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Abstract—Developing security-critical applications is very dif-
ficult and the past has shown that many applications turned out
to be erroneous after years of usage. For this reason it is desirable
to have a sound methodology for developing security-critical
applications. We present our approach, called SecureMDD, to
model these applications with the unified modeling language
(UML) extended by a UML profile to tailor our models to security
applications. We automatically generate a formal specification
suitable for verification as well as an implementation from the
model. Therefore we offer a model-driven development method
seamlessly integrating semi-formal and formal methods as well
as the implementation. This is a significant advantage compared
to other approaches not dealing with all aspects from abstract
models down to code. Based on this approach we can prove
security properties on the abstract protocol level as well as the
correctness of the protocol implementation in Java with respect to
the formal model. In this paper we concentrate on the modeling
with UML and some details regarding the transformation of this
model into the formal specification. We illustrate our approach
on an electronic payment system called Mondex [1]. Mondex has
become famous for being the target of the first ITSEC evaluation
of the highest level E6 which requires formal specification and
verification.

Index Terms—model-driven software engineering, UML, secu-
rity, cryptographic protocols, verification

I. I NTRODUCTION

We focus on secure applications such as electronic ticketing
or electronic payment systems. In this paper we concentrate
on smart card applications. To guarantee the security of these
(usually) distributed applications security protocols based on
cryptographic primitives are used. Since it is very hard to
design such protocols correctly and without errors, we propose
to use formal methods for verification.

UML describes different views on various parts of a system.
There exist several kinds of diagrams emphasizing different
aspects of an application. In our approach we use use cases
to describe the functional and security requirements of the
system under development. Class diagrams are used to model
the static view of an application. To design the protocols
resp. to define the interaction steps between the components
of the system we use sequence diagrams. To define the
processing of messages and internal behavior of components
we additionally use activity diagrams. The communication
structure of the system and the abilities of the attacker are
modeled by deployment diagrams. At the moment, we only

model functional behavior, security properties are added on
the formal level.

In the paper we only introduce the models showing the final
view of the system which is used to generate code and the
formal model. Of course, the creation of these models is a
process that consists of several iterations and the UML dia-
grams evolve step-by-step. A disadvantage of UML is the lack
of a comprehensive semantics directly usable in a verification
system. This leads to difficulties for verification of modelsas
well as for generation of code. This is solved by defining
a mapping from the semi-formal to a formal presentation
using abstract state machines (ASM) [2]. These have a well-
defined and relatively simple semantics [3] [2]. Our formal
specification is a combination of algebraic specifications and
ASMs. Algebraic specifications are used for the descriptionof
the used data types as well as the attacker model. ASMs are
used for the protocol dynamics. For verification we use the
interactive theorem prover KIV [4].

Furthermore, we generate Java resp. Java Card code for
smart card applications. Our group proposes a method to prove
that an implementation is a refinement of the abstract formal
model [5] by using the Java Calculus [6] [7] implemented in
KIV.
The major advantage of our approach with respect to other
existing techniques (e.g. [8]) is that we give a method seam-
lessly integrating modeling, formal methods as well as an
implementation.

In this paper we describe the first part of the development
process, i.e. the modeling of the application with UML. It isan
extended and improved version of [9]. Our approach is focused
on an easy to learn, and intuitive way of building the required
models, and abstracts from details of the formal specification
or the implementation. To model internal behavior, we extend
activity diagrams with a UML-like language and use a syntax
that is close to the one of an object oriented programming
language. Our approach provides an opportunity to generate
a formal model as well as runnable code without paying
attention to the specifics of the formal specification and
implementation which are harder to create and understand than
the UML models.

Section II gives an overview of our SecureMDD approach.
In Section III the SecureMDD UML profile and the used
security data types are presented and a short introduction to
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the Model Extension Language (MEL) is given. Our modeling
technique is illustrated by an electronic payment application
called Mondex that is introduced in Section IV. In Section
V we present the modeling of a security-critical application
on the platform-independent level in detail and describe the
platform-specific model in Section VI. Section VII gives some
details about the MEL syntax and grammar. In Section VIII
we shortly address some specifics regarding the generation of
Java Card code, Section IX exemplifies some details of the
transformation from UML into the formal model. Section X
addresses related work and Section XI concludes.

II. T HE SECUREMDD A PPROACH

In this section we give an overview of our framework
which aims to develop secure applications (see Fig. 1). The
approach is based on model-driven software development
(MDSD) methods. The developer creates a UML model of
the system under development. Then, several model-to-model
(M2M) and model-to-text (M2T) transformations are applied
and finally, Java(Card) code as well as a formal model are
generated.
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Fig. 1. Overview of the SecureMDD Approach

The approach starts with the modeling of a security-critical
application with UML. We model the complete application,
i.e. the static view, the structure of the system as well as the
dynamic parts of an application. Since UML does not provide
abilities to model the whole dynamic view, we extend the
UML, especially UML activity diagrams, by a language called
Model Extension Language (MEL). This language allows for
modeling of e.g. assignments and creation of objects.

In the first step, the developer creates a UML model of
the system under development (1 '!&"%#$). This model is platform-
independent, i.e. it does not contain any specifics regarding

the formal model or Java(Card) code. To model the flow of
information and the processing of messages, activitiy diagrams
extended with MEL expressions are used.

In a next step, the MEL expressions are parsed and stored
in an abstract syntax tree. The ’Extended UML Model’ is
an instance of the UML metamodel which is extended by an
abstract syntax tree of the MEL language (2 '!&"%#$). The generation
is done automatically using model-to-model transformations.

Afterwards, as well with model-to-model transformations,
different platform-specific models (PSM) are generated (3 '!&"%#$).
On this level, the UML meta model is used. On the one
hand, a model showing the smart card specific information is
generated. This includes primitive types used in Java Card,
Java Card expressions in activity diagrams as well as the
translation of the stereotypes used in the previous model to
Java classes. More details about the PSM can be found in
Sect. VI. A smart card application always consists of one
or more cards as well as a terminal with a card reader
that communicates with the smart card. The terminal can be
implemented using any programming language but Java is
used in our approach. Since in this paper we concentrate on
the modeling of the smart card part of an application, we omit
the platform-specific model for generating the terminal code.
On the other hand, we generate a platform-specific model
containing details regarding the formal model which is based
on algebraic specifications and abstract state machines (ASM).
The expressions given as a MEL model are translated into
syntactically correct ASM rules.

In a next step, a ’Java Model’ resp. a ’Formal ASM Model’
is generated from the platform-specific models. The Java
model is an abstract syntax tree of Java whereas the ASM
model is an abstract syntax tree of ASMs. Then, in a model-
to-text (M2T) transformation, these models are transformed
into Java Card code resp. a formal specification (5 '!&"%#$). The
latter can be used to prove security properties of the modeled
application using our interactive theorem prover KIV [10].For
hand-written formal models we already developed a method
to prove security properties [11] [12].

The model-to-model transformations are implemented with
the language QVT [13] and all model-to-text transformations
with XPand [14].

III. T HE SECUREMDD PROFILE AND THE MODEL

EXTENSION LANGUAGE

In this section some security related data types and a UML
profile which is tailored to cope with specifics regarding
security-critical smart card applications are introduced. Fur-
thermore, the Model Extension Language (MEL) that is used
to extend UML activity diagrams is explained.

A. Predefined Security Datatypes

To model a security-critical application with UML it is
expedient to define a few data types that are useful in these
applications. Figure 2 shows the data types defined for the
SecureMDD approach.
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Fig. 2. Security Datatypes defined for the SecureMDD Approach

One important aspect is the use of keys. Thus, we define
an abstract classKey that contains a cryptographic key. To
capture the difference between symmetric and asymmetric
encryption, i.e. public and private, keys, three subclasses of
theKey class exist. Furthermore, a classNonce representing
nonces, i.e. random numbers used only once, is given. For
example, nonces are used in cryptographic protocols to avoid
replay attacks. Besides we define a typeSecret which
contains values that have to be kept secret, e.g. pin numbersor
pass phrases. We explicitly distinguish secrets from primitive
strings because this simplifies the formal verification of se-
curity properties. The classesHashedData, SignedData
andEncData represent data that is hashed, digitally signed
resp. encrypted. To facilitate the modeling on an abstract
level without committing to an implementation language we
additionally use primitive classes calledNumber, String
and Boolean that represent numbers, strings as well as
boolean values.

B. The SecureMDD Profile

Since UML is designed only to model standard application
scenarios there is a need to extend it to specific application
domains. For this reason the Object Management Group
(OMG) [15] provides a mechanism to extend the scope of
UML in a lightweight way by defining UML profiles. A profile
extends the UML meta model and defines a set of stereotypes,
tagged values and constraints.

In this section the SecureMDD UML profile is introduced.

Fig. 3. UML stereotypes defining the components smart card and terminal

Figure 3 illustrates the stereotypes defined for the com-
ponents of a smart card application, i.e. one stereotype to
annotate a class representing a smart card and one stereotype

to label a class representing a smart card terminal with a
card reader. These stereotypes are used in class diagrams
to describe the static view of the application as well as in
deployment diagrams to define the structure of the system. In
deployment diagrams we use the meta model elementNode
to describe the components of the system. Since theNode
element is derived from the meta model elementClass it is
sufficient to extend the meta classClasswith the stereotype.

In the SecureMDD approach the message types exchanged
during a protocol run are modeled as classes instead of
operations. This is motivated by the fact that data in smart
card applications is sent from resp. to the card in the form of
sequences of bytes. Thus, the idea is to have a message as a
(serialized) object instead of a remote method call. In Figure
4 the stereotypes annotating message classes are given.

Fig. 4. UML stereotypes annotating message classes

Here, we distinguish message objects exchanged between
the card and the terminal and message objects sent from the
user of the system to the system, for example by entering
data using a GUI. The latter is explicitly modeled because for
verification we need a formal model of the whole application,
including the user inputs. Since the messages are defined in
the class diagram, the stereotypes extend the meta classClass.

Figure 5 shows the stereotypes to label data classes and
constants.

Fig. 5. UML stereotypes defining data, constants and status

These classes extend the meta classClass. Classes an-
notated with stereotype≪data≫ are non-cryptographic data
types. Classes not annotated with any stereotype are consid-
ered as≪data≫ data type. To define constants used in the
models the stereotype≪Constant≫ is used. The stereotype
≪status≫ indicates the state of a component. While executing
a protocol it is often essential to keep track of the step
in the protocol that must be executed next. Depending on
this step, the component may react differently by processing
the next message or abort if the received message differs
from the expected one. All possible states are modeled as an
enumeration. An association between the component class, i.e.
the terminal or the smart card, to the state class (annotatedwith
stereotype≪status≫) indicates the state of the component.

Figure 6 shows the stereotypes defined for digital signatures,
encryption and hashing.
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Fig. 6. UML stereotypes for encryption, hashing and signatures

If data modeled in the diagram is going to be signed,
encrypted or hashed, it is annotated with stereotype
≪SignData≫, ≪PlainData≫ resp. ≪HashData≫. These
stereotypes extend the meta classClass. Furthermore, we
define stereotypes that denote the signing, encryption resp.
hashing of data. If data is going to be encrypted during
a protocol run, the data class is marked with stereotype
≪PlainData≫. If this data is encrypted and the result stored
in a field of, e.g. the smart card or a message object,
the corresponding association between this object and the
PlainData object is annotated with stereotype≪encrypted≫.
In the class diagram we do not specify which key is used
for encryption. Since this is a dynamic aspect, the concrete
encrypt operation including the specification of the used key
is specified in activity diagrams. Note that the generation of the
formal model and Java Card code would also be possible if we
omit the use of the stereotypes≪SignData≫, ≪PlainData≫
and ≪HashData≫, i.e. all required information is already
given when using the remaining stereotypes. However, we feel
that it is good practice to use them because they increase the
readability of the platform-independent models.

To verify certain security properties that have to hold for the
modeled system it is necessary to describe a possible attacker
resp. his abilities. An attacker may be able to interfere with
the communication between smart card and terminal. This can
be modeled appropriately with deployment diagrams. We use
the communication path element to annotate the capabilities
an attacker has to affect the communication. For this purpose
we define the stereotype≪Threat≫. The stereotype has three
tagsread, send andsuppress that indicate if the attacker
is able to read messages sent over that path, send or suppress
messages. In some scenarios an attacker may try to forge a
component, e.g. he may program his own smart card. If a
fake component is conceivable it is annotated with stereotype
≪forgeable≫. The stereotypes defined to describe the attacker
are shown in Figure 7.

C. The Model Extension Language (MEL)

The Model Extension Language (MEL) is used to extend
activity diagrams. It is a simple language whose expres-
sions are used inAction elements,SendSignalActions,
AcceptEventActions as well as inguards to model e.g.
object creation, assignments, conditions, or the sending of a

Fig. 7. UML stereotypes specifying the attacker capabilities

message. The aim is to have a language that can be used to
model cryptographic protocols and at the same time is more
abstract than a programming language. For example, MEL has
a copy semantics and the developer does not have to take care
about memory management and object creation which must
be handled with care on smart cards. Since MEL is tailored to
model the protocols of security-critical applications, itcontains
several keywords resp. predefined methods to express e.g.
encryption, decryption, the generation of nonces and hash
values. More details about MEL are given in Section VII.

IV. M ONDEX

The SecureMDD approach is illustrated with the Mondex
application which is introduced in this section.

Mondex cards are smart cards that are used as electronic
purses with the aim of replacing coins by electronic cash.
Mondex is owned by Mastercard International [1]. The main
field of application is the secure transfer of money from one
smart card to a second card. To perform a transfer both cards
are inserted into a smart card terminal that also acts as user
interface. The security properties that have to be verified for
Mondex are that no money can be created and any value must
be accounted for. In detail, this means that no money can
be loaded onto a Mondex card without subtracting it from
another card. Furthermore, if a transaction fails, no money
should be lost. The Mondex case study recently received a lot
of attention because its formal verification has been set up as
a challenge for verification tools [16] that several groups [17]
as well as our group [18] [19] worked on. For Mondex, sev-
eral approaches dealing with formal methods and verification
(model-checking, theorem proving and constraint solver) exist.
But, they are not combined with an engineering discipline for
system development. Rather, they use only formal techniques
for specification and verification of the Mondex application.
In the SecureMDD approach software engineering techniques
and formal methods are integrated.

The Mondex application is another example that the design
of security-critical systems is difficult. While verifying the
security of the application our group has found a flaw in the
original protocol [16]. Exploiting this flaw it is possible to
cause a denial of service attack that fills the memory of the
card. In this state the card is disabled unless the owner returns
it to the bank. More details about the flaw can be found in [18].
The protocol given in this paper is a slight modification of the
original protocol introduced in [20] and avoids the denial of
service attack.
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V. M ODELLING OF SECURITY-CRITICAL SMART CARD

APPLICATIONS WITH UML

In this section our method to develop a security-critical
application is introduced. All steps and artefacts are exem-
plified by the Mondex application. In subsection V-A the
description of functional and security requirements usinguse
cases is given. In subsection V-B our methodology to describe
cryptographic protocols on a very abstract level is introduced.
In subsection V-C the modeling of the static view using class
diagrams is presented, subsection V-D describes the specifi-
cation of the dynamic behavior using activity diagrams and
the Model Extension Language. Subsection V-E introduces the
modeling of the communication model as well as the attacker
abilities using deployment diagrams.

A. Use Cases describing functional and security requirements

Use cases are used to capture functional requirements of
the system in an informal way. As in a traditional software
engineering process one or more use cases are written that
describe the interaction between the system and external actors
or systems. They describe the application in a way that can
easily be understood. In our modeling method, use cases are
the basis for the sequence and activity diagrams that are used
to build the formal model as well as executable code. Below
five of the use cases for Mondex are given. The first one,
Person-to-Person Payment, is then used as running example
in the following subsections.

Person-to-Person Payment
Basic Flow:

1) The customer of a shop wants to pay with his Mondex
card.

2) He as well as the shop owner insert their cards into the
corresponding card reader.

3) The shop owner enters the amount to pay.
4) The customer confirms the amount and starts the transfer

of money.
5) The entered amount is transferred from the card of the

customer to the card of the shop owner.
6) The system confirms the transfer by returning a receipt.
7) Both participants remove their cards from the reader.

Alternative Flows:

• 3) The entered amount is wrong: The shop owner cancels
the process.

• 4) The customer does not agree with the entered amount:
He cancels the transfer and the system aborts.

• 5) The balance of the customer card is lower than the
amount to pay: The systems aborts and returns an error
message.

• 5) The entered amount added to the current balance of
the shop card exceeds the maximum value that can be
loaded: The system aborts and returns an error message.

• 5) An error occurs while transferring the money or one of
the participants removes his card too early: The system
aborts and returns an error message. If the amount was

already reduced on the customer card but has not been
added to the card of the shop owner this is recorded
on both cards. To recover the original balance of the
customer card both cards have to be shown at the bank
(see use case ”Recovery of Money”).

Security Requirements:
• No money is lost: If a transfer fails, either no money is

charged from the customer card or if money was already
charged it can be recovered correctly.

• An attacker is not able to program his own card such that
he can use it as customer card and pay with it.

• It is not possible to load money onto a card without
subtracting the same amount from a second card, i.e. no
money can be created.

• It is not possible that a shop owner debits a higher amount
than has been agreed.

Payment using Internet
Basic Flow:

1) A customer wants to pay with his Mondex card using
an internet shop.

2) He inserts his card into his card reader (which is
connected to his PC) and opens the web presentation
of the shop.

3) He selects the products he wants to buy, enters his postal
address for shipment and selects that he wants to pay
now.

4) A connection to the remote card reader of the shop
owner is established. The Mondex card of the shop
owner is in this reader.

5) The amount to pay is transferred from the card of the
customer to the card of the shop owner.

6) The system confirms the transfer.
7) The customer removes his card from the reader.
8) The shop owner sends the goods to the customer.

Alternative Flows:
• 3) The balance of the customer card is lower than the

amount to pay: The systems aborts and returns an error
message.

• 4) The entered amount added to the current balance of
the shop card exceeds the maximum value that can be
loaded: The system aborts and returns an error message.

• 5) An error occurs while transferring the money or one of
the participants removes his card too early: The system
aborts and returns an error message. If the amount was
already reduced on the customer card but has not been
added to the card of the shop owner this is recorded
on both cards. To recover the original balance of the
customer card both cards have to be shown at the bank
(see use case ”Recovery of Money”).

Security Requirements:
• see use case ”Person-to-Person Payment”

Recovery of Money
Basic Flow:
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1) If a transaction fails (i.e. money was charged from the
customer card but has not been added to the shop card)
both participants of the transfer go to the bank.

2) Showing their Mondex cards it can be discovered if and
what amount of money was reduced from the customer
card.

3) The system adds the corresponding amount to the cus-
tomer card.

Alternative Flows:
• 3) If the amount added to the current balance of the

customer card exceeds the maximum balance of the card
the amount will be paid out in cash.

Security Requirements:
• If money was lost it can be recovered only once, i.e.

showing the cards again it is not possible to force a
recovery again.

• It can be detected if the transfer has been aborted after
the amount was added to the shop card. In this case no
money is recovered.

Recharge of money at an automatic teller machine (ATM)
Basic Flow:

1) The card owner goes to the ATM (within his bank) and
inserts his Mondex card.

2) The card owner specifies the details of his bank account.
3) He authorizes by entering his PIN number.
4) The system checks that the PIN is correct.
5) The card owner enters the amount he wants to recharge.
6) The entered amount is debited from the bank account of

the card owner and loaded onto the card.
7) The card owner removes his card from the terminal.

Alternative Flows:
• 4) The entered PIN is not correct: The system returns

an error message and asks for retry. After three times
entering a wrong PIN the card is locked.

• 5) The balance of the owners bank account is less than
the entered amount: The system returns an error message
and requests to enter a lower amount.

• 5) The entered amount added to the current balance of
the card exceeds the maximum value that can be loaded:
The system returns an error message and requests to enter
a lower amount.

Security Requirements:
• The amount loaded onto the card equals the one charged

from the bank account. It is not possible to load money
onto a card without reducing the bank account by the
correct amount.

Discharge at an ATM
Basic Flow:

1) The card owner inserts his card into an ATM at the bank.
2) He selects that he wants to have repaid the money.
3) The ATM pays out the amount currently stored onto the

card and sets the current balance of the card to zero.

4) The customer removes the card from the reader.

Alternative Flows:

• 3) The customer removes his card from the reader too
early: No money is paid out.

Security Requirements:

• The amount paid out in cash equals the balance of the
card.

• If returning the cash to the card owner the balance of the
card is set to zero.

Other use cases cover the viewing of the last transactions,
storing money of different currencies on the same card or
payments using mobile phones. Also the recharge of money
using the internet or the use of money in cash instead of a bank
account for recharge is possible. Since the entire application is
too large to present here we only model the transfer of money
between a shop owner card and a customer card (Use Case
Person-to-Person Payment).

B. The Protocol Description

Our goal is to give an intuitive way to model security
protocols. A reader of the model should be able to understand
the protocol without getting lost in details. We use sequence
diagrams to specify the protocol steps and the flow of infor-
mation. The idea is to start with a very abstract view of the
possible protocols and refine these sequence diagrams step by
step. The diagram shown in Fig. 8 shows the final sequence
diagram for ”Person-to-Person Payment”. At this point the
protocol which is later implemented is already elaborated.This
diagram is used as basis to develop the complete dynamic
behavior of the system using activity diagrams. Note that we
do not show the diagrams that were drawn while working out
the final models.

The sequence diagram contains one lifeline for each compo-
nent participating in the protocol and additionally one lifeline
for the ”user”. The user represents the customer of the service
and usually initiates a protocol, i.e. ’sends’ the first message.
For Mondex, we distinguish the card of the shop owner (in
the following calledto purse) and the card of the customer
(in the following calledfrom purse). Since a Mondex card can
act asto card as well asfrom card this distinction is only to
achieve a better readability of the diagrams.

The protocol used for payments between two persons (see
Fig. 8) works as follows:

The user, i.e. the shop owner, initiates the protocol run
by sending the value to be transferred to the terminal
(UTransferMoney). Afterwards the terminal queries theto
purse to provide its data, e.g. its name (= unique number), by
sending the instructiongetData. The to purse returns this
data (messageResGetData). In a next step the terminal
sends a message calledStartFrom to the from purse
which initiates the transfer on thefrom purse. This message
contains all information required to start the transfer, i.e. the
value to be transferred as well as the unique data of the other
purse. Then, thefrom purse sends aStartTo message to
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<<Smartcard>>

from : Purse

<<Smartcard>>

to : Purse

<<Terminal>>

term : Terminal

User

StartTo5: 

Val9: 

ResGetData3: 

Req7: 

Ack11: 

GetData2: 

StartFrom4: 

Req8: 

10: Val

Ack12: 

StartTo6: 

UTransferMoney1: 

Fig. 8. Protocol Description for Person-to-Person Payment

the terminal which forwards it to theto purse. This message
contains all data required to run a transfer and, after receiving
it, the to purse initiates the transfer. Note that from now on
the terminal only forwards message that it receives, i.e. if
receiving a message from thefrom purse, it forwards it to the
to purse without modifying the message or its state. In a next
step, after checking that the received transfer information is
correct, theto purse generates aReq(uest) message to request
a transfer, i.e. requests the decrease of the balance of thefrom
purse. After receiving this message thefrom purse decreases
its balance and sends back aVal(ue) message which states
that its balance has been decreased. Then, theto purse
increases its balance and sends back anAck(nowledgement)
message that confirms the transfer.

C. Static View of the System

In the following the modeling of the static view of a smart
card application is introduced. To model specifics regarding
the domain of security-critical applications we use the UML
profile as well as the security data types defined in Section
III. The method is exemplified by the Mondex application but
is applicable for smart card applications in general.

Fig. 9 illustrates the class diagram of the Mondex applica-
tion. Note that the diagram only shows the part of the static
view which is needed for Person-to-Person payments, other
parts e.g. regarding the recovery or recharge of money are
omitted.

Every component of the system, i.e. smart card and ter-
minal, are represented by a class annotated with stereotype
≪Smartcard≫ resp.≪Terminal≫. This distinction is neces-

sary because the generated code (e.g. Java Card vs. Java) and
the formal model differ depending on the type of component.
In the Mondex application we have the classPurse which is
representing the smart card as well as theTerminal.

The message types are modeled as classes. Here, we use an
abstract class annotated with stereotype≪Message≫ from
which all concrete message classes are derived. In Fig. 9
several concrete message classes, e.g.Req, Val and Ack,
are defined. Note that these messages are derived from the
messages modeled in the corresponding sequence diagram (see
Fig. 8).

All data types are modeled as classes and annotated
with corresponding stereotypes, i.e.≪data≫ for non-
cryptographic data types and≪PlainData≫, ≪HashData≫
and ≪SignData≫ for data that is going to be encrypted,
hashed or signed. In the Mondex model we have defined
the data classPurseData that consists of the unique name
of the purse as well as a sequence number that increases
after every protocol run and ensures the uniqueness of every
PayDetails. A PayDetails object records the details of
the current transaction, i.e. the participating purses as well
as the amount to transfer. Furthermore, we define one class
calledMsgcontent that is going to be encrypted and thus
annotated with stereotype≪PlainData≫. This class contains
the pay details of the current transaction and a message flag
denoting if the (encrypted) data belongs to aReq, Val or
Ack message. If this flag is omitted, the following atack is
possible.

An attacker captures and suppresses aReq message and
uses the contained encrypted data to send a correctVal
message to the sender. Receiving this message, the sender of
theReq message, i.e. theto purse, assumes that thefrom purse
has decreased its balance correctly and increases its balance.
Then, the balance of theto purse has been increased without
decreasing the balance of thefrom purse.

Since an object of typeMsgcontent is encrypted and
afterwards sent with aReq, Val or Ack message, the
corresponding associations are annotated with stereotype
≪encrypted≫. To denote the types of used attributes we use
the self defined primitive typesNumber, Boolean as well
as String and the security data types described in III-A.
To cover associations with multiplicity greater than one we
use a predefined list. For example, thePurse class has an
exception log for failed transactions. This is modeled by an
association with multiplicity 0..LOGLENGTH. This exception
log is translated to a list that can be accessed with predefined
methods e.g. to add an object to the list. These predefined
operations are later used in the activity diagrams.

The possible states a component may be in are defined as
an enumeration. An association from a component to this
enumeration, annotated with stereotype≪status≫ defines the
states of a component. A purse may be in stateIDLE, EPR
(expecting request),EPV (expecting value) orEPA (expecting
acknowledge). Since the terminal simply forwards messages
to the cards and accepts all kinds of messages, it needs no
state.
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-value : Number

+PayDetails( value : Number, from : PurseData, to : PurseData )

<<data>>

PayDetails
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-REQ
-VAL
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<<PlainData>>
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-msgflag : Number
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-value : Number
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-sesskey : Symmkey
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Fig. 9. Static View of the Mondex application

D. Dynamic Behavior

Sequence diagrams describe the sequence of messages that
is exchanged between components but do not capture internal
actions or the behavior in case an error occurs. For this
reason we additionally use activity diagrams that extend the
sequence diagrams and describe changes in the internal state
of the components after processing a message. The activity
diagram describes the communication as well as the sequence
of actions taken as a result of receiving a message. At this
point we use our Model Extension Language (MEL) which
was shortly introduced in Section III. MEL allows to describe
e.g. creation of objects, assignments or guards of conditions.
We use activity diagrams instead of UML state diagrams
because they turned out to be hard to read and confusing for
applications we focus on (with many condition checks).

For each use case we define one activity diagram. For a
better readability we additionally allow the definition of sub
activities that are called within an activity. In Fig. 10 onepart
of the activity defining the protocol executed for Person-to-

Person payments is given. The whole activity diagram can be
found in the appendix.

For each component participating in the protocol one swim
lane exists in the diagram. As in the sequence diagram we
have a swim lane for the user, theto as well as from
purse and for the terminal. A protocol can be divided into
segments where one segment consists of one protocol step. A
protocol step has the following parts: A component receivesa
message, performs several tests to check whether the message
is correct and can be handled and processes the data. Finally,
the component may send a message to another component.
We useSendSignalActions to denote the sending of a
message,AcceptEventActions to indicate the receiving
of a message as well asAction elements to denote MEL
expressions like object creation, assignments and calls of
predefined operations.

The segment in Fig. 10 shows the swim lane of the terminal
on the left as well as the one of thefrom purse. The terminal
sends aStartFrom message to thefrom purse. This message
contains thevalue to be transferred as well as the data of the
to purse. Thefrom purse receives this message. The content of
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Fig. 10. Mondex Activity Diagram showing the sending, receiving and processing of aStartFrom message. On the left side one can see the swim lane
of the terminal, on the right side the one of thefrom purse

it, i.e. the value and data, are handled as local variables. Then,
the purse checks if the counter which counts the exception log
entries is less than the possible maximum length. If not, the
protocol aborts. The abort step is defined in a separate activity
diagram and is called from this protocol (defined by a rake
element). A sub activity has access to the properties of a com-
ponent but not to the local variables. If the condition is satisfied
it is tested whether thestate of the purse is set toIDLE.
Next, it is checked if the received value and sequence number
of the to purse fulfill certain conditions, for example that the
value to be transferred is greater than zero. These checks are
also defined in a separate activityCheckValueSeqnoFrom
which has two parameters and returns a boolean value with
the result of the tests. Since a sub activity has no acces to
the local variables, these have to be passed as arguments.
The sub activity can be found in the appendix. If one of the
checks fails theABORT sub activity is called. Otherwise, the
purse modifies some fields, e.g. the fieldpdAuth is filled
with the current pay details, the purse’ssequenceNo is
increased and thestate is updated toEPR. Our Model
Extension Language has a copy semantics but updates of fields
modify the fields of the original object. In a next step, a
local variableencmess of typeMsgcontent is created and,
in the next action, encrypted with the symmetric key stored
in field sesskey. The encrypt method is predefined in

MEL and used for symmetric and asymmetric encryption.
The result of the encryption of data is an object of type
EncData that consists of a string containing the encrypted
data (see Section III). ThisEncData object is stored in a local
variable enc. Afterwards aStartTo message containing
the createdenc object is sent to the terminal. The terminal
receives this message and forwards it to theto purse. The
keyword via denotes to which components the message is
sent resp. denotes the used port (see subsection V-E for more
details). If the communication path is unique, e.g. the purse
only communicates with the terminal, thevia keyword can
be omitted.

Activity diagrams are used to define the communication
between the different components as well as the processing of
a message, i.e. they are used to model cryptographic protocols.
In applications with large protocols it may be desirable to
add some code by hand after generating the modeled parts of
the system instead of creating activity diagrams for the whole
application. For this reason the developer can add own method
calls where the corresponding method bodies are added later
by hand on code level. Note that this causes problems resp.
inconsistencies when verifying the security of the system
using a formal model automatically generated from the UML
models. To ensure that the security properties which are proved
on the formal model also hold on code level, the formal model
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has to be a suitable representation of the code. This means
that all changes and additions which are made on the code
(by hand) have to be done on the formal model as well.

E. Attacker and Communication Model

To verify cryptographic protocols it is necessary to for-
mally specify the communication infrastructure as well as
an attacker model. Almost all formal approaches (e.g. [21]
[22]) for verifying cryptographic protocols use a rather simple
model of communication and the Dolev-Yao [23] threat model.
There, no constraints regarding the communication structure
are given and it is assumed that the attacker may access all
communication links, i.e. he can read all messages sent over
that link, suppress them or write messages on that channel. In
these approaches (mainly addressing internet protocols) it is
ignored that certain components cannot communicate directly
with other components for physical reasons.

Also, the possibility that some connections are secure
against eavesdropping and others are not, is abstracted away.
In contrast, our formal model is not limited to Dolev-Yao
attackers. The main reason for an attacker model with reduced
(but more realistic) abilities is that it becomes possible to
have simpler protocols still preserving the desired security
properties.

In our approach we explicitly model the existing connec-
tions. For each connection we denote if the attacker is able to
read or suppress messages and whether he can send messages
over that channel. But these annotations do not suffice to
describe all possibilities an attacker might have. For example,
an attacker could program his own forged smart card. If the
protocol has a flaw such that the forged card takes advantage
of the weakness of the protocol it may be possible that the
attacker gains some information e.g. about secret keys.

UML provides the use of deployment diagrams to define the
physical structure of a system. In our approach we use them to
describe the communication structure as well as the attacker
model of our application. Fig. 11 shows the deployment
diagram for the Mondex application.

The components participating in the application are modeled
as nodes. The terminal has one connection to theto purse, one
to the from purse as well as one to the user. If a component
sends a message it has to be determined which connection
is used for sending. To be able to reference the connections
the connection ends, also called ports, are named. If multiple
connections exist between two components, the connection
that is used for sending is addressed using thevia keyword
in the activity diagram.

For Mondex we assume that an attacker may have full
access to the connections between terminal and cards.
Thus, these connections are marked withread, send and
suppress. Furthermore, an attacker may program his own
smart card and use it as a Mondex card to attack the system.

VI. PLATFORM-SPECIFICSMARTCARD MODEL

Based on the platform-independent model of the applica-
tion a platform-specific model (PSM) is generated for each

<<Smartcard>>
<<forgeable>>

Smartcard
<<Terminal>>

Terminal

User

<<Threat>>

{read,  

send, 

suppress}

-CardFrom-TermFrom

<<Threat>>

{read,  

send, 

suppress}

-CardTo-TermTo

-UserTerm

-TermUser

Fig. 11. Deployment Model for Mondex

platform. For the Mondex application, we distinguish three
platforms: one for the terminal, one for the smart card as well
as one for the formal model. In this section we present the
static view of the platform-specific model for the smart card
in more detail.

Figure 12 shows the platform-specific class diagram of the
Mondex application.

In the class diagram the abstract data types for the smart
card are replaced by Java Card [24] specific data types. Note
that Java Card does not support integers or strings. Thus, all
fields of typeNumber are translated to shorts,Strings are
translated into byte arrays andBoolean are replaced by the
Java type boolean. Furthermore, for each class a constructor
is added.

One main aspect of the PSM is the removal of stereo-
types dealing with cryptography which were used in the
platform-independent model. Instead, some classes and in-
terfaces are added. The resulting class diagram is close to
the structure of the Java Card code but omits some technical
details. Remember that in the platform-independent model
the encryption of data was modeled by adding a stereo-
type named≪encrypted≫ to the corresponding association.
The referenced class is then annotated with a stereotype
≪PlainData≫ which denotes that this data type can be
encrypted. In the platform-specific model we add an interface
calledPlainData which is implemented by all classes that
were marked as≪PlainData≫ in the PIM. Moreover, we
add the data typeEncData that represents encrypted data.
This class has a fieldencrypted of type byte array which
stores the encrypted data. Since the Java Card Crypto API
operates on byte arrays, it is of type byte[]. The class has two
static methods,encrypt and decrypt, which correspond
to the predefined methods of the same name defined in MEL.
The encrypt method takes an object of typeKey and a
PlainData object and returns anEncData. Thedecrypt
method operates on aKey and anEncData object and returns
the decryptedPlainData. The classesStartTo, Req, Val
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PayDetails

-value : short

+PayDetails( value : short, from : PurseData, to : PurseData )

PurseData

-name : byte [0..*]
-sequenceNo : short

+PurseData( name : byte [0..*], sequenceNo : short )

Coding

+encode( c : Codeable, destination : byte [0..*] )
+decode( in : byte [0..*], offset : short ) : Codeable
+encodeShort( s : short )
+decodeShort( in : byte [0..*] ) : short
+encodeByteArray( b : byte [0..*] )
+decodeByteArray( in : byte [0..*] ) : byte [0..*]
+encodeReq( r : Req )
+encodeEncData( e : EncData )
+decodeEncData( in : byte [0..*] ) : short
+decodeReq( in : byte [0..*] ) : Req
+encodePayDetails( pd : PayDetails )
+decodePayDetails( in : byte [0..*] ) : PayDetails
+...()

EncData

-encrypted : byte [0..*]

+encrypt( k : Key, plain : PlainData ) : EncData
+decrypt( k : Key, e : EncData ) : PlainData
+EncData()
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+StartFrom( value : short, dataTo : PurseData )
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+Msgcontent( msgflag : short, pd : PayDetails )
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-REQ : byte = 1{readOnly}
-ENCDATA : byte = 2{readOnly}
-RESGETBALANCE : byte = 3{readOnly}
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-STARTTO : byte = 6{readOnly}
-VAL : byte = 7{readOnly}
-ACK : byte = 8{readOnly}
-RESGETDATA : byte = 9{readOnly}
-STARTFROM : byte = 10{readOnly}
-MSGCONTENT : byte = 11{readOnly}
-PURSEDATA : byte = 12{readOnly}
-PAYDETAILS : byte = 13{readOnly}

ResGetData

+ResGetData( dataTo : PurseData )

ResGetBalance

-balance : short

+ResGetBalance( balance : short )

javacard.framework.Applet
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+StartTo( encmess : EncData )

SimpleComm
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+sendMsg( msg : Message )
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-balance : short
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+Ack( encmess : EncData )
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+ACK : byte = 4
+LOGLENGTH : short = 10Codeable

+getCode( s : short )

<<enumeration>>

State

IDLE

EPV
EPA

EPR

PlainData

GetBalance

+GetBalance()

<<Message>>

Message

GetData

+GetData()
-data

1

-encmess

1

-dataTo 1

-c

1

0..LOGLENGTH

-exlog

<<status>>

-state

-encmess

1

-to

1

-pd

1

-from

1

-pdAuth

1

-dataTo
1

-encmess

1
-encmess

1

-coding

1

Fig. 12. Smart card-specific class diagram of the Mondex application

andAck were defined in the PIM with associations to the class
Msgcontent (annotated with≪PlainData≫). Now, these
classes have associations to the classEncData and hence
reflect the implementation with Java Card.

To communicate with the terminal we add a class
SimpleComm which defines two methods to receive and
process a message as well as a method for sending a message.
This class extends the classApplet defined in the Java Card
API. The classPurse that represents the smart card extends
the classSimpleComm.

Since the communication between card and terminal is
based on byte arrays we additionally need a serialization
mechanism that serializes the objects that are sent to the
terminal. This is realised by a class namedCoding that
defines methods for serialization and deserialization of each
object which is sent during a protocol run. More details about
the implementation in Java Card as well as the generation of
code can be found in [25].

The activity diagrams of the platform-specific model still
have the same structure but the MEL expressions are parsed
and replaced by Java Card expressions.

It is easy to see that our platform-independent model is an
abstracted view of a security-critical smart card application
that can be created without knowing technical details about
programming with Java Cards. It is possible to model an

application using the predefined stereotypes without thinking
about a possible implementation. Then, in a next step, these
abstract models are translated into more Java Card specific
models automatically.

VII. T HE MODEL EXTENSION LANGUAGE

In this section the MEL language is presented in detail. The
syntax of MEL is shown in Fig. 13. It is based on Java, but a
little bit more UML-like.

The description of the grammar can be read from top
to bottom. MEL can be used in UMLActions, in
UML guards, and in UML SendSignalActions and
AcceptEventActions which are treated differently. A
(normal) action can contain either one expression, or a list
of statements. A statement in MEL is simply an expression
followed by a semicolon. Java statements like conditional,
loop, return etc. are not supported, but must be modeled with
activity diagram elements. MEL expressions and types are
a subset of Java expressions and types. The most obvious
omissions are arrays and generic types. The idea is to use
more abstract data types like lists or sets instead of arrays.
Generic types may be added for non-Java Card applications
in the future. MEL contains anelseexpression that may only
be used on top-level in a guard (UML also defineselse as
a special guard). A local variable declaration (locvardeclin
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Start = Action| Guard
| SendSignalAction| AcceptEventAction

Action = Expr | Stm*
Guard = Expr
SendSignalAction = Expr
AcceptEventAction = Expr

Stm = Expr;
Expr = Locvardecl| Assignment| CreateExpr| MethodCall

| BinaryExpr | UnaryExpr| LiteralExpr | FieldAccess
| Name| ( Expr ) | else

ExprList = ε | Expr[, Expr]*

Locvardecl = Identifier: Type | Identifier : Type := Expr
Assignment = Expr:= Expr
CreateExpr = create Identifier( ExprList )
MethodCall = Identifier( ExprList )

| Expr . Identifier ( ExprList )
BinaryExpr = Expr Binop Expr
UnaryExpr = Unop Expr| Expr Unop
LiteralExpr = true | false | NumberLiteral| StringLiteral
FieldAccess = Expr. Identifier
Name = Identifier| Name. Identifier

Identifier = Legal Java identifier (JLS 3.8)
Type = Name
Binop = == | != | < | > | <= | >= | + | -- | * | / | %

| and | or | via
Unop = + | -- | ++ | -- | not | #
NumberLiteral =Legal Java integer literal (JLS 3.10.1)
StringLiteral =Legal Java string literal (JLS 3.10.5)

Fig. 13. The MEL language used in activity diagrams

Fig. 13, technically not an expression in Java) has a UML-
like syntax, similarly an assignment (:= instead of simply=).
Logical operations must be written asand, or, not instead of
&& , ||, !. A new prefix operation is# that denotes the length
of a list or the size of a set. Another new operation isvia that
may only be used on top-level in send and accept actions and
specifies the communication paths over which a message is
sent or received.

After parsing a MEL expression an annotated abstract
syntax tree in the form of a model is created in the same
manner as by a Java compiler. Annotating MEL requires a
context (the classes of the class diagram), and a current class
(the swim lane of the activity diagram), and must be done
in sequential order following the control flow of the activity
diagram to capture the scope of local variables. Identifier are
classified as either local variables, fields, classes etc. and for
every method call a suitable method declaration must exist
(either in the class diagram, or in the predefined types, or in
a sub activity diagram), and so on.

An AcceptEventAction must be used as an entry point
into a swim lane. It must contain a method call of the form
Classname(id1,id2,. . . ), optionally followed by avia Identifier.
The Classnamemust name a message class, and the identifier

id1, id2, . . . are interpreted as local variables with the types
of the attributes and associations ofClassname. For example,
StartFrom(val,pd) means that aStartFrom message
is received.val becomes a local variable of typeNumber that
is initialized with thevalue attribute, andpd becomes a local
variable of typePurseData containing value.dataTo
(see the class diagram in Fig. 9). The scope of a local variable
ends at the border of a swim lane.

MEL has a do-what-I-mean flavor that is very convenient
for modeling. This can be considered as syntactical sugar. For
example, the static members of a class can be accessed without
a classname: The name resolution will interpretstate ==
IDLE (see Fig. 10) asstate == State.IDLE. Further-
more, MEL ignores object identities. In a communication
scenario with cryptographic protocols objects are almost never
identical, because messages treat objects as data. Therefore,
== can be used to compare objects, and is interpreted as an
equals test that compares attributes.

The annotated abstract syntax tree is essential for error
checking as well as for the correct generation of code (e.g.
== may become anequals method call). The idea is to
make the MEL language easy to use for a modeler, but still as
precise as a programming language. In the future, MEL can be
extended if it is useful, for example with OCL-like constructs
for collections. However, control flow should be modeled with
activity edges.

VIII. G ENERATION OFCODE

Smart cards are small, secure computers with a size of 1
× 1 centimeters and a thickness of less than 1 millimeter.
For example, the subscriber identity module (SIM) of mobile
phones is a smart card, the new electronic passports containa
contactless smart card, and smart cards are used as payment
cards, health cards, for access control. Java Card [26], [27] is
a version of Java [28] tailored to smart cards. More than 3.5
billion Java smart cards have been issued up to now [29].

Java Card has the same syntax and semantics as Java, but
the programming style is usually very different from ‘normal’
Java programs. The reason for this are the severe resource
restrictions (memory and speed) of smart cards. Java Card
has no Strings, no floating point arithmetic, and no Integers.
Furthermore, threads and garbage collection are not supported.
The missing garbage collection means that the programmer
must be very careful when he creates objects or arrays because
the allocated memory will never be freed.

The communication with a smart card is realized by us-
ing APDUs [30] (application protocol data units), essentially
sequences of bytes in a predefined format. The Java Card
API for the communication works with byte arrays. The
missing garbage collection and the communication API induce
a programming style that is usually not object-oriented. Typ-
ically, Java syntax is used to manipulate byte arrays directly
omitting object-oriented paradigms like modularization and
encapsulation. Examples can be found in [31] that contains
two different Mondex implementations based on byte arrays.
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In our opinion, one challenge of model-driven code gen-
eration approaches is to reduce the gap between input and
target platforms. For this reason, we decided to make further
use of the classes defined in the platform-independent models
(and later transformed to platform-specific classes) instead of
transforming the object-oriented view of the application into
a program consisting of byte array representations for each
object resp. class. Thus, the purse class implementing the
protocol steps of the cryptographic protocol operates on the
data types defined in the platform-independent model by the
developer.

However, the communication is still based on byte arrays.
This means, to transmit data between a smart card and a
terminal the message objects as well as associated objects must
be converted into byte arrays and back again. The easiest way
to do so is to serialize each message object before sending it
and after receiving a byte array message to convert it into the
corresponding message object. This is done using an encoding
similar to a TLV encoding [32], [33]. This encoding is highly
application dependent because Java Card does not support
reflection. Therefore it is ideally suited for automatic code
generation.

Another challenge is the missing garbage collection. The
required objects cannot be created during the protocol runsbut
must be allocated once beforehand and reused. In our approach
we generate code for an object store that allocates the required
objects and manages them, i.e. if an object is needed it is
requested from the store. More details on the code generation
can be found in [25].

IX. GENERATION OF A FORMAL MODEL FOR

VERIFICATION

To prove the security of the system under development we
automatically generate a formal model based on algebraic
specifications and abstract state machines suitable for our
interactive theorem prover KIV. The static aspects of the
modeled application are defined by algebraic specifications
whereas the dynamic part of the system is translated into an
abstract state machine (ASM) [2]. The formal model uses the
application-dependent data types which are defined in the class
diagram, i.e. specifications exist for the messages, plain data
and so on. We use application-dependent types instead of a
generic type as used in [34] [12]. Since the formal model is
used for interactive verification, it is very helpful to havea
formal model that is close to the UML models.

To model the attacker we define the attacker knowledge
which contains all (relevant) data known by the attacker
during a protocol run, similar to [34] and [35]. The attacker
knowledge contains all data that is part of a message and
can be analyzed by the attacker. In the Mondex example this
includes the encrypted content of theReq, Val and Ack
messages. If the attacker does not know the key he cannot
decrypt the content, but with an insecure protocol he may
later learn the key, and then decrypt the data. All non-security
critical data such as the amount to load is not explicitly stored

in the attacker knowledge because this data is not secret and
assumed to be known by the attacker.

In the formal model the components of the systems are
defined as differentagentsthat communicate by exchanging
messages. The formal model captures the behavior of the real
world that is related to the application. In the real world,
many Mondex cards exist. To model the transfer of money,
at least two cards (agents in the formal model) are needed.
Indeed, it may be possible that there exists an attack on the
protocol that needs three or more cards, and does not work
with only two cards. In this case a formal model with only
two cards would be grossly flawed, because the proofs of the
security properties would succeed for a protocol that is in
reality insecure. Therefore the formal model has an arbitrary,
but finite, number of cards (more precisely: instances for each
agent type). To represent the communication we explicitly
model the possible connections between two agents. Since
more than one communication path between two agents may
exist, we additionally use ports to distinguish the paths. The
information about communication paths and ports is taken
from the deployment diagram. To model the sending and
receiving of messages in the formal model we use inboxes
(essentially queues) for each component and port. An inbox
is of type message list and contains all messages that were
received by an agent but not yet processed.

The dynamic part of the system is modeled as an abstract
state machine (ASM). The state of the ASM consists of the
states of all agents. In the Mondex example the state of the
purse consists of the values of the attributes and associations of
thePurse class. A step of the ASM applies one ASM rule and
transforms the state. A run of the ASM is a sequence of single
steps and creates a trace, i.e. a sequence of its states. A trace
models arbitrary protocol runs that could happen in the real
world. Since many different events occur in the real world (e.g.
the attacker may choose to interfere with a communication or
not) an adequate formal model is the set of all possible traces.
If the protocol is secure for all possible traces we assume that
the protocol is secure in the real world. Therefore the ASM
must allow the same choices that are possible in the real world,
i.e. the ASM must be indeterministic. We model the real world
by defining an ASM rule that nondeterministically chooses an
agent which – if possible – executes a protocol step. If for
example thePurse agent is chosen, it is checked whether
the inbox (of the connection to the terminal) is non-empty.
If so, the first message is taken and processed. If the inbox
is empty, another agent is chosen by the ASM. If the first
message is of typeStartFrom, the ASM rule describing the
processing of aStartFrom message is executed. This rule
is shown in listing 1. To generate the ASM rule, the activity
diagrams are used as input (see Fig. 10).

It is not the purpose of this paper to describe the syntax
and semantics of the ASM rules as they are used in the KIV
system. Therefore, we give just an informal overview of the
example rule. The content of theStartFrom message, i.e.
thevalue and thePurseData of theto purse, are stored in
local variables (lines 2 and 3 in listing 1). Next, it is checked
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1 STARTFROM#
2 let value = inmsg.value,
3 dataTo = inmsg.dataTo in
4 if exlogcounter(ag) < LOGLENGTH
5 then
6 if state(ag) = IDLE
7 then
8 ...
9 pdAuth(ag) .from := data(ag);

10 pdAuth(ag) .to := dataTo;
11 pdAuth(ag) .value := value;
12 data(ag) .sequenceNo := data(ag)
13 .sequenceNo + 1;
14 state(ag) := EPR;
15
16 let encmess = mkMsgcontent(
17 STARTTO,pdAuth(ag)) in
18 let enc = encrypt(
19 sesskey(ag),encmess) in
20 outmsg(ag) := mkStartTo(enc);
21 else ABORT#
22 else ABORT#

Listing 1. ASM rule of processing a StartFrom message

if the exception log has free entries (line 4). The expression
exlogcounter(ag) is specific for the formal model.ag
is a variable for aPurse agent. As mentioned previously,
the formal model contains an arbitrary number ofPurse
agents, andag is the agent chosen in this ASM step. Agents
are modeled with dynamic functions in the formal model, i.e.
exlogcounter is a function that maps aPurse agent to
the value of itsexlogcounter attribute. It can be read as
ag.exlogcounter. Similar functions exist for all attributes
and associations ofPurse (pdAuth(ag), state(ag),
. . . ). Then the ASM rule checks whether the state of the
card is set toIDLE (line 6) and performs some additional
checks. If all tests succeed, several attributes and associations
of the considered agentag, in this case the purse agent, are
updated (lines 9 - 14). An update means that the corresponding
dynamic function is modified (therefore the function is called
‘dynamic’). In a next step, a local variableencmess of type
Msgcontent is created with themsgflag STARTTO that
indicates aStartTo message and the current pay details (line
16). Then, this variable is encrypted by using a predefined
encrypt function (line 18). The dynamic functionoutmsg that
is generated automatically for each agent stores the message
that is going to be sent after termination of the ASM rule for
processing aStartFrom message. In our case, aStartTo
message is sent next and storedoutmsg (line 20). If one of
the checks made in the beginning fails, the protocol aborts (line
21 and 22). The abortion is defined in a separate ASM rule
called ABORT#. It can be seen that the structure of the ASM
rule follows the structure of the activity diagram, but usesa
different syntax, and has a semantics that is similar to MEL
(e.g. copy semantics), but not identical (dynamic functions and
inboxes are not part of MEL).

One relevant security property for Mondex is that the
sum of money stored on all Mondex cards plus the sum of
money stored in all (valid) exception logs does not increase
or decrease over the time. This implies that no money is lost
or created during a transfer of money, even in the presence of
an attacker. This property can be formulated as a theorem in
the formal model and proved with our theorem prover KIV.
Of course, since a card may be recharged, this holds only for
the use case ’Person-to-Person Payment’.
In previous work Haneberg [12] [36] developed a formal
model based on ASMs and verification techniques to prove the
security of an abstract model. This approach was successfully
used in several case studies. The formal model introduced
in this section is based on the one by Haneberg but uses
application-dependent data types instead of a generic data
format.

X. RELATED WORK

Basin et al. [37] [38] present a model-driven methodology
for developing secure systems which is tailored to the domain
of role-based access control. The aim is to model a component-
based system including its security requirements using UML
extension mechanisms. To support the modeling of security
aspects and of distributed systems several UML profiles are
defined. Furthermore, transformation functions are defined
that translate the modeled application into access control
infrastructures. The platforms for which infrastructuresare
generated, are Enterprise JavaBeans, Enterprise Servicesfor
.Net as well as Java Servlets.

Another approach that is related to ours is UMLSec devel-
oped by Jan J̈urjens [8]. As in our approach he proposes to
use UML for the development of security-critical applications.
UMLSec defines a UML profile which adds security-relevant
information to the UML diagrams. Security properties are
expressed by using stereotypes. Jürjens provides tool support
for verifying properties by linking the UML tool to a model
checker resp. automated theorem provers. By doing so, the
security properties mainly addressed are those that are ex-
pressed by the predefined stereotypes. The relevant formal
model reflects an abstracted view of parts of the entire system.
In our approach we concentrate on a transformation process
that generates a formal model of the entire application which
can be used for interactive verification of all system aspects.
Based on the generated formal model, we can express and
prove application dependent security properties such as ”No
money can be created within the Mondex application”. In
contrast to UMLSec we additionally focus on the generation
of running Java Card code as well as the proof that this code
is a refinement of the formal model.

In [39] Kuhlmann et al. model the Mondex system with
UML. Only static aspects of the application including method
signatures are defined by using UML class diagrams. To
specify the security properties that have to be valid the
approach uses the object constraint language (OCL). The
specified constraints are checked using the tool USE (UML-
based Specification Environment). USE validates a model by
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testing it, i.e. it generates object diagrams as well as sequence
diagrams of possible protocol runs. The approach neither
considers the generation of code nor the use of formal methods
to prove the security of the modeled application. The models
are only validated by testing.

Alam et al. [40] present a model-driven security engineering
framework for B2B-workflows. They introduce a domain-
specific language for specifying access control policies which
is used in the context of UML models. Furthermore, a UML
profile for trust management is defined. After modeling a
B2B application with UML, it is then translated into low-level
web service artefacts using model-to-model and model-to-text
transformations.

Deubler et al. present a method to develop security-critical
service-based systems [41]. For modeling and verification the
tool AutoFocus [42] is used. AutoFocus is similar to UML and
facilitates the modeling of an application from different views.
Moreover, the tool is linkable to the model checker SMV. The
approach focuses on the specification of an application with
AutoFocus and, in a next step, the generation of SMV input
files and formal verification using SMV. The generation of
secure code is not part of the approach.

XI. CONCLUSION

We presented our SecureMDD approach for the modeling
of security-critical systems, especially smart card applications,
with UML. Using this model-driven method UML models
can be automatically translated into a formal model that
is used to verify the security of our models. Furthermore,
executable code can be generated automatically. In this paper
we focused on the modeling with UML, i.e. the use of our
UML profile which is tailored to security-critical applications
and our Model Extension Language that we use in activity
diagrams to describe cryptographic protocols. We propose a
modeling technique that is easy to learn and abstracts from
specifics regarding the formal specification or implementation.
One disadvantage of UML is that it is only semi-formally
defined. Since in our approach the UML models are translated
into abstract state machines, we give them a formal semantics.
We do not define a semantics for UML in general but only
consider those parts that are used in our approach and which
are interpreted in the context of security-critical applications.
Our technique has evolved over several case studies. E.g. we
have analyzed an application where a smart card is used as a
copycard for a library [35]. Another case study deals with an
application to buy cinema tickets using a mobile phone [12].

At the moment our approach is tailored to smart card
applications but we are going to extend it, e.g. to service-
oriented architectures, in the future. For example, the german
electronic health card which consists of smart card parts as
well as services that are realized as SOA, would fit into this
domain. Another focus of future research is to build in the
expression of security properties on the level of platform-
independent modeling, for example by supporting the use of
OCL expressions.
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Fig. 14. Mondex Activity Diagram for Transferring Money, Part 1
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Fig. 15. Mondex Activity Diagram for Transferring Money, Part 2
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Fig. 16. Mondex Activity Diagram for Transferring Money, Part 3
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Fig. 17. Mondex Activity Diagram for Subactivity Abort()

Fig. 18. Mondex Activity Diagram for Subactivity CheckValueSeqnoTo(value : Number, seqno : Number): Boolean
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<<structured>>

CheckValueSeqnoFrom

seqno : Number

result : Boolean

result := true;

result : 
Boolean;

value : Number

 result := false;

result := false;

p : Purse

 [seqno >= 0 and value > 0]

 [balance - value >= 0]

Fig. 19. Mondex Activity Diagram for Subactivity CheckValueSeqnoFrom(value : Number, seqno : Number): Boolean


