International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

On the Integration of Formal Model Transformations with Manual Document
Manipulations in Software Engineering Processes

Hans-Werner Sehring
Department of Computer Science
Nordakademie
Elmshorn, Germany
e-mail: sehring@nordakademie.de

Abstract—Model-driven software engineering processes are
based on formal models that can be automatically transformed
into one another after specifications are added. However, the
creation of many software products involves creative activities that
result in manually generated, informal documents, which prevent
automated model transformations. To enable transformation
steps, the content of these documents must be accessed in a
structured way when integrating them into model-driven processes.
Manually maintained documents are subject to frequent changes,
including modifications to their structure. To enable model-driven
processes in the presence of creative activities and their documents,
we are currently experimenting with parsing techniques that
combine the structure of documents with domain knowledge about
their content. First experiments are based on the Minimalistic
Metamodeling Language and its ability to integrate semantic
descriptions with syntactic representations.

Keywords-software development; software engineering; computer
aided software engineering; top-down programming; document
handling.

I. INTRODUCTION

Software engineering processes involve creating and con-
suming a series of documents. Such documents link the various
phases of activity in software creation processes, whether
experts perform sequential work in phase-oriented projects or
cross-functional teams collaborate simultaneously using agile
approaches.

In general, documents may contain various types of content,
such as problem statements, requirements, constraints, domain
models, solution models, abstract and concrete descriptions of
(software) implementations, tests cases, data, configurations,
design decisions, specifications of development and quality
assurance processes, and user and maintenance manuals.

The documents’ formats are diverse. They include text
documents, figures, (states of) collaborative digital whiteboards,
interactive presentations, prototypes, and workshops protocols
(including photos of whiteboards, for instance).

As such, managing the series of documents created during a
(software) development process resembles content management
tasks.

The way documents are handled depends on the software
development approach taken.

o Documents may be manually created, human-perceivable
representations of content. This is how documents are man-
aged in human-centered processes, particularly creative
ones.

e Documents may also represent formal models. In this
case, formality allows for automated transformation steps
in software development and for explicit traceability. This
notion of documents is found in model-driven approaches.
Documents may also be generated from models as they
are in content management processes.

« Dialogs between a user and a Generative Artifical Intelli-
gence (GenAl) system can also be considered documents.
Each dialogue consists of a series of prompts used as
input for the GenAl, as well as the Al’s responses to these
prompts. The utilization of GenAl in software engineering
processes is currently being researched, for instance, under
the term vibe modeling.

Combinations of these software development methods may
be of interest. This article presents a step toward integrating
of creative manual work on documents into model-driven
processes. It provides an extension of the work presented
in [1].

The class of software engineering processes that are based on
documents that contain formal models are called Model-Driven
Software Engineering (MDSE) or Model-Driven Software
Development (MDSD) processes [2].

Software engineering processes that include creative activ-
ities, such as conceptual modeling or interaction design [3],
are often applied for interactive software. Creative activities
are supported by documents that have neither a common
format [4] nor formal semantics. Instead, they reflect subjective
impressions, case-based presentations, alternatives, and similar
content directed at a human audience.

Documents that lack formal structure cannot participate in
MDSE processes per se. However, they can be annotated by
their creators with, for example, with references to relevant
content that are sufficiently fine-grained to address well-
formed content. Such annotations allow creative documents to
participate in MDSE processes.

However, such annotations refer to specific document in-
stances. Documents used in creative activities are, in particular,
working documents that are subject to constant change. This
includes changes in the structure of the documents. Therefore,
any fixed reference to content in such a document will poten-
tially become invalid and metadata may become inconsistent
as work progresses.

In this article, we investigate means of integrating informal
documents, in particular ones that are subject to change,

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

191

into (model-driven) software engineering processes. We are
currently experimenting with linguistic means of recognizing
the content of documents with changing structures. First
experiments with document recognition are based on a mod-
eling language and its special ability to integrate semantic
descriptions with syntactic representations.

Preliminary results show that at least some content can be
extracted from documents that lack formal representations. In
this way, model-driven approaches can potentially be applied
to software projects with creative aspects.

GenAl allows another take on the problem. It is specifically
suited to generate formal representations from natural language
descriptions. MDSE approaches based on GenAl are beyond
the scope of this article.

The remainder of this article is organized as follows:
In Section II, we revisit model-driven software engineering
and discuss the need for incorporating informal documents.
Section IIT presents typical ways of referencing content in
single documents, and it addresses means of managing volatile
references to content of mutable documents. Section IV
briefly introduces a modeling language that is used for initial
experiments in this article. An experimental implementation of
these concepts is presented in Section V. The article concludes
in Section VI with a summary and an outlook on future work.

II. VISUAL SOFTWARE ENGINEERING ARTIFACTS

The discourse in this article does not require a comprehensive
introduction to model-driven approaches. However, this section
introduces some basic terms and highlights the challenges of
integrating creative work.

A. Model-Driven Software Engineering

In software development processes, a series of documents is
created. The kinds of documents may differ depending on the
kind of software being created and on the methodology used
for the process. But all documents serve common purposes,
such as linking activities by the results represented in them,
allowing traceability of activities [5], and others.

MDSE formalizes the flow of documents and thus the
connection of development steps. Documents are models with
a formal semantics. Models are derived by means of model-
to-model transformations and finally to code in model-to-
text transformations on a (semi-) automatic basis. This way,
development steps can be performed (semi-) automatically and
changes to models can be propagated down the model chain.

One of the first prominent examples of MDSE is the Object
Management Group’s Model-Driven Architecture (MDA). Vari-
ous other approaches have emerged that differ in the way in
which they implement transformations, for example, by means
of metaprogramming [7], code templates [8], or GenAl [9].

B. Creative Software Development Activities

Certain kinds of software solutions, such as those with a
focus on the human-machine interface, include creative steps.
Examples of creative activities are the definition of interaction

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

patterns, of user experience in general, and user interface design
in particular [10].

In [11], we use the term Model-Supported Software Creation
(MSSC) to distinguish this kind of software development from
general MDSE that relies purely on formal representations.

Figure 1 shows typical groups of artifacts created to model
aspects of a software solution. Each group of artifacts belongs
to a modeling stage, depending on the chosen development
approach. Note that the sequence of artifacts is not meant to
prescribe a temporal order. Depending on the development
process, the artifact groups relate to consecutive activities, or
they are just a classification of the outcomes of activities that
are performed in an interleaved and, eventually, iteratively
manner.

A first set of artifacts, in Figure 1 called Preparation, reflects
the decisions to be made before starting a software development
project. This includes identifying the problem, deciding to start
a project to solve it, concluding that software is part of the
overall solution, setting concrete project goals, and allocating
resources.

The artifacts in the Concept stage take the perspective of the
application domain. A Domain model will finally capture that
application domain. Creative projects often start with Personas,
stereotypical users for whom the software will be designed.
Customer Journeys A Solution hypothesis gives a first idea of
the software to be developed as part of an overall problem
solution.

Typical creative processes, such as User-Centered Design
or Design Sprint, rely on all stakeholders taking part in the
design process. Since a discussion on the basis of models is
too abstract for many domain experts, a series of prototypes
that visualize the ideas is employed. Prototypes of different
development stages are often called Lo-Fi Prototypes and Hi-Fi
Prototypes. Low fidelity prototypes emphasize the information
structure (Information architecture) and the rough layout
of the software’s use interface (Wireframe, Module catalog,
Navigation). High fidelity prototypes provide a preview of the
software to be developed based on the current insights. For
this, the look of the software’s user interface is designed in
detail (Style guide) and some functionality is provided in usable
or emulated form (Click dummy). The goal is to validate the
solution hypothesis in user experiences tests (UX Tests).

Solution Architecture provides the transition from the domain
perspective to a technical perspective. In includes a first idea of
the software’s structure, its interface, the required infrastructure
and other first implementation decisions. The artifacts created
to define the solution architecture depend on the kind of
software to be developed. In ecommerce applications, for
example, the customer journeys and the touchpoints along
each journey provide valuable input. From these, the demand
for functionality and data is derived by a Touchpoint-data
mapping and a touchpoint-function mapping. These lead to a
High-level architecture of main components and the required
processes and data flows.

To complete the switch to a technical perspective, the design
activities for a Software Architecture and the implementation

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

192

Preparation
Problem statement

A

Cost estimate

¥
KPIs 34 /
OKRs

Resource Allocation
Sign-off

[(Mostly) Informal descriptions]

Concept Lo-Fi Prototypes

Domain Model

Personas /
\ Module catalog

Customer journeys ¢

N

Solution hypothesis

Wireframes

Navigation

[Informal (typically) descriptions]

Information

/ architecture

Informal descriptions [

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

Hi-Fi Prototypes

Style guide

Click dummy

.

UX Tests

(Semi-) formal descriptions
(code, files of prototyping tools)

Documentation

User manual

Touchpoint-
data mapping

Solution Architecture Software Architecture + Code

Software architecture

Touchpoint- \4
function mapping Code

A
Libraries

High-level Framework
architecture

Informal descriptions
Formal descriptions

Quality Assurance

> Configuration

Architecture description

Test conception
Function test Load test
Performance test

Developers' handbook

Architecture documentation

Operations manual

Informal descriptions

Ultest apy.jevel test

Penetration test
Integration test

User acceptance test

Informal descriptions
Formal descriptions

Figure 1. A typical flow of artifacts in a software development process that integrates creative activities, based on [6].

activities leading to Code elaborate the models to the point of
operable software. There are different definitions of Software
architecture. In particular, it explains how requirements are
adressed in detail. When implementing the software design,
Code is produced, incorporating Libraries and Framworks.
Software (also) consists of Configurations to a varying degree.
The degree depends on the implementation approach chosen:
custom development or off-the-shelves software; software
that is manually coded, generated, or built in a low code
environment.

On top of the software itself, accompanying artifacts such as
the various Documentation items and Tests, more specifically
test concepts, test cases, and test scripts, are created as part of

a software engineering process.

Models such as the Domain model, the High-level architec-
ture, and the Software architecture can typically be expressed
in a suitably formal way as to be derived from each other by
model-to-model transformations. However, other documents
are typical representatives of informal documents, such as
Personas, Customer journeys, and Style guides. There may
even be dynamic artifacts, such as a Click dummy that needs
to be experienced by a human observer who interacts with it.

Informal documents are authored using tools with a focus on
graphical presentations. Typical tools are presentation software,
collaborative digital whiteboards, issue trackers, and the usual
text processors and drawing software. During creative processes,

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

193

even structured entities, such as user stories and task boards are
often represented in unstructured documents like whiteboard
drawings.

C. Creative Artifacts in Model-Driven Processes

Depending on the type of software, there are different
steps in the development process that are of an informal
nature. Some software solutions require creative development
activities. Typical such activities are those from the disciplines
of domain modeling, conceptual modeling, and visual design.
Such development steps are typically performed manually and
lead to subjective results. As a result, tools that support creative
activities often produce informal representations and documents.
Therefore, software projects that involve creative activities
cannot be fully covered by model-driven processes in most
approaches.

In order to include creative activities in model-driven
processes, the informal documents that are generated have
to be interpreted in such a way that their content can be
referenced and can be extracted in a defined structure. Through
such an interpretation, content may be used in software models
or during model transformations.

Interpretations of documents that lack formal structure can
be added explicitly. For example, their creators may provide
annotations with content references and metadata to guide
access to relevant content. Such annotations, however, refer to
specific document instances.

Creative activities typically consist of numerous iterations.
As a consequence, documents used in creative activities
are subject to constant change. This includes changes to
the structure of the documents themselves. Therefore, any
fixed reference to content in such documents will potentially
become invalid and metadata may become inconsistent as work
progresses. As a consequence, documents are required to be
constantly reinterpreted.

Due to possible structural changes, the (re-) interpretation
of documents must be defined based on some rules or patterns,
such as grammars with syntactic and semantic rules.

III. REFERENCING CONTENT IN DOCUMENTS

In order to extract content from documents in a form that
is suitable for use in a formal development process, parts of
that content must be addressable. This requires documents to
be structured, or to allow superimposed structures for content
references.

Digital documents can be structured to varying degrees.
Typically, document formats are categorized as structured, semi-
structured, and unstructured.

A. Structured Documents

Structured documents are created according to a well-defined
structure, allowing them to be precisely analyzed. This can
be realized in three different ways. First, the structure of
documents may be used to query for content, such as object
paths based on JSON definitions. Second, specific parts of a
document can be addressed if structure elements have stable

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

names (paths) or stable IDs. A third approach uses grammars
which can be used to both create documents of a certain
form and to parse documents to identify structural elements
according to linguistic constructs.

A common structure to which multiple documents conform
calls for a schema or document format. Schemas of structured
documents differ in the meaning they convey. A format may
reflect visual layout like, for example, in the case of HTML, it
may use a generic semantics like, for example, XML formats
for formal languages, or it may carry domain knowledge as,
for example, application-specific XML formats.

B. Semistructured Documents

Documents that have a recognizable structure, but no com-
mon schema to which they conform, are called semistructured.
Any interpretation rules applied to such documents are fragile
in the sense that they may not be applicable to all document
instances, or else all possible forms of documents must be
considered in all rules.

If there is some technical structure that allows referencing
parts of a document, then some pragmatics can be applied
to interpret combinations of structure elements and content.
For example, in a text document, there may be a recognizable
structure of single-line terms written entirely in bold font. That
structure may be interpreted as the term being a section heading.
If the document is a software architecture description, and if
the term is interpreted as a subsection of a section “Software
Components”, then the term may be interpreted as the name
of a software component.

In this way, semistructured documents are required to expose
some recognizable structure. As these examples demonstrate,
interpreting them requires some defined domain semantics and
pragmatics in order to apply interpretation rules. This includes
both domain entities, processes, constraints, etc., as well as
typical representations and document layouts that are used in
the domain. Note that the term “domain” refers to different
levels of abstraction, ranging from a topic domain to a specific
project.

C. Unstructured Documents

Unstructured documents, exhibit no structure that would
allow referencing parts of a document. Typical examples of
such documents are media files in binary format.

To reference parts of an unstructured document, some
technical ways of addressing can be used, for example, pixel
ranges in an image or timecode sequences in movies. Such
references depend on the concrete document or, more precisely,
on the actual presentation of it. For example, areas of an image
that are defined by pixel coordinates relate to the resolution
of that image. Such references are, therefore, volatile. For
example, a selection of pixel coordinates is not valid for an
equivalent image in different resolution.

There is no precise way to semantically reference content,
although the semantics of unstructured documents can be
analyzed by various algorithms.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

194

D. Aggregating Documents from Different Sources

When accessing document collections that originate from
different sources, the problem of different or varying schemas
may arise. A typical approach to cope with such a situation is
employing adapter components that allow accessing structured
documents according to a common schema or by transforming
them into a common schema [12].

However, when multiple documents describe the same
domain entity, a common schema is not sufficient for precise
retrieval of that content [13].

E. Extracting Content from Mutable Documents

As mentioned earlier, documents created during creative
activities in software engineering processes are subject to
change, which means they have to be mutable (volatile,
sometimes called /iving documents).

In MDSE processes, the contents of documents are used
to create software models from them, or such models are in
other ways related to the contents of documents. Changing
documents can generally break such relationships.

One solution is to create copies of documents once they
are referenced and to keep these copies stable. But this would
exclude further work on those documents from the process.

Parsing is a standard approach to identifying meaningful
content in a document. For formal languages, a parsing process
operates on the syntactic structures of a document and applies
a defined semantics to interpret those structures.

Interpretation is driven by parsing rules that are part of a
grammar. First, these rules are applied to recognize syntactic
structures. Once syntactic structures according to a grammar
have been detected in a document, a subsequent semantic
analysis assigns meaning to those structures. Compilers for
programming languages create an Abstract Syntax Tree (AST)
during syntactic analysis and attribute its nodes during semantic
analysis to derive a decorated AST. Similar techniques can be
used for documents.

Documents resulting from creative processes do not follow a
fixed semantics. Therefore, classical parsing approaches based
on formal languages alone do not work on them. In our current
research, we are using domain knowledge to augment document
parsing.

Parsing of semistructured documents requires pragmatics
since not all parts of a document have an identifiable structure.
An open question is whether pragmatics can be provided by
domain knowledge: two equally formatted expressions may be
distinguished by some significant content. In general, domain
knowledge may be necessary to decide on a parsing strategy.

Parsing is well understood for formal and, to a limited extent,
semistructured representations, but it is usually applied once.
Updating models based on subsequent parsing results of a
modified document requires, according to our current findings,
an additional relationship between document structure and
domain semantics.

Updates can change a document on two levels: If a doc-
ument’s content is changed, then the document needs to be

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

A

- [e |

(a) A ML concept

(b) M3L concept

containment
B 1
A A
(c) MPL concept (d) Unique ML
refinement concept refinement
A A
E G H

(f) Syntactic rules of
M3L concepts

(e) Semantic rules of
M3L concepts

Figure 2. A graphical notation of M3L concepts.

reparsed and reinterpreted. Detected changes lead to updates
of subsequent models (documents).

If changes affect the structure of a document, then additional
actions are required. When the interpretation of structures
changes, the underlying parsing rules generally need to be
updated because it is impossible to anticipate all possible
structures in a grammar.

Apart from classical parsing techniques, GenAl performs
document analysis.

IV. THE ML AS A MODELING LANGUAGE

The Minimalistic Metamodeling Language (M°L) is a meta-
modeling language. As such, it can be applied to various
modeling tasks. We use the ML for initial experiments in
document recognition, capturing both domain semantics as
well as document formatting.

This section provides a short introduction to the ML to
introduce the fundamentals of the modeling approach and to
illustrate its application to MDSE through some modeling
patterns.

A. A Short Introduction Into the M°L

The ML allows defining and deriving concepts. Definitions
are of the general form

AisaB{CisaD}EFE{F}+GH

Such a statement matches or creates a concept A. All parts of
such a statement except the concept name are optional.

In the course of this article, we use a graphical notation
of the M3L as shown in Figure 2 for the different parts of a
concept definition. For concept refinement we borrow notation

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

195

ConditionalStatement is a Statement ({
Condition is a Boolean
ThenStatement is a Statement
ElseStatement is a Statement

Figure 3. Sample base model of procedural programming.

IfTrueStmt is a ConditionalStatement {
True is the Condition
} E ThenStatement

IfFalseStmt is a ConditionalStatement ({
False is the Condition
} E ElseStatement

Figure 4. Sample semantics of conditional statements.

from the Unified Modeling Language (UML), see Figure 2c
for is a relationships and Figure 2d for is the relationships.

The concept A is a refinement of the concept B. Using the “is
the” clause instead defines a concept as the only specialization
of its base concept. Conflicting “is the” specializations are
considered an error.

The concept C is defined in the context of A; C is part of the
content of A. Contexts define (hierarchical) scopes. Concepts,
such as A are defined in an unnamed top-level context.

There can be multiple statements about a concept visible
in a scope. Statements about a concept are cumulated. This
allows concepts to be defined differently in different contexts.

For an example of modeling with the the M3L, consider
the definition of a conditional statement found in imperative
programming languages in Figure 3. It consists of Condition
to decide whether to execute ThenStatement or ElseStatement.

Semantic rules can be defined on concepts, denoted by
“I=". Figure 2e shows the graphical notation. A semantic rule
references another concept that is returned when a concept
with a semantic rule is referenced. As with any other reference,
a non-existent concept is created on demand.

Context, specializations, and semantic rules are employed
for concept evaluation. A concept evaluates to the result of its
syntactic rule, if defined, otherwise itself, . Syntactic rules are
inherited from explicit base concepts (given by is a or is the)
and implicit base concepts (concepts with matching content).

Concept evaluation is used to assign semantics to concepts.
The code in Figure 4 uses syntactic rules to assign semantics to
the conditional statement from the example above. A concrete
statement is matched against the two subconcepts IfTrueStmt
and IfFalseStmt. If one of them is recognized as a derived
base concept of the given statement, the semantic rule of the
matching concept is inherited. This way, the ThenStatement or
the ElseStatement is determined as the evaluation result of a
ConditionalStatement and thus a specialization of the respective
statement is “executed” (evaluated next).

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

Java is a ProgrammingLanguage {
ConditionalStatement
F if (Condition) ThenStatement
else " " ElseStatement

Python is a ProgramminglLanguage {
ConditionalStatement

F if " " Condition
"\n " ThenStatement
else:
"\n " ElseStatement

Figure 5. Sample syntax of the conditional statement.

Concepts can be marshaled/unmarshaled as text by syntactic
rules, denoted by “I-” or graphically as shown in Figure 2f. A
syntactic rule names a sequence of concepts whose representa-
tions are concatenated. A concept without a syntactic rule is
represented by its name. Syntactic rules are used to represent
a concept as a string as well as to create a concept from a
string.

Figure 5 shows syntactic rules that map the conditional state-
ment from the example to different programming languages.
Chosing the programming language as the context, a syntactic
form of the concepts is generated accordingly.

B. MDSE with the M°L

An MDSE process relies on a series of models where models
are created from existing models by means of model-to-model
transformations. A model on one stage is created based on the
input of models of earlier stages or by refining models from
the same stage. This article considers three typical kinds of
model transformations:

1) Model combination
2) Model refinement
3) Model creation from existing models

The three model relationships can be used with the ML to
express model transformations. The following examples outline
basic modeling approaches.

a) Combining models: Domains often rely on base
domains. For example, business tasks rely on mathematical
models. Accordingly, models are defined by integrating (exist-
ing) models of base domains. This way, models are reused.

Let BaseModell and BaseModel2 be some models of some
domains whose concepts can be reused for the domain at hand.
Then, for example, concepts A and B can be integrated into a
new model SomeModel by definitions like:

SomeModel {

A from BaseModell

B from BaseModel2
}

For example, on the layer of domain models, the model
shown in Figure 6a combines parts of product details that come

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

196

ProductDescriptions is a DomainModel {
ProductData
PaymentMethods from Commerce
PackagingInformation from Logistics

(a) A sample domain model.

OurInfoSys is a PlatformIndependentModel ({

AppServer from SWComponents
DBMS from SWComponents
DataSchema from DBModeling
WebServer from SWComponents
WebPage from WebDesign

(b) A sample solution architecture.

OurInfoSysConcept is an OurInfoSys {
RDBMS from SWComponents is the DBMS
ProductDataSchema

is an RDBSchema from DBModeling,
the DataSchema
WebServer from SWComponents
is a ServletEngine from Java

(c) A sample solution architecture refinement.

OurInfoSysConcept = OurInfoSysDatalayer ({
RDBMS
ProductDataSchema {
ProductsTable is a Table from DBModeling
}
}

(d) A sample software architecture.

OurInfoSysDBIm is an OurInfoSysDatalayer {
ProductDataSchema ({

ProductsTable + "PRODUCTS (" Columns
} = "CREATE TABLE " ProductsTable
}

")".

(e) A sample software architecture.

Figure 6. Sample flow of software models expressed in the M3L.

from different specialized models (assuming that concepts for
models Commerce and Logistics are given, and that those
models combine the named concepts for the data sets).
Likewise, on the layer of solution architecture, the model
from Figure 6b combines technical components from different
technical descriptions. Here, we assume the availability of
a model SWComponents that hosts descriptions of typical
software components found in the domain at hand, etc.
b) Refining models: Within one stage, models are refined
to more concrete models of the same stage. This way, the
work in each stage starts with first, coarse-grained models,

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

that are then transformed into more concrete models. Different
refinements of one model may cover different perspectives
on the targeted (software) solution. The process of refining
involves decision making. Decisions can be documented by
stating delta models that explicitly represent the transformation
applied during refinement.

Using the M3L, one model can be created as a refinement
of another. Concepts in the content of the refined model are
inherited and can be refined further.

An example from the solution architecture layer is shown
in Figure 6c. In this example, two aspects of the conceptual
model are refined: From a technical perspective, the DBMS is
more concretely specified to be a relational DBMS (RDBMS),
and the WebServer to be implemented as a Java Servlet
engine (ServletEngine). Regarding the domain model, it is
defined that the data schema is defined to store products
(ProductDataSchema).

c) Creating models in subsequent stage: When processing
from one stage to another, initial models are required for the
subsequent stage that is entered. Optimally, the most concrete
models of the preceding can be transformed to form the initial
models of the subsequent stage. If new models have to be
created, the model elements should be explicitly linked to the
elements from models on which they are based for the sake of
traceability. For example, Shaw and Garlan [14] demand for
software architecture that solution aspects refer to requirements.

In the M3L, a model can be explicitly created as a transfor-
mation of another model using a semantic rule.

Figure 6d continues the example of the information system.
RDMBS from the source model OurlnfoSysConcept is re-
introduced in the transformed model. The database schema
ProductDataSchema is additionally redefined by naming one
table. WebServer from OurInfoSysConcept is not considered
in the transformed model, since it only models the data layer
of the information system.

C. Software Creation with the MPL

The models in MDSE ultimately reach the stage of generating
code. The ML allows creating code using syntactical rules
that can be added to models with sufficient concreteness.

Using the example from above, part of the information
system based on a relational database can be defined to create a
relational schema by SQL statements as indicated in Figure 6e.

By defining the syntactical rules in the context of an
implementation model, different code generation schemes can
be defined for one software model. This way, for instance
application code, Ul code, data models, and data exchange
formats can be generated from the same model.

V. FIRST EXPERIMENTS USING THE M3L

Describing static documents with metadata provided as
concepts that make reference to relevant parts of the content has
been researched previously in the Concept-Oriented Content
Management approach [15]. The M3L may offer new way to
link abstract concepts with documents. Some initial experiments
with simple mutable documents have been conducted to
investigate means of linguistic document interpretation.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

197

A. Static Document References

Figure 7 is an example of a document description using the
M3L. It illustrates static references to documents or document
fragments. It uses an example from art history as the primary
application domain used in the initial studies of document
descriptions in the Concept-Oriented Content Management
approach. Applications from the humanities were chosen
because of the specific need for multifaceted interpretations of
documents. Many of the findings also apply to the software

domain since the requirements are similar, if not more stringent.

The (digital) picture of a painting at the bottom of Figure 7
is described using (ML) concepts. An abstract concept
hierarchy, beginning with the concept DocumentReference,
defines references to documents or document fragments. A
Documentld defines an address of a document, such as a file
name or URL. A FragmentSelector defines a part of a document
containing interesting content. The example shows a sketch of
a refinement hierarchy that specifies concepts for references
to two-dimensional images, for those depicting paintings, and
paintings showing a ruler specifically.

A second concept hierarchy starts with DocumentDescription

and contains concepts that describe the subject of a document.

The concepts in this hierarchy describe an interpretation of a

painting, its content. There is little to no abstraction in general.

Instead, the concepts lay a foundation for individual concepts
that record observations and interpretations.

The two hierarchies converge at the PaintingDescription. The
application-specific concept RulerPaintingDescription refines
it for the area of interest. In this case, it is ruler images that
convey a political message. Therefore, there is a reference
to a Ruler concept describing the ruler that the artwork is
about and a fragment selector RulerDepiction pointing to the
ruler’s depiction in the picture. Additional content can be added
as needed, such as a description of the artist, the epoch, the
creation location, or the exhibitions of the artwork.

Finally, NapoleonCrossesTheAlps provides an “instance” of
a ruler painting. There are actually multiple paintings of that
motive, and even more references to Hannibal in depictions
of Alp crossings. The concept NapoleonCrossesTheAlps unites
multiple views of the (historical) content and the document
(painting). It also relates multiple domains, such as history,
arts, and political science.

B. Interpretation of Semistructured Documents

Some general concepts serve as the foundation of the
interpretation of certain types of documents. These concepts
are used to assign domain semantics to content.

Figure 8 shows an example of documents representing
customer journeys that are drawn on and exported from
(hypothetical) whiteboard software. This article assumes a
hypothetical service because the APIs for accessing board
content from actual services differ. However, they typically
allow access to graphical shapes. Examples include the APIs
of the services Miro [16] and FigJam [17].

The concepts shown Figure 8 in facilitate the interpretation
of the graphical components in the UX design domain.

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

Specializations of the concept Board allow referencing a
whiteboard, and specializations of the concept Page allow
referencing a page (assuming the whiteboard software allows
whiteboards to be subdivided). On a whiteboard, there is no
recognizable structure below the page level. Starting with the
concept CustomerJourney, we look for semantic structures on
a whiteboard page. A customer journey is a named (graphical)
object that consists of elements that represent Touchpoints and
ones that represent Steps. A touchpoint is characterized by a
Name and a Service.

Syntactic rules define how these concepts are represented
on a whiteboard page. Figure 8a sketches some rules that
generate and recognize JSON code as it may be exported from
a whiteboard software that is provided as a Cloud service.

Service and Touchpoint are each represented by one shape.
These shapes, and thus these two entities, are reflected in the
whiteboard service API. However, compound entities have no
counterpart in the API; CustomerJourney specializations are
defined in ML concept structures.

Once a customer journey has been developed on a whiteboard
of that form, the syntactic rules can be applied to recognize
its structure and to extract its content. Content changes, such
as renaming an entity, lead to updated concepts. New concepts
are created for elements that are added to the board, and they
will be added to the customer journey corresponding to a board
page.

Figure 8b shows a sample query for customer journeys. The
concept for the board is a subconcept of Board from Figure 8a.
It matches all board specializations that refer to the given board
(i.e., the URL), have the name CustomerJourneys, and contain
a page called CustomerJourney3. Furthermore, the page must
contain a CustomerJourney that has one TouchPoint with the
Website service.

If a board matching the query exists, it will be selected.
Otherwise, it will be updated accordingly.

When the complete board is interpreted according to the
syntactic rules for Boards, the result is the concept structure
shown in Figure 8c. The concepts that have been created from
the board reflect some of the design decisions from the customer
journey representation, such as the participating persona and
the relationships to the touchpoints it visits and the sequence
of touchpoints along the customer journey.

The extracted information can be used in subsequent ac-
tivities of the software development process. Using the ML,
the resulting concepts can be directly related to concepts that
represent models created in such subsequent activities. With
the relationships outlined in Section I'V-B, the related software
models are updated on changes to the board.

C. Reinterpretation of Mutable Documents

Mutable documents are handled by repeatedly applying
the parsing process. When reinterpreting a document after
a change, new concept definitions are created in the M>L.
Because the M3L matches definitions against existing concepts
before creating new ones, previous interpretations are found and
used in the parsing process. Depending on the concept model,

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

198

| DocumentDescription

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

DocumentReference

Documentld

FragmentSelector

TextDescription | |ImageDescription|

| TextReference |

| ImageReference |

L

2DImageReference

PaintingDescription

AreaSelector FragmentSelector

| Origin l—[>| Point (from Geometrics) |

| Width l—[>| Integer (from Arithmetics) |

| Height l—[>| Integer (from Arithmetics) |

i

RulerPaintingDescription

HistoricalPerson (from History) |

|Ru|erDepiction|—[>| AreaSelector |

A

NapoleonCrossingTheAlps

Documentid

i

NapoleonBonaparte
(from RulerDatabase)

E

> RulerDepiction

NapoleonSelector

Figure 7. Static references to documents and document fragments.

existing references to concepts in models from subsequent
stages that were established by model-to-model transformations
are preserved. In this way, documents can be modified even
after they have already been interpreted and related to other
models during an MDSE process.

Structural changes can be recognized to a limited extent. As
indicated in the previous subsection, newly added shapes lead to
newly created concepts. But the correct linking of the concepts,
such as the order given by VisitBefore and VisitAfter, cannot
be established using the sample model shown so far. In the
example of the customer journey visualization, the order of the
service usages might be visualized by the horizontal position
of the rectangle shapes. Interpretation requires topological
relationships “left of”” or “right of”, or the horizontal positions
of the shapes have to be interpreted in a pragmatic way.

Alternatively, the order of touchpoint visits may be visual-
ized explicitly by arrows as indicated in Figure 8b. Such a
visualization may be harder to analyze, depending on the way

2025, © Copyright by authors, Published u

arrows are reflected in the board software’s APIL. Since arrows
are expected to be manually drawn in most cases, they will
not be represented by curves or splines, making it very hard
to analyze them with syntactical rules.

Recognition of existing concepts requires some stable
identity information. Otherwise, the associative matching as

provided in the M3L might fail to select the right concepts.

Such stable identity information may, for example, be unique
names as well as a certain location in the document structure
where it is placed. In the example of the digital whiteboards
above, names might be given in a specially positioned text
field. As a consequence, the documents are not completely
mutable, at least not in terms of content.

An agreement on some recognizable information constitutes
a restriction to the idea of mutable documents. Finding ways
of leveraging this situation is subject to future work.

Other structural changes require extensions of the meta
model of the current modeling stage. If, for example, a new

nder agreement with IARIA - www.iaria.org

199

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

BoardModels

Board

| Name |—|>| String (from BaseTypes) |

Page

| Name |—|>| String (from BaseTypes) |

CustomerJourney

| Name |—|>| String (from BaseTypes) |

| Visitor |—I>|Persona|

Step TouchPoint

"rectangle"

Name Name Service I:

VisitBefore —I> TouchPoint

"name": Name {

3 "shape": "chevron"

visitafter | >{TouchPoint [+

"connection": VisitBefore

(a) Example of a pattern for mutal

ble documents.

CustomerJourneys:CustomerJourney3

John Smith

Awareness ; Interest >>Conversion ;ngagement §Advocacy >

v Online Ad_-| | Website H Shop zLReglslrallon j ’SoclalMedlaJ

CustJourney

|CustomerJourneys|e|>| Name |
Page

|CustomerJourney3|e|>| Name |

CustomerJourney

TouchPoint

| Website |<—|>| Service |

(b) Example of a query to mutable documents.

Boardinstances

SomeBoard
[
Page
c Journey3
CustomerJourney3
| FrominterestToLoyalty |e|>| Name |
| |
Step3.1 Step3.2
|Awareness| | VisitBefore | | VisitAfter | | Interest | | VisitBefore | | VisitAfter |
TouchPoint
o A
| VL | | |
TouchPoint3.1 TouchPoint3.2 TouchPoint3.3 | | TouchPoint3.4 | | TouchPoint3.5 |
| Banner || OnlineAd | |In'ormation|| Website |

(c) Example result of mutable document recognition.

Figure 8. Parsing of documents and document fragments.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

200

kind of entity is introduced, and if that entity is represented
by a new shape in whiteboard drawings, then a new concept
for the entity with a syntax rule for its representation has to
be added.

By means of model compositions (see Section IV-B), though,
models with matching syntax definitions might be looked up
from a model repository. Such dynamic extensions are also
subject to future research.

VI. CONCLUSION AND FUTURE WORK

In this article, we investigate an approach to integrate
semi-structured documents supporting creative activities into
MDSE processes. Using the ML, documents can be parsed
based on their syntactic structure in conjunction with the
semantics of the concepts represented in such documents. A
first simple experiment shows that content can be extracted from
a document in a suitably formal form if the document follows
some conventions. The concepts recognized in a document can
serve as model elements that link the documents to the chain
of model-to-model transformations of MDSE processes.

Future work will need to test this approach with a range
of existing file formats and service APIs to further investigate
the limits of document interpretation and possibly identify
additional requirements for parsing technology. There are limits
to the extent to which documents can be modified without
losing existing links to software models. These limits are not
well researched. We need to find the limits, ways to extend
them, and notations to describe parts of documents that must
not be altered. Another future research direction concerns a
form of roundtrip engineering in which documents are not only
interpreted, but also generated from models that need to be
presented in a form suitable for non-technical stakeholders.

GenAl receives tremendous attention lately. Though not part
of the original research, it has to be included in future research.
GenAl can support multiple modeling activities, in particular
in conjunction with creative artifacts.

Some GenAl applications have already been researched,
such as checking completeness of requirements (given in
natural language) [18]. After the emerge of “vibe coding” [19],
there is an interest in “vibe modeling” as an iterative model
transformation approach. It may also help in generating code
from models.

Currently, we are looking in low code tools with generic
Al support. In the future, it will be interesting to see whether
LLMS that have been trained specificially for modeling with
the ML allow automated model transformations by stating a
source model and giving delta model instructions.

ACKNOWLEDGEMENT

The author thanks the Nordakademie for granting the
opportunity to publish this work.

REFERENCES

[1] H.-W. Sehring, “Integrating creative artifacts into software
engineering processes”, in Proceedings of the Seventeenth
International Conference on Creative Content Technologies,
ThinkMind, 2025, pp. 1-6.

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]
(17]

(18]

(19]

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

D. Schmidt, “Guest editor’s introduction: Model-driven engi-
neering”, IEEE Computer, vol. 39, no. 2, pp. 25-31, 2006.
G. Liebel et al., “Human factors in model-driven engineering:
Future research goals and initiatives for mde”, Software and
Systems Modeling, vol. 23, no. 4, pp. 801-819, 2024.

E. Herac, L. Marchezan, W. Assuncdo, R. Haas, and A. Egyed,
“A flexible operation-based infrastructure for collaborative
model-driven engineering”, in Modellierung 2024, ser. Lecture
Notes in Informatics, Gesellschaft fiir Informatik e.V., 2024.
I. Galvao and A. Goknil, “Survey of traceability approaches
in model-driven engineering”, in Proceedings of the 11th
IEEFE International Enterprise Distributed Object Computing
Conference, 2007, pp. 313-313.

H.-W. Sehring, “Visual artifacts in software engineering
processes”, in Proceedings of the Sixteenth International
Conference on Creative Content Technologies, ThinkMind,
2024, pp. 1-6.

S. Trujillo, M. Azanza, and O. Diaz, “Generative metaprogram-
ming”, in Proceedings of the 6th international conference on
Generative programming and component engineering GPCE
’07, Association for Computing Machinery, 2007, pp. 105-114.
J. Arnoldus, M. Van den Brand, A. Serebrenik, and J. J.
Brunekreef, Code generation with templates. Springer Science
& Business Media, 2012, vol. 1.

K. Lano and Q. Xue, “Code generation by example using
symbolic machine learning”, SN Computer Science, vol. 4, Jan.
2023.

W. Ding, X. Lin, and M. Zarro, Information Architecture and
UX Design: The Integration of Information Spaces. Springer
Cham, 2025.

H.-W. Sehring, “Model-supported software creation: Towards
holistic model-driven software engineering”, in Proceedings of
the 2023 IARIA Annual Congress on Frontiers in Science,
Technology, Services, and Applications, ThinkMind, 2023,
pp. 113-118.

I. Amous, A. Jedidi, and F. Sedes, “A contribution to multi-
media document modeling and querying”, Multimedia Tools
and Applications, vol. 25, pp. 391-404, 3 Oct. 2005.

A. Roy, K. Ghosh, M. Basu, P. Gupta, and S. Ghosh,
“Retrieving information from multiple sources”, in Companion
Proceedings of The Web Conference 2018, International World
Wide Web Conferences Steering Committee, 2018, pp. 43—44.
M. Shaw and D. Garlan, “Formulations and formalisms in
software architecture”, in Computer Science Today: Recent
Trends and Developments (Lecture Notes in Computer Science),
Lecture Notes in Computer Science. Springer, 1995, vol. 1000,
pp. 307-323.

J. W. Schmidt and H.-W. Sehring, “Conceptual content model-
ing and management”, in Perspectives of System Informatics,
Springer, 2003, pp. 469—493.

Miro, “Get specific item on board”, 2025. [Online]. Available:
https://developers.miro.com/reference/get-specific-item.
Figma, “Node types”, 2025. [Online]. Available: https://www.
figma.com/plugin-docs/api/nodes.

D. Luitel, S. Hassani, and M. Sabetzadeh, “Improving re-
quirements completeness: Automated assistance through large
language models”, Requirements Engineering, vol. 29, no. 1,
pp. 73-95, 2024.

A. Gadde, “Democratizing software engineering through genera-
tive ai and vibe coding: The evolution of no-code development”,
Journal of Computer Science and Technology Studies, vol. 7,
no. 4, pp. 556-572, 2025.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

201

