
1

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Goal sketching: An Agile Approach to Clarifying Requirements 

Kenneth Boness

University of Reading,

Berkshire, RG6 6AY UK

k.d.boness@reading.ac.uk

Rachel Harrison

Stratton Edge Consulting Ltd, 

GL7 2LS, UK

rachel.harrison@strattonedge.com

Kecheng Liu

University of Reading,

Berkshire, RG6 6AY UK

k.liu@reading.ac.uk

Abstract

This paper describes a technique that can be used

as part of a simple and practical agile method for

requirements engineering. It is based on disciplined

goal-responsibility modelling but eschews formality in

favour of a set of practicality objectives. The technique

can be used together with Agile Programming to

develop software in internet time. We illustrate the

technique and introduce lazy refinement, responsibility

composition and context sketching. Goal sketching has

been used in a number of real-world development

projects, one of which is described here.

Keywords: goal-oriented requirements engineering,

agile development, evolving systems.

1. Introduction

Our motivation for goal sketching is to help

stakeholders who need to make project critical

decisions in projects which develop emergent systems.

The agility here concerns the manner of obtaining and

maintaining the rationale of problem and solution

requirements so as to be able guide projects. Hence

goal sketching applies to, but is not limited to, software

projects using  agile development methodologies. 

Decisions about investment and requirements

priorities are the responsibility of stakeholders and can

only be made rationally when supported by a coherent

depiction of what is known about the requirements. It is

well known that this is problematical: for example the

importance of “creating realistic expectations in the

minds of stakeholders” has been noted [1] and the

observation that “..customers on agile projects are often

asked to make critical, project-defining decisions, and

very little of the methodology can help them make

those calls.” [2]. 

In contrast we suggest that (at least in principle)

given enough time, information and skill, goal-

responsibility refinement models can be constructed to

represent the stakeholders' expectations for a system-

to-be that will operate in an expected environment, in

fulfilment of a contract. Such models can be produced

using KAOS [3] and some use-case methodologies

[4,5]. Each has a structured argument framework that

allows the rationale to be verified and thus affords the

possibility of formulating systematic evaluation of the

adequacy and feasibility of the intended system.

However the prerequisite criteria (time, information

and skill) are not satisfied in the situations with which

we are concerned. Hence our research question which

we are investigating with an action research

methodology is: can a lightweight adaptation of KAOS

style goal-responsibility modelling meet the practical

demands of the analysts and designers?

Of paramount importance is the clarity of the

disciplined structure of goal-responsibility

argumentation (with its quasi hierarchical depiction) as

a possible basis for capturing what is known about the

requirements and the agreed rationale for their

satisfaction. Our methodology has 4 objectives:- 

Table 1. Objectives of goal sketching

1. To maintain a coherent depiction of the intention

(the agreed-upon  requirements and the rationale

for their satisfaction) as it unfolds over time.

2. To be simple enough to allow a project manager

or analyst to achieve a first draft, at a resolution

good enough to steer high level priority

decisions, at the outset of the project.

3. To keep the depiction understandable to business

as well as  technical stakeholders.

4. To support formal rigour on a “just enough” and

“when needed” basis [6]. 

The methodology we are developing is called goal

sketching [7,8]. It is also the foundation for our work

on appraising development projects [9] called goal-



2

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

responsibility appraisal of soft projects (GRASP). It

embraces established practices evolved to cope with

uncertainty such as spiral [10] and breadth before

depth [11] techniques. Similarly 'just enough'

approaches such as in [12] inform our approach to

time-constrained development. 

This paper proceeds as follows. In section 2 we

introduce the concept of structurally complete goal-

responsibility (G-R) models and their adaptation to our

purpose. In section 3 we present the current state of our

goal sketching methodology. Section 4 reinforces the

description using a hypothetical exemplar and section 5

uses an industrial application to illustrate our efficacy

in regard to the above four objectives.

2. Goal-Responsibility Models

An example of what we mean by goal-responsibility

model is shown in Figure 1. Models like this are used

in goal oriented requirements engineering (GORE)

such as the KAOS and also (with provision for the

representation of responsibilities [8]) in some use case

techniques.

Figure 1. Goal-Responsibility model

Each box in Figure 1 is referred to as a 'goal

oriented proposition' (GOP). In keeping with

propositional logic each GOP must be defined in such a

way that it may be refuted. The figure uses two types

of proposition: assumption and goal. There is more to

say about types but for now it is enough to note that a

G-R graph can record explicit assumptions as well as

goals. The aim when constructing a G-R graph is to

capture the logic of the problem in hand moving by

step-wise refinement from relatively abstract root

propositions (e.g. goal P) to relatively concrete

propositions that may be operationalized (e.g. goals

S,T and R) or assumptions (which can only be trusted

but not operationalized). Although the structure is

hierarchical the analysis to create it is rarely top down;

an analyst typically works with GOPs at all levels of

abstraction. The aim (and skill) of the analyst (in goal

sketching at least) is to organise the GOPs into a

convincing rationale. In doing this it is usual that the

analyst may discover gaps in the argument and then

invents additional GOPs in order to  complete it. 

Each step of refinement is a satisficing argument

where a proposition is refined into sub propositions

such that the sub-propositions can be agreed to be

collectively sufficient and individually pertinent to

adequately satisfy the parent. We call this the

refinement argument criterion.

Each argument step is deemed valid if by some

defensible criteria (e.g. expert judgement and/or

'policy' such as in goal structuring notation (GSN) [13]

or 'root definition' as in soft systems methodology

(SSM) [18]).

The model is said to be structurally complete if (as

in the figure) all objectives are ultimately satisfied by

actors of the system-to-be. Thus P is satisfied by the

combined actions and qualities of Actors 1, 2 and 3. It

is important to note that in this type of representation

the necessary behavior (and other qualities) that must

be instantiated is described only at the leaves of the

model; it is not distributed across the model. So if Q

harbours required behavior to be explicitly represented

in S and T then a further GOP should be added along

with S and T [8]. 

When a G-R model is constructed in a formal logic

(such as KAOS) there are calculi to verify the

argumentation. Hence if the model is also structurally

complete and all necessary root GOPs are included the

model should amount to an adequate intention for the

stakeholders. Further, if the responsibilities are

individually and collectively operationalizable within

the constraints of the project the intention can be said

to be feasible.

This potential for systematically evaluating the

adequacy and feasibility of an informally produced G-

R model is a key intended benefit of our goal sketching

technique; especially since for our purposes (with our

assumption of a incomplete information) structural

completeness is only possible if the analyst places

assumptions and, or very low precision GOPs into the

rationale. A G-R model constructed this way, out of

necessity, is a rich resource to draw on to promote

informed negotiation among the stakeholders.



3

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

3. Goal Sketching Technique

In this section we present the details of the

technique so far developed through our programme of

action research. We outline a methodology for using

the technique and then proceed to particular details

concerning the support of building refinement

arguments.

3.1. Using the Technique

Our goal sketching technique starts with the

creation of a goal graph which expresses the high level

motivations behind the intention to develop the

software. This is typically a coarse but structurally

complete sketch of what is understood about the overall

intention. In general there is often a vague long-term

vision coupled with some short-term clarity. A series of

staged developments are planned using the system

graph as a guide. This compliments the practice of

sprinting in Scrum [14], and the increments in an

iterative and incremental development process [15].

Each stage is preceded by taking a portion of the

system graph in its current state and refining it so that

there are no remaining vague intentions. This is called

the ‘stage graph’. In the execution of any stage it is

possible that the stage graph will be updated as a result

of the usual agile practice of improving the quality of

the work in hand. At the completion of each such stage

its graph is used to update the system graph. Thus the

true goal graph emerges by successive iterations and

refactoring and so becomes the inventory, recording the

associated rationale for posterity. 

When preparing each stage the goals are refined

only as far as necessary for the stage in hand (a

technique called lazy refinement) relying on stories, use

cases or activity sketches. (This does not preclude the

use of formality as problem frames [16] or temporal

logic etc may be used when necessary.) 

We advocate using pair sketching, in which the

goal graphs are sketched by two people working

together (often the analyst with a stakeholder) to ensure

that the refinement argument is sound, in a manner akin

to pair programming. Once an acceptable goal graph

has been produced it is incorporated into the system

goal graph. The system graph may need to be re-

factored for the next stage.

The goal graphs are exported to a database for

subsequent analysis. From the database we can produce

matrices to expose composition issues which may arise

from cross-cutting concerns for analysts, designers,

developers and testers. 

3.2. Refinement Argument Supports

In our goal sketching the GOPs are written in

natural language and must satisfy the refinement

argument criterion. This is a very simple principle but

in practice it can be very difficult to do. Errors that we

have observed in students and would-be industrial

practitioners, and ourselves, include:- 

1. Mixing two or more problem contexts (e.g. mixing

operation with construction of the system-to-be) in

a confusing argument.

2. Expressing 'milestone' refinement patterns [3] as

multi-level rather than single level refinements.

This leads to an invalid though seemingly

structurally complete G-R model.

3. Volatile functional refinement arguments that

depend upon the current outlook of the analyst.

As mentioned above, pair sketching helps but we

have found that it is very important to to be mindful of

four aspects of a GOP, which we list Table 2 as support

to the practitioner.

Table 2. Aspects of GOPs

1. The type of proposition: e.g. assumption or

objective.

2. The proposition owner: e.g. a stakeholder role or

a system.

3. The problem context of the proposition in terms

of where operationalization can be enacted; e.g.

in the domain of the operating system-to-be or

the domain of the development of the system-to-

be.

4. The refinement level: i.e. to try to keep all sub-

propositions of a proposition at similar levels of

abstraction.

These supports are are discussed in the following

sub-sections.

Type. A goal oriented proposition is a refutable

statement written in natural language which as shown

in Figure 2 we specialize into five types.



4

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Figure 2. Goal types

 

/m/ is a motivation goal representing the agreed-

upon concerns of the stakeholders that motivate the

project; in terms of KAOS they are likely to be “soft

goals”. They may harbour refinement implications that

require refinements in different problem contexts with

different time-spans (e.g. project time or system run-

time). Even when they apply to a single context they

can only be satisficed [17] and their refinement should

include an assumption giving the justifying world-view

(similar to weltanschauung [18]). For example the

refinement of 'achieve greater efficiency' might include

goals such as 'provide data at point of need' but it

would depend upon an assumption linking the

provision of data to greater efficiency. 

/b/ is a behavior goal explicitly required by the

stakeholders or by force of circumstance and necessary

for completeness. It 'affords' [19,5] an option or

freedom to a user, whether or not the user chooses to

exploit it. It combinines the capability and condition

elements of a 'well formed requirement' in the IEEE

recommendations on systems requirements [20].

/c/ is a constraint: a nonfunctional requirement that

limits the possible system implementation solutions. It

is a factor that is imposed on the solution by force or

compulsion and may limit or modify the design

changes. This is consistent with [20].

/a/ is an assumption: something that is stated on

trust but is necessarily true for the rationale to present a

defensible argument; i.e., it is 'load bearing' [21]. An

assumption may be a simplifying argument used to find

an acceptably easy goal refinement argument or it may

be a KAOS domain property  [3].

/o/ is an obstacle used as in KAOS to oppose the

satisfactory fulfilment of any other proposition. These

propositions are not discussed further in the following

models as  they remain substantially as used in KAOS.

The /b/ and /c/ propositions are strictly bound to

system run-time whereas the /a/ propositions may be

either project or run time.

Problem Domains and Context. Jackson ties

requirements statements to domains in a rigorous

fashion [16] as illustrated in Figure 3 where the

requirement is understood as referring to phenomena in

the domain. 

Figure 3. Requirements context

A requirement straddling multiple domains is

shown by a dashed line to each [16] and the associated

phenomena are referenced exclusively in each domain. 

In goal sketching we advocate tying GOPs to their

relevant domains in a similar fashion. In such diagrams,

see Figure 4, we use {} to show that we mean a GOP.

Figure 4. GOP context 

The domain may be a large domain such as a

business operation. Inside the business operation there

might be sub-domains to which we attach lower level

GOPs. It is in the nature of /m/ propositions that they

may imply references to phenomena in the domain with

different enactment contexts. We identify three such

contexts in Table 3.

Table 3. Three common contexts

1. The system-to-be.

2. A system to manage the life-cycle of the

system-to-be.

3. The project to manage business change and

the construction of the 'kit' [22].

In goal sketching we choose goal refinement steps

that lead rapidly to referencing phenomena of single

contexts. This technique helps to distinguish

constituent domains that would obfuscate the G-R

graph.

Starting with an agreed outer problem domain the

problem context is established by attaching the root

GOPs and any global constraints and assumptions (as a

set of /m/, /a/ and /c/). This can be refined by then

exposing the important inner domains and then

attaching agreed GOPs (this time possibly including /b/

types). This technique echoes the work in [23] where

problem frames are used to guide a goal refinement

using business process modelling but is more

lightweight.



5

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

We find that just as the goals require sketching

(especially early-on) it is usual to sketch the domains;

again adding precision on a just good enough basis.

 

Owner. In colloquial use a goal would be owned by a

person (or group of people). For example: Owner “To

make a profit.”; or user “To reserve a book”. This kind

of ownership dominates use-case based GORE [4,5]. In

branches of system engineering it may also be said that

a goal is owned by the system (or indeed a machine) in

the sense that it is an embedded objective. For

example:the goal of a heat seeking missile is to find its

target. This is the usual kind of ownership in KAOS.

Generally in goal-sketching ownership passes from

people to system as operationalization is approached. 

Structurally Complete Refinement. In goal sketching

the aim is to capture the logic moving from /m/ to

operationizable propositions which will be a collection

of /b/ and /c/ propositions and en passent it may be

necessary to add assumptions /a/. We apply the

following rules to guide the construction of a

structurally complete refinement such as illustrated in

Figure 1.

Table 4. Goal sketching rules for a structurally
complete G-R model

1. The roots of a goal graph must be /m/

propositions.

2. The leaves of a goal graph can only be /b/

and/or /c/ and/or /a/ propositions.

3. Every leaf of type /b/ or /c/ must have a complete

set of responsible actors (see below) assigned.

4. Any /b/ or /c/ proposition may be refined into

combinations of sub-propositions of types /b/

and/or /c/ and/or /a/  in the same temporal and

contextual mode

5. Any /a/ may only refine into /a/ sub-propositions.

6. Any /m/ may refine into 

i. /m/ sub-propositions, or 

ii. /b/ and/or /c/ and/or /a/ sub-propositions.

In case (ii) there must be at least one /a/ that

expresses the binding/justifying world view.

7. Refinement arguments must satisfy the

refinement argument criterion.

Note that as information improves it may become

necessary to convert one type of proposition into

another and then reconsider the refinement arguments

and reapply the rules. This is typically the refactoring

mentioned above in terms of stage and system graphs.

3.4. Lazy Refinement

Refinement should always halt when just enough

detail is exposed to allow safe operationalization.

Hence in goal sketching the degree of refinement

applied is kept to a minimum. Often, especially early in

a project, it must be halted owing to a lack of

information. In terms of sprint based agile development

there is an implied set of such goals pending

exploration at a suitable time in the future. But it is

important to capture such lack of information in a

context that is informative to the sponsors and other

stakeholders. In goal sketching this is left as a

refinement TBD (to be determined) and is explicitly

recorded on the graph.

In the interests of efficiency refinement can be

halted at a relatively abstract level where the

implications of operationalization are well known; i.e.

they are normal [24] to the community (the key

stakeholders). On the other hand where they are not

understood (perhaps radical [24] to the community) a

more rigorous refinement may be called for; this can be

provided as problem frames and,or fully dressed use

case analysis [4]  and,or the usual methods of KAOS. 

3.3. Operationalization

In Figure 1 the actors (aka agents in KAOS) are

entities of the system-to-be that can take responsibility

for the necessary enactments of the leaf goals. For

example: Actor 1 is responsible to enact, effect or be

whatever goal proposition S requires. In this case no

other actor is involved. In the case of goal proposition

R it requires two actors in collaboration. The nature of

the collaboration will be interpreted from the

specification of R. 

For lazy refinements the specification may be

informal such as: a simple statement, a software

engineering template specification [25], an eXtreme

style story or a use case. It is typical in lazy refinement

to have multiple actors collaborating. 

In full refinement, as in KAOS, the objective is to

have a unitary relationship between a requirement or

expectation (equivalent to goal propositions) and an

agent (actor in goal sketching). Alternative methods of

achieving and specifying full refinement, which we

prefer include Jackson's Problem Frames [16], activity

diagrams [8] and use-cases. These are also illustrated in

the example below.



6

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

3.5. Composition

When creating clear refinement arguments goal

sketching favors a strict policy of separation of

concerns. This implies decomposition and thus

necessitates a late re-composition [16] as cross-cutting

concerns (e.g. collaboration between responsible agents

to indicate necessary superimposition of capabilities,

constraints and conditions). In our experience this

approach minimizes the number of goals with multiple

parents and thus reduces visual tangling in the goal

graph. The price for this benefit is that the composition

concerns are not explicit. However a lightweight

solution is to annotate the assigned responsibilities

using a system of composition tags (see Figure 5). In

contrast KAOS uses object and operation models to

accommodate composition concerns. This can be

rigorous but tends to be heavyweight. 

Figure 5. Responsibility annotation

Figure 5 shows three versions of the responsibility

assignments. Each is shown as an oval with the name of

an assigned agent followed by a full stop. The

architectural precision of the agent depends upon the

underlying domain analysis being used; e.g. an object

in a UML model or a sub-domain of a Jackson context

diagram [16]. An optional system of semantic tagging

is allowed after the full stop. Each tag is written in the

form “<MYTAG>” or <@MYTAG>. Any

responsibility with a given tag (say <MYTAG>) is a

target for composition with a similar named tag

including the “@”. Thus a responsibility marked

<@MYTAG> composes with all responsibilities

tagged with <MYTAG>; i.e. the goal associated with

the ‘@’ symbol is added to or changes the goal

associated with the other responsibilities. This feature

allows strict separation of cross-cutting concerns and

subsequent re-composition. The semantic tags are

created and managed by the analyst either manually or

with tool support.  

Any conflicts that emerge through this composition

will need to be resolved by design or by negotiation.

3.6. Accelerating Functional Goal Sketching

In [7] and [8] we mention problems that people may

experience with functional goal refinement: for

example the tendency to interpret 'how' as project flow

and elaboration that is unjustified in the circumstances.

In [8] we introduce the idea of dual use of goal graphs

and activity diagrams. The former give coherence and

the latter facilitate refinement of functionality. 

The approach depends on the idea that an activity

diagram has a goal that is satisfied by its activities plus

a special goal to guarantee its logic (guards, flow etc).

Thus an activity diagram such as Figure 6can be said to

have an objective GO and will be a goal proposition of

type /b/. Similarly the objectives of the activities A1,

A2 and A3 are G1, G2 and G3. This gives the

corresponding goal graph shown in Figure 7.

A1

A2 A3

 [Guard]

Figure 6.  An activity diagram representing a /b/

It is important to note the goal in Figure 7 'Impose

Process A' as a /b/ type proposition. Its purpose is to

represent the need to guarantee the flow of the activity

diagram as a leaf goal in the structure. If the activity

diagram is informally drawn then the logic to be

guaranteed in 'Impose Process A' can be

correspondingly informal (the use of such informal

sketches  is an area we are currently investigating).

 G0

G2 G3G1
Impose 

process A

Figure 7. Goal graph corresponding to Figure 6

If any of the activities A1 to A3 in Figure 8 have

sub-activities these are appended to their goals in

Figure 6. In this way nesting of activities is a dual of

goal refinement. This approach has been used in one of

our industrial examples.



7

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

4. Example

To illustrate the technique we will use an example

involving the calculation of body mass index. 

The customer, WeighCom, wishes to develop new

walk-on scales that can be installed in public places

and used by any passers-by to measure their weight,

height and body mass index (BMI) and receive a

business card sized printed record on the spot.

Normal operation is for the user to step onto a

pressure mat facing an instruction screen and stand

under an acoustic ranger. The measurements are

made once the user pays a fee of 1 Euro into a

receptor. 

WeighCom specifies that the solution must use

certain components: pressure mat (PM); coin

receptor (CR); acoustic ranger (AR) and integrated

processor with alpha numerical visual display and

user selection touch screen (IP). All of these are to be

controlled through software using an API. These

components support an existing assembly in which

the whole is weather proof and vandal proof.

WeighCom currently installs personal weighing

equipment in public places for coin operated use by

the public. They have an excellent reputation, which

is of paramount importance to them, for always

providing a reliable service or repaying. They have a

call centre which customers can call if their

installations appear to be malfunctioning. 

Figure 8. Problem statement

Scrutiny of the problem statement suggests the

following primary concerns:-

● Operation in public places.

● Normal operation (i.e. accepting payment

through to printing a card)

● Use of prescribed components.

● WeighCom's reputation.

From the problem statement we can also reasonably

place these in context as shown in Figure 9 where we

can see that there are likely to be concerns associated

with the call centre. Further we might speculate that

there is a maintenance problem domain for which we

have no expressed concerns. Table 3 shows that we

might associate the use of prescribed components to an

additional problem domain concerned with the project

but since there are no other concerns stated here we

will ignore the project problem domain. We also have

no express concerns about an installation problem

domain; which would probably affect a maintenance

domain. What matters is that we can agree with the

stakeholders that Figure 9, with the attached

assumptions, represents the problem under discussion. 

Figure 9. Context of WeighCom goals

The corresponding G-R modelling is shown in the

first level refinement in Figure 10 where all the GOPs

are owned by stakeholders. 

 Satisfy 
primary 

concerns /m/

Satisfy concerns 
for operation in 

public places /m/

Satisfy 

reputation 
concerns /m/

Use prescribed 
components /c/

Satisfy normal 
operation 

concerns /m/

Project, 
maintenance 

and installation 
concerns are 
TBD and are 

ignored  /a/

TBD
 /a/

TBD
 /a/

Execute the 
normal operation 

story. /b/

Scales. 
<@ALLOP>

Scales, User. 
<ALLOP>

Figure 10. Structurally complete G-R model 



8

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

If and when the assumption 'project maintenance..'

is reversed a separate refinement argument would be

created for other problem domains (project,

maintenance etc.) and these are likely to crosscut as

constraints on the responsibilities in  Figure 10 .

Figure 10 has been made structurally complete by

adding a lazy refinement ('execute..') and assumptions

declared TBD. In this case the transition between the /

m/ and /b/ goals has not needed a weltanschauung

assumption as the /m/ goal itself applies to the scales

domain in which all activity in the /b/ goal takes place.

Note also that the responsibility to use prescribed

components rests on the actors of the scales. The tag

ALLOP was created, and catalogued, to refer to all

normal operation behavior.

The refinement of the 'execute...' is an example of

functional refinement. There are two potential

problems (see Table 2) when creating a stable

refinement argument at consistent levels of abstraction

and getting business stakeholders to review the

argument. This is a good opportunity to use the activity

diagram technique. A plausible analysis is shown in

Figure 11. 

 

Measure

Advertise whilst 
waiting 

(Story S1)

Initiate 
Transaction
( Story S2)

Print results
(Story S3)

Display 
useful 

messages
(Story 4)

Monitor and 
manage 

operational 
error states

[Paid]

[Cancelled]

Figure 11. Normal operation story as an
activity diagram sketch

Figure 11 itself is a sketch as there is no pretence at

full rigour. However it is suitable for discussion with

stakeholders to reveal the required activity. Thus the

activity diagram allows the stakeholders to design a

solution rationale. Each activity must be supported

either by a specification (here stories have been used)

or a further level of refinement (e.g. as in 'measure').

Our experience is that this approach is easier for

stakeholders to comprehend than looking at mixed

'case' and 'milestone' KAOS refinements. The two

floating activities are read as occurring concurrently

with all other activities between the fork/join lines.

Figure 12 Shows all the activities in Figure 11 plus

an 'impose..' goal as the refinement of 'execute..' in

Figure 10. 

 Satisfy normal 
operation 

concerns /m/

Impose: Normal 
Operation AD 

logic /b/

Initiate 
Transaction

(Story S2) /b/

Measure

Print results
(Story S3)

/b/

Monitor and 
manage 

operational 
error states 

(TBD) /b/

Display useful 
messages

(Story S4) /b/

Scales. 
<@NO, ALLOP>

User,Scales. 
<NO, ALLOP>

Scales. 
<NO, ALLOP>

Scales. 
<NO, ALLOP>

Figure 12. Goal sub-refinement for Figure 11

The 'impose process..' goal in Figure 12

emphasizes the need for the glue logic and can be

developed to an appropriate level of precision (on a

scale from leaving it to the developer's intuition, to

detailed narrative, up to fully developed UML or

formal logic). The 'measure' goal is further refined (not

shown in detail here). The figure will be structurally

complete provided that the refinement of 'measure' is

actually complete and that the 'monitor and manage.'

goal is replaced by an assumption that it is not to be

implemented in the current stage. All these matters

being negotiated and prioritized as apart of stakeholder

negotiation for a stage of the development.

An example simple story is provided in Figure 13.

The level of precision shown would be enough for

many developments. If more precision becomes

necessary then the story may be replaced with one in

more detail, a use-case, a problem frame or by a full

KAOS refinement. 



9

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

“When a customer pays €1 into the CR they may

either confirm the payment or cancel the payment. If

they cancel then the CR refunds the payment. If they

confirm then the service is initiated.”

Figure 13. Transaction initiation (Story S2)

This simple example has allowed a demonstration

of the techniques. In the next section concerning real

projects we can observe how well we meet the

objectives set down in Table 1.

5. Industrial Projects 

We have improved our method using a number of

industrial applications. These include products

supported by venture capital, a management

information system (MIS) for a food processing

company, a university infrastructure project and

support for services in healthcare. We start here with

some general observations and then look at some

details of a healthcare project and a venture capital

project. The first is chosen because it seems

representative of the general method and the second

because it makes a slightly different use of our method

and shows a situation that often arises in agile backlog

driven projects. Most of the projects have been

mentioned in [7,8,9].

The staffing profiles for these projects involved

managers, executives, developers and testers; all with

very different perspectives and analytical abilities. In

all cases the managers and executives were not

involved with detailed requirements analysis, whereas

the developers and testers were. 

The analyst (one of the authors) worked with key

staff members (project and/or product managers). From

the beginning it was clear that our industrial colleagues

were not familiar with goal based requirements

methods. In order to reach out to the executive and

other non-technical stakeholders, whose participation

was essential, we developed an approach which used

the familiar sales terminology: 'pain' (things that are

presently unsatisfactory in the problem domain) and

'gain' (new opportunities to improve the problem

domain ) [26]. To this we added 'maintain' (things that

should not change as a result of dealing with the pain

and gain concerns). 

Thus armed, our first step involved analyzing the

problem domain and the stakeholders' concerns (i.e. the

root GOPs). Inevitably lower level concerns (design

fragments, particular functions etc) arose but they were

put aside until the root problem was agreed. One of our

projects was a retrospective study and it is clear that the

project lacked shared understanding.  

We find that the cost of reaching an agreed problem

domain and root GOPs is only a few staff days unless

there are conflicts that need to be resolved. The smaller

(health-care) projects took only a few hours to reach

this point. Importantly what they all established firmly

were the 'load bearing' assumptions.

Figure 14 illustrates the root problem for one of the

healthcare projects. This project was motivated by a

benefactor organization wishing to sponsor a tool to be

supplied to assist the care of patients with a particular

disease. A group of physicians (the Forum) were to be

the initial beneficiaries. They would be called upon to

help specify an initial product, limited by budget, and

would use the product as a support to their normal

consultations and supplementing their usual medical

system (MedSys). 

Figure 14. The agreed problem statement

The figure shows a key simplifying assumption

arrived at after negotiation and constraints arising from

data confidentiality and security protocols and from the

wishes of the benefactor and Forum to have their roles

acknowledged in product branding (logos and style

etc). All these concerns attached to the outside of the

problem domain box affect (cross-cut) everything

inside the box. A research centre (RC) and the Forum

Practices are the principal sub-domains of the problem

domain and inside the Forum Practices are a Master

repository (in one of the practices) and the MedSys and

medical staff sub-domain (in all of the practices as



10

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

indicated by notation {Practice}). Inside the problem

domain box are more localized concerns including a

concern about 'Kit Installation'; an example of a

domain context that has a different time-scale to the

normal system-operation (see Table 3).

Figure 14 was constructed on the basis of a two

hour discussion between stakeholders and remained

stable throughout the development. It satisfied our

third objective (Table 1)and laid a foundation for the

first. In our earliest attempts at goal sketching we did

not realize the importance of first obtaining an agreed

problem domain and concerns diagram and invariably

paid the price of taking much longer to establish root

GOPs and this compromised our second objective.

After achieving Figure 14 it was a straightforward

process to finish a structurally complete GR model by

pair sketching and cross-checking with the

stakeholders. We proceeded rapidly to a complete G-R

model (taking about one day) but here whilst being

confident that we are satisfying three of our objectives

for goal sketching it must be noted that the third is

challenged as it remained fully understandable only to a

subset of stakeholders. The situation was remedied by a

two stage process: (1) talk through the contents and (2)

debate the correctness of the contents. Nevertheless the

project manager could always use the representation to

ensure that the right questions were asked and to ensure

that the key assumptions were recorded.  

 List the cohort of 

interest  for the 

usual 

prescribers . /m/

Do 'List 

Management 

Process ' (See 

LMP_AD)

The at risk list shall 

comply with the 

'Practice at Risk List ' 

Specification /c/

The ‘List Management 

Process’  shall be  

restartable  on 

demand . /c/

Assume the 

user will 

restart the 'List 

Management 

Process ' to fit 

practice 

routine. /a/
User, Tool, MedSys, 
<LMP, XOUT, PARL>

Tool,<@PARL> Tool,<@LMP>

Figure 15. Figure 2 G-R model for one concern of
Figure 14

Figure 15 illustrates one of the concerns from Figure

14and amounts to about 1/6th of the whole G-R model.

It includes the responsibilities (which we usually only

expose to the technical stakeholders): The actor

MedSys is a sub domain of the Practice Domain. The

semantic tag XOUT reflects cross-cutting of the

regulatory concerns. The PARL and LMP tags show

constraints acting on the “Do 'List ..” goal. This

particular goal is interesting as it is an example of

hiding a detailed refinement that was constructed and

negotiated using the activity diagram approach shown

in Figure 16. The full G-R accommodates this figure in

the manner illustrated in the scales example above.

 

Collect Coarse 
Cohort (see Coarse 

Cohort Specification)

Create new Coarse 
Cohort tables (See 
Create New Coarse 

Cohort)

Append and update 
Coarse Cohort tables 

(see Append and 
Update rules); 

preserving prior DPR 
edits.

View and edit COI 
(See DPR 

Specification)

[Coarse Cohort 
Imported to Tool]

Expect the user initiate 
these activities in an ad 
hoc, repeatable manner 
driven by practice 
timetable.  /a/

Export practice 
‘at risk’  list 

<PARL>

[End]

[Restart]

[Roll back]

Assume that Roll-
back to state prior 
to appending and 
updating Coarse 
Cohort tables is 

not required. /a/

Export 
outcomes slot

<XOUT>

Figure 16: List management process

There is a significant simplifying assumption in

Figure 16 agreed by all stakeholders for this stage of



11

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

development (to set aside roll-back). The need to

surface such assumptions can easily be missed in less

disciplined approaches. But where feasibility and

adequacy are in conflict, as they were here, it is crucial

to help the stakeholders make a decision. Figure 16 was

reviewed on several occasions by the stakeholders; and

thus improves our score on our third objective (Table

1). 

Our tool support for our method allows us to

annotate the G-R model. Included is a traffic-light

annotation on each GOP to indicate our confidence in

the refinement argument and/or its feasibility. Further

we can export the leaves of the model into a project

management spreadsheet to define the developments

and procurements to be accomplished and the load-

bearing assumptions to be monitored. This has been

helpful to project managers.

In one of our venture capital supported

development projects the main use of our method was

to guide the development of acceptance testing. The

test team found that working from a requirements

backlog failed to provide sufficient understanding of

the behavior that was being warranted by their product

(see [8]. After several backlogs driven sprints the

coherent picture of the intended user experience

became unclear. This made test design very difficult

and led to problems of product regression. The remedy

was to use activity diagrams in the manner described

here to reverse engineer the entire functionality of the

product. This produced a set of four level nested

activity diagrams upon which the acceptance tests

could be designed. Converting these to a G-R model

showed that they needed to pay more attention to the

'Impose Logic' goals described in previous sections. It

also allowed the cross-cutting effects of the non-

functional requirements to be included systematically

in the tests. Recently the company has applied formal

inspections, guided by the G-R model, to guarantee that

the activity diagrams comply with all engineering and

product management stakeholders' expectations. We

will report further on this separately.

6. Related Work

We have mentioned some related work in the

introduction. In addition we comment here on related

requirements engineering material.

Work has been done on how some of the best

practices of requirements engineering could enrich

agile approaches [27]. The practices described include

customer interaction, requirements analysis, non-

functional requirements and managing change. The

paper suggests that ways of adapting requirements

management practices for agile processes are needed.

However note that [27] simply describes how to

include requirements engineering methods in an agile

development process, rather than describing a method

for requirements engineering that is agile. Similarly

Nawrocki et al propose a way in which documented

requirements could be introduced into XP through the

use of automated tools, the Web and on-line

documentation [28].

Cao and Ramesh have reported on how agile

requirements engineering differs from traditional

requirements engineering [29]. Their study showed

that the agile case is more dynamic and adaptive than

the traditional.

Orr suggests that it is possible to combine

requirements and agile development by using up-to-

date hardware and sophisticated graphical software

[30]. Prototypes are suggested as a way to improve the

process of defining requirements. However this work

emerged from practice rather than from a theoretical

technique such as goal-oriented requirements

engineering.

Ambler describes an agile approach to modeling

requirements, utilizing approaches such as the planning

game of Extreme Programming and the Scrum

methodology [31]. Similarly Leffingwell and Widrig

discuss an agile requirements technique that is based on

use-case specifications [32]. They also provide

guidelines for selecting which requirements method

(extreme, agile, or robust) is right for a particular

project. However, again these approaches do not have a

formal method such as goal-oriented requirements as a

basis.

7. Further Work

The work reported here concerns the basics of the

goal sketching technique. We are undertaking the

following investigations to advance the work:-

1. Application to more industrial projects to confirm

the applicability and practicality of the method for

use in Agile projects.

2. The relationship between SSM[18] and the problem

of transforming stakeholders concerns into goals.

3. Development of tools to accelerate the speed of

sketch drafting and refactoring. In this area we are

currently exploring the use of UML diagrams such

as activity diagrams as these are well suited to the

problem of determining behavioral goal refinements.

4. Development of metrics and supporting tools to

exploit the structure of goal graphs in conjunction

with expert judgments to quantify the adequacy and



12

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

feasibility of the intention expressed in a goal graph.

It is anticipated that this will contribute significantly

to the better planning of project stages and the

improved sharing of expectations amongst the key

stakeholders.

5. Tools to export goals sketches into KAOS for cases

that justify upgrading from a goal sketch to a

rigorous KAOS analysis.

8. Conclusion

In this paper we began by observing the problem of

helping stakeholders set realistic expectations and take

decisions. The problem is particularly pronounced in

agile projects but is not limited to them. We have

proposed a disciplined method of goal responsibility

modelling as the basis for supporting stakeholders but

also argue that success depends upon a set of practical

objectives. We have also presented a goal sketching

technique aimed to satisfy these objectives. Our

experience shows that goal sketching in its present state

performs well against our objectives although more

validation is still needed. 

The emphasis of goal sketching has been to provide

a disciplined method of appraising the validity of a set

of requirements for a project. Our method can be used

alongside other requirements methods (especially use-

cases) and can play an important part in reinforcing the

coherence of agile requirements engineering based on

backlogs.

9. Acknowledgements

The authors would like to acknowledge their

industrial collaborators. In particular: Nick Gradwell,

Product Manager of ClearPace Ltd; Dr Steve Moyle

and James Wilson of Secerno Ltd., Ian Lycett KTP

Associate at Image Farm Ltd; and Sean O’Mahoney,

Martin Roskell and Richard Olearczyk of Oskis

Informatics Ltd.

10. References

[1] D. Nevo, and M. Wade, “How to avoid disappointment

by design”, Communications of the ACM, 2007,  Vol

50, No.4 .

[2] A. Desilets, “The Agile Physician”, letter, IEEE

Software, vol. 24, No. 3, 2007.

[3] A. Dardenne,  A. van Lamsweerde, and S. Fikas, “Goal-

Directed Requirements Acquisition”, Science of

Computer Programming Vol. 20, pp. 3-50, North

Holland., 1993, pp. 3-50.

[4] A. Cockburn, Writing Effective Use Cases, Addison-

Wesley,  Boston, 2001.

[5] I.F., Alexander, and R. Stevens, Writing Better

Requirements, Addison Wesley, 2002.

[6] A.van Lamsweerde, "Goal-Oriented Requirements

Engineering: A Round trip from Research to Practice",

12th IEEE International Requirements Engineering

Conference (RE'04),  2004.

[7] K. Boness, and R. Harrison, "Goal Sketching: Towards

Agile Requirements Engineering," ICSEA,

International Conference on Software Engineering

Advances (ICSEA 2007),  2007, pp.71-6.

[8] K. Boness, and R. Harrison,"Goal Sketching with

Activity Diagrams," ICSEA,   International Conference

on Software Engineering Advances (ICSEA 2008),

2008

[9] K. Boness, and R. Harrison, and A. Finkelstein, “A

lightweight technique for assessing risk in requirements

analysis”, Software, IET,  2008, Volume: 2,  Issue: 1

pp. 46-57.

[10] I. Sommerville, and P. Sawyer,  Requirements

Engineering – a good practice guide, Wiley,

Chichester. 1997. 

[11] S. Adolph, and P. Bramble, Patterns for effective Use

Cases, Addison-Wesley, 2003.

[12] A.M. Davis,  Just Enough Requirements Management,

Dorset House Publishing, New York, 2005.

[13] T.P. Kelly,  and R.A. Weaver,  “The Goal Structuring

Notation –A Safety Argument Notation.” Proceedings

of the Dependable Systems and Networks 2004

Workshop on Assurance Cases, July 2004.

[14] L. Rising, and N. Janoff,  “The Scrum Software

Development Process for Small Teams,” IEEE

Software July/August 2000.

[15] B. Boehm.,  “A Spiral Model of Software Development

and Enhancement”, Computer, May 1988, pp. 61-72.

[16] M. Jackson, Problem Frames: Analysing and

Structuring Software Development Problems, Addison

Wesley, 2000.

[17] J. March, and H.A. Simon, Organisations, New York:

Wiley, 1958.

[18] P. Checkland, and J. Scholes,  Soft Systems

Methodology in Action, John Wiley and Sons, 1990.

[19] J. Gibson, “The Theory of Affordances”. In Perceiving,

Acting, and Knowing, Eds. R. Shaw, and J. Bransford,

ISBN 0-470-99014-7. 1977.

[20] IEEE, “IEEE Guide for Developing System

Requirements Specifications” IEEE Std-1223 (1998).

[21] J.A. Dewar, and C.H. Builder,  et al.,  "Assumption-

Based Planning: A Planning Tool for Very Uncertain

Times", Santa Monica, RAND. 1993.

[22] I. Alexander, “A Taxonomy of Stakeholders,” Int’l J.

Tech. and Human Interaction, vol. 1, no. 1. 2005.



13

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[23] S.J. Bleistein, K. Cox, and J. Verner, “Requirements

Engineering for e-business Systems: Integrating

Jackson Problem Diagrams with Goals Modelling and

BPM”, Proceedings of 11th Asia-Pacific Software

Engineering Conference (APSEC'04) IEEE, 2004.

[24] W. G. Vincenti, “What Engineers Know and How They

Know It:”, Analytical Studies from Aeronautical

History: The Johns Hopkins University Press, 1990.

[25] T. Gilb,  Principles of Software Engineering

Management, Addison-Wesley, 1988.

[26] S. Deep, and L. Sussman,  Close the Deal: 120

Checklists for Sales Success, Sandler Institute.

[27] A. Eberlein, and J. Cesar Sampaio do Prado Leite,

“Agile Requirements Definition: A View from

Requirements Engineering”, International Workshop on

Time-Constrained Requirements Engineering TCRE'02,

Essen, Germany, Sep, 2002.

[28]  J. R. Nawrocki, M. Jasiñski, B. Walter, and A.

Wojciechowski, “Extreme Programming Modified:

Embrace Requirements Engineering Practices”,

Proceedings of the 10th Anniversary IEEE Joint

international Conference on Requirements Engineering

(September 09 - 13, 2002). RE. IEEE Computer

Society, Washington, DC, 303-310.

[29] L. Cao, and B. Ramesh, “Agile Requirements

Engineering Practices: An Empirical Study”. IEEE

Software. 25, 1 (Jan. 2008), 60-67. 2008.

[30] K. Orr, “Agile Requirements: Opportunity or

Oxymoron?” IEEE Software, 21, 3 (2004), 71-73.

[31] S.W. Ambler,  Agile Modelling: Effective Practices for

eXtreme Programming and the Unified Process, John

Wiley & Sons, 2002.

[32] D. Leffingwell, and D. Widrig, 2003 Managing

Software Requirements: a Use Case Approach. 2.

Pearson Education.


