International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

47

Complex software systems : Formalization and Applications

Marc Aiguier, Pascale Le Gall and Mbarka Mabrouki
Ecole Centrale Paris
Laboratoire de Mathématiques Appliqués aux Systemes (MAS)
Grande Voie des Vignes - F-92295 Chéatenay-Malabry

Programme d’Epigénomique
523, Place des Terrasses de I'’Agora - F-91025 Evry
{marc.aiguier,pascale.legall}@ecp.fr, mabrouki@epig@ique.genopole.fr

Abstract Community [15, 16]. The interest of describing software
systems as interconnected subsystems is that this promotes
A mathematical denotation is proposed for the notion the reuse of components either directly taken in a library
of complex software systems whose behavior is specifiedbr adapted by slight modifications made on existing ones.
by rigorous formalisms. Complex systems are describedThe well-known difficulty with such systems is to infer the
in a recursive way as an interconnection of subsystems byglobal behavior of the system from the ones of subsystems.
means of architectural connectors. In order to consider Indeed, modern software systems are often open on the out-
the largest family of specification formalisms and architec side, that is they interact with the environment, composed
tural connectors, this denotation is essentially formalis of interacting subsystems (e.g. active objects which inter
specification and connector independent. For this, we build act together concurrently [3, 27]) or defined by questioning
our denotation on Goguen’s institution theory. In this ab- requirements of subsystems (e.g. feature-oriented sgstem
stract framework, we characterize complexity by the notion where each feature can modify the expected properties of
of property emergence. pre-existing features [18, 4, 26]). Thus, such global syste
This work is a revised and extended version of Aigu- may exhibit behaviors, that cannot be anticipated just from
ier, Le Gall and Mabrouki (3rd International Conference on a complete knowledge of subsystems. Hence, what makes
Software Engineering Advanced (ICSEA), IEEE Computer such software systent®mplexs they cannot be reduced to
Society Press, 2008). simple rules of property inference from subsystems towards
Keywords-abstract specification language; abstract ar- to the global system.
chitectural connector; emergent property; institutiorate-

- : X Following some works issued from other scientific dis-
gory theory; transition systems; modal first-order logic.

ciplinaries such as biology, physics, economy or sociol-
ogy [10, 13], let us make more precise what we mean by
) complex systems. A complex system is characterized by a
1 Introduction holistic behavior, i.e. global: we do not consider that is b
havior results from the combination of isolated behavidrs o

A powerful approach to develop large software systems some of its components, but instead has to be considered as
is to describe them in a recursive way as an interconnec-a whole. This is expressed by the appearance (emergence)
tion of sub-systems. This has then made emerge the noof global properties which is very difficult, see impossijble
tion of architectural connector as a powerful tool to de- to anticipate just from a complete knowledge of component
scribe systems in terms of components and their interac-behaviors. This notion of emergence seems to be the sim-
tions [6, 7, 16, 25]. Academic and industrial groups have plest way to define complexity. Succinctly, this could be
defined and developed computer languages dedicated to th@xpressed as follows: suppose a system XY composed of
description of software architectures provided with archi two subsystems X and Y. Let us also suppose we have a
tectural connectors, calle@irchitectural Description Lan- mathematical functiod” which gives all potential pieces of
guage (ADL) such as ACME/ADML [17], Wright [5] or information on XY, X and Y, and an operation '+ to com-

“This work is performed within the European project GENNETEC Dine potential pieces of information of subsystems. If we
(GENetic NeTworks: Emergence and Complex3JREP 34952. have thatF'(XY) = F(X) + F(Y) then this means that

the systemXY integrates in a consistent manner the sub-
systemsX andY without either removing or adding pieces
of information. Therefore, we can say that the systgii
is notcomplex(i.e. the systenXY is said to bamodulai).
On the contrary, if there exists somee F(X) + F(Y)
such thate ¢ F(XY) or there exists some € F(XY)
such that ¢ F(X) + F(Y), then there is reconsideration
of some potential pieces of information &f or Y in the
first case, and appearance of true emergence in the second
case. The systeri Y is then saiccomplex

In this paper, we will study the notion of complex soft-
ware systems by using formal specifications, that is we will
suppose that every part of systems have been specified in a
given formalism from which we can infer properties. The
system XY will be built from subsystemsX andY by
means of an architectural connectoexpliciting how the
two subsystems are linked together to form the global sys-
teme(X,Y) = XY, the connector being implicit in the
notation X'Y. Finally, the function F will give for a spec-
ification its whole set of satisfied properties, the so-chlle
semantic consequencesspecifications usually noted ®,
andF(X)+ F(Y) = (X*UY*)*. Roughly speaking, this
last notation consists in saturating the property deivati
mechanism, and then represents the factfia) + F(Y)
denote the set of all properties which can be derived from
the set of propertie¥ ®, resp.Y®, associated t&, resp.Y'.
The notion of complexity being based on the emergence of
properties, a general framework dedicated to complex soft-

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

48

framework heterogeneous forms of specifications by
considering them as simple objects of a category
SPEC, while handled specifications over institutions
are mostly axiomatic (i.e. of the forifk, Axz) where

Y. is a signature andz is a (finite) set of formulas (ax-
ioms) overY). However, because we are interested by
emergent properties, we will adapt/modify specifica-
tion logics by defining them over institutions in order
to focus on specification properties;

abstract connectors will be defined by using notions of
the category theory. The use of category theory has
already been applied strikingly to model the architec-
ture of software systems by Goguen [19] and Fiadeiro
& al. [15]. It has also been applied to model com-
plex natural systems such as biological, physical and
social systems (e.g. Ehresman and Vanbremeersch'’s
works [13]).

Fiadeiro & al. [16] have proposed an abstract formal
denotation of a class of architectural connectors in the
style of Allen and Garlan [6], that is defined by a set of
roles and a glue specification. Here, we will go beyond
by not supposing any structure in the architectural con-
nectors.

Over our abstract notions of specification and architec-
tural connector, we will define the notion of emergent prop-
erties according to the two following classes:

ware systems can be defined independently of formalisms, 1. the ones we will calirue emergent propertighat are

specifications and architectural connectors. Hence, we in-
vestigate an abstract form of complexity, by following the
paradigm “logical-system independency”. The interestéher

properties which cannot be inferred from subsystem
properties,

is simple. We can observe, whatever the formalism used 2. and the ones we will cathon conformity properties

to specify softwares, that the same set of notions underlies
complexity. These notions are : architectural connectdr an
emergent property. To formalize abstractly these elements
our approach will be based on previous works:

that are subsystem properties which are not satisfied
by the global system anymore.

In practice, properties of the first form, i.e. true emer-

gent properties, combine knowledge inherited from subsys-

e we will use the general framework of institutions [20]

tems. Thus, they are defined in a richer language than the

which is recognized as well-adapted to generalize for- 0N€s associated to each subsystem, and the presence of such

malisms. The theory of institutions abstracts the se- €Mergent properties is quite natural. Conversely, pragsert
mantical part of logical systems according to the needs of the second form, i.e. non conformity properties, arerofte

of software specifications in which changes of signa- the consequences of bad interactions between subsystems.
tures are taken into account. The abstraction of the They characterize properties that are satisfied (resp.atot s
different parts of logical systems is obtained by us- isfied) by a subsystem considered in isolation, but are not
ing some notions of the category theory such as the Satisfied (resp. _satisﬁed_) by the global system incorpayati
category of signatures and the two functors to denote the subsystem in question.

respectively the set of sentences and the category of A Software system will be then sasdmplexwvhen emer-

models over a signature (see Section 2 for the completege”t properties can be inferred from it. The complexity of
definition of institutions and some related notions): systems just means that we do not benefit from the complete

knowledge of subsystems we have, to analyze the behavior
of the large system. Hence, the recursive approach used to
describe the system cannot be used to analyze its behavior.
Complex systems can then be opposed to modular systems

e specifications will be defined following the generic
approach of specification logics [14]. The inter-
est of specification logics is they unify in the same

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

49

which by definition strictly preserve local properties at th between them. This emerged in computing science studies
global level (see [24] for a state-of-the-art on the modular of software specification and semantics, in the context of
approach). the increasing number of considered logics, with the ambi-

The formalizations of system complexity and emergent tion of doing as much as possible at the level of abstraction
properties are interesting if they are done in such way to independent of commitment to any particular logic. Now
support the characterization of general properties to-guar institutions have become a common tool in the area of for-
antee when a system is or is not complex. To answer thismal specification, in fact its most fundamental mathematica
point, we will give some conditions under which a system structure.
is modular. We will then establish two results: in the first
one we will give a sufficient and necessary conditionto en- 2.1 Basic definitions
sure the absence of true emergent properties. In the sec-
ond res_ult, we _wiII give §ufficient conditions based on the efinition. 1 (Institution) An institution 7 _
categorical n_otlon of a(_jjunctness to ensure the absence o Sig, Sen, Mod, =) consists of
non-conformity properties.

As a result of our generalization defined in this paper, all
the notions, results, and techniques established and define
in our abstract framework ae factoadaptable to any in- e afunctorSen : Sig — Set giving for each signature
stitution. a set, elements of which are callsentences

The paper is structured as follows: Section 2 reviews
some concepts, notations and terminology about institu- e a contravariant functorMod : Sig°? — Cat giving
tions. Section 3 defines an abstract notion of specifications for each signature a category, objects and arrows of
over institutions. In Section 4, abstract architecturai-co which are called>-modelsand ¥-morphisms respec-
nectors are defined and classified as complex and modular. tively, and
The notations of the category theory used in this paper are
the standard ones and can be found in [15]. Although allthe ® @|Sig|-indexed family of relations
notions and results given in this manuscript are exemplified
by many examples all along the paper, Section 5 illustrates FxC [Mod(X)| x Sen(X)
more particularly the abstract framework developed in this
paper to reactive component-based systems described by
transition systems and combined together through the syn-)
chronous product operation. such that the following property holds:

Note : This manuscript extends the paper published in 77 2 — XYM€ [Mod(Y)], Y € Sen(%),
the proceedings of [1] with expanded definitions, new re-
sults and additional examples. Moreover, as an application
of our approach, we will study reactive systems described
by means of transition systems as components and of the
usual synchronous product as architectural connector, and”
whose behavior is expressed by logical properties over a
modal first-order logic. In this framework, we propose to
study complexity of reactive systems through this notion of
emergent properties. We will also give some conditions to . X : "
guarantee when a system is lacking of non-conformity prop- noted.Ml =z M, if, and only if the following condition
erties which have been recognized as being the cause of baHOIds'v@ € Sen(X), My e ¢ <= Mz Fs .
interaction between components. This last work has beenT
published in the proceedings of [2]. Here, this manuscript
also extends the paper published in [2] with complete proofs
of the main results.

e a categorySig, objects of which are callesignatures

calledsatisfaction relation

M’ s Sen(o)(p) & Mod(a)(M') s ¢

Here, we define some notions over institutions which
ill be useful thereafter.

Definition. 2 (Elementary equivalence)Let 7 =
(Sig, Sen, Mod, =) be an institution. Lef be a signa-
ture. TwoX-models)M; and M, are elementary equivalent

his means thaiM; and M, are undistinguishable with
respect to the formula satisfaction.

Definition. 3 (Closed under isomorphism) An institution
o is closed under isomorphisifi and only if every two iso-
2 Institutions morphic models are elementary equivalent.

The theory of institutions [20] is a categorical abstract All reasonable logics (anyway all the logics classicallgadis
model theory which formalizes the intuitive notion of logi- in mathematics and computer science) are closed under iso-
cal system, including syntax, semantics, and the satisfact morphism.

Definition. 4 (Logical theory) Let T =
(Sig,Sen, Mod, =) be an institution. LetY be a
signature of|Sig|. LetT be a set of¥-sentences (i.e.
T C Sen(X)). Let us denotéd/ od(T") the full sub-category
of Mod(¥) whose objects are alL-modelsM such that
foranyy € T, M [=x ¢, andT* the subset oben(X),
so-calledsemantic consequences®fdefined as follows:

T* = {p| YM € |[Mod(T)|, M =5 o}
T is alogical theoryif, and only if " = T'°.
@ € T* is also denoted by =5, ¢.

2.2 Examples of institutions

2.2.1 Propositional Logic (PL)

Signatures and signature morphisms are sets of proposi-

tional variables and functions between them respectively.

Given a signatures, the set of¥-sentences is the least set

of sentences finitely built over propositional variablesin
and Boolean connectives i, vV, A,=}. Given a signa-
ture morphismg : ¥ — Y/ associating to each proposi-
tional variable of: a propositional variable of’, Sen (o)
translates:-formulas toX’-formulas by renaming proposi-
tional variables according t®.

Given a signaturée, the category of-models is the cate-
gory of mappingsv : ¥ — {0, 1} with identities as mor-
phisms. Given a signature morphism ¥ — 3, the for-
getful functorM od(o) maps a&’-modelr’ to theX-model
v=1oo.

Finally, satisfaction is the usual propositional satititat

2.2.2 Many-sorted First Order Logic with equality
(FOL)

Signatures are triple€S, F, P) where S is a set of sorts,

and F' and P are sets of function and predicate names re-

spectively, both with arities i8* x S andS™ respectively
Signature morphisms : (S, F, P) — (S’, F’, P') consist

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

50

quantifiersy and4.

Given a signatur& = (S, F, P), aX-model M is a fam-
ily M = (M;)ses of sets (one for every € S), each one
equipped with a functioff™ : M, x...x M, — M for
everyf:s; x...x s, — s € F and with a n-ary relation
pM C M, x...x M, foreveryp:s; x...xs, € P.
Given a signature morphism : ¥ = (S, F,P) — ¥/ =
(8, F’, P") and aX’-model M’, Mod(o)(M’) is the -
model M defined for every € S by M, = M;(s), and for
every function nam¢g € F' and predicate name € P, by
fM = o(f)M andpM = o(p)™' . Finally, satisfaction is
the usual first-order satisfaction.

Many other important logics can be obtained as FOL re-
strictions such as:

e Horn Clause Logic (HCL). An universal Horn sen-
tencefor a signatureX in FOL is a X-sentence of
the formI’ = « whereT is a finite conjunction of
Y-atoms andy is a X-atom. The institution of Horn
clause logic is the sub-institution 8OL whose sig-
natures and models are thoseFDL and sentences
are restricted to the universal Horn sentences.

e Equational Logic (EQL). An algebraic signature
(S, F) simply is aFOL signature without predicate
symbols. The institution of equational logic is the sub-
institution of FOL whose signatures and models are
algebraic signatures and algebras respectively.

e Conditional equational logic (CEL). The institution
of conditional equational logic is the sub-institution of
EQL whose sentences are universal Horn clauses for
algebraic signatures.

e Rewriting Logic (RWL) Given an algebraic signature
¥ = (S, F), X-sentences are formulas of the form
pity > AL AL, =t =t — t wheret,, t; €
Tr(X)s, 1 < i < mn,s; € 8)andt,t’ € Tp(X)s
(s € S). Models of rewriting logic are preorder mod-
els,i.e. given a signatur& = (S, F'), Mod(X) is the

of three functions between sets of sorts, sets of functions category of¥-algebrasA such that for every € S,

and sets of predicates respectively, the last two presgrvin

arities.

Given a signatur& = (5, F, P), the X-atoms are of two
possible formst;, = t, whered t,,t, € Tr(X), (s € S),
and p(t1,...,t,) wherep : s; x ... x s, € P and
t; € Tr(X)s, (1 <i<mn,s; €5). The set oft-sentences
is the least set of formulas built over the setbhtoms by
finitely applying Boolean connectives i, V, A, =} and

1{0, 1} are the usual truth-values.

25+ is the set of all non-empty sequences of element$ imdS* =
St U {e} wheree denotes the empty sequence.

3T (X)), is the term algebra of sostouilt over F* with sorted variables
in a given setX.

As is equipped with a preorder. Hence, A = ¢ if,
and only if for every variable assignment X — A,

if eachv(t;)* > v(t))* thenv(t)* > v(t')* where
_A4: Trp(A) — Ais the mapping inductively defined
by: f(t1,...,tn)A = fAMDL, ... t2).

2.2.3 Modal FOL (MFOL)

Signatures are coupléX, A) whereX is aFOL -signature
and A is a set of actions, and morphisms are couples of
FOL -signature morphisms and total functions on sets of ac-
tions. In the sequel, we will note by the same name both
MFOL -signature and each of its components.

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

51

Given aMFOL signature(X, A) with ¥ = (S, F, P), in the model uniquely. Finally, signature morphisms, model
(3, A)-atoms are either predicate&, . . . , t,) or the sym- reductions and sentence translations are defined simitarly
bol T' (for True), and the set &, A)-formulas is the least those in FOL.

set of formulas built over the set 6F, A)-atoms by finitely

applying Boolean connectives i, vV, A, =}, quantifiers 3 Specifications in institutions

vV and3, and modalities i{0,|a € A}. For everya € A,
the intuitive meaning off, is “always after the action”.
Given a signaturé€X, A), a (X, A)-model (W, R), called
Kripke frame, consists of a familyy = (W?),;¢; of -
models inFOL (thepossible worldgsuch that Wi = W/
for everyi,j € I ands € S, and aA-indexed family of
“accessibility” relationsR, C I x I. Given a signature
morphismo : (%,4) — (¥, A’) and a(X’, A’)-model
(Wier, R'), Mod(o)((W")icr, R')) is the (3, A)-

Over institutions, specifications are usually defined ei-
ther by logical theories or coupldX, Ax) whereX is a
signature anddx a set (usually finite) of formulae (often
called axioms) oveE. However, there is a large family of
specification formalisms mainly used to specify concugrent
reactive and dynamic systems for which specifications are
not expressed in this way. We can cite for instance pro-

i : cess algebras, transition systems or Petri nets. Now, all of
model (Z,de(U)(W/ Jier, 1?) defined for everys € Ay 4,050 yinds of specifications can be studied through the set
Rq = Ra(a)' A (2, A)-sentence is said to be satisfied by of their semantic consequences expressed in an adequate

a (X, A)-model(W, R), noted(W, R) (s, 4) ¢, ifforev- - formalism. This leads us up to define the notion of specifi-
eryi € I we have(W, R) =% o, wherel=;; is inductively ations over institutions.

defined on the structure gfas follows:

o for every FOL-formula ¢ built over T-atoms, °-1 Definitions
W, R) EL o iff Wi
()5 = _ Let us now consider a fixed but arbitrary institutidon=
e (W,R) =L Oup Wwhen(W, R) =% ¢ for everyj € I (Sig, Sen, Mod,).

such that R, j. s e
J Definition. 5 (Specifications) A specification languagg8L

overZ is a pair (S Real) where:
2.2.4 More exotic institutions pair (Spec, Real)

e Spec : Sig°? — Set is a functor. Given a signature
3, elements ibpec(X) are calledspecifications over
3.

The institution theory also enables to represent formalism
which are not logics strictly speaking.

Formal languages (FL) The institution of formal lan-
guages is defined by the category of signatuffes Given
a setA, the set of sentences is* andMod(A) is the cate- _
gory whose objects are all subsetsdf Given a signature for every> < |Sig|, and everySp € Spec(X),
morphismo : A — A’, Mod(o) is the functor which at Reals,(Sp) is a full subcategory oMod(Y). Objects
L' C A’ associates the sét = {a|o(a) € L'}. Finally, of Realx,(Sp) are calledrealizations ofSp.
given a signatur& € Sig, =5 is just the membership rela-

tion 3. It is obvious to show that the satisfaction condition (Spec, Real) be a specification language ovét Let us
holds. define * = (_3)xesiy the Sig-indexed family of mappings
Programming languages (PLG)The institution of a _3% : Spec(X) — P(Sen(X)) that to everySp € Spec(X),
programming language [28] is built over an algebra of built- Yyields the sefSp, = {¢|VM € Reals(Sp), M = ¢}.
in data types and operations of a programming language.Sps; is called theset of semantic consequenagfsSp or
Signatures are FOL signatures and sentences are prograntgetheory ofSp.
of the programming language over signatures; and models
are algebraic structures in which functions are interpgrete

as recursive mappings (i.e for each function symbol is as- ¢ \we could expect thablod(Sp®) = Real(Sp) what
signed a computation (either diverging, or yielding a r§sul would make unmeaning the existence of the mappings
to any sequence of actual parameters). A model satisfies 2 iy el in Definition 5. However, we can often be led
sentence if, and only if it assigns to each sequence of param- up to make some restrictions on specification models.
eters the computation of the function body as given by the For instance, when dealing with axiom specifications
sentence. Hence, sentences determine particular fusction expressed in equational logic, we can be interested by

4In the literature, Kripke frames satisfying such a propereysaidwith reachable or i.n_itial models to allow inductive proofs or
constant domains for computability reasons.

e Real = (Reals)sc|sig iS a Sig-indexed family of
mappings Realy, : Spec(¥) — |Cat| such that

Definition. 6 (Semantic consequenced)et SL =

Definition 6 calls for some comments:

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

e Sometimes, ° is a natural transformation frorfipec P(Sen(X)). Itis easy to check that given a signature mor-
to® P o Sen®?. However, most of times, it is not the phismo : ¥ — ¥, the following diagram commutes and

case (see the examples in Section 3.2). then _* is a natural transformation:
-
Definition. 7 (Category of specifications)Let S£ be a Spec(X) — P(Sen(¥))
specification language over an institutioh. Denote
SPEC the category of specifications ov8i whose the Spec(o) P(Sen?(o*))
objects are the elements in_| Spec(%), and morphisms .
zelSigl Spec(L') — P(Sen(X))

are actually given by signature morphisms (i.e. for every

Sp € Spec(X) and everySp' € Spec(¥'), o : Sp — (See Footnote 5 for the definition of)

Sp’ € SPEC iff o : ¥ — X' € Sig). If a morphism

o Sp — Sp’ in SPEC further satisfiesSen(o)(Sps;) € 3.2.2 Axiomatic specifications

Sp's, theno is calledspecification morphism

Sig: SPEC — Sig is the functor which maps any specifi- In this case, specifications are defined by pdis Az)
cationSp € Spec(X) to the signatures and any morphism ~ Where ¥ is a signature anddz C Sen(X), and

o to the signature morphisifiig(c). given a signature morphisrr : ¥ — ¥/, Spec(o)
matches eveny’-specificationSp’ = (¥, Az’) to Sp =
Hence, specification morphisms are arrowsSiREC (2, {plSen(0)(¢) € Az'}). By the satisfaction condition,

that further preserve semantic consequences. Comwe have thaben(o)(Ax*®) C Ax’®. The functorSpec then
monly, the category of specifications over institutionsenav associates to every signatiiehe set of pairgX, Az), and

J Spec(®) as objects and specification morphisms as (X, Az)s; = Az*. Observe that? is not a natural transfor-
selsig] mation. Indeed, let us set FOL, and consider the inclu-

arrows [20, 29]. Here, the fact to consider just signature Sion morphisny : ¥ — ¥’ whereX' = ({s},0, { R, Ry :
morphisms between specifications will be useful to define s X s}) andX = ({s},0,{R, : s x s}). Let Az’ be the set
both architectural connectors and their combination. of axioms:

rRyy=—=yRox

3.2 Examples of specifications
rRiy<= xRy

We give three examples of specification languages that

e - "Obviously, we prove fromAz’ that R, is a symmetric
correspond to the usual forms of specifications over arbi- y P v ! y

N relation.
trary institutions. However, Spec(o)((X',Az’)) = @, and then
Spec(o)((¥', Az"))® is restricted to tautologies while
3.2.1 Logical theories P(Sen?(c*))(Az’") contains at least R, y = y R1 .

Here, specifications are logical theories. To meet the re-

quirements given in Definition 5, this gives rise to the func- 3.2.3 Inference rules
tor Spec : Sig°? — Set which to everyY € Sig, as-
sociates the set of all-theoriesT, and to every signa-
ture morphisny : ¥ — X/, matches every'-theory T’
with the X-theory T = {p|Sen(o)(¢) € T’}. Hence,
Spec(X) C P(Sen(X)). We naturally defindreals (T) =
Mod(T). Moreover, specifications being saturated theories
this naturally leads to the identity functiof, : Spec(X) —

In the framework of formal language, languadesver an
alphabetA can be specified by inference rules, thahis
ary relationsr on A* and a tuplgay, .. .,a,) € r means
that if aq,...,a,_1 are words of the language, then so
is «,. Hence, a specification over an alphabets a set
'R of n-ary relations ondA*. Given a signature morphism
o : A — A’ and a specificatioR’ over A’, the specification

5Given a functorF’ : C — D, F°P : C°P — DOP is the dual ofF Spec(a)(R') over A is the setR of n-ary relationr such
defined as follows: that there existe’ € R’ andr = {(a1,...,a,)|(Vi,1 <

— Vo €C, FP(0) = F(o) i <n,a; € A) A (a1,...,a,) € r’}..leen a set of |n_fer—
ence rulesk over an alphabet, R is the languagéd. in-

— f* being the reverse arrow of in C, Yo,o/ € C,Vf €
fHomc(f o), FoP(f*) = F(f)*f 20 / ductively generated from inference rulesiof Given a sig-

) . y nature morphismr : A — A’ and a set of inference rulég
The powerset functofP : Set°? — Set takes a sefS to its powerset / ; Ne __ Dle *
P(S), and a set functiorf : S — S’ (i.e., an arrow fromS’ to S in overd'. Itis easy.tq show thaipec(o) (1), = fia A
Set°P) to the inverse image functiofi-! : P(S') — P(S) whichasso- ~ What proves that? is a natural transformation fromipec
ciates to a subset C S’ the subse{s € S|f(s) € A} of S. toP o Sen®P.

52

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

53

3.3 Properties of specifications Tr (A) by the congruence generated by the kernel obthe
morphismTr(A) in A extending the identity oX. © This
Proposition. 1 Leto : Sp — Sp’ be a specification mor- algebra satisfies the following universal property: forrgve
phism. Then, the functatfod(o) : Mod(Sig(Sp')) — I"-algebraB and every®-morphismy : A — Mod(o)B,
Mod(Sig(Sp)) can be restricted to specification semantic there exists a uniqu&’-morphismngs : Tt p(A) — B
consequences (i.eV/od(c) : Mod(Sp) — Mod(Sp%) such that for every: € A, np(a) = p(a). This universal
is a functor). property directly shows that the functéy. - is left-adjunct
to Mod(o), i.e., for event-algebraA there exists a univer-
Proof. Lety € Spg, s, aNd M € Mod(Sp'). As sal morphismu 4 : A — Mod(o)(Tr/r(A)). pa is called

o is a specification morphism\ |=giys,) Sen(o)(p). theadjunct morphisnior A.
Therefore, by the satisfaction condition, we also have that
Mod(c)(M) Esig(sp) ¢- 4 Architectural connector

We cannot state a similar result for the family of map- 4.1 Definiti
pings Real, i.e. we cannot define in a general way a func- ~* elnitions
tor of the formReal(c) : Real(Sp’) — Real(Sp). The

following notion of compatibility captures the existende o Succinctly, architectural connectors enable one to com-
such a functor. bine components (specifications) together to make bigger

ones. However, depending on the used specification lan-

Definition. 8 (Compatible) Let SL = (Spec, Real) be a 9uage, the way of combining components can be differ-
specification language ovef. Leto : Sp — Sp’ be a €nt. Forinstance, when specifications are logical theories

and only if we can define a functeal (o) : Real(Sp') — union on signatures whereas the combination of specifica-
Real(Sp). tions made of transition systems is based on some kinds of

product. However, one can observe that most of existing

, i , connectors have the following common features:
Here, we define two other notions that we will use after-

wards. e a connector gets as arguments a fixed nhumhbeof
existing specification$p;, Sps, ...Sp, defined re-

Definition. 9 (Definable by specification) Given an insti- spectively over the signaturés, ¥, ...%,,, to build

tution Z and a specification language ovér; a X-theory a new one, denoteflp = ¢(Sp1, Sp, ..., Sp,). We

T is saiddefinable by specificationr definablefor being can then see the connectons a mapping of arity;

shorter if, and only if there existSp € Spec(X) such that from |SPEC|" to |[SPEC|. We will see in the ex-

T = 5ps. amples that actually may be a partial function, but
often defined in a way sufficiently general to accept as

In the following definition, we now adapt the standard arguments tuplegSpi, Sps; . . -, Spn) With a large as-
notion of liberal specification morphism [12] which will be sociated family of signature tupleX,, ¥, ..., X,).

useful in Section 4.3. e as specifications will be recursively defined by means

of connectors, the argumentp,, Sps, ...Sp, Of

the connector: can be linked together by some con-
straints on elements present in specification signatures,
expressed by signature morphisms. These constraints
will be taken into account by the definition of the con-
nectorc. Hence, the arguments of a conneatawill

not be a tuple of, specifications, but specifications
equipped with signature morphisms. This will be de-
fined by a graph whose nodes are specifications and
edges are signature morphisms. In our category theory
based setting, such a graph is called a diagram of the

Definition. 10 (Liberality) In any specification language
SL over Z, a specification morphisre : Sp — Sp’
is liberal if, and only if Real is compatible withoc and
Real(o) : Real(Sp’) — Real(Sp) has a left-adjunct
F(o) : Real(Sp) — Real(Sp').

Specifications defined by logical theories and axiomatic
specifications over the institutioBEL is liberal for every
specification morphisra. Indeed, letr : ¥ = (S, F) —
¥ = (', F') be a signature morphism, and etandI”
be two sets of conditional equations over, respectively,

andy such thatSen(c)(I") C I". We can build a functor specification Iclzat:egqryPEC. In practice, for a given
Ty r : A Trop(A), from the category of-algebras to connectok, all the diagrams accepted as arguments by
the category of’-algebras. 8T/ (A) (resp. Tr(A)) is the term algebra built oveF” (resp. F)

Let A be aTl-algebras. Ty r(A) is the quotient of with sorted variables in the carriet of theI™-algebraA.

¢ have the same graph shape (i.e. the same organizaExample. 1 (Enrichment and union) Enrichment

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

and

54

tion between nodes and edges). Hence, our connectorsinion of specifications have surely been the first primitives

will be built on the diagram category with the same
shape over the catego8PEC.

¢ the signatureX of Sp is the least one over the sig-
natures¥q, ¥o, ..., X,. This expresses the fact that
generally, a connectar does not explicitly introduce

architectural connectors (so-called structuring primi-

tives) to be formally defined and studied especially when

dealing with specifications defined as axiomatic speci-
They even received an abstract formalization

fications.
in institutions [8]. In our framework, both structuring
primitives are defined as follows: we consider an institu-

new elements to be specified, but on the contrary only tion 7 — (Sig, Sen, Mod, |=). Moreover, in Example 1,
combines the elements already present in one of thegp pc is the category whose objects are specifications of

signaturesq, ¥s ...X,. In the following definition
of connectors, this will be expressed by the co-limit of
the diagram, projected on signatures.

This then leads us up to formally define architectural
connectors as follows:

Notation. 1 (Diagram category) Let I and C' be two cat-
egories. NoteA; ¢ the category of diagrams i’ with
shapel, i.e. the category whose objects are all functors
0 : I — C, and morphisms are natural transformations be-
tween functorg, ¢’ : I — C.

Let I’ be a subcategory of a categofy Letd be a dia-
gram of A(; . Let us denoté| , the diagram ofA ./ ¢y
obtained by restricting to I'.

Definition. 11 (Co-cone) Given a diagrany : I — C. A
co-coneof § consists of an object € |C| and al-indexed
family of morphismsy; : §(i) — ¢ such that for each edge
e:i— 4 in I, we have thaty o d(e) = a.

A co-limiting co-cone (co-limit)(¢, {c; }icr) can be un-
derstood as a minimal co-cone, that is:

Definition. 12 (Co-limit) A co-cone(c, {«;}ics) of a dia-
gram¢ is a co-limit if, and only if it has the property that
for any other co-conéd, {3; };cr) of §, there exists a unique
morphismy : ¢ — d such that for every € I, v o a;; = [3;.
WhenlI is the categorw < e — e with three objects and
two non-identity arrows, the co-limit is calledpushout

Definition. 13 (Co-complete) A category C' is co-
completeif for every shape category, every diagram
0 : I — C has a co-limit.

In the sequel, we will then consider institutions whose
the signature category is co-complete.

Definition. 14 (Architectural connector) Let SL be a
specification language over an institutidhfor which the
category Sig is co-complete. Ararchitectural connector
c: |Aq,spec)| — |SPEC|is a partial mapping such that
everys € A spec) for whichc(d) is defined, is equipped
with a co-cone : Sig o § — Sig(c(d)) co-limit of Sig o 4.

the form(%, Az) over a given institutiorf and morphisms
are anyo : (X, Az) — (X, Az')st. o : ¥ - Y isa
signature morphism.

Enrichment Let I be the graph composed of two nodes
i+ and j and one arrowa : ¢ — j. The connectoEn-
rich for axiomatic specifications is defined for every di-
agramé : I — SPEC whered(i) = (¥,Az) and
5(j) = (¥, Az’) such thatSen(Sig(d(a)))(Az) C Aa’,
and yieldsEnrich(6) = (X', Az’") together with the co-
cone Sig(d(a)) and Idg;gs;)) Which is the obvious co-
limit of Sig o 6. Observe that(a) and Id;, are further
specification morphisms.

Union Let I be the graph composed of three nodeg,
andk and two arrowsz; : i — j andas : i — k. The con-
nectorUnion is defined for every diagram: I — SPEC
whered (i) = (3o, Axog), 6(j) = (X1, Azq) andd(k) =
(32, Azg), and such thatSen(Sig(d(a1)))(Azg) C
Azy and Sen(Sig(d(az)))(Azg) C Azg, and yields
Union(d§) = (X, Az) with the co-cone : Sigo§ — X
which is the pushout 0fig(d(a1)) and Sig(é(az)) and
such thatdz = Sen(p;)(Az1) U Sen(py)(Azs). Observe
that we can derive the co-copgprc : 6 — (X2, Az) such
thatSig o pspec = p, andpsprc; andpspec, are spec-
ification morphisms.

In [8], both above connectors have been brought down

to two basic connectors: union with constant signatures
andtranslate _by o for every signature morphism They
are defined by:

1. Let I be the graph composed of two nodeand j
and without arrows betweeh and j. The connec-
tor | is defined for every diagram : I — SPEC
whered(i) = (X, Az,) andi(j) = (2, Azq), and
yieldsJ(0) = (X, Ax) with the obvious co-limip :
Sigod — ¥ wherep; andp; are the identity signature
morphism fory, and such thatdz = Az, U Axs.

2. LetI be the graph composed two nodeand!. The

connectortranslate _ by o whereo : ¥ — ¥/

is a signature morphism, is defined for every dia-

gramé : I — SPEC wheredé(k) = (X, Az) and

5() = (¥',Sen(o)(Azx)), and yieldstranslate _ by

o(8) = (¥, Sen(c)(Ax)).

In [8], J(d) andtranslate _by o (§) are respectively noted
d(¢) U é(y) andtranslate §(k) by o.

Architectural connectors can be combined to deal with
specifications in the large.

Definition. 15 (Connector combination) Let ¢ :
‘AL’SPEC| — ‘SPEC| andcl : |A(I',SPEC)‘ — |SPEC‘
be two architectural connectors. Léte |I’| be an object.
LetI’ o; I be the category defined by:

o [0y 1) = 1|T117

o the setsomy,, (k1) for everyk,l € |I' o I| are
inductively defined as follows:

—k,le|I'| = Homy (k1) C HOTTL[/Oi/I(k,l)

— k,le|I| = Hom;(k,l) € Homypo,, 1(k,1)

— for everyi € |I|, we introduce the arrovy; in
Hom]/ol,[(i,l'/).

— Homp,, 1 is closed under composition.

Let us denote’ o ¢ : |Apo,1,5pEC] — |[SPEC| the
architectural connector defined by :

c(9,,) if c(d),) is defined

6(i") = ¢(d),)

P andd(g;) is the morphismr; in SPEC
p; of the co-limitp associated te(d),)

undefined otherwise

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

55

one glueG stating the interaction between roles (i.e. the
way roles communicate together). Roles and glue are pro-
grams defined over signatures (see [16] for a complete def-
inition of programs). In our framework, programs denote
specifications from which we can observe temporal proper-
ties. Each role and the glue are interconnected by a channel
to denote via signature morphisms shared attributes and ac-
tions. This gives rise to a diagram defined as the intercon-
nection on the glué of basic diagrams of the form:

channel

In Community, the mathematical meaning of a connector is
then defined by the colimit of such diagrams. This can be
easily defined in our framework by considering a connec-
tor ¢ defined for every diagram of the previous form over
the category’ ROG (defined in [16]) taken as the category

SPEC.

whose the image b§ig is the componerf#-2 Complex structuring

As already explained in the introduction of the paper,
an architectural connector will be considered as complex

Example. 2 Enrichment can be removed and replaced by when:

the following combination ofranslate and U as follows:
let 6 be a diagram ofA; sppcy Where I is the index
category of the connectoEnrich, 6(i) (3, Az) and
6(j) = (¥, Ax’)

Enrich(6) = |_Joitranslate_bys' (p;)(5")

where ¢’ is the diagram ofA o, sprcy for I” (resp.
I') the index category of the connector(resp. translate),
defined bys’(k) = 6(4), &' (¢) = translated’ (k)byd’ (p;) =
(3, Sen(Sig(p;))(Ax)) andd’ (j) = (X', Az’ \ Ax).

1. The global system does not preserve the complete be-
havior of some subsystems. We will then talk about
non-conformity properties

2. Some global properties cannot be deduced from a com-
plete knowledge of these components. We will then
talk abouttrue emergent properties

This is expressed by comparing the set of semantic con-
sequences of subsystems with the ones of the global system
up to signature morphisms.

The reader accommodated to the terminology and to thepefinition. 16 (Complex connector) Let c

concepts of software architecture can be disappointedeby th

|A,specyl — |[SPEC| be an architectural connec-

way connectors are interpreted here, i.e. by functions thatyy, | et 5 be a diagram ofA (; sp e Such thatc(s) is
take components and produce systems. Indeed, connectorgefined. ¢ is said complex for(S’if, and only if one of the
are typically viewed as forms of communicating compo- o following properties fails:

nents. Such connectors can also be formalized in our frame-
work. For instance, in Community [15, 16], in the style of
Allen and Garlan [6], a connector consistsaflesR; and

1. Conformity.
Vi € I,V € Sen(Sig(d(i))),¢ € (5(1')51.9(5(1.)) —
Sen(pi) () € c(0)gig0c(5)

7q; is the arrow introduced il om ., , 1 ().
i

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

2. Non true emergence.

¥ € ¢(0)Sig(es)) U Sen®i) 0(D3ig5007)) Esigetsy
el
¢

A formulayp that makes fail the equivalence of both Point 1.
and Point 2. is calle@@mergent property
If ¢ is not complex for a diagram, then it is saidnodular

Example. 3 Here, we give a very simple example of spec-
ifications in which modularity fails. Ldtlat be the specifi-
cation inEQL defined as follows:

Specification of Nat Sorts: Sy = { nat }

Functions : Fya: =
{0 :— nat,
succ : nat — nat
_+ _:nat x nat — nat }

Axioms: Axnat =
{r+0=2z
x + succ(y) = suce(x +y)}

56

4.3 Conditions for modularity

As we have explained it in the introduction of this
manuscript, complex software systems prevent to check
their correctness with respect to their specification step b
step by taking the benefit of their recursive structure. This
leads to the important consequence that adding any compo-
nent gives rise to a new systems whose the correctness has
to be completely (re)checked. It is then important to study
general properties that guarantee when a system is not com-
plex (i.e. modular). This is what we propose to do with the
two following results.

Theorem 1 states that showing the non-presence of true
emergent properties for a connectorand a diagrany
comes to show tha(tU Sen(pi)(6(1)%ig(5:7)))° is defin-

i€l
able byc(9).

Theorem. 1 Letc be an architectural connector andbe a
diagram such that(¢) is defined. Then, we have:

U Sen(pi)(5()%:g(51y)))" is definable by:(s) if, and

Let us us enrich this specification by adding operations on_ly ifthe set of true emergent properties is empty and each
and axioms to specify stacks of natural numbers. This leads: iS & specification morphism.

to the following enrichment:

Sorts: Sstack = { nat, stack }

Functions : Fsqck
{empty :— stack,
push : nat x stack — stack ,
pop : stack — stack
top : stack — nat,
high : stack — nat}

FNat)

Axioms: Azsiqck
{pop(empty) = empty
pop(push(e, P)) = P
top(push(e, P)) = e
high(push(e, P)) = succ(high(P))}

AT Nat U

If we suppose that realizations are either the initial
model or reachable modefsf both specifications, then an
example of emergent property is:

Ve, (z = 0) V (3y, z = succ(y))

This is becauséigh(empty) has not been specified to
be equal ta0. On the contrary, if we add this equation in
Axsiack, there is not emergent property anymore.

8A model is reachable when any of its values is the result of vhkie
ation of a ground term.

Proof. The only if part. This obviously results
from the fact that (| Sen(p:)(0(i)%izes0)))°
el
is definable by c¢(9). Indeed we have
(0)%iges) = Use’” (pi)(6(4)Sig(s(iy)))°» that
el

is for every v € 6(5)731'9(45))* we have that

U Sen(pi)(S'Lg (6(4)) Fsig(c(s)) P-
iel
Theif part. As eaclp; of p is a specification morphism,

we have tha(U Sen(pi)(6(0)Sig(5i)))° € (6)Sig(e(s)-

el
Moreover, as the set of true emerging properties is empty,
we have that S?,g((,((s) U Sen p’L S?,g((s())))
i€l
Hence, c(8) 4,0 = (U Sen(0i)(0(i)%iy(5))°> and
el
then
(L Sen(pi)(5(1)%ig(5y)))" is definable by:(s).
1€l

By Theorem 1, the architectural connectdrsirich,
Union, | J andtranslate _ by o have no true emergence
properties for any defined diagram.

As we could expect, modularity is a property which
holds for some, but certainly not for all architectural con-
nectors. More surprising, even under the condition that

US’en (pi)(

el
nectorc and a diagrand such thatc(d) is defined, mod-

)Sig(s())))" 1S definable by:(d) for a con-

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

57

Theorem 2 generalizes to any architectural connectors
the standard condition of modularity based on the two no-
tions of hierarchical consistency and sufficient complete-

ularity can fail because of non-conformity properties (see ness [22], which has been stated for the enrichment connec-

Example 3).

tor in the algebraic specification framework (when specifi-

In the next theorem, we give a supplementary condition cations are conditional positive).

based on the liberality of eagh of the co-limitp, that leads

to an empty set of non-conformity properties. For Theo-

rem 2, we suppose the following conditions :

1. the institution under consideration is closed under iso-

morphism,

2. Real is compatible for every specification morphism

p; of the associated co-copeand

3. eachp; of the co-limit p associated to the con-
nector ¢ in A sprc) Satisfies the supplemen-

tary condition, so-calledRight Satisfaction Con-
diton (RSC) : Vo € Sen(Sig(5;)),VM €
Real(c(6)), Real(pi)(M) Fsige) ¢ =
M Esigs(ey) Sen(pi)(p)-

5 Application to reactive systems

In this section, we propose to exemplify our abstract
framework to reactive system modeling. We will then give a
rigorous and formal definition of emergent properties in the
framework of reactive system modeling. We restrict our-
selves to reactive systems described by means of the usual
synchronous product of transition systems, and whose be-
havior is expressed by logical properties oMdFOL . The
reason is this is sufficient for the purpose of the study, and
the results given in this paper could easily be adapted to
temporal logics more classically used to reason on reactive
systems and other composition connector whose the great-
est number are based-on transition system product. In our

The interest of RSC is, realizations being a subset of mod-setting, we will study some conditions under which non-

els, some pruning on realizations Real(d(c)) have been

conformity properties do not occur. The interest is this pro

allowed to be done, and then this direction of the satisfac- vides guidance in the design process. Indeed, the appear-
tion condition has been able to be brought into failure. For ance of non-conformity properties leads to make a posteri-
instance, this property does not hold when specificatioms ar ori verification of the global system without benefiting from

logical theories and realizations are restricted to relaleha
models (see Example 3). For the next theorem, we suppose

that these three conditions hold.

Theorem. 2 Let ¢ be an architectural connector and
be a diagram such that(d) is defined.

USen (pi)(

iel
compatible with eaclp; and eachp; is liberal. Then, for

everyi € I and everyM € Real(4(i)), If each adjunct
morphismu g : M — Real(p;)(F(p;)(M)) is an isomor-

)%ig(s(iy)))" 1S definable by(d), Real is

phism, then the set of non-conformity properties is empty.

Proof. Lety € §(i)% and letM € Real(c(9)).

Sig(6(4))’
As (| Sen(p:i)(6(i)%q500)))" is definable by ¢(d),
icl
Real(p;)(M) Esigis:)) ¢- Therefore, by the hypothe-

sis that the truth of property is preserved for the functor

Real through each signature morphism, we have that
M Esig(e(s)) Sen(pi) ().

lety € Sen(d(7)) such thatSen(p;)(¢) € c(6)®, and let
M € Real(6(i)). AsF(p;) is left-adjunct toReal(p;), we
have F (p;)(M) Esige(s)) Sen(pi)(p). As Real is com-

patible with eachp;, Real(V(F (i) (M) Esigisi)) -
As the adjunct morphism is an isomorphism &hé sta-

ble under isomorphismM and Real(o)(F(p;)(M)) are
elementary equivalent, and theé¥l =g, ,(5(:)) ¢

Suppose that

the decomposition of the system into components.

In Section 5.1, we introduce transition systems and their
semantics, and define the synchronous product as means to
compose them. Finally, Section 5.2 presents results ensur-
ing the non-existence of non-conformity properties along
synchronous product.

5.1 Transition systems

5.1.1 Syntax

As usual when considering automata, transition systems
describe possible evolutions of system states. Elementary
evolutions are represented by a transition relation batwee
states. Each transition between two states is labeled bg thr
elements: actions of the system, guards expressed here by
formulas of FOL presented in Section 2, and side-effects
on states defined by pairs of ground terms or of the form
(p(t1,...,tn),b) wherep(ty,...,t,)is a ground atom and

b is equal totrue or false. As usual, we start by defin-
ing the language, so-called signature, on which transition
systems are built:

Definition. 17 (Signature) A signatureis a triple .¥ =

(3, V, A) where: ¥ is aFOL -signature,V is a set of vari-
ables overX and A is a set whose elements are callect
tions

Definition. 18 (Side-effect) Given a signature ¥ =
(3,V, A) whereX = (S, F, P), a side-effectover L is a
pair of ground terms ovek (¢,t') of the same sort (i.e.
ds € S,t,t' € Tr) or a couple(p(ti,...,t,),b) where
p(t1,...,t,) is @ groundX-atom (i.e. each; is a ground
term) andb is equal totrue or false. In the sequel, a side-
effect(¢,¢’) will be notedt — ¢'.

We noteSE(L) the set of side-effects ovér

A transition system is then defined as follows:
Definition. 19 (Transition system) Given a signature
< = (%,V,A), atransition systenis a couple(Q, T)
where:

e () is aset ofstatesand

e TCQxAx Sen(X) x 25¢5) x Q.

A small specification example is given in [2]. Transi-

tion systems are specifications of reactive systems. leena single one by synchronizing transitions. Understangably

a signature morphisra : (X, A4) — (¥, A’) and a spec-
ification S’ = (@', T') over (X', A"), Spec(c)(S’) is the

specificationS = (@, T) over(X, A) such that) = Q" and

T ={(¢,a,,6,4')(q,0(a), Sen(c)(¢),0(5),¢') € T'}.

5.1.2 Semantics

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

Definition. 22 (Semantics of transition systems)Given a
transition systens = (Q, T) over a signature?, the se-
mantics forS, noted Real(S), is the set of all the Kripke
frames(W, R) over.Z such that the set of indexés= @,
and satisfying both implications:

1. (q7a790)57q/) e TAW ':(P/\Wq ~ s Wq/
= q Ry q

2. qR,q
= 3(q,a,9,0,¢") € T, WL = o AW ~o5s WA

Hence, the way whose dynamic is dealt with in this paper

58

follows the state-as-algebra style [21, 3] where states are
Y-models and state transformations are transitions from a

state-model to another state-model.

5.1.3 Synchronous product

Synchronous product combines two transition systems into

executions of synchronous product modelize system behav-
ior as a synchronizing concurrent system. Hence, when an

actiona is “executed” in the product, then every compo-
nent witha in its alphabet must execute a transition labeled
with a. Formally, the synchronous product of two transition

systems is defined as follows:

Semantics of transition systems are defined by Kripke Definition. 23 (Synchronous product) Let S; = (Q;, T;)

frames themselves defined as follows:

Definition. 20 (Kripke frame) Given a signature? =
(3,V, A), anKripke frameover.Z or .£-model, is a cou-
ple (W, R) where:

e W is al-indexed se{WW');c; of -models such that
Wi =W/ foreveryi,j € I ands € S, and

e RisaA-indexed set of “accessibility” relationg, C
Ix1.

Here, states are defined Bymodels. Therefore, side-
effects will consist on moving from &-model to another

one by changing the semantics of functions according the

assignments given in the seof transitions. Formally, this
is defined as follow: if4 is aX-model, then 4 : Tp — A
is theX:-morphism inductively defined by (¢4, ..., t,) —
ARt

Definition. 21 (Side-effect semantics)et.Z = (X,V, A)
be a signature. Letd and 3 be twoX-models. We note
A ~»s B to mean that the statd is transformed into the
stateBB alongé, if and only if B is defined as4 except that
for everyt — t' € § (resp. p(t1,...,t,) — b), t8 = t'4
(resp.(t{', ..., t4) € pBiff b = true).

r 'n

be a transition system over a signatuté = (%,,V;, A;)
with i = 1, 2 such that:

e for every transition(qi, a, v1,01,¢1) € Ty and ev-
ery f(tla cee atn) = tll € 61 (resp' p(tlv s vtn) =
b € ¢1), there does not exist a transition
(g2,a,p2,02,¢5) € T and a side-effecty —
L € 4y with to of the form f(¢},...,t,) (resp.
p(/17 ce 7t;1,) b e 52)1

e and conversely, that is this condition on side-effects

has also to be satisfied by replacifiy by T, §; by
0o and52 by51

Thesynchronous product S; andS,, notedS; ® S, is the
transition systen(@, T) over.¥ = (2, UX, V1 UVa, A; U
As) defined as follows:

e Q=Q1 xQ2

o if a S Al N A21 (917%@17517‘1{[)
(QQ7a7 P2, 627(15) € T2 then
((q1,92),a,01 A p2,01 Ud2,(q1,q3)) €T

e Ty and

e ifa e A\ Ay and (¢1,a, ¢1,01,9;) € Ty then for
everyCI2 S QZ: ((QI7CI2)7G7801751a (q/17q2)) eT

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

59

e ifa € Ay \ Ay and (¢q, a, p2,d2,¢5) € T, then for (¢,a,¢,q") € T;. By construction, there exists a transi-
everyq: € er ((QL q2)a a, 2, 527 (qla qé)) eT tion ((Qa q7)7 a, 80/5 517 (q/7 q;)) € T such that eithe@’ =

andoé’ =4§,0r¢’ = p A" andd’ = 6 U 4", In both cases,

Both conditions on side-effects allow us to remove the casepy hypothesis, we have that) (%) |= /. Therefore, by

where for an identical function nanfe(resp. a predicatg) the satisfaction condition fdFOL W/ |= . Moreover, by

applied to an identical tuple of arguments yields different the condition on side-effects in Definition 23, we have that

values, and then causes the functionality'dfesp. makes 9 ., s we?

inconsistent the set of side-effects restingsto fail. ! !

. . Proposition. 2 Vo : V. — W,

By following the notions of our abstract framework, the
synchronous product gives rise to the conneétgnc. To (YOVi, Ri) € Ti, Vg € Qi, Wi, Bi) =]) (@.05)
define this connector, we consider the shdpsomposed = (Vg; € Q;, W, R) " ¢)
of three nodeg, j andk and two arrows:; : ¢ — j and
az : 1 — k. The connectoiSync is then defined for ev-
ery diagramd where§(i) is the empty transition system Basic case.y is of the formp(¢q,...,t,). Letg; €
over the signaturé>y, A;) whereXy is the emptyFOL - Q;. By definition, there exist®/V;, R;) € T'; such that
signaturej(j) = (Q;, T;) over the signaturéx;, A;) and Wi = Mod(%; — X)(W(@4)), By hypothesis, we have
5(k) = (Q, Ty) over the signaturéXy,, A;), and yields ~ W =, p(t1,...,t,), and thenW(@%) =, p(ty, ... t,).

Sync(d) = §(j) ® §(k) over the signaturéX:, A) with the . ,
co-conep : Sig o8 — (X, A) which is the pushout of General caselet us handle the case whegeis O,¢'.

. . gy Let us suppose thavV, R (0:99) . Then, let us consider
$ig(9(a1)) andSig(9(az)) in Sig. (¢’,q;) such that(;jqj) R)a‘ (¢',q;)- By the hypothesis, we
have for everyW,, R;) € T'; that(W;, R;) =2 ¢. By con-
struction, we also have R;, ¢ for every(W;, R;) € T;.
Therefore, for everyW;, R;) € I';, W;, R;) 7 ¢/, and
(d".q})

Proof. By induction on the structure of.

5.2 Results

The synchronous product of two transition systeéfns) _)
S, have generally true emergent properties. The reasontnen by the induction hypothesis, we have, i)
is the setMod(Th(Sy U S3)) of Kripke frames may be ¢/, whence we can conclud®V, R) Eq %) @
greater thanReal(S; ® S2). Indeed, Kripke frames in
Real(S1 ® S2) have to preserve the shape of the transition
systemS; ®S, unlike Kripke frames im/od(Th(S3US3)).
Hence, properties i(S; ®S»)* may be more numerous than Theorem. 4 S* (S1©8)°
in Th(Sy U S3). However, we can show under some con- T
ditions that non-conformity properties cannot occur along Proof. Lety € S?, and let(W, R) € Real(S; ® Sa). Let
synchronous product. More precisely, we are going to show, : V' — W be an interpretation. By Theorem 3, for every
that the “only if” part of the conformity property is satisfie ~ model (W;, R;) € T';, we have(W;, R;) = ¢, and then
but the “if” part only holds when formulas that label tran- for everyq € Q; we also haveW;, R;) =7 . There-
sitions are conditional equations (i.e. expressed intelo fore, by Proposition 2, we have for evegy € @, that

The cases of Boolean connectives and quantifier are sim-
pler and left to the interested reader.

CEL). _ _ (W, R) 2%, and then W, R) |= .

Let us start by showing that the semantic consequences

of §; and S, are preserved b, © S,. Let us suppose To show the “if” part of the conformity property, we need

a S; ® S;-model W, R), and let us define &;-model to make some restrictions on formulas that label transition
(W, R;) fori = 1,2 as follow: Hence, we suppose that transition systems are built over the

, logic CEL, and then given a modégWV, R) of transition
o foreveryg € Q;, W/ = Mod(%; — S)(W@9))for gystems, for eachg € Q, W is now an algebra. There-
anyq’ € Q; with j # i € {1,2} fore, the logic for transition systems is the modal firstesrd
eVa € A, R = {(¢.4)]F0 € Sen(%:), 3 € Iogic_ defined as in _Section 2 except that nBwatoms are
SE(L), (¢,a,0:6,¢) € T} restr!cted toE—equa.tllons. _
Given two transition systemS; andS; over the signa-
tures£; and L,, respectively, and satisfying the above re-
striction, fori # j € {1,2}, and for everyW;,R;) €
Theorem. 3 Each(W;, R;) € I'; is aS;-model. Mod(S;) we define the mappingy, r,) : Mod(S;) —
Mod(L) whereL is the signature over which the transition
Proof. The first condition of Definition 22 is obvious. To systemS; ® Ss is built as follow: if we note for &-algebra
prove the second condition, let us suppose a transition A, th(A) = {¢|¢ : CEL-formula, A |= ¢}, then to every

Let us notel’; for ¢ = 1, 2, the set of all thes€;-models.

(Wi, RZ), f(Wj,Rj)((Wia Rz)) = (W, R) such tha(W, R)
is the £-model defined by

o Vg € Qi V¢ € Q; W) = Tr r(W) x
Tr, ;r(WY)
e Ra = {((q1,01),(a2,45))[Fp € Sen(X),36 €
Sg(c)a ((QIaqll)7a7§07 (QQ7q,2)) € T}
wherel'; = th(W}), T'; = th(Wg,), andl’ = th(W/) U
thw?).
Theorem. 5 For every (W;,R;) € Mod(S;) and every

(WZ,RZ) S MOd(SZ), f(WJ,RJ)((W“Rz)) is as; ® S-
model.

Proof. The first condition of Definition 20 is obvious. To

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

60

Tr,;rOWV') x Tr,,;r(W}?) (recall that conditional
equations are preserved along the cartesian product of
algebras). Moreover, by hypothesis, we also have that
W ~5 W and W ~50 Wi, By definition,
I'; (resp.I';) contains the ground equational theory of
1 2 _ qi —

wi (r/esp. WiE). If we /noteF; = th(Wi), T =
th(W;?) andI” = th(W;) Uth(W;?), then we have
Tr,;pW) ~s Tr o (W) and Ty, jp(W?) ~5
Tty oo OWV52)-

2. The case wherg € Sen(X;) U Sen(X;) and ¢’ €
SE(L;) andd” € SE(L,) is noticeably similar to the
previous one.

MFOL is closed under isomorphism. Moreover, by The-

prove the second condition, let us suppose a transition orem 3,Real is compatible with each morphismps of the

((q1,4}),a,9,0,(q2,¢5)) € T. By constructiony and §
are:

1. either of the formy’ A ¢” with ¢’ € Sen(X;) and
" € Sen(¥;) and ¢’ U ¢” with ¢’ € SE(L;) and
8" € SE(L;j),

2. orp € Sen(X;)USen(X;) andd € SE(L;)USE(L;).
This then leads to the two following cases:

1. Suppose that is of the formy¢’ A ¢ and then
5 = & U
(q13a7(plv(s/ﬂq/1) € TZ and (q27a7§0”75/,7qg) € Tj'
By hypothesis, we have/!* = ¢’ and Wji =
¢”. Therefore, we have thaf., ,r(W") | ¢ A
¢" and Tr, r(W?) E ¢’ A ¢", and then so is

9Cartesian product and preservation resultsLet be a signature]
be a set and.A;),c; be al-indexed family of¥-algebras. Let us note
H A; theXl-algebra defined as follow:
iel
o foreverys € S, its carrier of sors is | [(A:)s,
iel

IT 4:
e foreveryf:s; x...xs, — s € F, ficl isthe mapping that
toevery(ai,...,an) € [] (Ai)s; x...x[] (Ai)s,,, associates
iel el
,at)|i € I) where givern € [(A;)s, a’ is the ith
el

(fAi(as, ...
coordinate ofa.

By construction, we can notice that:

H.AZ' Eop<=Viel, A=, ¢

iel
where for every interpretation .* is the interpretation defined by — o’
if «(z) = a. Itis well-known that conditional equations are preserigd
Cartesian product of algebras, that is, if foreverg I, A; E T = «,
thenH A ET = a.

iel

This means by construction, that

co-conep associated to the connectSync. Finally, by
Proposition 2 and Theorem 4, RSC is satisfied. Therefore,
Theorem 6 is a specialization of Theorem 2.

Theorem. 6 If for every (W;,R;) € Mod(S;), every
(W;,Rj) € Mod(S;), and everyqg € @Q; and every
¢' € Qj, the adjunct morphismyys : W — Mod(E; —
) (Tr,\r(W))) is an isomorphism, thetiS; ® S2)® N
Sen(L;) C S?.

Proof. Lety € (51 ® S2)® N Sen(S;) and let(W;, R;) €
Mod(S;). By Theorem 5, for everyV;, R;) € Mod(S;),
we have thafF(yy, r,)((Wi, R;)) = ». As the adjunct mor-
phismy,ye is an isomorphism, for every: V- — W, there
exists/ : ‘1/ — TFL/F(W'L) XTF],/F(WJ‘) suchthat = piOL/
wherep; is the i-th projection map; : v, ,r(W}) —
Tr,;rOW!) ® TFj/I"(W;Z/) forg € Q; and¢ € Q;.
By hypothesis, for every € Q; and everyq € Qj,
Fow,.r) (Wi, Ri)) lzf,q’q/) ¢. Itis then easy to show by
induction on the structure af that (W;, R;) =7 .

Example. 4 When dealing with formulas expressed in the
logic CEL to label transitions, we often make restrictions
on algebras denoting states. Indeed, to allow inductive
proofs or for computability reasons, state-algebras aernth
restricted to reachablé® or some quotients of the ground
term algebra. Let us the suppose for the below counter-
example of the conditions given in Theorem 6, that we re-
strict our approach to state-algebras defined by reachable
algebras. Let us consider the two following transition sys-
temsS; and S, defined respectively over the two following
signatures?’ and_%,:

10A 33-algebra isreachableif, and only if the uniqueX-morphism
u: Tp — A is surjective, that is all the values iA are denoted by
the evaluation of a ground term.

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

61

= {nat}, References
0 :— nat;
X1 =4 F=4 s:nat — nat, , [1] M. Aiguier, P. Le Gall, and M. Mabrouki. A formal defi-
+ : nat X nat — nat nition of complex software. INCSEA 2008: Proceedings
P=20 of the 2008 The Third International Conference on Software
Engineering Advancepages 415-420. IEEE Computer So-
S = {nat}, ciety, 2008.
Yo = F = {0 :— nat; s, p : nat — nat}, [2] M. Aiguier, P. Le Gall, and M. Mabrouki. Emergent prop-
=0 erties in reactive systems. WPSEC 2008: Proceedings
A = A2 = {a} of the 2008 15th Asia-Pacific Software Engineering Confer-
. ence pages 273-280. IEEE Computer Society, 2008.
Let us defines; andS, as follows: [3] M. Aiguier. Etoile-specifications: An object-oriented alge-
a,p1,01 braic formalism with refinemengournal of Logic and Com-
o S = ({gi, @2}, {en =" q2}) wherep; = (s(z) = putation 14(2):145-178, 2004.
s(y) =c=y)Az+0=zAzx+s(y) = s(z+y)and [4] M. Aiguier, C. Gaston, and P. Le Gall. Feature logics and
_ _) ap2,02 B refinement. INAPSEC 2002: Proceedings of the 9th Asian
. = ({aqn e} Adr =" ga}) wherep, = Pacific Software Engeenering Conferenpages 385-395.
(s(z) ()=z =y)A s(p(;v)) =z Ap(s(z)) =a IEEE Computer Society Press, 2002.
andd, = 0. [5] R. Allen. A Formal Approach to Software Architecture

PhD thesis, Carnegie Mellon, School of Computer Science,

By definition ofS; (resp. Ss), the uniqueS;-model (resp. Junuary 1997. Issued as CMU Technical Report CMU-CS-

Se-model) is (W, R) where W' = W{* = N (resp. 97-144.

ng = gé = Z). On the contrary, by construction, [6] R. Allen and D. Garlan. A formal basis for architectural
. . I a8 , connectorsACM TOSEM6(3):213-249, 1997.

in 81 ® Sz, we have the transitiofigi, ¢;) =~ (g2, ¢3) [7] L.Blass, P. Clements, and R. Kasm&uftware Architecture
wherep' = 1 A @3 andd’ = (), and then all theS; © S»- in Practice Addison Wesley, 1998.

model satisfy/(41:91) = WW(e:92) = 7, Consequently, the [8] T. Borzyszkowski. Logical systems for structured specifica-
modal formulay’ = 0O, (Vz.3y.x +y = 0) belongs to tions. Theoretical Computer Scienc286:197-245, 2002.
(81 ® S»)* but not inS?. The reason ig,v(W%Rz)(Wizl) _ [9] S. Coudert and P. Le Gall. A reuse-oriented framework for

hierarchical specifications. IAMAST 2000: Proceedings
of the 8th International Conference on Algebraic Methodol-
ogy and Software Technolagyages 438-453, London, UK,

) 2000. Springer-Verlag.
6 Conclusion [10] R.-l. Damper. Emergence and levels of abstractibmer-

national Journal of Systems Scien&4(7):811-818, 2000.
Editorial for the Special Issue on 'Emergent Properties of
Complex Systems'.

R. Diaconescu. Grothendieck institutiodgplied Categor-

Z. Therefore, the adjunct functqarwfl is injective but not
surjective, and then is not an isomorphism.

In this paper, our main contribution is twofold. First,
we have formally defined the notion of emergent properties [11]

@r}dependently of f(_)rmalism, and of the form of both spec- ical Structures 10(4):383-402, 2002.

ifications and architectural connectors. Secondly, we have[12] R. Diaconescu. Jewels of institution-independent model the-
studied in this abstract framework, some general condition ory. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, ed-
that enable us to obtain two general properties that guar- itors, Algebra, Meaning, and Computation, Essays Dedi-

antee when a system is not complex. These conditions are cated to J.-A. Goguen on the Occasion of His 65th Birth-
based on the category theory of morphism conservativeness ga¥_ V°|Uf\“/e |406g0(())ﬂéecture Notes in Computer Science

. . . . pringer-Verlag, .
azdﬁfjgnﬁtsl?:ﬁ;?eﬂ% t(r) gg;trr:éf g::ﬁé)sgﬁft f_rtarl]rr:g;\/d. e [13] A.-C. Ehresmann and J.-P. Vanbremeerséfemory Evo-
w ve | ! u . W V\.”. v lutive Systems: Hierarchy, Emergence, Cognitigtsevier
component-based systems described by transition systems g.iance. 2007.

and combined together through synchronous product, and[14] H. Ehrig, M. Balmadus, and F. Orejas. New concepts for

we have applied our general results to obtain global sys- amalgation and extension in the framework of specifica-
tems lacking of non-conformity properties which have been tion logics. INAMAST 1991: Algebraic Methodology and
recognized as being the cause of bad interactions between Software Technologyecture Notes in Computer Science.
Components Springer, 1991.

J.-L. Fiadeiro. Categories for Software Engineering
Springer-Verlag, 2004.
] J.-L. Fiadeiro, A. Lopes, and M. Wermelinger. A math-

An ongoing research that we are currently pursuing is to (15]
extend abstract connectors to heterogeneous abstract co 16

nectors, that is connectors defined on component specifica- ematical semantics for architectural connectors. In R.-C.
tions described in heterogeneous formalisms. For this pur- Backhouse and J. Gibbons, editoBeneric Programming
pose, we will take benefit from [11, 23] and from works that volume 2793 olecture Notes in Computer Sciengages

we made on hierarchical heterogeneous specifications [9]. 178-221. Springer-Verlag, 2003.

International Journal On Advances in Software, vol 2 no 1, year 2009, http.//www.iariajournals.org/software/

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

(29]

D. Garlan, R.-T. Monroe, and D. Wile. Acme: An architec-
ture description interchange language. JASCON 1997:
Proceedings of the 1997 conference of the Centre for Ad-
vanced Studies on Collaborative researplages 169-183.
IBM Press, 1997.

C. Gaston, M. Aiguier, and P. Le GallLanguage Con-
structs for Decsribing Featureschapter Algebraic treat-
ment of feature-oriented systems, pages 105-125. Springer-
Verlag, 2000.

J. GoguenAdvances in Cybernetics and Systems Resgearch
chapter Categorical Foundations for General Systems The-
ory, pages 121-130. Transcripta Books, 1973.

J. Goguen and R.-M. Burstall. Institutions: Abstract model
theory for specification and programminglournal of the
ACM, 39(1):95-146, 1992.

Y. Gurevich. Evolving algebras 1993: Lipari guide.3pec-
ification and Validation Methodgages 9-36. Oxford Uni-
versity Press, 1995.

J.-V. Guttag and J.-J. Horning. The algebraic specification
of abstract data type#\cta Informaticapages 27-52, 1978.

T. Mossakowski. Institutional 2-cells and grothendieck insti-
tutions. InEssays Dedicated to Joseph A. Goguesiume
4060 ofLecture Notes in Computer Scienpages 124-149.
Springer, 2006.

F. Orejas. Algebraic Foundations of Systems Specification
chapter Structuring and Modularity, pages 159-201. IFIP
State-of-the-Art Reports. Springer, 1999.

D. Perry and A. Wolf. Foundations for the study of software
architecturesACM SIGSOFT Software Engineering Notes
17(4):40-52, 1992.

M. Plath and M. Ryan. Feature integration using a feature
construct.Science of Computer ProgramminglL(1):53—-84,
2001.

A. Sernadas, C. Sernadas, and C. Caleiro. Denota-
tional semantics of object specificatiorcta Informatica
35(9):729-773, 1998.

A. Tarlecki. Moving between logical systems. In M. Hav-
eraaen, O. Owe, and O.-J. Dahl, editdRgcent Trends in
Data Type Specifications. 11th Workshop on Specification of
Abstract Data Typesolume 1130 of ecture Notes in Com-
puter Sciencepages 478-502. Springer Verlag, 1996.

A. Tarlecki. Algebraic Foundations of Systems Specifica-
tion, chapter Institutions: An abstract Framework for For-
mal Specifications, pages 105-131. IFIP State-of-the-Art
Reports. Springer, 1999.

62

