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Abstract—The high fuel prices and the important costs linked
to the down-time of the windmills during maintenance urge the
need for minimization of the travel time and the scheduling of
jobs within a minimal time span. Since landing in windmills at
sea is difficult and depends on meteorological parameters, the
constraint of maintenance windows is added when searching for
the optimal route. To minimize the distance traveled, the Vehicle
Routing Problem with Time Windows (VRPTW) is solved, using
three different methods. The VRPTW is applied to two separate
databases, namely various sets of windmills to be maintained
and several numbers of customers to be serviced. Applications
with 8 to 175 windmills, divided over 3 farms have shown that
the VRPTW solved by using three different methods resulted
in a comparable relative gain in travel distance, compared to a
randomly chosen route. The main difference between the methods
studied is the amount of calculation time needed, which varies from
1 second to 6 minutes for the different methods. To demonstrate
the general applicability, the same three methods were executed
on a set of service tasks performed on 8 to 40 customers of a
window decoration company, distributed throughout Belgium,
resulting in similar results. In a second part of the paper, the Job
Shop Scheduling Problem (JSSP) is solved to minimize the total
maintenance span of offshore windmills as an additional objective
function. This led to a relative gain of up to 62% in maintenance
time, compared to the total maximum maintenance span for an
application of 40 windmills. Finally, both objectives - minimal
distance and minimal maintenance time span - are combined,
resulting in a set of non-dominated maintenance sequences that
the planner can use [1].

Keywords-VRPTW; VRPy; OR Tools; ACO; Job Shop Scheduling;
Pareto.

I. INTRODUCTION

Due to high fuel prices and significant labor costs, it is
extremely important, especially for offshore windmill man-
agement companies, to limit the distance covered and time
consumed for offshore windmill maintenance. Expressed in
numbers, the maintenance cost ranges from 20% to 25% of the
total Levelised Cost of Electricity (LCOE) of contemporary
wind power systems as shown in the Guide to an Offshore
wind farm [2]. The costs of Operation and Maintenance (O&M)
of offshore wind farms are significantly higher than those
of land-based windmills, due to the difficulties associated
with the offshore environment. They could vary between USD
0.027 and USD 0.048/kWh as calculated by the International
Renewable Energy Agency in 2012 [3]. By improving the
durability of the turbines and increasing the size of the
windmills, the maintenance cost per windmill has dropped
significantly to 1.5 to 2% per year of the original turbine

investment. However, because of economic evolution, the actual
maintenance to be performed is becoming more expensive again.
Operation and Maintenance costs can be divided into a limited
number of components, which are: Insurance, Spare Parts,
Administration, Regular maintenance, and Repair [4]. The
research carried out for this article focuses on the reduction of
regular maintenance and repair costs, denoted in the above list
of Operational Expenses (OPEX) for offshore windmill farms.
The maintenance of offshore windmill parks can be divided into
three specific maintenance types, namely corrective, preventive
(and predictive) and inspection maintenance, although the latter
is often considered an operational activity or part of preventive
maintenance [5]. Maintenance inspection consists of evaluating
the condition of the windmill or ground station in order to
determine what tools, materials, and work are needed to keep
it in optimal working state [6]. Preventive maintenance is
planned maintenance - typically quarterly, half-yearly, and
yearly - of the assets to make sure electricity production is
stable and unexpected equipment failure, leading to costly and
unplanned downtime, is prevented. Preventive maintenance is
work scheduled based on calendar time, asset run-time, or
other time periods, while predictive maintenance is scheduled
as-needed based on real time conditions of the assets [7].
Finally, corrective maintenance consists of maintenance tasks
that are performed to identify, isolate, and treat an issue in
order to restore equipment, a machine, or a system to an
operational condition so it can perform its intended function.
Typical preventive maintenance actions on windmill farms
are electrical and mechanical in nature [8]. When planning
these maintenance interventions, the availability of the vessel
and workers must be taken into account, as well as weather
parameters, sea currents, and wave heights. Optimization of
vessel routing for offshore windmill maintenance is a very
complex problem. It has been the subject of recent studies
[9]-[12]. As discussed previously, it is critical to obtain a
good understanding of wind direction and speed, wave height,
and other parameters to decide whether a vessel can leave the
dock for maintenance. A stranded vessel is very expensive,
and therefore planning is crucial to avoid as much as possible
inoperative maintenance vessels.

To demonstrate the general applicability of the VRPTW
to obtain minimal distance routes and to show that all three
methods used lead to similar results for other data sets, the
procedures are applied to discrete product installation planning.
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With the fast-growing consumer demand for Taylormade prod-
ucts, the customer requires efficient distribution, installation,
and maintenance planning. Optimization of vehicle routes to
satisfy the customer and reduce fuel consumption and C'O,
emissions has become a hot topic [13]. The interventions of
companies that distribute and maintain unique products per
customer - the so-called Value Added Resellers or VARs -
can be split in the installation of the products and ad hoc
maintenance of previously installed products [14]. The planning
of the delivery and installation can be considered as proactive
planning, allowing optimization of the distance to be traveled,
and thus the amount of fuel used. Maintenance interventions
are more reactive in nature, making optimal planning more
difficult. In typical operations of companies installing and
maintaining discretely manufactured products, a mix of both
types of interventions is to be planned, making it a complex
task to determine the optimal routes.

If the actions of a distributor are limited to the instantaneous
drop-off of products and there are no time limitations or
capacity restrictions, the routes to be followed can be optimized
by solving the Traveling Salesman Problem (TSP) [15][16].
The lack of time limitations means that the distributor can
drop off or pick up products at any time of the day, as the
customer does not necessarily need to be present. However,
when intervention, be it installation or maintenance, requires
a certain amount of time and the presence of the customer at
the site, time windows come into play, and more vehicles need
to be deployed simultaneously. In the latter case, the VRPTW
will be solved, taking into account that there are no capacity
constraints. This VRPTW problem will be solved for a data
set of 8 to 40 customers with given coordinates that require
an installation or service.

In a second part of this paper, we focus on another strategy
to lower the maintenance costs of an offshore windmill farm,
namely the reduction of the downtime by arranging the
maintenance jobs in such a way that the total service time span
is minimized. To obtain this objective, the Job Shop Scheduling
Problem (JSSP) is solved, in which the machines are replaced
by workers. For each worker, a sequence is calculated so that
all maintenance jobs are executed within a limited time frame,
reducing the total downtime of all the windmills that need
service. Where the first part focuses on limiting the distance
of all maintenance routes, the second part is thus focused on
reducing maintenance time. In the last part of this paper, both
objectives are applied to the same set of windmills, resulting
in a Pareto front of non-dominated solutions offered to the
planner to choose from. It will become clear from the list of
these Pareto points that reaching both objectives at the same
time is nearly infeasible, and thus the optimal sequence must
be chosen from this list.

The novelties of this paper are:

o Comparison of three solution methods for VRPTW applied
to windmill maintenance vessels and to discrete product
installation and service.

e The optimization of the combined windmill sequence
travel distance and maintenance time span by solving
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both VRPTW and JSSP on the same data set.
e The importance of achieving both goals in reducing
maintenance costs.

The remainder of the paper is organized as follows. In
Section II, references are made to related work and Section
I describes the problem formulation. The three methods used
to solve the Vehicle Routing Problem with Time Windows,
as well as the solution method for the JSSP are listed in
Section IV. Section V lists the results of all the optimization
methods discussed for VRPTW and JSSP and compares both by
calculating the corresponding Pareto points. Finally, Sections
VI and VII contain an evaluation of the results and provide a
conclusion, respectively.

II. RELATED WORK

The Vehicle Routing Problem (VRP) was first instigated
more than six decades ago (1959) by Dantzig and Ramser under
the title The Truck Dispatching Problem. The study of this
routing problem led to major developments in the fields of exact
algorithms and heuristics [17]. The VRP comprises the design
of least cost delivery routes through a set of geographically
dispersed locations, subject to one or more side constraints. The
VRP thus plays an important role in distribution management,
and tens of thousands of carriers worldwide are faced with
it daily [18]. Constraints to vehicle routing problems linked
to capacity result in the Capacitated Vehicle Routing Problem
(CVRP). If a time window is added to each location, asset,
or customer, we talk about the vehicle routing problem with
time windows [19]. In addition to the capacity constraint, a
vehicle in the VRPTW has to visit a location, asset, or customer
within a certain time frame. The vehicle - car, vessel, or other
- is allowed to arrive before the time window opens, but the
customer or asset cannot be serviced until the respective time
window opens. In addition, it is not allowed to arrive after
the time window has closed [20]. According to Goel and
Maini [21], there are different solution methodologies for VRP,
which can be divided into three categories: Exact methods,
heuristics, and meta-heuristics. The exact methods generate
optimal solutions and guarantee their optimality. This method
class includes a variety of approaches, mainly branch and X
(X being cut, bound, price, etc.), dynamic programming, and
column generation methods. The heuristics aim to methodically
find an acceptable solution within a limited number of iterations.
Meta-heuristics can finally be defined as a class of heuristics
that search beyond the local optima if they exist [21].

Research papers on VRPs, with or without time windows, are
quite common, since application in daily life is widely spread,
for example, in the delivery of packages and the route planning
of nurses [22]. Jayarathna et al. for example described in their
paper the study to implement a better route plan that optimizes
the truck allocation system at the lowest possible costs of
transportation, warehouse, and administration for a large-scale
Fast Moving Consumer Goods (FMCG) company [23]. Arnold
et al. explored how to design a local search heuristic that
generates good solutions for very large-scale CVRP instances
in an acceptable computational time [24]. In [25], Irawan et al.
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defined a Mixed Integer Linear Programming (MILP) model
to find the optimal maintenance schedule for turbines, the best
routes for crew transfer vessels (CTV) to service the windmills,
as well as the optimal number of technicians required for each
vessel. Stalhane et al. furthermore used an arc flow and a
path flow formulation model in instances of different numbers
of vessels and maintenance tasks on offshore windmill farms
[26]. The principle of using VRPTW to optimize offshore
wind farm maintenance routes for multiple vessels has never
been applied. Instead of developing a new model, this paper
uses existing VRPTW solvers and compares them to define
the best method, both in the distance reduction obtained and
in the calculation time used. While in the studied research
papers the focus is on describing the VRP and developing new
solution methods (also for windmill maintenance), this paper
thus focuses on comparing existing methods on usability and
optimization results.

Second, there has been extensive research on production
scheduling according to the flow-shop method and the job-
shop method. Al-Shayea et al. designed a model to integrate
production scheduling and maintenance planning for flow-
shop production systems. This model is based on the optimal
sequence of jobs for jobs that will be processed on several
machines connected in series. The objective of this study is
to find the optimal sequence of jobs, while reducing total
production and maintenance costs [27]. Han et al. present an
improved iterated greedy algorithm for the distributed flow
shop scheduling problem [28], while in [29], Kerem Biilbiil
and Philip Kaminsky describe a decomposition heuristic as
a solution approach for a large class of job-shop scheduling
problems. Yu summarizes the research development and the
current situation of job-shop scheduling problems. He divides
the existing research methods into different classes and talks
about the future research direction of job-shop scheduling
problems [30]. However, none of these papers apply to
maintenance scheduling in windmill farms, while costs for this
type of maintenance are very high, and every hour of downtime
(due to maintenance) result in an important loss of revenue.
This paper offers insight into how production scheduling can
be applied to maintenance, especially for offshore windmill
parks.

III. PROBLEM FORMULATION

This section describes the experimental design for both
VRPTW and JSSP, and the output data obtained after solving
these problems.

A. Experimental Design VRPTW

Figure 1 shows an example of a windmill configuration
after applying the VRPTW solution method. The configuration
used in this example has one dock and 16 windmills spread
over three farms to be serviced. The different windmills are
indicated as W M; (i = 1-16), where each windmill must be
visited exactly once by one of the vessels. Solving the VRP
leads to three routes that three different vessels must take.
Figure 2 shows the result of the application of the VRPTW to
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Figure 1. Experimental vessel routing for a configuration of 16 windmills
after solving VRPTW
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Figure 2. Experimental van routing for a configuration of 16 customers after
solving VRPTW

a set of 16 customers in the discrete manufacturing environment.

The different customers are indicated as CU; (i=1-16), where
each of the customers has to be visited exactly once. Similar
results are obtained and the same conclusions can be drawn
as for the windmill use case.

B. Experimental Design JSSP

Figure 3 shows an example of a job sequence per worker
obtained by solving the job-shop scheduling problem for a
group of 16 windmills spread over 3 farms. The number
of workers is set to three on the vertical axis, in analogy
with the number of machines in the original JSSP used in a
production environment. In each windmill, one worker needs
to perform a service task and each worker needs to perform
several maintenance tasks in separate windmills. Applying the
JSSP solver to this configuration leads to an optimal sequence
in which each worker needs to perform service on the windmills
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Figure 3. Experimental maintenance planning for 3 workers for a
configuration of 16 windmills after solving the JSSP

he or she is responsible for, with a different service time on
each windmill, shown on the horizontal axis. Thus, for each
worker, a sequence of jobs is shown, each corresponding with
a different color and with a size in accordance with the length
of the job. In contrast to VRPTW, where the optimal number

of vessels is calculated, the number of workers can be chosen.

More workers will lead to a shorter total maintenance span, but
the optimum in the configuration has been shown to be 3. More
workers will not lead to a significant increase in downtime.

C. Output Parameters

The output parameters for the VRPTW problem are the
optimal number of ships or trucks, the optimal sequence, and
the travel time for each vessel or truck in minutes. These
are compared with the result obtained by using a Genetic
Algorithm (GA) for the Traveling Salesman problem (TSP)
where no time-frame restrictions are present and only one
vessel or truck is used. Furthermore, the relative gain in travel
time (AG,) is calculated by dividing a randomly chosen travel
time (T'Tt|Random) minus the total travel time (TTt) by a
randomly chosen travel time (see Equation 1). The output
parameters for the JSSP problem are an optimized sequence
of maintenance tasks per worker to minimize total downtime
(TDt). This is then compared to the total time needed for one
worker (TTt|OneWorker) and a relative gain is calculated
(AG,,) using Equation 2.

TTt|Random — TTt

AG; =100 - 1
Gr =100 TTt|Random (%) M
T Dt|OneWorker — T Dt
AGy =100- T Dt|OneW orker (%) @
IV. METHOD

In this section, the three different methods to solve VRPTW
will be discussed, as well as the JSSP solution algorithm and
the use of the Pareto front to obtain results with combined
optimization for both problems.

A. Solution method - VRPTW

When VRP involves scheduling visits to windmills that
are only maintainable during specific time windows, the
problem becomes VRPTW [31][32]. If there are no additional
restrictions, such as time windows or load capacity, and all
maintenance or installations can be performed consecutively,
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the optimal solution for one team is found by assigning just one
vessel to visit all locations once and identifying the minimum
distance route for that vessel. In this case, the VRP can be
seen as a generalization of the Traveling Salesman problem.
In this paper, there is an optimization of the minimization
of the longest single route between all vessels. In fact, the
goal of solving the VRPTW will therefore be to complete all
maintenance tasks as soon as possible, taking into account that
some maintenance tasks can only be serviced for a certain
period of time. If we further incorporate the load capacity as
a limiting factor, the problem to solve becomes a Capacitated
Vehicle Routing Problem with Time Windows (CVRPTW).
However, for both data sets, the load is never an issue, neither
for the vessels that solely need to transport maintenance people,
nor for the vans big enough to carry all products that need to be
installed in one day. Both data sets are directly obtained from
the windmill maintenance company and the window decoration
value added reseller, and no prefiltering of preprocessing was
done, except a random selection of a predefined batch out of
the total set, ranging from 8 to 175 windmills and from 8 to
40 VAR customers.

There are several ways to solve VRPTW, such as an exact
approach, a heuristic or constructive method, and a meta-
heuristic solution method, such as a genetic algorithm (GA)
[33][34]. In this paper, three methods are discussed, namely
VRPy, a tool using a column generation approach (CGA), the
OR Tools solver, developed by Google Operational Research,
and an ACO algorithm, a meta-heuristic solving method.
Table 1 summarizes the three methods and describes their
characteristics, where the speed is measured on a MacBook
Pro from 2021 with the new Apple M1 chip and 8Mb RAM.

TABLE I. COMPARISON OF ALL METHODS USED TO SOLVE THE VRPTW

Method Advantage Disadvantage
VRPy Easy Interface Less Powerful
OR Tools Fast and Accurate No optimal result
ACO Optimal results No Easy Interface

To calculate the distances between the windmills or cus-
tomers and between the starting point and the windmills or
customers, spherical trigonometry formulas are used. In this
paper, all vehicles are considered the same: they have the same
velocity, the same capacity, and unit freight. Furthermore, the
capacity and cargo of the vessel are not considered constraints.
When defining ¢; as the time it takes for the vessel to arrive at
location i, e as the cost of waiting and f as the cost of arriving
too late, the objective of solving the VRPTW for a collection
of vehicles A, can be written as:
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Where:
1 if the vehicle a travels from i to j,
Tija = : €]
0 in all other cases
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The constraints are:
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In (3), the second part of the equation, sum of maximums,
defines the time window constraint. In (5), ¢;;, is the time it
takes the vehicle to travel from location i to j, v is the speed
and s; the service at location i. At the depot (node O in the
equations), both t and s are equal to zero. The constraint in
(6) implies that the number of vehicles that start from the
loading point and go back there is A. Constraints (7) and (8)
mean that each location can be visited only by one vehicle.
Finally, constraint (9) represents that all vehicles that start at
the loading point also go back there.

VRPy solves VRP with a column generation approach
[35]. The term refers to the fact that, continuously, routes
are generated with a pricing problem and fed to a restricted
master problem. The latter selects the best routes among a
pool so that each node (windmill or customer in this case)
is serviced exactly once. The pricing problem is actually a
shortest elementary path problem. Additional constraints, such
as the time windows discussed in this paper, contribute to a
shortest-path problem with resource constraints. VRPy does not
lead to an optimal solution, even without time limits. Hence,
when solving pricing problems does not result in a route with
negative marginal cost, the master problem is solved as mixed
integer programming (price-and-branch strategy).

Next, the above solution will be compared with the results
found for the same operational VRPTW using the solver
developed for Google OR Tools (Table I) [36]. The algorithm
based on the Python routing library wrapper results in a
new set of optimal routes, taking into consideration that all
windmills or customers need to be serviced in a specific
time frame. As for the first method, no other restrictions are
taken into account. The algorithm used to solve VRPTW
starts with the creation of input data, followed by a callback
function. After adding the time constraints, the default
search parameters and a heuristic method are set for the
first solution. Finally, the same function is used to solve the
Traveling Salesman Problem (TSP), resulting in the route
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for each vehicle, the total travel time of the vehicle route,
and the solution windows for each location. The solution
window at a location is defined as the time interval during
which a vehicle must arrive, so it stays on schedule. The
pseudocode for solving VRPTW with a solver can be written as:

procedure VRPTW Solver is
data model creation
declare the routing model
add the constraints
define distance and time callback
set time windows at each location
define the number of vehicles
set a search parameter(e.g., time limit)
call the solver
end procedure

The third method to solve VRPTW with the same entry
data, such as the position of the windmills or customers and
service windows, is based on an ant colony optimization
algorithm [12][37]. Ant Colony Optimization (ACO) is one
of the most recent metaheuristic approaches to combinatorial
optimization problems. The pseudocode is shown below.
All three solution methods, VRPy, OR Tools, and ACO are
heuristic methods. When it is impossible or impractical to
find an optimal solution, heuristic methods can be used to
accelerate the process of discovering a satisfactory solution.

procedure ACO Meta-Heuristic is
while not terminated do
ConstructAntsSolutions()
UpdatePheromones()
daemonActions()
repeat
end procedure

The ACO is based on the foraging behavior of real ants.
They arbitrarily explore the environment, using pheromone
deposits to find the shortest routes. Therefore, ACO algorithms
are probabilistic techniques suitable for solving optimization
problems that aim at minimizing the distance traveled (e.g.,
TSP and VRP). In the first step, ConstructAntsSolutions - of
the algorithm, each artificial ant generates a solution: thereby
it randomly chooses the next city to visit, based on a heuristic
combination of the distance to that city and the amount of
virtual pheromone left behind on the arc to that city. The ants
explore and dump the pheromone on each arc they traverse
until they have all completed a tour (see Equation (10)). At
this point, the ant that has completed the shortest tour deposits
virtual pheromone along its entire route (UpdatePheromones).
Equation (14) shows that the amount of pheromone deposited
is inversely proportional to the length of the tour. Thus, the
shorter the route, the more pheromone the ant deposits on the
arcs of the corresponding tour. The deamonActions procedure
is used to carry out centralized actions that cannot be carried
out by individual ants, as they do not possess global knowledge.
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A typical example of these deamonActions is the collection of
global information that can be used to decide whether it might
be useful to deposit additional pheromone to bias the search
process from a nonlocal perspective. As long as the termination
condition is not met, these three steps are repeated [38]. The
pheromone 7;;, associated with the edge joining locations i
and j, is updated as follows:

Ty (L=p)mij+ > Ank (10)
k=1
where:
p = evaporation rate, (11)
m = number of ants, (12)

An? = the quantity of pheromone laid on edge (i, j) by ant k,

(13)
L jf ant k used edge (i,j) in its t
ATi? _ ) 1 ant k used edge (i,j) in its tour, (14)
0  in all other cases
() = a constant, (15)
Lj, = is the length of the tour built by ant k,  (16)

To determine and confirm that the solutions obtained by the
three methods to solve VRPTW are applicable in other areas,
the same solution procedures were applied to two data sets. In
addition to windmill farms, a data set is used consisting of the
customer coordinates at which discrete Taylormade products
(curtains) are to be installed and maintained. Although this
data set differs quite extensively from that of the windmills, the
optimization goals are the same, namely travel time, and thus
fuel consumption reduction. Transport for Taylormade products
goes over land and cannot follow a straight line, the distances
between customers are smaller than for the windmill farms
(typically a few tens of kilometers versus a few hundreds for
the windmills) and not clustered around different farms, making
the data sets for windmills and customers quite different.

B. Solution Method - Job shop

To apply the solver to maintenance planning, we have
made the following assumptions: the machines in the JSSP
are replaced by the workers performing maintenance jobs (the
job is a sequence of windmills to be serviced), and the tasks
are linked to the windmills. The processing time is chosen
randomly, as are the workers for each maintenance job. The
final result of the algorithm created to solve the JSSP will be
a schedule optimized for each worker to minimize the total
maintenance span. The pseudocode of the algorithm used to
solve JSSP with the OR solver is [39]:

procedure JSSP Solver is
data creation do
define set of machines (M) and jobs (J)
define the processing time for each task i in job j
define the worker sequence for each job
declare the optimization CP model
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set decision variables for each task i in job j
add the constraints
add the duration constraint
add the precedence constraint
add the disjunctive constraint
define the objective function
call the solver
end procedure

Each of the steps in the pseudocode is further defined as:
« Data Creation: For each maintenance job, several tasks are

defined, that is, the windmills or customers to be serviced.

For every windmill or customer (task), the worker (in
analogy with the machine) who needs to perform the task
and the service time needed are given.

o Declaration of the model, a Constraint Programming (CP)
model that includes variables and constraints that will be
solved via the CP solver.

o Definition of the decision variables, which are the start
and end time of each task, the duration (end minus start)
and the interval of the task.

o Defining the constraints: A worker cannot work at two
windmills at the same time (disjunctive constraint), for any
two consecutive tasks in the same maintenance job, the
first must be completed before the second can be started
(precedence constraint), and the processing time of each
job must be equal to the difference between end time and
start time of the job (duration constraint).

o Determining the objective as the minimization of the make
or maintenance span.

o Call the solver and show the results.

The objective function (17) and the constraints of the job
shop scheduling problem are written as:

min Cg (17
where:
Cij —wij =715+ p1j \Z (18)
Oi—lj —C’ij—|—wij = —Dij i=2,...,mj, Vj (19)
Cir —Cij 2 pir, or Cij —Ci > pi; Vi, Vi ke J;
(20)
C’ij,wij ZO z:l,,mj Vj (21)

Constraint (18) implies that a maintenance job can only start
after its respective ready time. Constraint (19) specifies that a
job j follows its processing sequence. The machine capacity
constraint (20) finally ensures that a worker can process only
one operation at a time, and an operation will be finished once
it starts.

C. PFareto front

Solving VRPTW and JSSP leads to sequences in which
windmills or customers need to be visited, each with a different
objective function. Hence, for the VRPTW, the objective
is to minimize the total distance traveled, while the JSSP
attempts to reduce the total maintenance time. Since both
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objectives are possibly contradictory, the solution methods are
compared by calculating Pareto points and a corresponding
Pareto front. Therefore, the maintenance sequences resulting
from the VRPTW, with a minimal route distance, are offered
to the second objective function to calculate the corresponding
total maintenance time. Additionally, maintenance sequences
with minimal maintenance are calculated by solving the JSSP
and the corresponding total route distance is determined. Both
lead to a set of two-dimensional coordinates of which the
Pareto points are calculated. Pareto optimal points are non-
dominated, meaning that there does not exist another solution
that rigorously dominates the Pareto optimal solution in terms
of any objective. The Pareto front is the multi-objective and
multi-dimensional alternative for the individual optimal solution
resulting from single objective optimization problems (VRP
and JSSP).

V. RESULTS

The result section gives an overview of all results obtained
by solving VRPTW and JSSP separately. In addition, a Pareto
front is calculated with non-dominated solutions, optimizing
both problems simultaneously.

A. Sequence comparison VRPy - OR Tools - ACO for windmill
maintenance

Table 1II lists the best results obtained by applying all three
solution methods, and this for different configurations, ranging
from 8 to 175 windmills. The relative gain shows how much
better the optimized solution is than the randomly chosen one.
The optimal number of vessels proposed by the VRPTW solvers
is shown in the Vessel column, and finally the Runtime column
lists the time needed to solve the VRPTW problem. For VRPy
and OR Tools, the same sequence was obtained when running
10 tests for each. With ACO, the best result represents the
shortest routes obtained after 20 tests, with 50 ants and 1000
iterations. The randomly selected route is considered identical
and is expressed in minutes of travel time for the maintenance
vessels. The values correspond to the total travel time of all
vessels used in the maintenance schedule. Applying VRPy on
a selection of 16 windmills to be maintained, to solve the
VRPTW, leads to a relative gain compared to the randomly
chosen route of about 44%. To obtain this minimal total travel
time, three vessels need to be deployed simultaneously, each
following a separate route.

Table IT shows that the three solution methods, VRPy, OR
Tools, and ACO, lead to an almost equal relative gain compared
to a random route time of all vessels involved. This accounts
for all configurations, varying from 8 to 40 windmills, and
increases gradually as the number of windmills to be maintained
grows. Except for the configuration of 8 Windmills, the number
of vessels proposed by each method are the same, making
comparison easier. The only significant difference between
the VRPTW solvers is the calculation time required to obtain
an optimized solution. Although the average calculation time
for the smallest configuration is almost zero and comparable
for all options, it rises very fast - almost exponentially - for
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the VRPy solution, up to more than 350 seconds for the 40
windmills. The calculation time of the ACO algorithm also
increases, but is linear and thus not as distinct as for the VRPy
solution method. OR Tools finally results in a set of optimized
routes instantaneously, even for the set of 40 windmills.

TABLE II. OPTIMIZATION RESULTS FOR ALL VRPTW SOLUTION METHODS
FOR DIFFERENT WM CONFIGURATIONS

Method Rel gain (%) Vessels Run-time (sec)
8 Windmills

VRPy 11.8% 3 0.33

OR Tools 16.6% 2 0.03

ACO 16.6% 2 1.23
16 Windmills

VRPy 44.1% 3 1.59

OR Tools 44.1% 3 0.04

ACO 44.0% 3 2.87
24 Windmills

VRPy 68.3% 3 10.02

OR Tools 68.4% 3 0.05

ACO 68.3% 3 4.52
32 Windmills

VRPy 70.2% 3 70.61

OR Tools 70.3% 3 0.12

ACO 70.2% 3 7.67
40 Windmills

VRPy 77.3% 3 351.39

OR Tools 77.3% 3 0.09

ACO 76.3% 3 19.71
175 Windmills

VRPy 91.4% 3 >24h

OR Tools 91.7% 3 3.51

ACO 81.2% 9 507.50

Table II further contains the results obtained using the three

VRPTW solution procedures for a large set of 175 windmills.

For this sample, there is a (very) high relative gain for all three
solvers, but also a significant difference between the yields
obtained by VRPy and OR Tools and that by ACO. Although
not negligible, the calculation time for OR Tools is only 3.5
seconds, while ACO now requires more than 8 minutes to

obtain a much worse result for a larger number of vessels.

VRPy takes an extremely long time to get to a set of optimized
routes.

B. Sequence comparison VRPy - OR Tools - ACO for customer
interventions

The same solution methods were applied to another data set.

This set contains the coordinates of customers of a company
that performs interventions on site. These clients are distributed
throughout Belgium and are chosen at random from the
company’s database. The main difference with the windmill
configuration is the way the locations are spread: while the
windmills are grouped in three so-called parks, the customers
are scattered throughout the Belgian territory.
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TABLE III. OPTIMIZATION RESULTS FOR ALL VRPTW SOLUTION
METHODS FOR DIFFERENT CUSTOMER CONFIGURATIONS

Method Rel gain (%) Vessels Runtime (sec)
8 Customers

VRPy 29.1% 3 0.45

OR Tools 28.7% 3 0.03

ACO 28.8% 3 2.04
16 Customers

VRPy 52.5% 4 1.70

OR Tools 52.9% 3 0.03

ACO 52.1% 4 2.98
24 Customers

VRPy 65.0% 3 11.53

OR Tools 59.9% 3 0.04

ACO 63.4% 4 6.64
32 Customers

VRPy 64.8% 3 47.93

OR Tools 64.8% 3 0.09

ACO 62.8% 4 7.89
40 Customers

VRPy 70.5% 4 70.09

OR Tools 70.3% 4 0.12

ACO 64.1% 4 11.08

Table III shows that the relative gain obtained by the OR
solver, VRPy and ACO is again increasing as the number of
customers to be served grows. Also, the conclusions about the
calculation times are similar to those made for the windmill
case: very limited for OR Tools, being almost instantaneously;
slightly increasing for the ACO algorithm, ranging from 2
seconds for 8 customers up to 11 seconds for 40 customers
and evolving in a more or less linear way; and finally more
largely increasing for VRPy, from less than 1 second for 8 to
over 70 seconds for 40 customers, following a more exponential
curve. However, there are some important differences. First,
there are slightly larger gaps between the relative gain obtained
for every solution method, while for the windmill case, the
results are nearly equal. This is probably due to the fact that
there is a clustering around the different farms, making it easier
for each method to get stuck in local minima much faster in
the previously discussed windmill case. In the taylormade data
set, there is no clustering, and thus this phenomenon does not
arise. Second, the optimal number of vehicles is not always
equal for each solution, making the comparison more difficult.

C. Job Shop - Workers and windmill maintenance combined

Table IV shows the results of the tests with a different
number of windmills, divided over 3 separate farms, ranging
from 8 to 40 assets. If all maintenance jobs would be carried out
consecutively by one worker without waiting time - being the
worst-case scenario for the total maintenance time span - the
total time span for all jobs would be 18h for 8 windmills and
120h for 40 windmills. However, if we optimize the schedule
for more workers, the total time span would be much lower,
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being 11 hours for 2 workers in the 8§ windmills configuration
and 45h for 6 workers in the 40 windmills configuration.
This corresponds to a relative gain in maintenance time of
respectively around 39% and 62% in the total maintenance
time span with respect to the single worker case. By employing
more workers simultaneously, the total maintenance time lost is
(more than) halved, and therefore downtime is reduced by (more
than) 50%. Although the total number of working hours is
higher when using three workers instead of one, the amount of
money gained by halving the downtime is significantly higher,
hence the huge advantage of the JSSP solver. According to
the average price per kWh in December 2022, the loss per
windmill for 1h downtime is at least 203€ per hour if we
presume that a windmill operates 24h per day, 365 days per
year. A reduction of the downtime by 67h (with 3 workers)
thus leads to a cost reduction of more than 13.6K Euro per
windmill. If we further estimate the average labor cost per
worker at 60 euros per hour and compare the total amount
of hours worked by three workers (154 hours) with the 120
hours needed for one worker, then the extra costs would be
34 times 60 euros, or 2K euros. The net gain would then be
13.6K minus 2K, and thus 11.6K.

TABLE IV. JSSP OPTIMIZATION BY USING OR TOOLS

Use Case

Relative gain

08 Windmills - 2 workers 38,9%
16 Windmills - 3 workers 48,7%
24 Windmills - 4 workers 53,8%
32 Windmills - 5 workers 59,6%
40 Windmills - 6 workers 62,5%

Table V shows that in the 40 windmill configuration, the
largest downtime gain is obtained when switching from one
to two workers (44%) and a much lower but significant gain
when switching to three workers. From 4 workers onward, the
total maintenance time span does not decrease very much when
adding additional workers. The trade-off can thus be put at
4 workers or, when labor is expensive, at 3 workers. Remark
that when using as many workers as there are tasks to perform,
the relative gain is obtained by dividing the longest task by
the total time for all tasks, and thus results in a very high
optimization (95% in our case).

TABLE V. JSSP OPTIMIZATION IN FUNCTION OF THE NUMBER OF
WORKERS FOR 40 WM AND 80 WM

Rel gain 40WM  Rel gain SOWM

Number of workers

2 44.2% 45.7%
3 55.8% 56.0%
4 60.0% 59.0%
5 60.8% 61.2%
6 62.5% 62.5%

Table V also shows similar results for a configuration of
80 windmills. A large reduction in total maintenance time
when a second worker is added, with a relative trade-off at 4
workers. The same results can be extrapolated to the use case
of Taylormade products, since results are based on randomly
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chosen maintenance times, and the location of windmills and
customers does not influence the final results of the JSSP.

D. Combined results and Comparison

In order to determine the link between the optimal route
resulting from solving VRPTW and the routes determined by
solving the JSSP to minimize the time span of all maintenance
jobs, a Pareto front is calculated. To compute this Pareto
front with non-dominated solutions, tests were run on the two
separate problems, and each result was then offered to the other
problem. To clarify this, the following example is described:
the ACO algorithm, VRPy and OR Tools solution methods ran
to solve the VRPTW resulted in maintenance sequences with
minimal total traveling distance. For this windmill sequence,
the corresponding total time span for all maintenance tasks
is calculated by adding the maintenance time for all jobs
in this sequence. On the other hand, the total distances are
computed for the sequences resulting from solving the JSSP
(with a minimal time span). This is done for sequences of 40
windmills and 3 vessels. Figure 4 shows the Pareto front.

Pareto Front for VRPTW and JSS

4200

4000

3800

3600

Total time-span (min)

3400

3200

2000 2500 3000 3500 4000 4500
VRPTW Total Distance (km)

Figure 4. Pareto front for windmills maintenance planning, optimizing both
routing (VRPTW) and sequence (JSSP) simultaneously.

Our research has led to a group of Pareto optimal mainte-
nance sequences as a result of the multi-objective optimization
model (see coordinates in Table VI). However, it has proven
to be very difficult to find a maintenance sequence that is
optimal for both objectives. For example, the first and second
jobs to be carried out initially according to minimize the total
time span can be far away from each other, resulting in a
total distance higher than the one obtained by solving the
VRPTW. The tests resulted in maintenance paths that either
have a low total time span and a high distance, or have a low
distance but a high maintenance time span. In determining the
optimal sequence, the planner has to decide which parameter
is most important when making the choice. From all studied
maintenance sequences, a list of 4 non-dominated solutions
is obtained. Three of the solutions offer a path with a lower
distance and a higher maintenance time span, one is showing a
large distance and a lower time span. None of the tests resulted
in a path with low values for both objectives.

To compare the financial gain obtained by applying VRPTW
and JSSP, we consider the case of 40 windmills and 3 workers.
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TABLE VI. PARETO POINTS FOR WINDMILLS MAINTENANCE PLANNING,
OPTIMIZING BOTH ROUTING (VRPTW) AND SEQUENCE (JSSP)

SIMULTANEOUSLY
Coordinates  Distance VRPTW (min)  Distance JSSP (min)
1 2156 4080
2 2436 3900
3 2037 4200
4 4444 3180

o When reducing the distance from §380km to 2064km with
VRPTW, the financial gain is around 6180€. Fuel con-
sumption is calculated as the distance traveled, multiplied
by the weight of the vessel (30 tons), divided by 1000.
The speed of the vessel is set at 5.5 km per hour, the fuel
price is 2€ per liter, and no wind or current is taken into
account.

o When setting the cost per hour downtime at 203€ and,
from Table V, the reduction of the downtime at 67h, the
total financial gain is 13600€.

The JSSP method thus leads to a much greater benefit than
the distance reduction of the VRPTW solution.

VI. DISCUSSION | EVALUATION

Of all methods tested to solve VRPTW, the OR Tools solver
offers the quickest solutions, while VRPy and ACO generate
similar results but much slower. Both use cases - windmill
maintenance and product installation - show similar results with
respect to the outcome of the solution method used and the
calculation time needed. Also, for the JSSP, the OR Tools solver
has proven to be fast and accurate. Comparing the solutions
for both objective functions, being distance minimization and
maintenance time span optimization, led to sequences that
are only optimal for one of the two objectives. Therefore,
Pareto points are calculated to obtain solutions that are as
optimal as possible for both objectives. The planner can then
use these resulting sequences to schedule maintenance tasks for
a windmill park to minimize the distance traveled, downtime,
or both. In all cases, this leads to a significant reduction in
maintenance costs by reducing the fuel used or the loss of
energy production. However, several constraints were not taken
into account when solving VRPTW, such as sea currents, wind,
and vessel capacity. These can be integrated in future work to
determine the impact they could have on the final results.

VII. CONCLUSION AND FUTURE WORK

The relative gain obtained is 77% for a set of 40 windmills
and 17% for a group of 8 windmills spread over 3 farms, and
this for all VRPTW solution methods used. Similar results were
found and the same conclusions can be drawn for the second
use case, the installation and maintenance of discrete products,
showing the general applicability of all methods used to solve
the VRPTW. A relative gain of the total maintenance span of
almost 62.5% was obtained compared to the situation where all
maintenance was done by one worker for a configuration with
40 windmills and 39% for 8 windmills when solving the JSSP.
The total time needed for every added worker resulted in a
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higher total number of working hours to be paid. However, the
total maintenance time span was more than halved, resulting
in a significant gain in up-time.

In future research, other methods for solving VRPTW and
JSSP can be studied and benchmarked. Possible other modi
operandi to solve the VRPTW are (nonexhaustive): Harmony
Search Algorithms (HAS), Memetic algorithms (MA), Genetic
Algorithms (GA), the Hexaly solver, etc. For calculating
the JSSP, heuristics or metaheuristics - such as Simulated
Annealing, Tabu Search, ACO and Genetic Algorithms - can
be compared. In addition, extended and different data sets can
be investigated to further determine the applicability of the
methods discussed.
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