature = "eCR" }

-records

*

1

-clinicalRecords*

1

-measurements*

1

-documents*

1

 
Figure 4.6. Data model with structural 

variability 
 

In this example the eCR feature introduces an 
additional level for structuring the medical records, 
which is reflected by tagging the association from 
patient to clinical record as <<modify>> and 
redirecting the association to CaseRecord if feature 
“eCR” is selected. A second structural variation point 
is tagged to the member measureTime of the class 
Measurement. The date format is usually a 
String, but if “Epoch” is selected in the feature 
model, the date format will be a long (seconds since 
epoch). 

Generated views (Step 5). The example of 
hierarchically differently structured patient information 
is defined by the structural variation point assigned to 
the reference records between Patient and the 
ClinicalRecord (see Figure 4.6). By default 
(“eCR” is not selected) records directly reference 
clinical records. Once the feature “eCR” is selected, 
the patient member records references 
CaseRecord which in turn references the 
ClinicalRecord. The two instances of the data 
model are shown for comparison in Figure 4.7. 

 
Patient

CaseRecord

ClinicalRecord

DocumentDocument

ClinicalRecord

Patient

-records*

1

-documents*

1

-documents*

1

-records*

1

-clinicalRecords*

1

 
Figure 4.7. Data model results of structural 

variability 
  

Generated data views for the structural variability 
example are shown in Listing 4.1 and different usage 
examples of generated data types are shown in Listing 
4.2. The actual differences are written in bold font. 
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Listing 4.1 
public interface Patient {  
 List<ClinicalRecord> getRecords(); 
 void addRecords(ClinicalRecord value); 
 void addRecords(List<ClinicalRecord> 
       valueList); 
    ... 
}  
 

public interface Patient {  
  List<CaseRecord> getRecords(); 
  void addRecords(CaseRecord value); 
  void addRecords(List<CaseRecord> valueList); 
    ... 
}  
 

Listing 4.2 
//default hierarchy 
public void test1(Patient p) { 
    p.getRecords().get(0).getDocuments(); 
} 
 

//eCR 3-level hierarchy 
public void test2(Patient p) { 
   p.getRecords().get(0).getClinicalRecords() 
     .get(0).getDocuments(); 
} 
 

Consistency checks. To avoid inconsistencies in 
the generated artifacts, multiple checks which are 
defined in OCL and in the oAW Check language are 
executed. Listing 4.3 shows a simple oAW Check to 
verify the uniqueness of members. The check is 
applied to all attributes in the data model. If there are 
more than one equally named attributes within the 
same class, an error message informs the developer.  

 
Listing 4.3 

context Attribute ERROR "name not unique" :  
((Class)eContainer).attributes 
  .select(a|a.name == name).size == 1; 
 

To verify the consistency between the feature model 
and the data model the following oAW check in 
Listing 4.4 is applied to all variation points. 
 

Listing 4.4 
context VariationPoint ERROR  
"feature does not exist in feature model": 
  getAllFeatures(featureModelUri()) 
  .contains( feature ); 
 

The function getAllFeatures() expects the 
path to the feature model as an input parameter which 
is resolved by featureModelUri(). It then returns 
the list of features of the feature model. Eventually the 
function contains(..) checks if the feature of the 
variation point in the data model is also contained in 
the feature model. If this evaluates to false it results in 
an error message. 

Accessor constraints. The capability of defining 
runtime checks for accessors is illustrated with a 

security feature. The two security alternatives in the 
feature tree are bound to different access policies to 
measurements. Level 1 allows all the medical team 
personnel (usually, the staff in the same ward who 
cares for a patient) to access the measurements, Level 
2 is stricter in the sense that each user may see only 
measurements made by themselves). Figure 4.8 shows 
the two examples of accessor constraints. Furthermore, 
accessor constraints can be associated  with features as 
shown in Figure 4.8, again defined in brackets: {}.  

 

Patient

...

+getMeasurements() : List<Measurement>

MedicalPerson

-userID : int
-name : String

LoginSession

-sessionId : String

//checks, if the measurements in the returning list 
//are all done by the user
{feature = "Security Level 2"}
context Patient
this.measurements.forAll(m| m.measuredBy == LoginSession.user );

//checks, if the user is a member of the patient's 
//medical team
{feature = "Security Level 1"}
context Patient:
this.medicalTeam.contains( LoginSession.user );

-medicalTeam
*

-user1

 
Figure 4.8. Accessor constraints 

 
Run-time checks. Listing 4.5 shows the result of 

the generation process if “Security Level 1” is selected. 
 

Listing 4.5 
public void check1_getMeasurements() 
   throws ConditionExceptionCheck1{ 
 if ( ! this.getMedicalTeam() 
     .contains( LoginSession.getUser()) ) 
  throw new ConditionExceptionCheck1(); 
} 
 
public List<Measurement> getMeasurements() { 
 try { 
  check1_getMeasurements(); 
 } catch (ConditionExceptionCheck1 e) { 
  // resolve in an error message 
 } 
 return this.measurements; 
}   

 
The getter method calls 

check1_getMeasurements(), which checks if 
the logged-in user is a member of the patient’s medical 
team. If this is not the case, then an exception will be 
thrown. The content of the catch block must be 
manually coded (Step 6) to perform further actions 
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such as logging, informing the user that he is not 
allowed to access the measurements, and returning 
null.  

The authorization requirements may even be 
stricter. This is presented by the constraint which is 
associated to the feature “Security Level 2”. It checks 
if the measurements in the returning list are all done by 
the logged-in user. The generated and manually added 
code for this check is depicted in Listing 4.6. Again the 
content of the catch block must be manually coded to 
the specific needs (Step 6), e.g., by filtering the 
returning list to fulfill the security rule. The manually 
added filtering is formatted in bold. 

 
Listing 4.6 

public void check1_getMeasurements()   
   throws ConditionExceptionCheck1 { 
 boolean cond = true; 
 for (Measurement m : this.getMeasurements())  
 { 
  cond &= m.getMeasuredBy() 
    == LoginSession.getUser(); 
 } 
 if (! cond ) 
  throw new ConditionExceptionCheck1  (); 
} 
 
public List<Measurement> getMeasurements() { 
 try { 
  check1_getMeasurements(); 
 } catch (ConditionExceptionCheck1 e) { 
  List<Measurement> filteredList 
      = new ArrayList<Measurement>(); 
  for (Measurement m : this.getMeasurements())  
  { 
   if (m.getMeasuredBy() 
          == LoginSession.getUser()) 
    filteredList.add(m); 
  } 
  return filteredList; 
 } 
 return this.measurements; 
} 

 
Adapters and views. The eHealth SPL contains 

components that operate on the clinical records 
independent of the context being an electronic case 
record infrastructure or a standard hospital. 
Instantiating the eCR data model would invalidate all 
code that uses the (simple) patient API. This illustrates 
the need for adapters. 

The ADMV approach uses adapters to shield the 
actual designers and programmers from the differences 
in the instantiated data model. They need not be 
concerned about the “eCR” variation; the view – in this 
case – flattens the hierarchy of case records and resorts 
the clinical records together. Figure 4.9 shows the 
complete view to the left and the projected view to the 
right. The common elements are omitted for clarity.  

Patient

<<reference>>-records : ClinicalRecord [*]
...

<<View>>
Patient_eCR 

<<reference>>-records : CaseRecord [*]
...

 
Figure 4.9. View of Patient 

 
The ADMV Generator creates an adapter for the 

patient and two convert methods for each view to 
support bidirectional conversion (Step 5). Listing 4.7 
shows a generated adapter and manually added code 
(Step 6) in bold. 

 
Listing 4.7 

public class Patient_eCR_Adapter 
implements IPatient_eCR   
{  
  private IPatientView srcView; 
  private IPatient_eCR adaptedView 
           = (IPatient_eCR) new Patient_eCR(); 
 
  public Patient_eCR_Adapter  
            (IPatientView srcView) 
  {   
    this.srcView = srcView; 
    PatientViewConverter.convert(srcView, 
                    adaptedView);  
  }  
   
  public List<CaseRecord> getRecords() 
  {       
    return adaptedView.getRecords();  
  }   
}   
 
// there can be many convert methods  
// depending on the no. of views 
// the right method will be called via  
// multi-method dispatching 
 
public static void convert(Patient srcView, 
   Patient_eCR targetView)    
{  
  // Bold code must be manually added 
  CaseRecord cr = new CaseRecord(); 
  cr.setClinicalRecords(srcView.getRecords()); 
  targetView.setCaseRecords(cr);  
  ... 
}  
   
public static void convert(...) 
  ... 
}  

 
Using adapters for data integration. In case 

multiple devices deliver measurement data slightly 
differently, these must be converted to a specified core 
data structure. E.g., body temperature may be delivered 
as value: int; scale: enum, celsius: 
float, or fahrenheit: int from the different 
devices. The systems normative data structure assumes 
celsius: float, so all others need to be 
converted. New formats may arise at run-time too, e.g., 
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when the hospital buys new devices or hospitals with 
different devices are merged. 

The example in Figure 4.10 models a view 
containing a measurement type with a float 
representing the temperature in degrees Fahrenheit 
(Step 3). The resulting conversion types are generated 
(Step 5) and the bodies of the methods have to be 
added (Step 6). 

 

 

<<Variation>>
Measurement

-measuredBy : MedicalPerson
<<modify>> <<Variation>>-measureTime : String{type = "long", feature = "Format 2"}
<<Variation>>-calibExp : date{feature = "calibration"}

<<View>>
BodyTemp_Fahrenheit

-location : TempLocation
-fahrenheit : float

<<Variation>>
BodyTemperature
{feature = "Body  Temp"}

-location : TempLocation
-celsius : float

 
Figure 4.10. View of BodyTemperature 
 
Listing 4.8 shows the conversion adapter for 

integrating measurement devices. 
 

Listing 4.8 
public static void convert(BodyTemp_Fahrenheit  
    srcView, BodyTemperature targetView) 
{  
  targetView.setCelcius(( 
    srcView.getFahrenheit()-32)/1.8); 
  … 
} 
 

Adapter generation. Listing 4.9 shows a simplified 
illustration of the Xpand-Template for the adapter 
generation. The input parameter for the adapter 
template can be any view. The French quotation marks 
« and » serve to distinguish between the static output 
and escaped control code that is interpreted. The 
instructions which fill the adapter template with model 
data are formatted here in bold. 

 
Listing 4.9 

«DEFINE adapterTmpl FOR View» 
«FILE name + "_Adapter.java"» 
public class «name»_Adapter 
implements I«name»        
{  
  private I«entityName»View srcView; 
  private I«name» adaptedView 
           = (I«name») new «name»(); 
 
  public «name»_Adapter  
            (I«entityName»View srcView) 
  {   
    this.srcView = srcView; 
    «entityName»ViewConverter.convert(srcView, 

                    adaptedView);  
  }  
  «FOREACH attributes AS a» 
  public «a.type» get«a.name»() 
  {       
    return adaptedView.get«a.name»();  
  }  
  «ENDFOREACH» 
  ... 
«ENDDEFINE» 
 

In order to convert the source view to the adapted 
view, the converter methods are generated (Step 5). 
This is done by the template in Listing 4.10. The 
converter template expects a complete view as an input 
parameter. The converter methods are generated in two 
steps: first all conversions from the complete view to 
the projected views are generated followed by all 
conversions in the reverse direction. When generating 
a convert method, it checks if the target attribute is also 
contained in the source view. If so, the conversion is a 
simple pass-through of data and can be generated 
automatically. Otherwise, it has to be implemented 
manually (Step 6). 

 
Listing 4.10 

«DEFINE converterTmpl FOR CompleteView» 
«FILE name + "ViewConverter.java"» 
  
public class «name + "ViewConverter"»{ 
«FOREACH views AS target» 
  private void convert(«name  
+ " src, " + target.name + " target" »){ 
 
  «FOREACH target.attributes AS attrib» 
    target.set«attrib.name»(  
    «IF attributes 
       .select(e|e.name == attrib.name  
        && e.type == attrib.type).size > 0 -» 
      src.get«attrib.name»() );   
    «ELSE-»  
      null );   
    «ENDIF-»    
  «ENDFOREACH»  
  } 
«ENDFOREACH» 
«FOREACH views AS src» 
  private void convert(«src.name  
  + " src, " + name + " target" »){   
  ... 
  } 
«ENDFOREACH» 
... 
«ENDDEFINE» 
 
5. Alternatives 
 

This section considers various alternatives for 
dealing with data variability within the constraints set 
forth in Section 2.  

UML2 package merge. The most viable alternative 
for data model variability is the "package merge" 
feature [29] introduced in UML2, and its usage for 
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SPLs has been evaluated [17][10]. Class extensions 
(e.g., additional members) can be modeled in a 
separate package that must have a merge association 
with the base package. The mapping is done on class 
name equality. Package merge is not suitable for the 
requirements described in Section 2 because it scatters 
the variation point over multiple packages. Thus the 
number of packages explodes and does not scale well 
with the number of features. Package merge cannot 
model negative or structural variability that is needed 
for requirement 2. 

To compare the ability of both approaches, the 
number of classes to model was counted. The 
Measurement class and its subtypes result in five 
classes, four of which are tagged to be variable, two 
members are also tagged. 

Using package merge, a core model containing only 
the base class Measurement without the members 
calibExp and measuredTime was used. For each 
subtype, a package was created since each of the 
subtypes is selectable separately. Within the package, 
the base class is repeated to add the child class and the 
association between them. For the optional calibration 
management, a package is added, repeating the base 
class with the member calibExp. For the structural 
variability of the measuredTime, two packages are 
needed, one repeating the base class with the long 
type and one with the String type. This requires up 
to seven additional packages and 12 classes. 
Additionally, data model comprehension becomes 
difficult since the information is spread across many 
packages (see Figure 5.1). 

A general comparison of the effort involved in the 
two approaches is shown in Table 5.1, where: 

 
F = number of features influencing the data model 
V(f) = number of variation elements for a single 

feature f 
C(f) = Number of classes created or modified by 

feature f (might be less then V(f) in case a feature 
controls more than one member of a class) 

 
Table 5.1. UML Package Merge vs. ADMV 
for packages, attributes, and classes 

Approach Packages Attributes 
created or 
modified 

Repeated 
Classes 

UML 
package 
merge 

F 
∑
=

F

f
fV

1
)(  ∑

=

F

f
fC

1
)(  

ADMV 0 
∑
=

F

f
fV

1
)(  

0 

 

Body Temp

BodyTemperature

-location : TempLocation
-celsius : float

Measurement

Sugar

Sugar

-mgpdl : int

Measurement

Pulse

Measurement

Pulse

-bpm : int
-type : PulseType

Blood Pressure

Measurement

BloodPressure

-systolic : int
-diastolic : int

CorePackage

Measurement

-measuredBy : MedicalPerson

DeviceFormat1

-measureTime : String

Measurement 

Calibration

-calibExp : date

Measurement

DeviceFormat2

Measurement  

-measureTime : long

 
Figure 5.1. UML Package Merge 

 
Optional members. Negative variability could be 

modeled by using a full-blown data model for each 
instance and returning “null” in case a non-selected 
member or association is requested. Alternatively, 
hashmaps could be used to carry (single-valued) 
optional members. Shortcomings of this approach 
include: 

• Members cannot be declared to be not null, in 
case the feature is selected and null is an 
inappropriate value (especially if the data 
model is persisted in databases). 

• The development of all components could 
accidentally use members that are not 
necessarily selected. Auto-completion and 
compile-time checks are not possible. 

• Using hashmaps gives developers no indication 
about available members. 

• Structural variability is not possible. 
 

Explicit dependencies. Each extension to the data 
model could be presented by a separate data 
component and explicitly used by a functional 
component (see Figure 5.2). The data components 
retrieve the necessary elements to form their view on a 
domain data. Communicating with other components 
introduces the obligation for the receiving component 
to retrieve their view of the data again. 

Drawbacks include the numerous calls for database 
retrievals per component due to a lack of sharing, as 
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well as interpretation difficulties when components 
transmit or receive data via references or value objects. 
If transactions are considered or the services are 
remote, this solution is infeasible. 

 

Core Data Objects

Calibration 
Component

Record
Extension

Patient
Record

Management

Calibration
 Extension

Database

 
Figure 5.2. Data model with explicit 

dependencies 
 
Layering. Similar to the Decorator design pattern 

[6], components are grouped in layers that correspond 
to the level of enrichment of the data (see Figure 5.3). 
Per layer, one definition of each data element exists. 
On the lowest level this will be a core element, on the 
next level a slightly enriched element (some more 
attributes or associations) that can even be extended on 
higher levels. If a component of a higher layer needs 
data, it asks the persistence component of that layer to 
retrieve it. The persistence component routes this 
request down the layers and extends (“enriches”) the 
data, converting the data into its own layer data model. 

 

Layer2 Component
(e.g. Patient Observation

Component)

Layer3 Component
(e.g. Calibration 

Management)

Layer3 Persistence
(e.g. Calibration)

Layer2 Persistence
(e.g. Measurements)

Layer1 Persistence
(e.g. BasicPatient)

Layer1 Component

Database

 
Figure 5.3. Data model with layered 

extensions 
 
Multiple calls have to be executed to provide the 

Layer 3 component with the data and there is 
insufficient support for transaction handling. 

In summary, the aforementioned alternatives have 
the disadvantage that the data model is not presented 
consistently and that knowledge is spread over at least 
some layers or even individual components. This 
assumes that a strict layering is even possible. The 
ADMV does not create separate information in 
separate packages nor does it need to repeat classes as 

UML package merge does. Feature-dependent classes 
are defined once in both approaches (see the 
Measurement children). 
 
6. Evaluation 
 

For an evaluation of the ADMV, an appraisal of its 
support for desirable qualities is considered. 
Additionally, any practical limitations of the approach 
with regard to performance and scalability with current 
implementations are also assessed.  
 
6.1 Quality properties 
 

Consistency and correctness. Correctness is 
supported via constraint checks and the generation of 
adapters and projected data views appropriate for a 
component in its current version. Via the validation of 
the data model at usage time via OCL constraints (e.g., 
MagicDraw Active validation), various modeling 
errors can be detected sooner and thus avoided in later 
phases. Consistency checks can assure the consistency 
of the models, e.g., between the feature model and data 
model. Support for the correctness of the generated 
artifacts is thus enhanced.  

Comprehension. ADMV reduces the number of 
classes and locations where (redundant) information is 
stored, which furthers comprehension. Code generation 
is based on a metamodel specialized for modeling data 
variability. Code generation templates can thus be 
more simply created compared to UML metamodel 
generative approaches such as OMG’s Model-Driven 
Architecture (MDA). 

Maintainability. Maintenance and evolvability are 
supported by both shielding component developers 
from changes via adapters as well as the application of 
constraints throughout development. By programming 
templates against a common ADMV metamodel, an 
unlimited number of future templates and template 
changes support any necessary extensibility.  

Usability. Usability is fostered by the integration of 
ADMV in standard modeling (FM and UML) and with 
tool frameworks that support customization (e.g., 
oAW). The usage of constraint languages at the 
appropriate levels also furthers usability.  

Efficiency. The enhanced support for code 
generation techniques has the potential to improve 
efficiency for larger SPLs. Runtime efficiencies are 
also achievable since variation decisions are typically 
made at generation time. The reduction in the number 
of classes required to deal with variability also 
promotes efficiency.  

Portability. Modeling variability with UML-based 
stereotypes, coupled with the ADMV metamodel as a 
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basis for generation, supports the portability and 
exchangeability of MDSD implementations for 
modeling, model-to-model transformations, and 
artifact generation. 

Data integration and interoperability. These 
qualities are supported via the adapters and projected 
component views that support independent 
conversions. The complete view also supports 
interoperability across the SPL and product instance 
life cycle.  

Reusability. Component reuse is supported since no 
direct tight coupling to other components via data 
elements occurs. Enhanced comprehension enhances 
reusability opportunities. Templates reuse common 
code. 

Testability. Constraints can be readily defined via 
very capable languages such as OCL and oAW Check, 
which supports the testability of the models. The 
reduced number of classes also simplifies component 
testing, since knowledge of other existing components 
in the individual product instances is not required. 

Traceability. The modeling of variability and data 
in a central model makes the effects of the variability 
more traceable. By using UML tools with stereotypes 
and tagged-value-based search capabilities (as in 
MagicDraw), the traceability of variation points and 
features is improved. Certain variation points can be 
localized by simple string searches. 
 
6.2 Performance and scalability 

 
Due to the use of code generation techniques, the 

impact of the variations and the use of the adapters at 
runtime is relatively inconsequential. View conversion 
of data where necessary, e.g., from one format to 
another, is currently a manual programming task and 
thus the runtime impact is dependent on the conversion 
complexity. However, due to the large set of possible 
permutations and the reliance on MDD, variation 
scalability measurements were made to determine the 
impacts of the variations for development time usage 
of the ADMV.  

The measurements were performed on an AMD 
Athlon XP 2400+ (2GHz) PC with 3GB RAM running 
Microsoft Windows XP Pro SP2, Java JDK 1.6, 
Eclipse 3.3, openArchitectureWare 4.2, and the Eclipse 
Modeling Framework 2.3. All measurements were 
performed 3 times and the averages presented. 

For the first set of measurements, the transformation 
time using oAW from an XMI Data Model file 
containing variations to a Data Model Instance XMI 
(all variation points applied based on features) was 
measured as shown in Table 6.1 and Figure 6.1. A 
nearly linear correlation between a change in the 
number of variation points and the generation time was 

measured as the number of features was held constant, 
and an increase in the number of features also showed 
a nearly linear increase in the generation time. This 
result is explained by the iterations in the generator 
code implementation for each variation point and for 
each feature. Varying the number of Boolean 
conjunctions up to 20 for a variation point made no 
perceptible difference due to other inherent overheads.  

 
Table 6.1. Data model instance 

transformation time (ms) for features and 
variation points 

Number of 
variation 

points 

Total number of features 
300 600 900 

50 2771 5281 9141 
100 4429 9696 17781 
150 6416 14219 26078 

 

 
Figure 6.1. Data model instance 

transformation time vs. variation points and 
features 

 
A second set of measurements concerned the 

generation of adapters. Each of the different variability 
types was tested and, as expected, no noticeable 
difference in generation time occurred based on the 
negative, positive, or structural variability types. In the 
ADMV, each adapter for an entity can support multiple 
projected views. The Lines of Code (LOC) generated 
in support of the conversion betweens views increased 
in the same percentage to the number of views, as 
expected due to the 2n relation resulting from the 
complete view basis for all conversions. The 
maintainability of the conversions is thereby 
supported. The generation time required for adapters 
with multiple views is shown in Figure 6.2, showing a 
nearly linear increase as the number of adapters or 
views increase. The generation time for this scale 
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appears reasonable for development usage in current 
SPLs. 
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Figure 6.2. Generation time vs. number of 

adapters 
 
In summary, the development-time variation 

scalability and performance of the ADMV with current 
tooling for industrial use is shown to be practicable. 
 
7. Related work 
 
Other approaches for SPL variability in data models 
include the conceptual framework SPLIT [3], where 
additional UML stereotypes, e.g., 
<<variabilityMechanism>> and <<variationPoint>>, 
are used for specifying variable elements. SPLIT does 
not, however, integrate an abstract feature view as does 
the ADMV, and each variation point and the 
corresponding variants requires a separate class which 
can cause issues in lucidity for large SPLs. 

Clauß presents in [24] a generic modeling approach 
which uses additional stereotypes to express 
variability. The Stereotype <<optional>> is used for 
optional variants which do not stand in a relationship 
with other variants (variation point with one variant). 
Variation points which group multiple variants 
together are tagged with the stereotype 
<<variationPoint>> and the associated variants with 
<<variant>>. Furthermore, the variation points and 
variants can be assigned with tagged values to define 
certain properties. Some of these properties are the 
binding time of variants, the multiplicity of associable 
variants, and the condition of binding. However, this 
approach doesn’t offer a concept to handle data 
independently from the corresponding product 
instance, nor does it address the derivation of product 
line instances.  

In [7], PLUS (Product Line UML-Based Software 
Engineering) extends UML to model variability and 
commonality using stereotypes and primarily 
subclassing. While entities are mentioned, the 
wrappers described are intended for database access 

and do not support all variation types and multiple 
view and data versions for components as addressed in 
the ADMV. The extension of PLUS with the ADMV 
would provide a more comprehensive solution for SPL 
UML techniques. 

In MDD-AO-PLE [15][16][18] and similar related 
aspect-oriented SPLE work, the application of 
techniques to SPLs are investigated for addressing 
cross-cutting variability. While this work has not 
specifically addressed the difficulties described in this 
paper for data models, the combination of these 
techniques with ADMV could be synergistic, e.g., to 
address positive variability or for common data view 
format conversions in adapters. 

The following comparison matrix shows a 
assessment of related SPLE approaches in regard to a 
selection of requirements.  

 
Table 7.1.  Comparison matrix 

 

 S
PL

IT
 

 P
LU

S 

 M
D

D
-A

O
-P

LE
 

 U
M

L 
ex

t. 
[2

4]
 

 A
D

M
V

 

requirement analysis +++ +++ ++ + ++ 
FM1 integration  D D D D 

positive variability D D D D D 
negative variability    D D 
structural variability D D  D D 
UML2 D D  D D 
data conversion2     D 
checks (modeling)  D D D D D 
checks (config.)3   D D D 
checks (generator)   D D D 
checks (runtime)     D 
product instantiation4 +++ + +++ + + 
code generation   D  D 
trace variability5 D D D D D 
 
(1) FM = feature model. 
(2) Ability to convert data to different formats. 
(3) Checks at configuration time.  
(4) The process of creating a specific software product 
using a software product line is referred to as product 
instantiation [25]. 
(5) Ability to trace variability between solution space 
and problem space. 
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Work with regard to SPL component evolution 

support includes [5], where a multi-team decentralized 
SPL variability modeling approach is described, 
supporting the merging of model fragments. However, 
it does not address versioning of entities and 
component usage and lacks UML support. [22] 
addresses multi-context component reusability using 
UML extensions views (functional, static, and 
dynamic), but does not consider data modeling, 
constraints, or code generation issues.  

Work on model-based data integration, mapping, 
and transformation in the eHealth domain includes [21] 
and the AutoMed project [20]. To our knowledge the 
usage of such an approach for an eHealth SPL for 
modeling data variability has not been explored.  
 
8. Conclusion and future work 
 

Given the inadequate integration and specific 
support for MDSD data modeling and variability in 
current SPL approaches and research, the ADMV 
contributes a UML standards-based method for data 
modeling that can be utilized by common MDSD 
tooling, is integrated with feature modeling, and 
supports desirable software qualities during SPL 
development. UML diagrams are augmented with 
variability information including constraints, from 
which artifacts for particular configurations can be 
generated automatically. The approach for adapter 
generation supports SPL data integration with the 
potentially multifarious external systems and devices, 
which may represent the same kind of information in 
different formats  

An eHealth case study that motivated the work was 
used to illustrate the application of the ADMV to a 
SPL. Scalability of the ADMV with regard to features 
and variation points is linear and likely to be sufficient 
for typical current SPL development. The unification 
of concepts and mechanisms in ADMV promote 
support for desirable SPLE qualities, including 
consistency, correctness, comprehension, 
maintainability, usability, efficiency, portability, 
integration, interoperability, reusability, testability, and 
traceability. These and other benefits can be realized 
for SPLs in conjunction with the ADMV. 

Future work includes the addition of a conversion 
language for somewhat complex conversions in 
adapters (e.g., concatenation and regex-split). Support 
of dynamic runtime variation including adaptation and 
binding of component views with database migration is 
another area to be investigated. Additionally, 
optimization for object tree transfers and greater 

automatic adapter data conversion code generation are 
promising. 
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