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Abstract—Autonomous vehicles face critical limitations when
navigating dynamic environments where occlusions or sensor
range constraints prevent full situational awareness. Cooperative
Intelligent Transport Systems (C-ITS) offer a solution by enabling
vehicles to share perception data. However, the uncontrolled vol-
ume of exchanged messages leads to congestion and interpretation
challenges. This paper proposes a context-aware approach to
collaborative perception that transmits only semantically relevant
information. By leveraging ontologies to build a knowledge graph
of the driving scene, vehicles can reason over their environment,
identify safety-critical events, and generate Semantic Collective
Perception Messages (S-CPMs). These messages encode not just
raw data, but meaningful, situationally prioritized insights, im-
proving decision-making and communication efficiency. A hidden
pedestrian use case demonstrates the framework’s ability to
anticipate and communicate high-risk interactions even in the
absence of direct visibility. This semantic approach lays the
groundwork for intelligent V2X systems that communicate with
precision, relevance, and safety in mind.

Keywords-Collaborative Perception; V2X; Ontology; Context-
aware; Semantic-Communication.

I. INTRODUCTION

This work advances our prior research on semantic and
context-aware collaborative perception by integrating dynamic
relevance estimation mechanisms and a refined ontology-based
message generation process [1].

As the global number of vehicles on the road continues
to rise, ensuring road safety remains a critical concern. Ac-
cording to the World Health Organization [2], approximately
1.2 million people died in 2023 due to road traffic crashes,
with countless more suffering non-fatal injuries. In response
to these alarming statistics, the automotive industry faces
mounting pressure to improve vehicle safety systems aimed
at preventing accidents and reducing fatalities. Automated
driving technologies play a key role in this effort by en-
abling real-time perception, analysis, and response to complex
driving environments. Despite these advancements, automated
vehicles still face limitations when making decisions based
on their own perception of the environment, particularly in
scenarios where obstacles obstruct a vehicle’s line of sight or
where objects are out of sensor range [3][4]. To address these
limitations, C-ITS have emerged as a promising solution [5].
By facilitating real-time information exchange among vehicles,
infrastructure, and other road users, C-ITS enhances situa-
tional awareness beyond the capabilities of onboard sensors
alone. Leveraging Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) communication, C-ITS enables vehicles
to access a broader array of information from nearby vehicles
or RoadSide Units (RSUs), allowing them to make more
informed decisions in critical situations. By sharing data on
traffic conditions, potential hazards, and road infrastructure,
C-ITS offers a proactive approach to accident prevention that
goes beyond the limitations of non connected autonomous
systems.

Integrating Collective Perception Services (CPS) within the
C-ITS framework represents a crucial step toward achiev-
ing safer and more efficient roadways [6][7]. CPS allows
vehicles to collaboratively perceive and interpret road users,
significantly improving their global perception. The Collective
Perception Message (CPM) is the standardized message format
used to transmit aggregated data which contain information
relative to the locally-detected elements. Particularly valuable
is the ability to share data about occluded or out of sensor
range objects in real time, which enhances a vehicle’s ca-
pacity to anticipate and respond to hidden dangers. However,
as the number of connected nodes—such as vehicles and
infrastructure—continues to grow, so does the volume of
data transmitted over communication channels. Given that
each CPM usually includes data on the perceived elements,
this exponential increase in data can lead to communication
congestion, resulting in latency, energy over-consumption, and
complexities in merging data across heterogeneous sources.

In the context of vehicular networks, effective communica-
tion relies not only on the volume of transmitted data but also
on its contextual relevance to the receiver. As conceptualized
by Shannon’s Information Theory, information corresponds to
the reduction of uncertainty, or entropy [8][9]. Accordingly,
relevant information is that which significantly decreases the
receiver’s uncertainty about the driving environment. In collab-
orative perception, this means that transmitted data should be
selected based on its potential to support timely and accurate
decisions by downstream systems. However, the relevance of a
given piece of information is not absolute—it depends on the
receiver’s context and decision-making process. For example,
an Automatic Emergency Braking (AEB) system requires
highly precise, short-range predictions to initiate immediate
safety actions, whereas an Autonomous Driving (AD) module
benefits from broader, long-term situational awareness, such
as anticipating pedestrian intent. In both cases, not all sensed
or shared data contributes equally to system performance. To
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address this, we adopt an ontology-based approach that enables
vehicles to formally represent and reason over their observed
environment. This structured representation supports the iden-
tification of safety-critical situations and the prioritization of
messages accordingly. By doing so, the system can dynam-
ically adapt the frequency and content of CPMs, ensuring
that only semantically relevant and high-impact information
is communicated.

This paper is organized as follows. Section II reviews the
current state of the art in congestion control and semantic
communication for vehicular networks. Section III introduces
a formal problem formulation that defines the collaborative
perception setting, including the structure of observations,
transmissions, and information relevance. Section IV presents
the ontological framework used to represent and reason
about the driving scene. Section V describes how contextual
relevance is estimated through semantic reasoning over a
knowledge graph. Section VI details the construction and
transmission of semantically enriched CPMs within the C-ITS
communication stack. Section VII discusses the limitations
and implementation challenges of the proposed framework,
including issues related to ontology standardization, real-time
reasoning, and integration into ADAS pipelines. Finally, Sec-
tion VIII concludes the paper and outlines potential directions
for future work.

II. RELATED WORK

Mitigating channel congestion has been the main concern
in a large number of research activities. For example, in [10],
vehicles reduce the CPM generation frequency in high-density
areas. Decentralized Congestion Control (DCC) techniques
have been proposed to allow individual nodes to autonomously
adjust their transmission rates based on channel congestion
level observed locally [11-14]. While these congestion control
systems effectively alleviate network congestion, they often
lack explicit consideration of context. In critical scenarios,
this can lead to potentially harmful information gaps. To ad-
dress this, some solutions incorporate context-awareness. For
example, [15] proposes limiting collaborative communication
to the most relevant nodes by creating a matching score be-
tween nodes. However, in C-ITS, where actors change rapidly,
this approach is incompatible with the handshake mechanism
explained in Who2Com [15]. Consequently, other studies
propose limiting communication within geographical zones to
ensure a level of relevance. In Direct-CP [16], collaborative
communication is monitored by infrastructure based on each
vehicle’s maneuver intent. In contrast, Where2Com [17] does
not rely on infrastructure to manage communication; instead,
it uses a spatial confidence map at each agent to facilitate prag-
matic compression, guiding agents on what to communicate,
with whom, and whose information to aggregate. Addition-
ally, [18] introduces a protocol that takes context into account
for CPM generation frequency by aggregating information
about the communication channel and environmental context
(e.g., other vehicles and road layout). However, these solutions
do not ensure that transmitted messages remain semantically
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relevant to the receiver; in other words, they do not consider
what information will be efficiently consumed. Consequently,
the receiver must infer semantic information about the sender’s
context, which may lead to interpretation issues.

To tackle these challenges, recent studies advocate for
semantic communication between vehicles, which aims to
convey meaningful content with inherent contextual value.
For instance in [19], the authors implemented collaborative
perception by extracting semantic features that are gathered
and computed by an edge server. This concept of commu-
nicating high semantic-value information is also explored
in [20-23] where a semantic encoder/decoder achieves higher
transmission efficiency. This approach is demonstrated in [24]
for image segmentation: rather than sending a full image (6
MB), it can be advantageous to transmit only the semantic
interpretation of the image (30.5 KB). However, in seman-
tic communication, the data is not merely compressed; it
is reduced to the essential meaning. Thus, both the sender
and receiver must have some form of shared knowledge to
encode and decode the information effectively. This notion of
a knowledge base can be linked to situational context, as the
context forms part of the vehicle’s knowledge. Finally, [25]
provides initial steps for implementing semantic communica-
tion in V2X, introducing a new layer between the application
layer and the transport/network layer. The authors illustrate the
benefits of semantic communication through use cases such as
adaptive traffic light management and collaborative driving. In
this work, we aim to advance these efforts by (i) enhancing
context-awareness in collaborative perception to generate situ-
ationally relevant messages, and (ii) adding semantic precision
to collaborative messages, thereby minimizing interpretation
issues and improving decision-making capabilities.

IIT. PROBLEM FORMULATION

In a collaborative perception setting, vehicles both observe
and receive overlapping targets information, fusing local sen-
sor readings with messages from peers to enhance situa-
tional awareness. The system under study comprises M =
{1,...,M} road users, of which N < M are connected
vehicles, forming the set C = {1,..., N}. Each connected
vehicle ¢ € C observes each target k (from the set M) through
a state vector

(

xinlt) = |

(

where p, v, § and a denote position, velocity, heading and
acceleration, respectively. Visibility is captured by

1, if i senses target k at ¢,
bk (t) = {O 4

and each potential transmission from ¢ to j about k is governed
by

otherwise,

ui_)j,k(t) S {O, 1},
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We define the information set available to vehicle j € C
about target £ € M at time ¢ as the union of its own local
observation and all received messages from peers. Formally:

Ziw(t) = { bjn(t) % k(t)} U
—_—

own observation

(if visible)
N
U{biklt = 1) %okt = 7) |winjrt —7) =1}, (D)
i=1
received observations
Here:
o b i(t) € {0,1} is the visibility indicator of target k to
vehicle 1.
o X;(t) is the state vector [pg, vk, 0, ax] observed by i
at time t.

o ui;r(t) € {0,1} indicates whether ¢ transmits its
observation of k£ to j at time t.

o 7 is the delay between the generation of the data by the
observer ¢ and its usage by the receiver j at time .

This precisely captures, for each j, k, the mixture of locally
generated and peer-received information available at any given
instant.

This formulation assumes that the core objective of CPS is
to provide each connected vehicle with timely and accurate
information about all other road users. Under this assumption,
the goal is to reduce the ego vehicle’s perception uncertainty
regarding its surrounding environment, thereby enabling more
informed and safer decision-making. Redundant or imprecise
transmissions are undesirable, as they consume communica-
tion resources without meaningfully enhancing the receiver’s
awareness. To address this, each transmitter ¢ € C optimizes its
message generation decision w;_, ; 1 (t) with respect to a shared
communication objective. Rather than broadcasting frequently
and independently, transmitters coordinate their transmissions
in a distributed and complementary manner to ensure that all
targets k € M are covered. This strategy promotes an even
distribution of the transmission load, with connected vehicles
collectively sharing the responsibility of informing their peers.
As a result, each receiver j € C can maintain a high-frequency,
low-uncertainty perception of surrounding targets using only a
limited number of CPMs. This maximizes perception accuracy
while minimizing communication overhead.

However, not all information has the same value. The impact
of shared data varies depending on the external situation
and the internal context of the decision-making process that
consumes it. In hierarchical decision-making architectures, the
relevance of information is evaluated differently at each layer,
ranging from high-level route planning to low-level motion
control [26-28].

The internal context of the receiving vehicle, such as its
current goal, position, maneuver stage, or driving intent,
directly influences which pieces of information are considered
useful. For example, at an unsignalized intersection, a vehicle
approaching the crossing must closely monitor lateral traffic
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with unclear right-of-way. In such a case, timely and accurate
information about cross-traffic is critical, while data about dis-
tant vehicles or non-threatening agents may be irrelevant [29].
Consequently, not all shared information contributes equally
to decision quality. Transmitting irrelevant or low-impact data
not only wastes bandwidth but may also introduce unnecessary
computational load. An effective communication strategy must
therefore go beyond reducing global uncertainty. It must be
context-aware and prioritize the transmission of semantically
relevant data tailored to the receiver’s situational needs. In
practice, this means that the set of useful information is often
a small subset of all accessible data. This distinction becomes
especially important in safety-critical tasks such as collision
avoidance, which demand high levels of precision and low
latency. In a collaborative perception framework, the reacting
agent is not the observer, but the receiver, whose decisions
are subject to communication and processing delays. This
delay-sensitive structure amplifies the need to transmit only
relevant and actionable information. Sharing data that does
not contribute to the receiver’s immediate awareness not only
wastes resources but may also lead to late or suboptimal
decisions. Therefore, early recognition of potentially danger-
ous situations, before they escalate, is essential. Prioritizing
contextually relevant information allows the system to allocate
communication resources more effectively, sustaining high
safety standards despite delay constraints.

Nevertheless, estimating the potential value of information
for other vehicles is inherently challenging. Transmitters typ-
ically lack full knowledge of the receiver’s internal state,
including its goals, plans, or decision criteria. Instead, they
must infer relevance from observable contextual cues. The
challenge, then, is to design communication policies that
prioritize information likely to be beneficial, while filtering
out data known to be irrelevant.

One promising direction is to ground communication deci-
sions in established accidentology research, which identifies
scenarios where information sharing has demonstrable safety
benefits. For instance, the European SECURE project has
evaluated the benefits of V2X communication in 15 high-
risk driving scenarios [30]. These findings provide a valu-
able foundation for defining high-impact situations in which
transmitting specific information is strongly justified. If a
transmitting vehicle can recognize such scenarios in real
time, it can dynamically adapt its communication behavior to
match the inferred safety requirements of the environment.
This enables a context-aware, safety-driven communication
policy that prioritizes messages when and where they are
most likely to reduce risk. Importantly, this approach does
not require modeling the receiver’s decision-making process
directly. Instead, it justifies information sharing based on the
expected safety benefit of transmission, as inferred from the
scenario.

By grounding message generation in accidentology results,
this approach provides a pragmatic and risk-informed frame-
work for collaborative perception in vehicular networks.

To illustrate this, let us consider the scenario illustrated in
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Figure 1. A vehicle (V1) is positioned on the left side of a
straight road, while a pedestrian (P1) is crossing, and another
vehicle (V2), approaching from the right, is obscured by a bus
(O1). This hidden pedestrian situation is particularly critical
for accident prevention [30], highlighting the importance of
collaborative perception between vehicles.

Figure 1. Use Case: Hidden Pedestrian Intending To Cross.

This use case illustrates a fundamental limitation of con-
ventional CPS when operating in safety-critical contexts. Tra-
ditional systems, which lack the ability to interpret the situa-
tional context, must manage a trade-off between communica-
tion frequency and channel load. In the absence of contextual
understanding, these systems are unable to determine which
road user information should be prioritized. As a result, they
often resort to broadcasting all detected objects at a high
frequency to ensure that actionable information is delivered
promptly.

However, such an approach can be counterproductive. In
situations where not all information is relevant, as illustrated
by the unnecessary transmission of bus data in this scenario
(see Figure 1), the additional communication load increases
channel congestion and latency. This, in turn, delays the
delivery of critical information, diminishing its impact. Con-
sequently, the receiving vehicle (V2) may be unable to make
timely and appropriate decisions, thereby increasing the risk
of collision or unsafe behavior.

These limitations emphasize the need for a context-aware
and adaptive communication strategy, one that can rec-
ognize high-risk situations and dynamically modulate the
information-sharing rate based on inferred safety requirements.
By tailoring the communication to the situational context,
the system can achieve both high efficiency and improved
safety performance, avoiding the pitfalls of channel overload
or under-communication during critical moments.

A promising solution involves the integration of a for-
malized and shared knowledge base within communicating
vehicles. In this approach, the sender vehicle (V1) can se-
lectively transmit only the most semantically relevant and
safety-critical information, such as the detection of a hid-
den pedestrian, while the receiver (V2), equipped with an
aligned knowledge representation, is capable of interpreting
the data with greater accuracy and urgency. This knowledge-
driven communication paradigm facilitates a more intelligent
and context-sensitive collaborative perception framework, ulti-
mately enhancing decision-making capabilities and improving
safety in complex traffic environments.
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IV. UNDERSTANDING THE DRIVING SCENE
A. Formalizing concepts

Ontologies—structured models in knowledge representa-
tion—enable this level of contextual relevance by defining sets
of concepts, their attributes, and relationships within a specific
domain [31-34]. Leveraging ontologies enables machines to
process and share information with enhanced semantic pre-
cision. In autonomous vehicle systems, ontologies provide a
standardized framework for consistently interpreting and inte-
grating data across diverse systems—an essential capability for
effective inter-vehicular communication and decision-making.
Given the variety of data sources in autonomous driving,
from real-time sensors to camera feeds, ontological mapping
transforms raw data into semantically enriched formats.

To capture the complexity of the driving environment, we
used two interlinked ontologies [35]. The first, the Road
Topology Ontology, formalizes the physical and regulatory
structure of the road network. The second, the Agent Ontology,
models road users, their behaviors, interactions, and visibility
conditions. At runtime, a knowledge graph is constructed
by instantiating these ontologies using real-time perception
data, enabling semantic reasoning for context-aware decision-
making.

The complete class and property definitions of both ontolo-
gies are provided in the Annex (Table I-Table IV).

B. Building the Knowledge Graph

hasLane

hasLane isLaneOf

hasLane

Right Lane

switchVia
Dashed

switchViaDashed

P
SWITCH

Figure 2. Representation of the road topology for the use case.

The construction of the knowledge graph begins with
modeling the road topology, which captures the structural
layout and regulatory logic of the driving environment. This
includes the relationships between Lanes, Intersections,
PedestrianCrossings, and turn directions, as well as control
elements such as TrafficLights and LaneRestrictions.
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These concepts are formalized through a dedicated Road
Topology Ontology, which defines not only the static ge-
ometric entities but also their topological and regulatory
interconnections using semantically meaningful properties
such as haslLane, isConnected, hasTurnDirection, and
switchVialntersection.

As shown in Figure 2, the resulting topology graph
provides a static, machine-interpretable representation of
the road network, where each RoadSegment, Lane, and
PedestrianCrossing is instantiated and connected accord-
ing to the real-world configuration. This component may
be precomputed and retrieved from a high-definition map
or a dedicated infrastructure knowledge base. The ontology
also supports rule-based reasoning, such as inferring priority
relationships at intersections or determining occlusion risks
based on spatial adjacency and lane layout.

The second step involves populating the graph in real time
with dynamic information about road users and their observed
behaviors. These agents—such as vehicles, pedestrians, and
cyclists—are integrated into the knowledge graph using a
separate Agent Ontology, which models classes of road users,
their actions (e.g., Accelerating, Stopping, Walking), their
positions, and their interactions. This dynamic content is
derived from onboard sensors as well as received CPMs and
is expressed as semantic triples, enabling structured querying
and logical inference.

Vehicle
Stopped
Event

Looking. Accelera-
Away ting
hasEvent hasEvent  hasEvent

. L Participant Participant
isDoing Participant isDoing isDoing

Events and
- Relevance
Requirement

Safety
Profile

-~
| Agents
Actions

~

Agents
Interactions

wants

isDoing

isWalkingOn

isDrivingOn

iswalkingOn

isOn

—
| Road
Topology

Segment

Figure 3. Example of a full Knowledge Graph for the use case, including
topology and agent interactions.

Figure 3 illustrates the resulting integrated knowledge
graph. Static elements (e.g., lanes, sidewalks, crossings) are
semantically linked to dynamic agents (e.g., vehicles driving
on specific lanes, pedestrians crossing a road). These links en-
able high-level reasoning about the scene, including interaction
detection, right-of-way analysis, and occlusion inference.

Once the knowledge graph is populated with both the road
topology and the agent state and behavior, the system can
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assess the relevance of specific observations by detecting
contextually significant or safety-critical situations. This pro-
cess, described in Section V, forms the basis for generating
semantically filtered, high-utility CPMs tailored to the needs
of receiving agents.

V. CONTEXTUAL RELEVANCE ESTIMATION

Relevance identification is achieved by recognizing high-
risk interactions between road users. The first step for the
transmitting vehicle is to reason over its local knowledge in
order to extract safety-critical events.

A. Extracting High-Risk Interactions

High-risk interactions are detected through a reasoning layer
that applies a set of logical rules written in the Semantic
Web Rule Language (SWRL). These rules operate over an
ontological representation of the driving scene, enabling the
system to infer new knowledge from the existing structure
of spatial, temporal, and behavioral data. SWRL rules follow
a declarative logic-based format, composed of antecedents
(conditions) and consequents (inferred facts), all expressed
using the vocabulary of the domain ontology — including
classes (e.g., Vehicle, Pedestrian), properties (e.g., isOn,
crossingInFront), and relationships between entities.

This formalism provides a powerful mechanism for mod-
eling and identifying semantically meaningful interactions
within a scene. For instance, a rule can infer that a
CrossingEvent is occurring when a vehicle is maintaining
speed while a pedestrian is crossing its path under specific
structural and behavioral conditions. Such inferences form the
basis for determining whether a given situation constitutes a
safety-critical event that should be communicated to interested
agents. Scenario-specific rules focus on clearly defined use
cases where the benefits of collaborative perception have
been observed or demonstrated. These rules capture high-risk
interactions such as unprotected left turns across oncoming
traffic, merging at blind intersections, or pedestrian cross-
ings obscured by static obstacles — scenarios in which an
individual vehicle’s perception is likely to be limited and
where shared context can meaningfully improve situational
awareness [30]. Although highly effective within their in-
tended scope, these rules tend to be less robust when applied
to unforeseen scenarios or rare combinations of factors not
considered during their formulation. Despite the limitations
of scenario-specific rules, they still provide valuable semantic
structure for decision-making. Importantly, the presence of a
matching rule does not imply that all other cases are irrelevant.
In real-world driving, unexpected interactions often emerge
from uncommon combinations of seemingly benign factors.
Therefore, the system should not rely solely on exact rule
matching but instead assess the semantic similarity of a current
situation to known risk patterns. This can be achieved by
reasoning over the ontological structure or via similarity-based
approaches in the embedding space of scene descriptors.

To extend the expressiveness and adaptability of the system,
an alternative is to leverage accidentology databases. By
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analyzing large-scale, annotated records of traffic accidents,
machine learning techniques can be used to discover implicit
relevance patterns — correlations between agent behavior, en-
vironmental context, and collision likelihood [31][32]. These
insights can be distilled into either: Parameterized condi-
tions that inform new SWRL rules, or direct rule generation
pipelines, where learned decision trees or classifiers are trans-
lated into rule sets. Such rules are not only more specific
but also adaptive, allowing the system to evolve over time as
more accident data becomes available. The training process
serves as a bridge between raw statistical correlations and
structured, interpretable knowledge. Once trained, the vehicle
can assess the relevance of a situation in real time by applying
the generated SWRL rules to its local representation of the
scene — continually updated through its onboard perception
stack and shared knowledge modules.

B. Example Rule: Crossing Event Detection

In the pedestrian crossing scenario, we can define a SWRL
rule to detect and infer the relevance of such an event, as
shown below:

Crossing Event Detection Rule

IF:

Vehicle(?lowPriority) *

RoadUser (?highPriority) *

RoadSegment(?road) *

isOn(?lowPriority, ?road) *

isOn(?highPriority, ?road) *

Lane(?lowPriorityLane) *

isDrivingOn(?lowPriority, ?lowPrioritylLane) *

Lane(?highPriorityLane) *

(isDrivingOn(?highPriority, ?highPrioritylLane)

OR isWalkingOn(?highPriority, ?
highPriorityLane)) *

crossingInFront(?lowPriority, ?highPriority) *

(switchViaDashed(?lowPrioritylLane, ?
highPriorityLane)

OR (switchViaTrafficLight(?lowPriorityLane, ?
highPrioritylLane) *
hasTrafficLight(?lowPriorityLane, ?

trafficLight) *
hasTrafficSignalPhase(?trafficLight, ?
phase) *

sameAs (?phase, Red))

OR switchVialntersection(?lowPrioritylLane, ?
highPriorityLane)) *

isDoing(?lowPriority, ?action) *

(sameAs(?action, Accelerating)

OR sameAs(?action, MaintainingSpeed))

THEN:
CrossingEvent(?crossing) *
hasEventParticipant(?crossing, ?lowPriority) *
hasEventParticipant(?crossing, ?highPriority)

This SWRL rule identifies a crossing event involving a
low-priority vehicle and a higher-priority road user (such as
a pedestrian or another vehicle) when specific spatial and
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behavioral conditions are met within a driving scene. The
rule applies when both agents are present on the same road
segment, each traveling on a distinct lane. The high-priority
user is either driving or walking on their lane, while the
low-priority vehicle is in a situation where the two lanes
are linked—meaning a lane change or crossing is structurally
possible—either via a dashed line, a traffic light (which is
currently red for the low-priority vehicle), or an intersection.
Furthermore, the higher-priority user is observed to be crossing
in front of the vehicle, indicating a potential interaction.
Despite this, the vehicle is accelerating or maintaining its
speed, which contrasts with the expected behavior in such
a scenario, where the vehicle should slow down due to
its lack of priority. Given these conditions, the rule infers
the existence of a CrossingEvent, linking both agents as
participants, and potentially signaling a conflict or risk that
needs to be addressed in downstream reasoning or decision-
making processes.

C. Determining Receiver Relevance

Once a safety-critical event has been inferred, the next step
is to assess whether any connected agents in the vicinity
should be informed. Relevance is not solely determined by
the severity of the event itself, but also by the contextual
usefulness of the information to a potential receiver. This
dual perspective — sender-side significance and receiver-side
utility — enables efficient and targeted communication in
collaborative perception systems.

Receiver relevance is evaluated through reasoning and
querying mechanisms over the shared semantic knowledge
base. A SPARQL query can be issued to identify nearby
connected agents that satisfy two key conditions:

1) Capability: The agent must be technically able to re-
ceive and interpret the message, i.e., it is a connected
agent with the adequate support.

2) Contextual Awareness: The agent must be in a situation
where the received information could affect its decision-
making process or enhance its situational awareness.

In practice, this assessment involves evaluating spatial,
temporal, and behavioral factors for each agent in the vicinity.
For example, a pedestrian crossing event is highly relevant
to a vehicle approaching the crossing from the same or an
intersecting road segment, as it may need to slow down or stop.
However, it is largely irrelevant to a vehicle moving away from
the area or traveling on a disconnected or parallel segment.

To support this reasoning, all participants involved
in an event are explicitly linked to it using the
hasEventParticipant property. This semantic relationship
ensures that the presence of at least one connected participant
in a critical interaction can trigger message generation. In
the pedestrian crossing scenario, for instance, if a connected
vehicle is involved (as the lower-priority participant), the
system infers that information about the other participant
(e.g., a pedestrian) should be included and prioritized in the
transmitted message.
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Conversely, in a the use case, the bus (O1) parked on the
sidewalk may trigger a StoppedVehicle event. However, this
event is only considered relevant to vehicles driving on the
same lane, who might need to change lanes, slow down,
or adapt their trajectory. Even if a connected vehicle (e.g.,
V2) is present in the scene, it is located on a different lane
that making the information about the bus under-prioritized.
This approach avoids unnecessary communication overhead
and ensures that bandwidth is preserved for information with
immediate operational value.

VI. KNOWLEDGE SHARING

Knowledge sharing between vehicles complements local
sensor data by providing additional context, which is essential
for autonomous decision-making. Studies have shown that
ontologies and formalized knowledge representations signif-
icantly enhance the decision-making capabilities of automated
systems [33][34][36]. Semantic-aware messages allow vehi-
cles to exchange not only raw data but also high-level, struc-
tured information about their environment [19-21][24][25].

To enable the sharing of semantically relevant content, the
CPM format can be extended to incorporate semantic prop-
erties. Unlike conventional CPMs that transmit raw object-
level data (e.g., positions and velocities), Semantic CPMs (S-
CPMs) include structured annotations grounded in a shared
ontology. This enables vehicles to encode both the "what"
(e.g., a pedestrian at position X) and the "why it matters" (e.g.,
"pedestrian hidden from eastbound traffic, located on sidewalk,
and likely to cross").

In the presented use case, vehicle V1 constructs a local
knowledge graph and identifies a CrossingEvent involving a
pedestrian obscured by a bus (O1). The onboard reasoning
system determines that vehicle V2, approaching from the
opposite direction with no line of sight, would benefit from this
information. Consequently, V1 transmits an S-CPM enriched
with semantic annotations, such as the masking relationship
between the bus and the pedestrian or the pedestrian’s location
on the sidewalk.

This concise yet semantically rich message allows V2
to interpret the situation even without direct visual contact,
enabling faster and more informed reactions.

Figure 4 illustrates how the semantic layer is integrated
into the traditional CPM pipeline. On the left, sensor inputs
from local perception modules and received CPMs are used
to populate a knowledge graph where entities, actions, and
relationships are semantically defined (cf. Section IV). A
reasoning engine then operates over this graph to infer high-
risk events, such as a CrossingEvent involving a hidden
pedestrian (cf. Section V).

When a safety-relevant situation is inferred, the system
evaluates whether any nearby connected agents would benefit
from the information. If so, it constructs an S-CPM that
includes only the contextually relevant semantic content, as
shown on the right side of the diagram. This message is
transmitted over the V2X channel, allowing the receiving
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vehicle to understand the event without reconstructing the
entire scene from raw data.

This architecture tightly integrates perception, reasoning,
and communication by embedding semantic understanding
into the message-generation pipeline. It shifts the paradigm
from periodic, raw data transmission to the sharing of se-
lectively filtered, semantically prioritized, and meaning-rich
content.

VII. DISCUSSION

The proposed framework introduces a semantically en-
riched, context-aware communication mechanism for vehic-
ular networks, aiming to transmit only the most relevant
information to downstream agents. While the architecture
demonstrates promising potential for reducing channel load
and enhancing safety, several key issues must be considered
for real-world deployment.

A. Generalization Beyond Rule-Based Reasoning

Our approach currently relies on manually crafted SWRL
rules to detect high-risk interactions. While this ensures trans-
parency and interpretability, it limits the system’s adaptability
to unexpected or complex scenarios not captured by predefined
logic. Human-authored rules are also labor-intensive to main-
tain and susceptible to obsolescence as traffic environments
evolve.

To address this, future developments should incorporate
data-driven approaches such as decision tree induction or
statistical relational learning to automatically derive seman-
tic rules from annotated driving datasets. These methods
have been successfully applied in other fields to generate
interpretable knowledge bases [14], and could help enhance
generalization in dynamic environments.

B. Real-Time Reasoning and Scalability Constraints

Ontologies provide rich structure but incur computational
overhead during reasoning and querying. Inference over large-
scale knowledge graphs in real time remains challenging,
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especially under V2X latency constraints (typically <100 ms
per CPM cycle).

To mitigate this, techniques such as incremental reasoning,
reasoning over lightweight ontology subsets, or offloading to
roadside infrastructure may be required [34][36]. The feasibil-
ity of these methods in realistic urban traffic conditions must
be quantitatively evaluated through simulation and profiling
experiments.

C. Knowledge Graph Requirements and Semantic Interoper-
ability

The effectiveness of the proposed semantic communication
framework relies on each agent’s ability to access and rea-
son over a structured knowledge graph representing its local
environment. However, this requirement introduces significant
challenges for real-world implementation. In a collaborative
setting, the utility of semantically enriched messages depends
on the receiver’s capacity to correctly interpret the transmitted
content—something that is only feasible if both sender and
receiver share not only common ontological definitions but
also compatible graph structures.

This dependency presents a barrier to semantic interoper-
ability in practical deployments. Discrepancies in class hier-
archies, naming conventions, or modeling assumptions can
result in semantic mismatches or the misinterpretation of
critical safety messages. For instance, the semantics of a
CrossingEvent or Occlusion may differ in granularity or
causal meaning across implementations, even when referring
to the same real-world observation.

To address this, recent initiatives have introduced on-
tology standards to support semantic alignment. ETSI’s
SAREF4Automotive ontology [37] extends the SAREF (Smart
Applications REFerence) framework to describe key automo-
tive concepts such as vehicle status, driving modes, and envi-
ronmental features in a machine-interpretable way. Likewise,
the W3C Semantic Sensor Network (SSN) and its lightweight
core, SOSA (Sensor, Observation, Sample, and Actuator) [38],
offer an ontology stack for modeling sensors, observations, and
actuators.

While these ontologies provide a valuable foundation, they
currently lack explicit support for behavior- and event-centric
modeling required in collaborative perception tasks, such as
interaction between agents, priority inference, or semantic
occlusion reasoning. Bridging this gap will require extending
or aligning these standards with richer ontologies that capture
the spatio-temporal and causal dynamics of road scenes. A
long-term solution may involve developing a modular and ex-
tensible ontology framework where standardized core concepts
are combined with domain-specific modules tailored to V2X
semantic communication.

D. Integration with Planning and ADAS Systems

Currently, the semantic layer focuses on perception-level
reasoning. However, its benefits extend further downstream.
Integrating semantic information into behavior planning or
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trajectory generation modules can enable more proactive and
interpretable decision-making [26][27].

For example, a CrossingEvent involving a pedestrian could
trigger adaptive speed control or early braking in an ADAS
module, even before visual confirmation is available. Future
work should explore pipeline integration and quantify decision
quality improvements.

E. Communication Policy and Network Efficiency

By prioritizing relevant messages, the framework also acts
as a semantic-aware congestion control mechanism. This
aligns with recent works in context-aware message generation
such as Direct-CP [16] and Where2Com [17], but introduces
a more explicit semantic reasoning layer. However, network-
level performance metrics such as bandwidth usage, packet
delivery ratio, and channel congestion under high vehicle
density must be evaluated to confirm expected efficiency gains.
Additionally, fallback mechanisms—such as periodic CPMs
or redundant messages in safety-critical scenarios—should be
designed to ensure robustness under communication loss or
partial knowledge graph failures.

F. Ethical and Privacy Considerations

Semantic communication inherently transmits high-level
interpretations of behavior and intent. While beneficial for
decision-making, this raises privacy and ethical concerns. For
instance, sharing a message stating that a pedestrian is likely
to cross constitutes behavioral profiling. If transmitted over
unsecured channels, this information could be exploited or
misused. Ensuring compliance with privacy regulations such as
GDPR requires anonymization, and minimization. Moreover,
inference confidence scores or uncertainty annotations may
help mitigate the impact of incorrect or spurious reasoning.

VIII. CONCLUSION

This work introduces a semantic communication framework
for collective perception that prioritizes the transmission of
contextually relevant information through ontological reason-
ing. By leveraging structured knowledge graphs and logical
inference, the system identifies high-risk interactions and gen-
erates semantically enriched CPMs that improve the precision
and utility of shared information. Beyond reducing commu-
nication overhead, this approach enhances safety in occluded
or complex environments by enabling proactive and informed
decisions. In future work, relevance estimation will be imple-
mented within a simulation environment, leveraging ontologies
to support various consumers, such as Perception, Advanced
Driver Assistance Systems (ADAS), and Automated Driving.
This effort will involve the development of an ontology-based
framework and a comparative analysis of two distinct ap-
proaches to defining relevance. The first approach will utilize
machine learning algorithms for pattern extraction, employing
data-driven techniques to derive relevance rules. The second
approach will adopt a scenario-specific exploration, where
relevance is defined based on predefined scenarios and expert-
driven criteria tailored to specific use cases. By comparing
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these methods, this study aims to uncover their respective
strengths, limitations, and areas of applicability, paving the
way for more adaptive and effective relevance estimation
strategies across diverse applications. Additionally, compar-
isons will be made with methodologies presented in recent
literature [15][16][17] to benchmark and validate the proposed
approaches. It is also crucial to address the challenges posed
by ontology computation in real-time scenarios, ensuring its
feasibility and robustness in practical implementations.
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TABLE I. ONTOLOGY CLASSES — ROAD TOPOLOGY

Class Description

RoadElement

RoadSegment A segment of the road, describing topographical proximity.

Intersection A specific RoadSegment which describes the intersection between two or more RoadSegments.
Lane A designated path describing topological proximity.

MerginglLane A subclass of Lane.

Sidewalk A subclass of Lane which is a pedestrian path along the side of a road.

PedestrianCrossing A subclass of Lane which designates areas for pedestrians to cross the road safely.

ParkArea An area intended for parking vehicles.

Traffic Management
TrafficlLight
LaneRestriction
Carpooling

Closed

VehicleType
TurnDirection

Left, Right, Front, Back

A signaling device used to control vehicle and pedestrian traffic.
A constraint or rule that limits how a lane can be used.
A subclass of LaneRestriction. Restriction allowing only high-occupancy vehicles in a lane.

A subclass of LaneRestriction. Indicates a lane that is temporarily or permanently inaccessible.

A subclass of LaneRestriction. Indicates the authorized vehicles (e.g., bus, bike).
Represents a direction that a vehicle is allowed to take when leaving this lane.
Specific subclasses of TurnDirection.

Environmental Context

NonRoadElement An urban element not forming part of the road (e.g., buildings, trees).
TABLE II. ONTOLOGY PROPERTIES — ROAD TOPOLOGY

Property Description

RoadElement Properties

hasLength Describes the length of a RoadSegment.

hasLane Relates a RoadSegment to a Lane.

hasIntersection Describes the relationship between a RoadSegment and an Intersection.

hasSidewalk Links a RoadSegment to a Sidewalk.

Traffic Management Properties
hasLaneRestriction
hasTrafficlLight
hasTurnDirection

isLaneOf

isAdjacent

isConnected

Relates a Lane to a LaneRestriction.

Links a RoadSegment to a TrafficLight.

Relates a Lane to a TurnDirection.

Relates a Lane to a RoadSegment.

Describes the adjacency of two Lanes.

Indicates whether two RoadSegments are connected.

Environmental Context Properties

hasNonRoadElement

Links a RoadSegment to NonRoadElements like trees or street furniture.

Intersection Properties
incominglLane
outcominglLane

Links an Intersection to an incoming Lane.
Links an Intersection to an outcoming Lane.

Switching Properties
switchVia
switchViaDashed
switchVialntersection
switchViaStop
switchVia TrafficlLight

Relates a Lane to another Lane via a switching route.

A specific case of switchVia, where the route is dashed.

A specific case of switchVia, involving a switch at an Intersection.
A specific case of switchVia, involving a stop.

A specific case of switchVia, involving a traffic light.
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TABLE III. ONTOLOGY CLASSES — AGENTS

Class Description

Road Users

RoadUser Any participant in road traffic.

Vehicle A subclass of RoadUser representing motorized vehicles.

ConnectedCar, Specific types of Vehicle.

EmergencyVehicle, Bus, Car,

Truck

NonVehicle A subclass of RoadUser representing non-motorized or non-mechanical entities.

Animal, Cyclist, Pedestrian

Specific types of NonVehicle.

Actions

Action

PedestrianAction
LookingAway, LookingRoad,
Lying, Walking, Standing
VehicleAction

ToLeftChange, ToRightChange,
Accelerating, Decelerating,
MaintainingSpeed, Stopping,
TurninglLeft, TurningRight,

A generic action performed by a RoadUser.
Actions specific to Pedestrian and Cyclist.
Specific types of PedestrianAction.

Actions specific to Vehicle.
Specific types of VehicleAction.

UTurn

Profiles

Profile Specifies the information required from the CPM for a ConnectedCar.
TABLE IV. ONTOLOGY PROPERTIES — AGENT INTERACTIONS

Property Description

RoadUser Actions

isDrivingOn Associates a Vehicle with the Lane it is driving on.

isStoppedOn Associates a Vehicle with the Lane it is stopped on.

isWalkingOn Associates a NonVehicle with the Lane it is walking on.

crossingInFront Indicates that a NonVehicle is crossing in front of a Vehicle.

isDoing Indicates the Action being performed by a RoadUser.

Visibility Properties
masking
hasVisibility
hasNoVisibility

Indicates that a Vehicle or NonRoadElement obstructs the view of a RoadUser.

Specifies that a Vehicle has visibility of a given RoadUser.
Specifies that a Vehicle does not have visibility of a given RoadUser.

Event Participation
hasEventParticipant
isParticipantOf

Associates an Event with the RoadUser(s) involved.
Links a RoadUser to the Event in which they participate.

Profile Properties
wants
isRelevant

Associates a ConnectedCar with a Profile specifying CPM-related requirements.

Links an Event to a Profile if the event is relevant to that profile.
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