International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

The Kosmosis Approach to Crypto Rug Pull Detection

Philipp Stangl*

and Christoph P. Neumann’

*Department of Computer Science
Friedrich-Alexander-Universitit Erlangen-Niirnberg, Erlangen, Germany
e-mail: philipp.stangl@fau.de
TDepartment of Electrical Engineering, Media and Computer Science
Ostbayerische Technische Hochschule Amberg-Weiden, Amberg, Germany
e-mail: c.neumann@oth-aw.de

Abstract—Crypto rug pulls have become a major threat to the
integrity of blockchain ecosystems, with illicit activities surging
and resulting in significant financial losses. Existing approaches to
detect crypto asset fraud are based on the analysis of transaction
graphs within blockchain networks. While effective for identifying
transaction patterns indicative of fraud, existing approaches do
not capture the semantics of transactions and are constrained
to blockchain data. Consequently, preventive methods based on
transaction graphs are inherently limited. In response to these
limitations, we propose the Kosmosis approach, which aims to
incrementally construct a knowledge graph as new blockchain and
social media data become available. During construction, it aims
to extract the semantics of transactions and connects blockchain
addresses to their real-world entities by fusing blockchain and
social media data in a knowledge graph. This enables novel
preventive methods against rug pulls as a form of crypto asset
fraud. To demonstrate the effectiveness and practical applicability
of the Kosmosis approach, we examine a series of real-world rug
pulls. Through this case, we illustrate how Kosmosis can aid in
identifying such fraudulent activities by leveraging the insights
from the constructed knowledge graph.

Keywords-blockchain; cyber fraud; rug pull; security; smart con-
tracts; knowledge graphs; discovery; pseudonymity; untraceability.

I. INTRODUCTION

This article is a revised and extended version of [1] and
[2]. Crypto assets are digital assets that use distributed ledger
technology, such as blockchain, to prove ownership and
maintain a decentralized and public ledger of all transactions.
Cryptocurrencies, like Bitcoin [3], function as digital currencies
and are used for storing or transferring monetary value.
Fungible Tokens (FTs), another type of crypto asset, are
interchangeable units representing various utilities or assets
within a blockchain ecosystem. Lastly, Non-Fungible Tokens
(NFTs) are unique digital assets that prove ownership and
authenticity of digital or real-world assets [4]. In the rapidly
evolving landscape of crypto assets, the incidence of illicit
activities has surged. Chainalysis, a leading blockchain analytics
firm, reported that illicit transaction volume rose for the second
consecutive year in 2022, reaching an all-time high of $20.6
billion in illicit activity [5]. Since the rise of Decentralized
Finance (DeFi) in 2020, followed by NFTs in 2021, rug pulls
have become a major fraud scheme in terms of amount stolen

and frequency [6]. Thus, rug pulls pose a significant risk to
investors and undermine the integrity of the crypto asset sector.

The predominant approach for identifying patterns indicative
of fraudulent activity is the transaction graph analysis within
blockchain networks [7]-[9]. However, this approach presents
two key challenges. Firstly, the transacting parties are pseudony-
mous and only their blockchain addresses are publicly known.
This means that, although the transactions of a specific address
can be tracked, linking that address to a real-world entity can
be challenging since this approach is limited to information or
patterns observable in blockchain data. Secondly, this approach
is only concerned with the following aspects of a transaction:
1) The transferred asset, 2) the quantity, and 3) the sender
and receiver. However, the semantics of a transaction, such
as what happened in a transaction that caused the assets to
get transferred, is not covered. Thereby limiting the depth of
analysis that can be conducted on crypto asset movements.

Knowledge Graphs (KGs) [10] are increasingly recognized
as a powerful means to integrate fragmented knowledge from
heterogeneous data sources into a graph of data to facilitate
semantic querying (e.g., [11][12]) and reasoning (e.g., [13]).
A KG provides a holistic view for identifying patterns and
hidden connections indicative of fraudulent activities in a
highly connected dataset [14]. The KG consists of semantically
described entities, each with a unique identifier, and relations
among those entities using an ontological representation
[15][16]. Their open world assumption allows for the continual
integration of new data. By leveraging these capabilities, KGs
can enhance crypto asset fraud analysis and aid in predicting
future fraudulent activities.

The remainder of this article is organized as follows. We first
outline the Kosmosis objectives in Section II. Next, we provide
a background on the Ethereum blockchain and graph-based
blockchain data mining methods in Section III. Subsequently, in
Section IV we propose Kosmosis, our incremental KG construc-
tion pipeline. In Section V we provide essential background on
rug pulls before we demonstrate the effectiveness and practical
applicability of the Kosmosis approach for the use case of NFT
rug pull detection in Section VI. Finally, we outline future
work in Section VII and conclude the article with a discussion
of our findings in Section VIIL

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

202

II. OVERARCHING OBJECTIVES OF KOSMOSIS

This section outlines the objectives of Kosmosis, beginning
with the primary objective that investigates the potential of a
KG in identifying and alerting users before they interact with
projects linked to known scammers, addressing a critical need
for security and trust in blockchain ecosystems. Following that,
we explore the technical implications.

Objective 1: How can the KG identify and aid in alerting
users before interacting with a rug pull project?

With the rise in illicit activities in the crypto asset market,
especially rug pulls, there is a pressing need for effective
means to detect and prevent fraudulent activities. Kosmosis
aims to integrate fragmented knowledge from blockchains like
Ethereum, social media like X, and potentially other knowledge
graphs into one unified KG, enabling semantic querying and
reasoning over a graph of entities and the relationships among
them. The KG could serve as a knowledge base for a real-time
alerting system, warning users of potential risks associated
with certain projects or individuals.

Objective 2: How to incrementally construct the KG
from heterogeneous data sources?

It is imperative to establish a pipeline capable of integrating
updates into the KG in both batch- and streaming-like manner.
Thereby, maintaining high data freshness by ensuring that
the KG consistently reflects the most up-to-date information
from the blockchain and other sources. This approach should
not entail a complete reconstruction of the KG, but rather
concentrate on integrating new information, avoiding the
reprocessing of data that is already incorporated.

Objective 3: How to extract the semantics of blockchain
transactions?

Transaction graphs commonly only display transactions with
asset transfers and provide answers to questions such as “what”
assets were transferred, and “where” were they transferred to.
Understanding transactions semantically is vital in uncovering
sophisticated fraudulent schemes that might otherwise go
unnoticed. Kosmosis addresses this gap by extracting the
semantics of transactions, providing answers to “why” and
“how” assets were transferred in a transaction. This extraction
of semantic information is primarily achieved through decoding
the input data of a transaction using the Application Binary
Interface (ABI) of smart contracts a transaction interacts with.

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

III. BACKGROUND

In this section we provide background on blockchain tech-
nology, specifically the Ethereum blockchain, in Section III-A.
Subsequently, we outline related graph-based blockchain data
mining methods in Section III-B. On the social media aspects of
Kosmosis, our prior work includes correlating Reddit data with
traditional stock market trends [18] and analyzing Twitter/X
data using SPARQL [19].

A. The Ethereum Blockchain

Blockchain technology is based on the principles of im-
mutability, decentralization, transparency, and cryptographic
security and has seen various applications in recent years.
For instance, in the financial sector (e. g., [3][20]), or supply
chain management (e. g., using a single blockchain [21], or
using multiple, interoperable blockchains [22][23]). Smart
contract platforms represent a subset of blockchains that enable
the development of decentralized applications through smart
contracts. This section outlines the key concepts of Ethereum,
as an example for smart contract platforms, that are essential
for the following sections of this work, such as smart contracts,
their execution environment, and account-based accounting.

1) Blockchain Data Structure: A blockchain is a data
structure whose elements called blocks are linked together
to form a chain of blocks [17], depicted in Figure 1. Each
block comprises two parts: a body and a header. The body of
the block contains a set of transactions. A transaction typically
involves the transfer of assets between a sender and a receiver.
These participants are represented by addresses, which are
unique alphanumeric strings that clearly specify the origin
and destination of each transaction. Further, the block body is
used to generate a unique identifier called the block hash. The
block header contains a reference to the unique identifier of
its immediate predecessor, known as the parent block.

2) Smart Contracts: Through smart contracts, which are
executable source codes that enforce the terms and conditions of
particular agreements, a smart contract platform like Ethereum
facilitates the development of decentralized applications [25].
Once deployed on the blockchain, the smart contract is assigned
an address where the code resides and cannot be altered or
tampered with. By writing custom smart contracts, developers

Block Header Par?;fﬁOCk < Block Header Parirll; SBthCk < Block Header Pari_rll;fﬁOCk

Block Body Block Body Block Body

ERRENRES ENRENRES ENRENRES
Block i-1 Block i Block i+1

Figure 1. Schematic representation of the blockchain data structure. Adapted from Zheng et al. [17].

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

203

can create and manage tokens that adhere to the standards ERC-
20 for FTs [26] or ERC-721 for NFTs [27]. An ABI specifies
the functions and data structures exposed by a smart contract,
allowing external applications to understand the capabilities
of the contract. Further, an ABI defines a format for encoding
and decoding data that is passed between smart contracts and
external applications. This ensures a consistent and standardized
way to exchange information.

The Ethereum blockchain manages Ether (ETH) as the
native cryptocurrency of the platform. It operates with the
Ethereum Virtual Machine (EVM) as a fundamental building
block, serving as the execution environment for smart contract
code. Smart contracts, primarily written in a high-level language
such as Solidity, undergo compilation into EVM bytecode. This
bytecode is the executable format used by the EVM to enact
smart contract functions. To interact with this bytecode, a
contract ABI is utilized, which acts as a bridge between the
high-level language and the low-level bytecode. In this context,
an EVM disassembler plays a crucial role; it reverses the
bytecode back into a more readable format, aiding developers
in understanding and analyzing the code deployed on the
Ethereum blockchain. Figure 2 shows the processes involved
in deploying smart contracts to the Ethereum blockchain
and reading contract data from it, including compilation
and deployment steps, and the interaction between a web
application and the Ethereum blockchain. The left side shows
the compilation and deployment of a smart contract, and the
right side depicts an interaction with the contract (e.g., from a
web application).

3) Externally Owned Account: Unlike smart contracts,
Externally Owned Accounts (EOAs) are controlled by real-
world entities through private keys, enabling them to initiate
transactions, such as transferring crypto assets or executing
functions of a smart contract. When an EOA sends a transaction
to a smart contract, it triggers the code of the contract to execute
according to its predefined rules.

Deploying Contracts to Ethereum

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

4) Account-based Accounting: For the record-keeping of
transactions, blockchains utilize an accounting model. Com-
pared to other blockchains, such as the equally well-known
Bitcoin [3] blockchain that uses the Unspent Transaction
Output (UTXO) model, or its successor the extended UTXO
[28] utilized by the Cardano [29] blockchain, Ethereum [20]
employs the account-based accounting model. The account-
based model can be best understood through the analogy of a
bank account. This approach mirrors how a banking account
operates. Like a bank account that tracks the inflow and outflow
of funds, thereby reflecting the current balance, the account-
based model in Ethereum maintains a state that records the
balance of Ether. Thus, it is inherently stateful. Each transaction
results in a direct adjustment to this balance, akin to a deposit
or withdrawal in a bank account. This model’s stateful nature
ensures that at any given moment, the system can accurately
reflect the total amount of Ether held in each account, offering
an up-to-date view of account balances within Ethereum.

5) Token Minting: The process of creating new tokens is
called token minting. FTs are typically minted by the creator
either at the inception of the project or progressively over
time. This process is often governed by predefined rules or
algorithms embedded within the smart contracts of the project.

In contrast, NFT minting involves other individuals besides
the token creator, commonly termed as token minters. They
engage by invoking a specific function within a smart contract,
in the ERC-721 token standard, called mint. This action results
in an increase in the supply of the NFTs and simultaneously
assigns these minted tokens to the blockchain address of
the minter. The mechanism of minting NFTs often involves
utilizing a dedicated minting website. Here, prospective minters
or investors are required to invest a predetermined amount,
as set by the creator, to initiate the minting process. This
investment grants them the ability to mint one or multiple
NFTs, depending on the terms set forth in the smart contract.

Reading Contract Data from Ethereum

IDE/ » -
Front-end Solidity Source Code Web Application

1. Compile 4. Decode
Eth
VMereum ABI Bytecode Opcodes Bytecode ABI

2. Deploy 3. Receive
Ethereum Block Block
Blockchain 1 n [| n+io [|

Figure 2. Schematic representation of deploying and reading from smart contracts. Adapted from Takeuchi [24].

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

204

B. Rug Pull Detection Methods

Two primary methods have been employed in the past
to detect rug pulls: smart contract code analysis and graph-
based methods. Smart contract code analysis involves a
thorough examination of the contract’s code to extract and
analyze the semantic behavior of transactions. For instance,
[30] utilizes smart contract code analysis to reveal potential
vulnerabilities and fraudulent patterns within the contracts. By
dissecting the code, their proposed method, dubbed “Tokeer”,
can identify suspicious patterns and functions that might
indicate a predisposition to rug pull scams. Another prominent
line of research in smart contract analysis leverages machine
learning—based techniques. Mazorra et al. [42], for example,
employed the XGBoost algorithm as a primary classifier to
predict the probability that a liquidity pool will evolve into a
rug pull or scam, achieving an accuracy of up to 99.36% using
features derived from token propagation patterns and smart
contract heuristics. Their dataset and experimental design are
restricted to fungible tokens launched exclusively on Uniswap
(Ethereum), and the authors argue that directly transferring
these learned models to other blockchains is unlikely to yield
results of comparable quality. Graph theories and graph-based
data mining methods, are applicable for discovering information
in blockchain network graphs, because blockchain transactions
can be inherently structured into graphs [9]. Elmougy and
Liu [31] identified three types of graphs, applicable to any
blockchain network: money flow transaction graphs visualize
the asset flow over time, address-transaction graphs showing
flow of an asset across transactions and addresses, and user
entity graphs that clusters the graph for potential linking of
addresses controlled by the same user, to deanonymize their
identity and purpose. To detect rug pulls with high accuracy,
graph-based approaches use network embedding methods to
automatically extract features from the blockchain network
(e.g., [32]) using a graph convolutional network.

IV. THE KOSMOSIS APPROACH TO INCREMENTAL
KNOWLEDGE GRAPH CONSTRUCTION

To incrementally construct a KG that integrates data in
a continuous and periodic way, we propose a multi-stage
pipeline, as illustrated in Figure 3. It originated from a
master’s thesis [33] and consists of three stages: Data ingestion,
data processing, and knowledge storage. We use italics to
emphasize on conceptual aspects and typewriter text for
technical operations.

The initial stage, data ingestion, captures the raw data from
the primary data sources (blockchain and social media) as well
as enrichment data sources (e.g., another knowledge base). This
phase is characterized by its versatility in the frequency of
data acquisition: it can be 1) continuous, to capture real-time
updates from sources such as blockchain nodes, 2) incremental
for new posts via the X Streaming Application Programming
Interface (API), 3) periodic, to capture new entries in structured
data sources like relational databases at regular intervals, or 4)
event-based, responding to events that are emitted upon new
entity additions to the KG.

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

Following the ingestion stage, the data processing stage is
initiated, which is partitioned into distinct workflows tailored
to handle each type of ingested data. This segmentation allows
for specialized processing depending on the structure of the
raw data. For instance, for text data sources, natural language
processing techniques, such as Named Entity Recognition [34],
can be used to ensure that the data is accurately interpreted,
and contextual relationships are discerned.

In the third and final stage, the refined data is loaded into
the knowledge storage, where it is systematically organized
within a triplestore, a type of database optimized for storing
and retrieving data in Resource Description Framework (RDF)
format. The triplestore can then be used for semantic querying
capabilities to extract actionable insights from the KG for
downstream processes. For the KG, we use the EthOn [35]
ontology that formalizes the concepts and relations within the
domain of the Ethereum network and blockchain. EthOn is
written in RDF and Web Ontology Language (OWL).

A. Blockchain Data Processing

The blockchain data processing workflow continuously
ingests new transactions from the blockchain via websocket con-
nections. Websockets enable open, interactive communication
sessions between a client and a server, facilitating real-time data
transfer without the need for repeated polling. Upon receiving
these transactions, the workflow processes and integrates them
into the KG by first extracting the address relationship, followed
by tagging the addresses, and finally fusing the addresses with
the entities of the KG.

1) Address Relation Extraction: In order to provide answers
to “why” and “how” assets were transferred in a transaction,
Kosmosis implements a pipeline module titled Address Relation
Extraction. The responsibility of this module is to extract
the semantic information in a blockchain transaction through
decoding the input data of a transaction using the ABI of the
smart contract a blockchain address is interacting with.

First, the ABI is requested from Etherscan [36] and Sourcify
[37] via their respective REST APIs. If the ABI cannot be
successfully fetched from one of the aforementioned sources,
the module resorts to reconstructing the ABI from the smart
contract byte code, which is available at any time since the
bytecode is deployed on the blockchain. This operation enables
the decoding of transactions and the interaction with smart
contracts beyond their compiled state.

The initial step involves the disassembly of the bytecode
of the smart contract. This operation, referred to as DISASN,
decomposes the bytecode into a series of readable opcodes and
associated data. Disassemblers (e.g., pyevmasm [38]) facilitate
this step by translating the bytecode back into a form that
represents the original instructions and operations defined
within the smart contract.

Following disassembly, the algorithm initializes by creating
an empty array intended to store the ABI and defining lists of
opcodes that either change the state or read from the state of
the blockchain. These opcodes include SSTORE, CREATE, CREATE2 for
state-changing operations, and sLoap for state-reading operations,

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

205

Data Ingestion

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

Data Processing Knowledge Storage

Primary Data Sources
Blockchain Node : o .
(semi-structured Wel?socket > Address Re.\at\on : Address Tagging Blockchaln.
data) (continuously) Extraction : Entity Resolution
HTTP Requests ! Named Entity Relation Text H
—_—> . > L. | —] . . . H
X (incrementally) ! Recognition ' ! Extraction Entity Resolution)
X Filtered Stream API Semnnrmreeeennooe Semnnromreeeeneoe
(unstructured data)
Enrichment Data Sources Triplestore
Attributions RDBMS Client Attributions
Database (periodically) Entity Resolution
(structured data)
HTTP Requests Golden Entity
(event-driven) Resolution
Golden Knowledge Graph API
(structured data)
Legend: —> Data Flow ----- » Load Subgraph i Knowledge Extraction Step C} Knowledge Processing Step I:] Connector

Figure 3. A high level overview of the Kosmosis pipeline.

reflecting the fundamental actions a smart contract on the EVM
can perform [20].

The core of the algorithm iterates over selector/offset pairs
within the disassembled bytecode. Selectors serve as identifiers
for functions in the EVM, facilitating the mapping to the
corresponding functionality. If a given offset does not match any
destination within the program’s destinations, the iteration skips
to the next pair, ensuring only valid functions are considered.

Upon finding a valid function destination, the algorithm
retrieves the function definition and assigns tags based on its
behavior. This tagging process involves analyzing the opcodes

contained within the function and any related jump destinations.

The purpose is to categorize functions according to how they
alter the blockchain state, using a depth-first search algorithm
to navigate through the function call graph.

An abiFunction object is then created for each valid function,
with its payable status determined inversely by the presence of
a notPayable marker at the corresponding offset. The algorithm
next assigns mutability attributes (nonpayable, payable, view,
or pure) based on whether the function alters state, reads state,
or neither. This classification is crucial for understanding how
functions interact with the blockchain and their implications
on transaction costs and permissions.

Finally, the algorithm decides on the inclusion of inputs and
outputs in the function signature, informed by the presence
of specific tags. For instance, tags indicating data retrieval or
state mutation influence whether parameters are classified as
inputs or outputs. This granular control ensures that the ABI

accurately reflects the interface of the smart contract, allowing
for effective transaction decoding.

Currently, the method for extracting semantic information
from smart contract transactions relies partly on predefined
heuristics, such as recognizing specific function names like
“mint.” However, we acknowledge that scammers could circum-
vent these simplistic heuristics by obfuscating or renaming
functions. Future improvements will incorporate advanced
transaction pattern analysis rather than function naming alone,
enhancing resilience against simple obfuscation techniques.

2) Address Tagging: Since the exact identity of a real-world
entity controlling a blockchain address is often unknown, it
can still be categorized and tagged accordingly. The address
tagging module tags the sender and receiver address based on
their extracted relationship from the preceding address relation
extraction module. For instance, an EOA deploying a smart
contract is tagged as deployer in case of a contract creation
transaction. Likewise, if an EOA is sending Ether to an NFT
contract 7" via a contract function containing the word “mint,”
the EOA is tagged as is tagged as NFT minter of 7. Tags
are subclasses of EOAs and contract accounts, extending the
address concept of the EthOn ontology.

3) Blockchain Entity Resolution: The blockchain entity
resolution module is responsible for resolving blockchain
addresses to either new entities or existing ones in the KG, by
using the extracted information from preceding steps. It begins
with mapping the result data from the preceding steps into the
RDF format, adhering to the ontology defined by the KG. This
ensures that the data is structured in a way that is compatible
with the KG’s existing schema.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

206

Following the mapping to RDF, the next phase involves
fusing this RDF data with the KG. This is accomplished
through a two-step process. Initially, a subgraph that is relevant
to the processed data is loaded into the system. This step,
commonly referred to as “blocking,” narrows down the scope
of the resolution process to the most relevant segments of the
KG, thereby enhancing the entity resolution process.

Subsequently, the system proceeds to match the newly
processed data with the corresponding entities within the KG.
This matching process is crucial for identifying where the
new data fits within the existing structure and for ensuring
that it is integrated in a meaningful way. In certain cases,
the fusion process may also involve the clustering of entities.
This is particularly relevant for blockchain data, where unique
characteristics of the data can be leveraged to enhance the
integration process.

For instance, when dealing with blockchains that utilize an
account-based accounting model, address clustering heuristics
can be employed to further refine the fusion process. One such
heuristic is the deposit address reuse, as proposed by Victor
[39]. Kosmosis uses deposit address reuse for blockchain data
from Ethereum to resolve entities more effectively.

B. Text Processing

The workflow starts with the input of unstructured data
from the X Filtered Stream API [40], which is incrementally
streamed and parsed via a long-lived HTTP request into the
pipeline. The first step in processing this data is Named Entity
Recognition, where the system identifies and classifies named
entities present in the text into predefined categories, such as
the names of persons, organizations, and locations.

The next step is relation extraction. This process involves
identifying and extracting relationships between the named
entities that were previously recognized. For instance, it could
determine that a person named “Alice” works for a company
named “Acme.”

The final step in the text processing workflow is the entity
resolution, achieved through blocking and matching. For each
new entity, the system identifies all other entities within the
KG that need to be considered for matching. Considering the
growing size of the KG, through the incremental updates, it is
important to limit the matching process to as few candidates
as possible [16]. The method of limiting candidates is known
as blocking, which confines the matching process to entities
of the same or most similar entity type.

Following the blocking that serves as a preliminary filtering
step, the matching is performed. This involves a pairwise
comparison of the new entities with those existing entities in
the KG identified during the blocking phase. Its objective
is to identify all entities that are sufficiently similar and,
therefore, potential candidates for matching. This pairwise
comparison relies on a nuanced assessment of similarity that
encompasses both the properties of the entities and their
relational connections within the KG. By evaluating both
property values and the nature of relationships to other entities,
the system determines the degree of similarity between entities.

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

C. Enrichment Data Processing

Enrichment data enhances the data obtained from primary
data sources with supplementary context regarding real-world
entities. Attributions involve the mapping of blockchain ad-
dresses to their corresponding real-world entities. This task is
largely dependent on data sourced from a network of experts,
such as team members from blockchain projects. The input
data for the attribution process is typically not consistent in
its timing, as it depends on when the experts provide updates
or when new information becomes available. As a result, the
enrichment data processing workflow is designed to operate at
regular intervals, ensuring that the KG is updated systematically
and remains as up-to-date as possible.

To further enrich the KG, data from external knowledge
bases is integrated. In our case, we use the Golden Knowledge
Graph due to its concentrated information on tech startups
and cryptocurrencies. This external graph offers a wealth
of information about crypto projects, including details about
their founders, team members, and project descriptions. Such
depth of data provides a valuable context that can significantly
improve the understanding of entities in the constructed KG.

The workflow for integrating knowledge from an external KG
is event-driven, activated once the knowledge storage indicates
the addition of new entities from the social media platform
X. Then, the workflow triggers a process to pull in additional
background information from the Golden Enrichment API [41].
It uses the X username that has been newly included in the
KG as unique identifier to fetch relevant data.

D. Quantity Structure of the Knowledge Graph Data

In our prototype implementation, data was ingested at rates
averaging 10-15 transactions per second (each averaging SKB)
from Ethereum blockchain nodes and roughly 200 tweets
per minute (each averaging 2KB) from the X filtered stream
API. This combined ingestion rate corresponds approximately
between 3.4 to 4.9 MB per minute of raw data. Our prototype
runs on a standalone cloud server instance with 32 GiB RAM
and 8 vCPUs (AWS EC2 mb5.2xlarge) with a 512GB SSD,
managing real-time data ingestion and processing workloads.
The semantic enrichment introduces minimal latency (less
than 5 seconds per transaction batch), thus allowing for near-
real-time KG updates. The KG constructed by Kosmosis
accumulates triples at an approximate rate of 2.5 to 6 million
triples per day, depending on transaction activity and the level
of detail extracted from social media.

While the described hardware configuration proved adequate
for prototype-level or small- to medium-scale deployments,
a production implementation aimed at analyzing multiple
blockchain networks or higher data volumes would necessitate
scaling to multiple compute nodes, each handling dedicated
tasks such as blockchain data ingestion.

V. RUG PULLS AND SERIAL FRAUDSTERS

A rug pull can be categorized as a scam, i.e., the victim
authorizes the transaction. This type of scam is typically carried
out in five stages, according to [6]: (1) Project creation with

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

207

roadmap and total supply of tokens (optional), (2) pre-mint
hype, (3) set token mint price, (4) token mint, accumulation
of more capital and increase in popularity, and finally (5) the
creators cash out, abandon the project, and leave the investors
defrauded. To attract users and investments for rug pulls,
Sharma et al. [6] suggest the involvement of individuals or
groups that possess substantial technical skills and knowledge
of blockchain technology and demonstrate a proficiency in
marketing techniques. This specific use case is particularly
relevant given the findings in [6] and [42]: Mazorra ef al., who
analyzed ERC-20 tokens listed on decentralized exchanges in
their 2022 study, labeled 97.7% out of 27,588 analyzed tokens
as rug pulls [42]. Likewise, Sharma et al. analyzed NFTs and
identified a cluster of 168 NFTs associated with what they
termed the “Rug-Pull Mafia,” a group of creators responsible
for orchestrating multiple and repeated rug pulls [6]. There is
a growing trend in both the frequency and the financial impact
of crypto rug pulls and scams [43]. Notably, the year 2021
marks a peak in the amount stolen, while 2022 shows a sharp
rise in the frequency of these fraudulent activities and remains
elevated since.

VI. THE USE CASE OF RUG PULL PREVENTION

To illustrate the vision of Kosmosis-enabled rug pull preven-
tion methods, this section introduces a hypothetical user story
centered around a character we name Bob, a crypto market
participant. The story telling method of use case illustration
was adopted from our previous work in [44, pp. 207-209].
The Kosmosis user story is designed to provide a relatable
perspective on how individuals like Bob are affected by such
fraudulent activities. The fictional story of Bob is grounded
in a series of real-world rug pulls that took place in 2021.
All rug pulls were carried out by the same fraudulent NFT
creator and Twitter user known as Homer_eth. In Section VI-C,
we outline how the series of rug pulls experienced by Bob
might have unfolded differently had he been equipped with a
Kosmosis-enabled fraud prevention mechanism at the time.

@
@

---36.25 ETH-
--499.85 ETH

<---106.95 ETH—@

<
-

Ether
Bananas

Ether
Monkeys

Zombie
Monkeys

36.25 ETH-
-499.85 ETH-
106.95 ETH

°

3.5 ETH 0x2bdd 2.5 ETH1.1 ETH 0xe396 0xf580 1.5 ETH

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

A. Past User Story

In the span of two months, from October to November 2021,
a fraudulent NFT creator and X user known as Homer_eth
executed five different NFT project rug pulls within two months,
accumulating over $2.8 million in profits. Table I provides an
overview of Homer_eth’s rug pull projects, each with launch
date and the estimated profit.

TABLE I. RUG PULL PROJECTS BY HOMER_ETH

Project Name Launch Date Estimated Profit

Ether Bananas 10/07/2021 $125k
Ether Monkeys 10/11/2021 $1.77m
Zombie Monkeys 10/15/2021 $413k
Ether Reapers 10/20/2021 $282k
ETH Banana Chips 11/23/2021 $208k

The basis of this user story is the transaction graph de-
picted in Fig. 4 that provides a simplified visualization of
the transaction flow across multiple NFT projects linked to
Homer_eth. It highlights key components, including EOA
Nodes (Externally Owned Accounts), which represent the
multiple wallet addresses of the rug puller, and Deployer
Nodes (Smart Contract Creators), with the Oxc8a6 address
being the deployer for multiple fraudulent contracts. The links
between addresses are established through various transaction,
such as mint transactions (e.g., mintReaper, mintBananaChips),
which indicate purchases; fund transfers (e.g., Transfer 65.61
ETH to 0xc8a6), showing proceeds flowing to personal wallets
or exchanges; and contract deployments (e.g., Deploy Ether
Reapers). The transaction graph makes a critical indication of
fraudulent intent visible. Instead of using a multisig treasury or
project contract, funds were immediately funneled to a single
address controlled by the rug puller.

Bob’s story begins with a common enthusiasm for the
burgeoning world of NFTs. His journey into the NFT market
is marked by excitement and optimism, spurred by the success
stories he sees online. Homer_eth, an NFT creator and X user,
has caught the attention of many like Bob by sharing his NFT

)

Legend:

O
®

50.4 ETH
---65.61 ETH-

EOA

LD
<

Banana

o
-{ =
il
3

Token Account

Depositors

50.4 ETH
65.61 ETH-

Single Transaction

----» Aggregated Transactions

Figure 4. Simplified transaction graph of Homer_eth’s NFT rug pulls.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

208

projects on X. His first NFT collection was Ether Bananas,
consisting of 750 NFTs, was launched on October 7, 2021.
Only four days later, on October 11, Homer_eth continued
with the release of Ether Monkeys, followed by the release
of Zombie Monkeys. The buzz around Homer_eth’s projects,
especially Ether Monkeys, which promised additional utility
through a casino to gamble and a decentralized autonomous
organization to govern the NFTs, according to [45], draws Bob
into the fray. Being relatively new to the NFT market, Bob
views this as an opportunity not to be missed. Bob bought his
first NFT from Homer_eth, an Ether Reapers, and with that
purchase, he was no longer just a bystander; he was now an
active participant in Homer_eth’s growing community.

Bob’s involvement in the community deepened over time.
He engaged in discussions, shared his excitement with fellow
members, and reveled in the rumors of more NFT launches in
the future. His commitment paid off when he earned himself
a whitelist spot that allows Bob to mint the upcoming NFT
project ETH Banana Chips by Homer_eth. Convinced of its
potential, Bob didn’t hesitate to mint an ETH Banana Chips
NFT when the opportunity arose. With a click to confirm
the transaction in his browser wallet (e. g., MetaMask [46]),
Bob became the proud owner of an ETH Banana Chips NFT,
unaware of the underlying risks associated with his investment.

However, the reality of the situation was far from the
optimistic scenario Bob had envisioned. Unknown to him, since

0xf580 Transfer Oxc8a6
1.5 ETH

Announcement
d
L
‘)0

mintReaper

vrmﬁ"“ce

65.61 ETH \ Ether
Deploy—/y Reapers

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

Bob had a limited understanding of blockchain transactions, the
proceeds from the Ether Reapers mint were not being locked in
the smart contract for future development as promised. Instead,
they were directly funneled into Homer_eth’s deployer address.
From there, Homer_eth will later transfer those mint proceeds
either to his next deployer address for a future rug pull or to
an exchange in order to pay out his profits made from rug
pulling the projects.

After the launch of ETH Banana Chips, a tense silence
enveloped the community. For months, there was no news
from Homer_eth, no updates on the project, leaving everyone
to wonder about the future. It wasn’t until March 2022, that
Homer_eth broke the silence with the announcement of one last
NFT project, dubbed Froggy Frens. However, due to backlash
from the community, Homer_eth deleted his X account and
vanished [45].

B. Kosmosis Extension

The basis of the extended user story is the Kosmosis KG,
depicted in Figure 5. Kosmosis identifies potential rug pulls
by semantically analyzing transaction patterns encoded within
smart contract interactions and cross-referencing blockchain
addresses with real-world entity data from social media and
other external sources. Our approach is grounded in the
assumption that scammers publicly disclose or explicitly link
blockchain addresses in their social media posts to promote
their scams. This linkage is crucial for Kosmosis, as it provides

mintReaper
< 65.61 ETH @

@ posted—»| Announcement |—announces— ézn'"k"e‘; (_'\f(')':;g"é‘_llf:yA@

¥
& <
3

$ &
%’

/ \

Announcement

Announcement

MintBanana
36.25ETH

HL13 68667

Kosjuouiw

\4
R
\O'
o™
20

/6
<«

M,
n,
o,,"c
Sg

(_
™~

Ether
Monkeys

[
L
o
I
(a]

Ether
Bananas

36.25 ETH
qua(]/

H13 58667 __—

MintBanana
Kaquow;u!m

Transfer

0x872d
35 ETH

iz \
sw 9
=28 T Legend:
Eg &
2 —
z EOA
3
S
¥ 1
o3 Deployer
18
Ta
=
s
B

Token Account

@] OO0O0

X Account
2
PC)
>
S
S \ 2 X Post
5 E
g o
o
3 § NFT Minters
8
3
v —>» Transaction

—>» X Relationship

Figure 5. Knowledge graph of Homer_eth’s NFT rug pulls, constructed using Kosmosis.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

209

the primary method of associating blockchain transactions
with social identities, which enhances the semantic richness
of the constructed KG. The Kosmosis KG for this specific
user story in Figure 5 is a direct enhancement over the basic
transaction graph from Figure 4 as it was discussed in the
previous subsection. The enhancement comprises semantically
annotated edges and the incorporation of data from the social
media platform X.

In order to detect potentially suspicious activity, we construct
a Kosmosis subgraph using a multi-part SPARQL query.
Listing 1 provides the overall CONSTRUCT query statement,
capturing Ethereum transfers, mint transactions, smart contract
deployments, bridging activities between chains, and social
media references to blockchain addresses. Optional name labels
help to identify the connection between blockchain or social
media accounts and their associated real-world entities.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX kos: <http://oth-aw.de/kosmosis#>
CONSTRUCT {

transfers

?sender kos:transferTo ?receiver .
?trEdge a kos:TransferEdge ;
kos:from ?sender ;
kos:to ?receiver ;

kos:value ?sumValueETH .

contract deployments
?deployer kos:deployed ?contract .
mint flows

?minter kos:mint ?nftContract .
?mintEdge a kos:MintEdge ;

kos:from ?Zminter ;

kos:to ?nftContract ;
kos:value ?sumMintETH .

UTXO unlock

?utxoln kos:unlocks ?contractUtxo .

bridging

?bridgeFrom kos:depositToBridge ?bridge .
?bridge kos:bridgeTransfer ?bridgeTo .

social layer

?xAccount kos:posted ?xPost .

?xPost kos:announces ?announcedContract .

?anyAccount kos:accountName ?accName .

Listing 1. Construction of the RDF subgraph.

To enhance the interpretability of raw blockchain transac-
tions, we introduce semantic annotations in our knowledge
graph. This process involves using the Application Binary
Interface (ABI) of smart contract transactions. Transactions
interacting with NFT minting contracts contain function calls

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

embedded in input data. Using the ABI, we extract function
names (e.g., mintMonkey, mintBananaChips) and parameters.
This enables labeling edges as minting transactions rather
than generic asset transfers. Transaction type classification is
done by categorizing transfers into value transactions, such
as mintMonkey and Transfer, and non-value transactions, like
contract deployments denoted as Deploy. These semantics allow
describing (i. e., tagging) sender and receiver addresses as NFT
minter (previously depositor) and deployer (previously EOA).

As part of the subgraph construction, multiple Ethereum
value transactions between EOAs are aggregated in Listing 2.
The query calculates the total ETH transferred from each sender
to each receiver and assigns a unique semantic identifier to
these aggregated transfers. This process reduces transactional
complexity while preserving critical relationships for identi-
fying significant value flows indicative of suspicious activity.

WHERE {
{
SELECT 7sender ?receiver (SUM(?value) AS ?sumValueETH)
WHERE {
?tx a kos:ValueTransaction ;

kos: from ?sender ;
kos:to ?receiver ;
kos:value ?value ;

kos:minedOn kos:Ethereum .
?sender a kos:ExternallyOwnedAccount .
?receiver a kos:ExternallyOwnedAccount .
}
GROUP BY ?sender ?receiver
HAVING (?sumValueETH > 0)
}
BIND(IRI(CONCAT("urn:tx-agg:",
SHA256 (CONCAT(STR(?sender) ,STR(?receiver))))) AS ?trEdge)

Listing 2. Aggregated ETH transfers between EOAs on Ethereum.

Due to the categorization of blockchain transactions by their
semantic functions further important transaction types can be
captured. Specifically, Listing 3 collects direct Ethereum smart
contract deployments, aggregates Ethereum NFT mint transac-
tions according to function names embedded in transaction data,
and incorporates Bitcoin UTXO transactions. Each aggregated
transaction type is semantically annotated to clarify the nature
of the underlying blockchain interaction.

Cross-chain interactions through bridge protocols are cap-
tured explicitly in Listing 4. Ethereum deposits made into
bridge smart contracts and their subsequent transfers to
Polygon-based externally owned accounts are identified and
annotated. This detailed semantic labeling assists in tracing
asset movements across blockchains, crucial for identifying
potentially risky bridging behavior.

Finally, the data integrated from platform X enriches the
KG with detailed information about user accounts, labeled as
X Account, and specific announcements or posts, referred to as
X Post. This integration facilitates a deeper understanding of
the context and relationships surrounding these rug pulls. For

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

210

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

Direct deployments
UNION
{
?deployer bco:deployed ?contract .

}

Mint transactions
UNION
{
SELECT ?7minter ?nftContract (SUM(?val) AS ?sumMintETH)
WHERE {
?mintTx a kos:CallTransaction ;
kos:from ?minter ;
kos:calls ?nftContract ;
kos:value ?val ;
kos:action ?funcName .
FILTER regex(?funcName, "Amint", "i")
?nftContract a kos:TokenAccount .
}
GROUP BY 7minter ?nftContract
}
BIND(IRI(CONCAT("urn:mint-agg:",
SHA256 (CONCAT(STR(?minter),STR(?nftContract))))) AS
?mintEdge)

UTXO transactions
UNION
{
7utxoIn a kos:TransactionInput ;
kos:unlocks ?contractUtxo .

Listing 3. Contract deployments and aggregated ‘mint’ calls on Ethereum, as
well as UTXO transactions on Bitcoin.

instance, the KG can establish a connection between previously
unrelated entities, such as the deployer address Oxc8a6 and the
user Homer_eth. This connection is made through a social
media announcement in which Homer_eth claims to have
created the Ether Bananas project, as well as through semantic
annotation, which identifies Oxc8a6 as the deployer address of
the Ether Bananas smart contract.

The final part of the query in Listing 5 retrieves social
media data integrated from platform X, focusing on posts that
explicitly announce (e.g., direct claim of creation: “Proud
to announce the launch of Ether Bananas!”) or reference
blockchain contracts in the comments section (e.g., “The CA is
0xCeF4CCb03dbc7D87B388407¢381a949bE6dOOE3b,” where
CA stands for contract address of the NFT). It associates
user identities (X accounts) and their posts with blockchain
addresses they mention or promote. Optionally, the query
includes usernames or labels from social accounts, further
enhancing the contextualization of blockchain entities that
allows to directly to real-world social identities, if possible.

UNION
{
?depTx a kos:ValueTransaction ;
kos:from ?bridgeFrom ;
kos:to ?bridge ;

kos:value ?depVal .
?bridge a kos:ContractAccount .
?transTx a kos:ValueTransaction ;
kos:from ?bridge ;
?bridgeTo ;
kos:value ?depValPolygon .

kos:to

?bridgeTo a kos:ExternallyOwnedAccount ;
kos:existsOn kos:Polygon .

Listing 4. Bridge deposits and transfers from and to the Ethereum blockchain.

UNION
{
?xAccount a kos:XAccount ;
kos:posted ?xPost .
a kos:XPost ;
kos:announces ?announcedContract .

?xPost

}
OPTIONAL { ?anyAccount bco:accountName ?accName }

}

Listing 5. X Posts that announce contracts. Optionally, carrying over any
account name literals, if present.

In conclusion, the Kosmosis KG provides the semantic

data foundation necessary for sophisticated detection logic.

By aggregating transactions and enriching them with semantic
annotations, the system can detect suspicious patterns, such
as rapid bulk transfers following token minting events. Such
transactions can be assigned elevated risk scores based on
correlated indicators (e.g., rapid withdrawal to external accounts
controlled by the deployer), triggering timely automated alerts
and significantly reducing the reaction time required to prevent
potential rug pulls.

C. Future User Story

In an alternative scenario where Bob would have used
Kosmosis, it would have analyzed the transaction history. The
system would have issued a rug pull warning based on patterns
of fund diversion to deployer addresses. Bob’s journey in the
NFT market would have been safer, beginning with his initial
transaction to purchase an Ether Reapers NFT.

As soon as Bob initiated his transaction, the rug pull
prevention mechanism would have accessed the KG, to analyze
the rug pull risk of the contract. Based on the integrated
knowledge from X, the system would have been able to link the
contract, Bob is about to interact with, to all of Homer_eth’s
prior blockchain activity. The KG would have revealed a critical
anomaly. Instead of the mint proceeds being transferred to the
contract address of the project for future development, they

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

211

were being diverted to the Ether Reapers deployer address
via the MintReaper function. With smart contracts acting as
an automated and trustless intermediary, where the code of
the contract dictates the flow of funds according to predefined
rules, this pattern of fund diversion is absent in legitimate
projects. When funds are sent directly to a team member’s
address, in this case the deployer address, the funds can be
moved to exchanges or other addresses with ease (i.e., pulling
liquidity from the project without fulfilling the promises). This
is a common tactic in rug pulls, where the developers abandon
the project and disappear with the investor funds. Therefore,
signaling a potential rug pull behavior. Upon detecting this
anomaly, the system would have immediately issued a rug
pull warning to Bob, prompting Bob to make an informed
decision by asking whether he wishes to proceed with the
transaction despite the identified risk. This proactive approach
empowers Bob to reconsider his decision with full awareness
of the potential danger, offering him a chance to opt-out before
potentially falling victim to a rug pull.

VII. CURRENT LIMITATIONS

We aim to translate the Kosmosis approach into a practical
implementation. The initial findings of our research on Kosmo-
sis have shown promising results, indicating the potential of
our approach in identifying and preventing rug pulls. However,
there are ample improvement opportunities for Kosmosis in
future work.

The generalization, from the exemplary use case to a sophis-
ticated general rug pull classification method, covering various
data patterns in the KG, is open research. Our subsequent
endeavor involves the development of an algorithm capable
of discerning rug pull warnings at varying confidence levels.
This pursuit commences with the formulation of an intricate
SPARQL query. Furthermore, an alerting system that utilizes
the KG, constructed with Kosmosis, to alert users before
interacting with a potential rug pull project, as described in
the user story of Section VI, requires future efforts.

It will be necessary to refine the filters used in the ingestion
of data from the X Filtered Stream API. The current process
of data ingestion depends on the presence of direct links to
blockchain addresses in social media posts. For instance, the
ability to link the user Homer_eth with the EtherReapers smart
contract was solely facilitated by the explicit mention of the
smart contract address in Homer_eth’s announcement post on
X. This example underscores the limitations of the current
approach, which may overlook relevant connections in the
absence of direct references. Consequently, a more sophisticated
approach is required to ensure a broader and still relevant
dataset is captured to associate X users with their respective
blockchain addresses.

Additionally, the implementation of knowledge fusion, the
process of identifying true subject-predicate-object triples [47],
sourced from the blockchain and social media stands out as a
critical next step. By fusing multiple records representing the
same real-world entity into a single and consistent representa-

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

tion [48], knowledge fusion would allow for a more accurate
representation of real-world entities in the knowledge graph.

Currently, our prototype is limited to blockchains utilizing the
account-based accounting model, like Ethereum. Recognizing
the diversity in blockchain architectures and their unique fea-
tures, we aim to allow for the integration of blockchains using
a different accounting system, like Bitcoin. This expansion
is essential for broadening the applicability and utility of
Kosmosis across different blockchain platforms.

VIII. CONCLUSION AND FUTURE WORK

The Kosmosis approach represents a significant advance-
ment in addressing the challenges associated with crypto rug
pulls. Our proposed approach offers enhanced capabilities for
semantic analysis, allowing the identification of fraud patterns
that traditional transaction graph methods cannot detect.

We outlined a user story, where a threat actor known as
Homer_eth executed five NFT project heists within two months,
accumulating over $2.8 million in profits. In such a scenario,
we showed that Kosmosis provides a knowledge graph that
improves the detection of such fraudulent schemes carried out
through sophisticated transaction patterns that might otherwise
go unnoticed in related approaches, such as smart contract code
analysis. This capability helps users make informed decisions
and avoid becoming victims of fraud.

We also demonstrated how to build a knowledge graph from
blockchain and social media data using the Kosmosis approach
to incremental knowledge graph construction. Kosmosis be-
comes the basis for semantic querying and reasoning over a
graph of entities and the relationships among them, facilitating
analyses for cybercrime and fraud prevention, with the current
focus on rug pulls as a major fraud scheme.

Kosmosis pipeline supports the ingestion of unstructured,
semi-structured, and structured data, as well as the ingestion
of new data at different time intervals. During construction,
the semantics of blockchain transactions are extracted to
address “why” and “how” crypto assets were transferred. Thus,
Kosmosis extends the traditional transaction graph into a
semantically enhanced transaction graph in which the sender
and recipient are still pseudonyms. By incrementally construct-
ing a knowledge graph from blockchain and social media
data, Kosmosis also bridges the gap between pseudonymous
transactions and real-world entities.

REFERENCES

[1] P. Stangl and C. P. Neumann, “Kosmosis: Crypto Rug Pull
Detection and Prevention by Fusing On- and Off-Chain Data
in a Knowledge Graph,” in Proc of the 16th International
Conference on Cloud Computing, GRIDs, and Virtualization
(Cloud Computing 2025), Valencia, Spain, Apr. 2025, pp. 1-8.
DOI: 10.5281/zenodo.17272133.

[2] P. Stangl and C. P. Neumann, “The Kosmosis Use Case of
Crypto Rug Pull Prevention by an Incrementally Constructed
Knowledge Graph,” in Proc of the 2nd Workshop on Data
Engineering for Data Science (DE4DS) in conjunction with the
21st Conference on Database Systems for Business, Technology
and Web (BTW 2025), Bamberg, DE, Mar. 2025. poI: 10.18420/
BTW2025-131.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

212

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008, [Online]. Available: https://bitcoin.org/bitcoin.pdf (visited
on 12/17/2023).

S. Alizadeh, A. Setayesh, A. Mohamadpour, and B. Bahrak,
“A network analysis of the non-fungible token (nft) market:
Structural characteristics, evolution, and interactions,” Applied
Network Science, vol. 8, no. 1, p. 38, 2023.

Chainalysis Inc., “The 2023 crypto crime report,” Chainalysis,
Feb. 2023, [Online]. Available: https://go.chainalysis.com/2023-
crypto-crime-report.html (visited on 12/17/2023).

T. Sharma, R. Agarwal, and S. K. Shukla, “Understanding
rug pulls: An in-depth behavioral analysis of fraudulent nft
creators,” ACM Trans. Web, vol. 18, no. 1, Oct. 2023, ISSN:
1559-1131. por: 10.1145/3623376.

A. Khan, “Graph analysis of the Ethereum blockchain data: A
survey of datasets, methods, and future work,” in 2022 IEEE
International Conference on Blockchain (Blockchain), 1IEEE,
Espoo, Finland: IEEE, 2022, pp. 250-257.

F. Béres, 1. A. Seres, A. A. Benczir, and M. Quintyne-Collins,
“Blockchain is watching you: Profiling and deanonymizing
Ethereum users,” in 2021 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPS),
Online: IEEE, 2021, pp. 69-78. po1: 10.1109/DAPPS52256.
2021.00013.

H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A
survey of state-of-the-art on blockchains: Theories, modelings,
and tools,” ACM Computing Surveys (CSUR), vol. 54, no. 2,
pp. 1-42, 2021.

A. Hogan et al., “Knowledge Graphs,” ACM Computing
Surveys, vol. 54, no. 4, pp. 1-37, May 31, 2022, 1SSN: 0360-
0300, 1557-7341. po1: 10.1145/3447772. arXiv: 2003.02320
[cs.AIl. [Online]. Available: http://arxiv.org/abs/2003.02320
(visited on 12/11/2023).

A. Chernysheva et al, “SGDb Semantic Video Game
Database: Svelte- und Ontotext-basierte Webanwendung mit
einer Graphen-Suche fiir Videospiele,” German, Ostbayerische
Technische Hochschule Amberg-Weiden, Technische Berichte
CL-2023-02, Mar. 2023. por: 10.13140/RG.2.2.11272.60160.
J. Halbritter et al., “Graphvio: Eine Graphdatenbank-Weban-
wendung fiir integrierte Datensédtze von Streaminganbietern,”
German, Ostbayerische Technische Hochschule Amberg-Wei-
den, Technische Berichte CL-2022-01, Mar. 2022. DOI: 10.
13140/RG.2.2.12111.46244.

C. P. Neumann, T. Fischer, and R. Lenz, “OXDBS — Extension
of a native XML Database System with Validation by Consis-
tency Checking of OWL-DL Ontologies,” in Proc of the 14th
International Database Engineering & Applications Symposium
(IDEAS’10), Montreal, QC, CA, Aug. 2010, pp. 143-148. poI:
10.1145/1866480.1866502.

X. Zhu et al., “Intelligent financial fraud detection practices in
post-pandemic era,” The Innovation, vol. 2, no. 4, 2021.

C. Feilmayr and W. W68, “An analysis of ontologies and their
success factors for application to business,” Data & Knowledge
Engineering, vol. 101, pp. 1-23, 2016.

M. Hofer, D. Obraczka, A. Saeedi, H. Kopcke, and E. Rahm,
“Construction of Knowledge Graphs: State and Challenges,”
2023, eprint: 2302.11509 (cs.Al).

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview
of blockchain technology: Architecture, consensus, and future
trends,” in 2017 IEEE International Congress on Big Data
(BigData Congress), Boston, MA, USA: IEEE, 2017, pp. 557-
564. por: 10.1109/BigDataCongress.2017.85.

T. Bauer et al., “Reddiment: Eine SvelteKit- und ElasticSearch-
basierte Reddit Sentiment-Analyse,” German, Ostbayerische
Technische Hochschule Amberg-Weiden, Technische Berichte
CL-2022-06, Jul. 2022. po1: 10.13140/RG.2.2.32244.12161.

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

B. Hahn et al., “Twitter-Dash: React- und .NET-basierte Trend-
und Sentiment-Analysen,” German, Ostbayerische Technische
Hochschule Amberg-Weiden, Technische Berichte CL-2022-07,
Jul. 2022. por: 10.13140/RG.2.2.15466.90564.

G. Wood, “Ethereum: A Secure Decentralised Generalised
Transaction Ledger,” (Ethereum project yellow paper), Parity
Technologies, 2024, [Online]. Available: https://ethereum.
github.io/yellowpaper/paper.pdf (visited on 01/29/2024).

S. Wang, D. Li, Y. Zhang, and J. Chen, “Smart contract-based
product traceability system in the supply chain scenario,” IEEE
Access, vol. 7, pp. 115122-115133, 20109.

P. Stangl and C. P. Neumann, “FoodFresh: Multi-Chain Design
for an Inter-Institutional Food Supply Chain Network,” in Proc
of the 14th International Conference on Cloud Computing,
GRIDs, and Virtualization (Cloud Computing 2023), Nice,
France, Jun. 2023, pp. 41-46. DOI: 10.48550/arXiv.2310.19461.
P. Stangl, “Design and Implementation of a Heterogeneous
Blockchain Consortium for a Food Supply Chain Network,”
Bachelor’s Thesis, Ostbayerische Technische Hochschule Am-
berg-Weiden, Jan. 2022. [Online]. Available: https://www.
cyberlytics.eu/theses/all/OTH- AW/BT_2022_Stangl_Philipp_
Thesis/BT_2022_Stangl_Philipp_Thesis.pdf.

E. Takeuchi, “Explaining Ethereum contract ABI & EVM
bytecode,” Medium, Jul. 16, 2019, [Online]. Available: https:
//medium.com/@eikil212/explaining-ethereum-contract-abi-
evm-bytecode-6afa6e917c3b (visited on 12/07/2023).

O. Marin, T. Cioara, L. Toderean, D. Mitrea, and 1. Anghel,
“Review of Blockchain Tokens Creation and Valuation,” Future
Internet, vol. 15, no. 12, p. 382, Nov. 27, 2023, 1SSN: 1999-
5903. por: 10.3390/f115120382. (visited on 12/17/2023).

F. Vogelsteller and V. Buterin, “ERC-20: Token Standard,”
Ethereum, Nov. 19, 2015, [Online]. Available: https://eips.
ethereum.org/EIPS/eip-20 (visited on 12/17/2023).

W. Entriken, D. Shirley, J. Evans, and N. Sachs, “ERC-721:
Non-Fungible Token Standard,” Ethereum, Jan. 24, 2018,
[Online]. Available: https://eips.ethereum.org/EIPS/eip-721
(visited on 12/16/2023).

M. M. Chakravarty et al., “The extended UTXO model,”
in Financial Cryptography and Data Security: FC 2020
International Workshops, AsiaUSEC, CoDeFi, VOTING, and
WTSC, Kota Kinabalu, Malaysia, February 14, 2020, Revised
Selected Papers 24, Springer, 2020, pp. 525-539.

C. Hoskinson, “Why we are building Cardano,” IOHK, 2017,
[Online]. Available: https://api-new.whitepaper.io/documents/
pdf?id=HkUIhFWhL (visited on 12/16/2023).

Y. Zhou et al., “Stop pulling my rug: Exposing rug pull
risks in crypto token to investors,” in Proceedings of the 46th
International Conference on Software Engineering: Software
Engineering in Practice, ser. ICSE-SEIP 24, Lisbon, Portugal:
ACM, 2024, pp. 228-239. por: 10.1145/3639477.3639722.
Y. Elmougy and L. Liu, “Demystifying fraudulent transactions
and illicit nodes in the bitcoin network for financial forensics,”
in Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, ser. KDD 23, Long
Beach, CA, USA: Association for Computing Machinery, 2023,
pp. 3979-3990. por: 10.1145/3580305.3599803.

L. Chen et al., “Phishing scams detection in Ethereum transac-
tion network,” ACM Trans. Internet Technol., vol. 21, no. 1,
Dec. 2020, 1SSN: 1533-5399. por: 10.1145/3398071.

P. Stangl, “Design and Implementation of an Incremental
Knowledge Graph Construction Pipeline for Investigating
Crypto Asset Fraud,” Masterarbeit, Ostbayerische Technische
Hochschule Amberg-Weiden, Apr. 2024. DOI: 10.5281/zenodo.
14518573.

J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for
named entity recognition,” IEEE Transactions on Knowledge
and Data Engineering, vol. 34, no. 1, pp. 50-70, 2020.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

213

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

[35]

(36]

[37]

(38]

(39]

[40]

[41]

J. Pfeffer, “Ethon: Ethereum ontology,” ConsenSys Software
Inc., Dec. 7, 2023, [Online]. Available: https://ethon.consensys.
io/index.html (visited on 12/07/2023).

Etherscan, “Etherscan: The Ethereum blockchain explorer,”
Etherscan LLC, Dec. 7, 2023, [Online]. Available: https://
etherscan.io/ (visited on 12/07/2023).

Sourcify, “Sourcify: Source-verified smart contracts for trans-
parency and better ux in web3,” 2023, [Online]. Available:
https://sourcify.dev/ (visited on 12/07/2023).

F. A. Manzano and J. Little, “Pyevmasm: Ethereum virtual
machine disassembler and assembler,” Crytic, 2024, [Online].
Available: https://github.com/crytic/pyevmasm (visited on
01/25/2024).

F. Victor, “Address Clustering Heuristics for Ethereum,” in
Financial Cryptography and Data Security, J. Bonneau and
N. Heninger, Eds., vol. 12059, Cham: Springer International
Publishing, 2020, pp. 617-633, 1SBN: 978-3-030-51279-8. DOI:
10.1007/978-3-030-51280-4_33. (visited on 12/03/2023).

X Corp., “Filtered stream introduction,” X Corp., 2024,
[Online]. Available: https://developer.twitter.com/en/docs/
twitter - api/ tweets/ filtered - stream/introduction (visited on
01/25/2024).

Golden Recursion Inc., “Golden Enrichment API: Enrich re-
search, sales, and marketing with fresh, canonical knowledge.,”

(42]

[43]

[44]

[45]

[46]

(47]

(48]

Golden Recursion Inc., 2024, [Online]. Available: https://
golden.com/product/api (visited on 01/25/2024).

B. Mazorra, V. Adan, and V. Daza, “Do not rug on me: Zero-
dimensional scam detection,” 2022, eprint: 2201.07220 (cs.CR).
R. Moody, “Worldwide crypto & nft rug pulls and scams
tracker,” Comparitech, Nov. 2023, [Online]. Available: https:
/Iwww.comparitech.com/crypto/cryptocurrency-scams/ (visited
on 11/19/2023).

C. P. Neumann, Distributed Case Handling. Miinchen: Verlag
Dr. Hut, 2013, 1SBN: 9783843909198.

ZachXBT [@zachxbt], “Homer.eth (formerly @homer_eth) rug
pull analysis,” X, X Corp., May 26, 2022, [Online]. Available:
https://x.com/zachxbt/status/1529973318563946496 (visited on
12/05/2023).

MetaMask, “Metamask: A crypto wallet & gateway to block-
chain apps,” ConsenSys Software Inc., 2023, [Online]. Avail-
able: https://metamask.io/ (visited on 12/15/2023).

X. L. Dong et al., “From data fusion to knowledge fusion,”
Proc. VLDB Endow., vol. 7, no. 10, pp. 881-892, Jun. 2014,
ISSN: 2150-8097. DOI: 10.14778/2732951.2732962.

J. Bleiholder and F. Naumann, “Data fusion,” ACM Computing
Surveys, vol. 41, no. 1, pp. 1-41, Jan. 15, 2009, 1SSN: 0360-
0300, 1557-7341. por: 10.1145/1456650.1456651.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

214

