International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

Learning Together in Global Classrooms: Student Engagement
Through Collaborative Activities and Games

Simona Vasilache

Institute of Systems and Information Engineering
University of Tsukuba
Tsukuba, Japan
e-mail: simona@cs.tsukuba.ac.jp

Abstract - Software engineering education increasingly takes
place in classrooms where students from diverse cultural
backgrounds learn side by side. While this diversity enriches the
learning environment, it also introduces challenges in
communication, collaboration, and engagement. This paper
reports on experiences from teaching a software engineering
course with a highly international student cohort, focusing on
the role of classroom activities as cross-cultural bridges. Active
learning strategies, such as collaborative problem-solving
exercises and in-class games, were employed to encourage
participation, foster mutual understanding, and develop
teamwork skills essential to professional practice. Drawing on
classroom observations and student feedback, this work
highlights how such activities can mitigate cultural barriers and
create opportunities for students to appreciate different
perspectives. Findings suggest that collaborative exercises not
only improved engagement but also facilitated learning and
strengthened students’ sense of belonging in a multicultural
environment. The paper argues that designing engaging
classroom activities, where students from different cultures
work together towards achieving a common goal, is crucial for
preparing students to work in global software engineering
contexts, where cross-cultural collaboration is essential.

Keywords - software engineering; student engagement; active
and collaborative learning; multicultural environments.

I. INTRODUCTION

We live in a world which relies heavily on software
systems. Although a relatively young discipline (57 years
since it was framed as an engineering discipline in its own
right, i.e., in 1968), software engineering provides systematic
methods for designing, developing and maintaining software
systems that underpin our modern society [1]. In higher
education, software engineering related subjects are well
established and offered by an increasing number of
institutions. According to CS2023 [2], a computer science
curricular guidelines document (published by the Joint Task
Force of Computer Science Curricula, which comprises
ACM, IEEE-CS, and the Association for the Advancement of
Artificial Intelligence), “since 2013, the focus of curricular
design has moved from what is taught (a knowledge model)
to what is learned (a competency model)” [2]. Thus, educators
teaching software engineering subjects must equip students
not only with technical concepts, the so-called “hard skills”,

but also with a range of interpersonal and professional “soft
skills”.

In 2024, a systematic literature review of skills
development revealed 33 essential soft skills that educators
must teach future software engineers [3]. The top 5 soft skills
revealed were communication, teamwork, organization,
leadership and learning. They were followed by creativity,
critical thinking, analytical skills, problem solving and
professionalism. To help with acquiring important abilities
like teamwork, communication, and analytical skills,
collaborative learning is a very useful tool in a software
engineering classroom. This strategy makes sure that students
“collaborate” in order to achieve a task and this fosters
development of various soft skills. Through collaborative
learning, educators can simulate real-world professional
settings, where software engineers must work together to
develop software applications.

In their learning experience, students’ performance is
shaped by a wide range of factors, with motivation standing
out as one of the most important. In the context of engineering
disciplines, motivation has been described as “particularly
critical” [4], given the complexity of the skills and knowledge
students are expected to acquire. In response, educators have
increasingly turned their attention to innovative pedagogical
approaches that can increase and sustain motivation. Among
these, game-based learning has gained significant momentum
in recent years due to its demonstrated potential to enhance
engagement, encourage active participation, and ultimately
improve learning outcomes [5].

While studying, learners are often part of international
classrooms. As a matter of fact, multicultural environments
are now a common feature of workplaces, academia, and
everyday life. Teaching in such settings presents not only
specific challenges [6] but also distinct advantages [7]. A
multicultural classroom can serve as a microcosm of
distributed development teams, achieving the goal of
providing global software engineering education. While
students learn together in the same physical space, they
simultaneously gain insight into how they may need to
collaborate in the future with colleagues from different
cultural backgrounds, each bringing diverse values, behaviors,
and working styles [7].

In our previous works ([1], [8]), we highlighted some of
the challenges of teaching an introductory software
engineering course to a multicultural group of graduate

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

146

students in a Japanese university. This paper extends our work
with further exploration of how student engagement was
achieved through collaborative activities and game-based
learning, along with lessons learned during this course.

The remainder of this paper is organized as follows.
Section II describes the background of our work, as well as
related work. A description of our course is provided in
Section III, followed, in Section IV, by an illustration of
collaborative learning and game-based learning as they were
employed in our course. Section V includes a discussion and
lessons learned during our study. Finally, section VI provides
conclusions and directions for future work.

II. BACKGROUND AND RELATED WORK

This section examines considerations on collaborative
learning, game-based learning and global software
engineering, along with related work outlining recent
development in these fields.

A. Collaborative Learning

Collaborative learning is an important and useful tool
promoting engagement of learners. Despite a generally
accepted lack of consensus on the rigorous definition of the
term [9], it has certain widely recognized characteristics. As
an educational approach to teaching and learning, it involves
learners “collaborating” (i.e., working together) to achieve a
common goal — solve a problem, complete a task or create a
product [10], at the same time progressing individually during
the learning process. Participants are challenged socially and
emotionally while listening to different perspectives and they
may often be required to defend their ideas [9].
Fundamentally, similarly to active learning, collaborative
learning promotes active student participation [11].

In international settings such as multicultural classrooms,
collaborative learning is particularly valuable for fostering
awareness of cultural differences, exposing students to diverse
perspectives, and strengthening mutual understanding, as they
work together toward solutions acceptable to the entire group.
It can also support the development of communication and
social skills, by offering a safe and structured environment to
interact with others [11].

Furthermore, collaborative learning helps prepare students
for their future workplaces: it improves communication,
negotiation and teamwork skills — all very important in
software engineering, where projects are often team-based.
This makes collaborative learning an essential tools for
educators in software engineering courses, particularly those
that include intensive team projects.

B. Game-Based Learning

In game-based learning (GBL), the focus is on acquiring
knowledge and skills through gameplay. Whether digital or
non-digital, specific games are designed to achieve certain
educational goals. This strategy has drawn increased attention,
in various disciplines, including software engineering. In their
work, Garcia et al. [12] conducted a systematic literature
review of the effects of GBL in acquisition of soft skills in
undergraduate software engineering courses. Their review

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

shows that researchers have recognized the effectiveness of
using GBL in teaching and learning various software
engineering topics. This is largely due to the games’ intrinsic
features, which make them attractive to students and improve
their motivation [12]. Moreover, numerous researchers
recognize that games contribute to the development of “soft
skills”, like teamwork and communication ([13], [14], [15]).
Furthermore, Marti-Parreno et al. [16] argue that GBL can
enhance the delivery of learning content by allowing students
greater control over their own learning process during
gameplay. By adopting a GBL approach, students are able to
apply classroom concepts in practice, thereby reinforcing and
deepening their understanding of those concepts [16].

GBL is used not only in academic environments, with
students, but also in industry, for training employees. To give
an example, the work of O’Farrell et al. [17] shows how it was
used for training employees on the Scale Agile Framework,
[18], through a 3D game named PlaySAFe. This study
showcased various benefits of GBL, like “allowing
newcomers a quick and efficient means to learn and
understand the practical groundwork of SAFe in advance of
learning more theoretical concepts in conventional training”
[17].

Overall, GBL offers an effective pedagogical approach in
software engineering by enhancing motivation and enabling
students to apply theoretical concepts in practical, interactive
contexts.

C. Global Sofiware Engineering

Globally distributed software projects are widespread in
today’s world and special skills in communication across
different locations and time zones need to be learned early by
software engineering students. An increasing number of
universities are incorporating global software engineering into
their curricula, yet its adoption remains limited. In their work,
Beecham et al. [19] emphasize the need for global software
engineering education and summarize several global software
engineering education related challenges and proposed
solutions. According to Schmiedmayer et al., [20] there are
two main options to make students aware of global software
engineering challenges and equip them with the necessary
skills to deal with them: teachers can simulate a global
software project in a classroom setting, or they can arrange a
genuine global software engineering project; the latter option
comes with all the organizational challenges of a distributed
organization and infrastructure [20].

In terms of learning and applying soft skills, a
multicultural classroom offers a suitable environment to
simulate some of the challenges of a globally distributed
project, as exposed by some educators’ work. For instance, the
work in [21] shows how the online environment brought by
the Covid-19 pandemic provided an opportunity to test mini-
models of distributed teams in software engineering, in the
context of a multicultural classroom. In such a setting, while
working together on achieving various tasks in the classroom,
students learn how to collaborate with colleagues from
different countries, each with their own culture, language and
specific expectations.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

147

III. COURSE DESCRIPTION

This section describes the setting, composition and content
of the course that constitutes the subject of this paper.

A. Course Setting and Class Composition

This paper is based on the experience of teaching an
introductory software engineering course named “Principles
of Software Engineering”, as it was offered in its latest edition,
in the spring semester of 2024. This course has been taught
annually as an elective course in the Master’s Program in
Computer Science at the University of Tsukuba in Japan,
between 2016 and 2022. Since 2023, it has been held once
every two years, alternating with a computer ethics course; it
takes place in even number years, thus no class was held in
2023. The length of the course is 10 weeks, with 3 hours held
every week; if completed successfully, students obtain two
academic credits for it. The grading is based on the submission
of a final report, which the students have approximately 3
weeks to complete.

The course aims to familiarize students with the
fundamental principles of software engineering and to
highlight its importance as a modern engineering discipline.
Core topics include software development models and life
cycles, agile methodologies, requirements engineering, user
interface design, verification and validation techniques,
project planning and management, software engineering tools
such as IDEs and UML, as well as the business aspects of
software development. The 2024 edition of the course saw
105 participants: 35 students in their first year and 70 students
in their second year of master’s course. They were a mixture
of Japanese students (43) and international students (49
regular students and 13 exchange students, coming from a
total of 15 different countries). Most students belong to the
computer science department; only 4 students belong to
different departments.

It is worth mentioning that this course started with 15
participants in 2016 and reached 105 enrolled participants in
2024 (it generally grew every year, apart from a steep decline
in 2020, during the beginning of Covid-19 pandemic). Table I
shows the total number of students, along with the number and
percentage of international students enrolled in each of the 8
editions of the course. As can be observed, international
students usually represent between 50% and 70% of the total
number of students. Notably, this course is being held in
English (and the instructor is non-Japanese, as well). This
feature is responsible for attracting comparatively many
international students, who have fewer course choices of
courses held in English and for whom, often, taking classes
held in Japanese is challenging. All communications,
teaching, class materials, plenary discussions are held using
English. However, students are allowed to submit their
assignments (or any other feedback on the learning-
management system) in Japanese. Moreover, group
discussions are allowed in any language, as long as it is
understood by all the participating members. Importantly,
using a language other than English is only allowed in class
verbally, but never in writing (since shared documents are
often seen by all students, who need to understand them).
Besides English, Japanese was the most spoken language in

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

class; there were several instances in which certain small
groups spoke Chinese or French while performing their class
tasks. Last, but not least, reports or assignments, for which
the access is restricted to the submitting student and the
instructor, could be submitted either in English or in Japanese.

TABLE 1. INTERNATIONAL STUDENT ENROLLMENT
IN SOFTWARE ENGINEERING COURSE
rotmmter | bl | e
2016 15 9 60%
2017 26 18 69.2%
2018 35 24 68.5%
2019 66 33 50%
2020 34 28 82.3%
2021 53 37 69.8%
2022 66 33 50%
2024 105 62 59%

B. Course Content and Class Flow

The course combined a variety of teaching methods,
including discussions, brainstorming activities, games, micro-
projects, and instructor-led lectures. More specifically, classes
usually started with a 5-minute warm-up activity (which could
be a short discussion on a recent science or technology piece
of news). This was followed by a repeated combination of
lecture (in which the instructor explained a new topic),
discussions among students (either in groups or with the
whole class), and various activities and/or games. Figure 1
illustrates how lecture, class activities and games are
interconnected during each class. The lecture part is always
followed by discussions, which are closely connected to class
activities and often games, as well. The cool-down part is
mostly made-up of summarizing/concluding discussions.
Notably, discussions were part of the class since its inception
(in 2016); gradually, activities and games were introduced in
subsequent years, with the variety and number of items
increasing every year.

Throughout the course, the instructor used every
opportunity to gather feedback from the students, either
through informal discussions (during the break time or after
class) or by means of written feedback, submitted trough the
learning management system (LMS) used in the course, i.e.,
manaba [22]. Following some of the longer activities,
students were invited to provide extensive feedback on
aspects such as strengths and weaknesses, language or group
preferences, and general impressions.

During the last class, the link to a comprehensive survey
was distributed, to which 30 students responded, out of a total
enrollment of 105. The instructor attributes this relatively low
response rate to timing, as the survey was administered at the
end of the course, when many students felt they had already
provided sufficient feedback during earlier sessions. Finally,
only 31 students responded to the end-of-course evaluation
questionnaire provided by our university.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

148

Discussions

Students

> discuss, share

ideas
Lecture -

Instructor
explains new
topic

Warm-up
(5 min.)

Cool-down
(5 min.)

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

Games
Students
participate in
game-like
activity

Activities
Students work
together on
achieving task

Figure 1. Visual representation of inter-connected class components of introductory software engineering course

IV. IMPLEMENTATION OF COLLABORATIVE LEARNING
AND GAME-BASED LEARNING

This section illustrates two class activities: the first one
shows the implementation of collaborative learning, whereas
the second one provides an example of deploying game-
based learning.

A. Class Project: Requirements Elicitation and
Requirements Specification

The ability to work and collaborate/communicate
successfully in a team is a crucial skill for a future software
engineer. One of the most effective ways to develop teamwork
and communication skills is to include a project in the
coursework where students must work in teams. This work in
groups is “essential in active approaches that are based on
real-world problem-solving practices” [23].

To achieve this purpose, one of the classes during this
course was dedicated to a project in which teams of students
were responsible with creating a (simple) requirements
document for a given application. This activity covered
requirements elicitation and requirements specifications for a
given software application.

The “Project” function of the LMS was used to facilitate
work in teams, as well as sharing the teams’ work with the
whole class. The activity was divided into 3 main parts, with
6 tasks in total. In the first part, requirements elicitation took
place; in the second part, the requirements document was
created; in the last part, feedback on this document was
collected among team members. Finally, the -created
requirements documents and everything included in the
“Project” was shared with the whole class (all the students had
access to all the documents through the LMS).

Before the class began, the instructor manually divided the
students into 10 teams (namely Team A to Team J), each with
10 or 11 members. Three different types of teams were
created: teams with Japanese students only, teams with
international students only, and teams with a mixture of
Japanese and international students.

Five applications were suggested to be discussed, each of
them being covered by one, two or three teams, as follows.

Team A, Team B: language learning application

Team C, team D: medical records management system

Team E, Team F': low-budget oriented online shopping system
Team G, Team H, Team J: time/task management application
Team I: dating application for retired people

Purpose: create a requirements document for a given
application.

The project consisted of 6 tasks, as described in Figure 2.
At the start of the activity, each team chose two members who
would act as stakeholders (users: U); the remaining members
of the team would act as requirements analysts (developers.
D). Thus, each team included two stakeholders and a
maximum of 9 developers (depending on the number of
members in the team). In theory, each team was made up of
either 10 or 11 members; in practice, not all students were
present on the day, thus some teams had fewer members.

The instructor believed that the inclusion of stakeholders
in the group highlighted their crucial role when developing an
application in the real world. According to the Guide to the
Software Engineering Body of Knowledge [24], real-world
software projects often suffer from two primary requirements-
related problems: incompleteness (when stakeholder
requirements are not revealed and properly communicated)
and ambiguity (when requirements are communicated in a
way that is open to multiple interpretations). Students need to

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

149

learn that the presence of stakeholders is essential in the
requirements elicitation phase of developing a software
system.

The resulting documents for each of the steps/tasks were
saved in the LMS, using its “Project” function. Some teams
chose to additionally create a shared google document and
place the link in the project location.

Task I: Ds write a questionnaire for the two stakeholders
NB: Ds and Us do not communicate directly)

Task II: Us answer the questionnaire

Task IIl: Ds discuss with Ds from the other team(s)
working on the same application

- Typical questions discussed include: "What kind of
questions did you include?", “How can we find out what our
application should do?” etc.

Task IV: Ds must think of the following question. Which
is more efficient: a pre-defined questionnaire (you had time to
think about it) OR interview (you can ask "live" questions?)

Task V: Ds create a requirement document in free format
(suggestions: use “shall”, “should”, possibly, also, “unclear”
statements)

Task VI: Us give brief feedback on the requirements
document - what they disagree with, what “pleasantly”
surprises them, what is missing, based on their answers to the
questionnaire prepared by the respective Ds

Figure 2. Description of tasks to be achieved during the class project

The students were seated in a large capacity classroom,
which is organized in three sections of 3-person desks.
Unfortunately, the desks and chairs cannot be moved or turned
around, sometimes making it difficult for students to hold
discussions in groups (they would have to turn their body to
be able to speak to the colleagues seated behind). Figure 3
illustrates the seating of the students and a common manner
of occupying the desks.

Legend

-

[| Students’ desks \
[#iee

occupied
\

-

[Front desk (instructor) | empty

seat | |

Figure 3. Visualization of clasroom seating

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

After the class ended, the students had to respond to a
series of questions posed by the instructor, in the form of an
assignment (submitted through the LMS). Importantly, the
students had time until the end of the day to respond — thus
allowing several hours to reflect upon the day’s experience.

It should be noted that the instructor did not indicate
whether the assignment was mandatory or linked to the final
course grade. Her intention was to encourage students to share
and reflect on their experiences only if they felt they had
meaningful insights to contribute. In her view, making the task
compulsory might have led some students to submit responses
merely for the sake of compliance, rather than genuine
engagement.

Feedback was received from 62 students (out of the ~70
students present on the day of the activity.) The requirements
for the assignment are included below; the description also
invited students to provide additional comments or
suggestions, if they wished to do so.

Regarding today's activity, please let me know your thoughts
(anything is fine - I am truly interested in your opinions!).

Part I. As a software developer

- Was there a leader among developers?

- Did everyone participate?

- Which do you think is "harder": to be the U
("stakeholder") or the D ("developer")?

- Is it better to have “smaller” or “larger” development
teams?

Part II. As a class participant

- Did you enjoy the activity? (Please be honest, it is
important for possible future activities!)

- Was it difficult to communicate with your colleagues?

- What was "the best" part today? What was "the worst"
part today?

- Would you prefer your group members to speak the same
language as you? (Is English ok for everyone?)

The comments submitted by the students highlighted
various important and equally interesting issues. In the
following, we shall focus on the answers given by students
from a class participant point of view, i.e., Part Il of the
assignment.

The first question asked whether students enjoyed the
activity; the majority of students declared that they did. We
acknowledge that, even with the instructor’s insistence on
honesty, it is possible that social desirability bias was present
- some students may have simply wanted to please the
instructor. (Social desirability response bias is defined as a
participant’s tendency to over (under) report activities that are
socially desirable (undesirable) [25].) Notably, since the
answers were provided as assignments, they were not
anonymous (they were added to each student’s assignment
portfolio) — an additional factor that may have influenced the
students’ responses.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

150

Positive and encouraging responses included:
- “It was fun and very different from what the other classes
are doing.”
- “YES, ideas shared by others are interesting especially if
they are unexpected ones.”
- “I enjoyed the activity. Compared to regular classes, I think
this activity is a very interesting process and allows for a
better grasp of the knowledge learned.”
- “I enjoyed the activity. There were many diverse opinions,
and they were stimulating.”
- “Yes, can’t wait for the next one.’
- “I enjoyed it very much, especially interacting with others.’
- “This activity provided me the chance to talk with other
students and make new friends!”
- “It was great and I was able to talk to new people.”
- “I enjoyed this activity. I am not good at speaking English,
so I felt awkward to speak English and helplessness not to tell
what I think well. However, I didn't felt such things this time.
1t is easy to communicate with my team. I was able to tell my
opinion actively.”
- “It was my first experience and I had a lot of fun.’
(translated from Japanese)
- “The class was very interesting because I never considered
myself to be on the user side before.”

1

1

i

One notable answer was provided by a student who did not
seem to enjoy the activity: “My English is not very good. I can
understand everyone's thoughts, but I have almost no practice
in expressing myself. The better thing is that I can share my
ideas by sharing documents. To be honest, it’s not an
enjoyment.”. The same student noted that it was difficult to
communicate with their colleagues and that they would prefer
for group members to speak the same language.

One other participant expressed their lack of satisfaction
with the activity in the following manner: “Everything felt
arbitrary, and far from actual developing/consulting
processes.” Unfortunately, they did not provide further
clarifications, which would have helped the instructor
understand the issue.

With regard to the preferred language of communication,
most students seem to accept English as a common language.
However, 6 students expressed their desire to use Japanese (it
is worth remembering that 43 class participants are Japanese,
although not all of them were present on the day of this
activity). One student expressly stated that they would like to
use English, even though their mother tongue is Japanese: “/
would prefer if we could speak in English, not put in a group
where everyone speaks Japanese (I speak Japanese, but since
it’s an English class 1'd prefer it that way)”. Another
participant stated: “Yes, I prefer to speak the same language.
(Because Japanese student may not be able to follow the speed
of discussion in English.)”.

When asked directly whether it was difficult to
communicate with colleagues during the activity, only one
student (out of the 62 who answered) specifically stated that it
was (his answer was in Japanese). Although all the other
participants considered that communication was not difficult,

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

several comments highlighted the benefits of using one’s own
language for ease of communication and expressing own
ideas; some examples are provided below.

- “English is fine for everyone, but I think communicating in
my native language would allow me to express my ideas more
Sfluently.”

- “[...] we have communicated in Japanese. Discussing in
English should be harder than in Japanese.”

- “I think communication is smoother and more efficient when
group members speak the same language. English is fine, but
Japanese is easier to understand.”

- “Lusually hesitate to speak English, but when I could speak
the same language, I could be more active.”

- “It is quite difficult to exchange opinions in English.”
(translated from Japanese)

- “As a Japanese, I think it is easier to have in-depth
discussions about the content of the class if I am in a group
with Japanese. (Although it does not seem to improve my
English skills.)”

- “We want to speak the same language because it is easier to
communicate.”’

- “I think communication would be smoother if we spoke the
same language, but I think I'll improve more in English.”
(translated from Japanese)

A particularly interesting comment was provided by one
Japanese student: “In the aspect of smoothly communication,
it's better to have same language members. Inversely, in the
aspect of diversity of opinions, it's better to have members
with different languages. ”. The student appears to be aware of
the difficulties of speaking different languages (and, in the
instructor’s opinion, difficulties with Japanese vs. English),
but also highly aware of the importance of diversity of
opinions — different languages imply different cultures and
thus “diverse opinions”.

Various other students’ opinions were elicited through this
short assignment. One of these questions asked the students
what the “best” and the “worst” part of the class project were.
Two answers stood out among the students’ responses.

“There were many diverse opinions, and they were
stimulating. The best part of today's class was "when the
opinions came together,"” and the worst part was "when no
opinions were expressed."”

- “The best part is everyone working together collaboratively.
The worst part is to write the report.”

As expected, cultural differences played an important part
in the development of the class. For some students, as can be
observed from the following comment, working with
colleagues from the same cultural background is important:
“Grouping people of the same background together is the best
part”. This observation aligns with the instructor’s own
empirical observations — she can often observe participants
(Japanese students in particular), who, when offered a choice,
decide to work in a mono cultural team (i.e., they make sure
to be part of a Japanese only team). As shown by Rodriguez-
Perez et al. [26], some of the problems that arise in diverse
working teams “can be explained by the Similarity-Attraction

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

151

theory and the social categorization perspective”. According
to the Similarity-Attraction theory [26], individuals working
in groups tend to prefer working with those who resemble
them, while the social categorization perspective suggests that
group members are more likely to trust, like and cooperate
with similar others [27]. Classroom observations made by the
instructor appeared to confirm the relevance of both
perspectives.

In their responses, students mentioned other “best parts”
of the activity, like leadership skills, working with the team to
develop the questionnaire, collaborating with classmates and
solving problems together, “communicating among us
developers”, “when everyone accepts each other's opinions”.
As for “worst” parts, one opinion stood out in particular: “The
“worst" is when I know we have to work as a team (shy)”.
This statement suggests that for some students, especially
those who describe themselves as shy, the requirement to

work in teams can be perceived as stressful or uncomfortable.

Through this “Project” activity, as performed in class,
with the use of the LMS, students were faced with issues
similar to those that arise during the requirements elicitation
phase in the development of a real-life software product.
Moreover, they could observe firsthand how cultural
differences impact working in a team, as well as how they
affect the overall process of software development.

B. Game-Based Learning: Agile Paper Airplane Game

One classical example of a classroom activity designed to
simulate agile software development practices is the “Agile
Paper Airplane Game [28]. This activity is particularly
suitable for students who learn about agile methodologies
(and Scrum [29]) for the first time, teaching them “the benefits
of working in sprints, planning, retrospectives and teamwork”
[28]. Students are divided into small teams and tasked with
designing and building paper airplanes under iterative
conditions. Instead of planning everything in advance, teams
work in short “sprints,” receiving feedback after each round
on design improvements. Some important concepts are
highlighted and experienced through this activity: continuous
improvement, lean workflow and “Definition of Done”
(defined as all the characteristics and standards a product
increment needs to meet in order to be released [29]).

In our classroom, the students were divided into teams of
6-8 members. The teams were created based on the student
seating. Before the class started, they had the opportunity to
sit down in areas designated “Japanese language”, thus
belonging to groups in which everyone spoke Japanese. Only
two groups of students were created in this manner.
Incidentally, one team turned out to be made up of Chinese
students only, thus making Chinese the language spoken in
this group.

The activity started with the instructor explaining that the
“goal” is to deliver paper airplanes that “meet customer
expectations”, i.e., fly a certain distance (the same one for all
the teams). A leader was designated before any work started.
Similarly to agile work, the teams worked in sprints — in our

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

case, 3 sprints. In each iteration, the first minute was dedicated
to planning; next, within three minutes, the teams had to fold
and test as many paper airplanes as they could. After the three
minutes of “development”, they had one minute for
retrospective — to discuss what could be improved towards the
next iteration. One important rule stated that each team
member was allowed to perform only one fold at a time, after
which they had to pass the airplane under construction to the
next team member. The third sprint came with a modified
version of Definition of Done: the paper airplane's nose had to
be blunt, and the required flying distance was increased.

Figure 4 shows three snapshots of the class taken during
this activity, showing students folding airplanes and
discussing during “retrospective” (included with the
permission of the students).

Figure 4. Students participating in the agile paper airplane game

Notably, before each sprint, the teams were asked to
estimate how many airplanes they would be able to build.
“Definition of Done” plays an important role here: the
airplanes must fly the designated distance, otherwise they
cannot be counted as successful. After each sprint, the teams
had the opportunity to refine their design — they made new
decisions, under the guidance of the leader, during the one-
minute retrospective. Each sprint focused on continuous
improvement and responding to requirements. Teamwork and
communication played a crucial role in this activity — aspects
clearly noticed by the students, as could be seen from the
comments they submitted after class.

When it comes to estimating how many “correct”
airplanes their team would be able to build, the 3 sprints
proved the concept of continuous improvement: as they
advanced to the next sprint, the teams managed not only to
estimate better the number of airplanes, but also to build more
such planes which fulfill the Definition of Done
characteristics. Figure 5 shows examples of the teams’
estimations after each of the 3 sprints, along with the actual
numbers of planes created, including “correct” ones. (The
figure shows screenshots of the blackboard, as they were taken
in class by the instructor.)

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

152

As can be observed, in the first sprint, the teams had no
idea how difficult/easy it would be to build as many planes as
possible within the 3-minute timeframe. Team 6, for instance,
estimated that they would be able to build 150 planes (they
ended up building 13, out of which only 7 fulfilled the DoD).
In subsequent sprints, Team 6 greatly improved their
estimations, as well as their results. In sprint 2, they estimated
10 planes and built 14 (with 12 “correct” ones), whereas in
sprint 3, they estimated 15 and built exactly 15 “correct” ones
(out of the 16 planes in total).

Figure 5. Estimates and actual figures for number of “correct” planes in
the agile paper airplane game (7 teams, 3 sprints)

After this activity, in the usual style, the students were
asked to provide their impressions. Again, they had time until
the end of the day to submit their comments through the LMS,
as a non-mandatory assignment. A number of 68 students
provided feedback to the assignment described below.

Please let me know your thoughts regarding how things went
today - any thoughts!
For example:

- Did you enjoy the activity?

- How was the communication with your colleagues?

- What was "the best" part today? What was "the worst"
part today?

- Would you prefer your group members to speak the same
language as you?

(Is English ok for everyone? etc.)

#Please include any comment/suggestion you think is
important.

The students expressed their appreciation for this activity
in various forms, as seen in the examples below.

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

- “I enjoyed the activity. I got the feelings of scrum
participant. It was a good activity to easily experience the
scrum development.”

- “This was the best activity so far. Probably because it was
so educational.”

- “Thank you very much for this kind of activity; it improve[s]
the understanding of real world work. *

- “Today's activity was very enjoyable. It was an innovative
way to experience agile development.”

- “Really appreciate for the wonderful activity!”

- “Overall, this was the best activity so far, because it was
educational and I learned more than I did from books and
lectures (I'm sorry).”

During the informal discussions held by the instructor
after class, she heard numerous opinions which classified this
activity as the most enjoyable of the whole course. The game
aspects which underpin game-based-learning proved to be
very useful indeed: students had a taste of agile environments
through a fun, game-like class activity.

Through this activity, the students became aware of some
of the benefits of working in sprints, continuous improvement,
retrospectives, as well as teamwork and the importance of
communication and leadership.

For instance, one participant noted: “I think the iterative
improvement process is the most interesting”’. To go one step
further, two comments regarding leadership stood out: “These
activities are good to find natural leaders” and “The leader
decided the big folds and the order, which made me realize
that the leader's presence was very important”. Moreover,
students recognized that managing people was another aspect
which was illustrated through the activity: “It was
enlightening to learn about various aspects [...]. Equally
valuable was the insight into people management and how
motivating team members plays a pivotal role.”.

When it comes to teamwork and communication, many
students emphasized the usefulness of the activity in this
respect, as shown in their comments, some of which are
included below.

- “<The best> [part] is the group communication made me
feel good, and I really like such kind of activity.”

- “Communication was smooth for the most part. Everyone
was eager to collaborate and share their ideas, which made
the activity run smoothly.”

- “The communication with my colleagues was effective and
collaborative.”

“The best part today is the overall collaboration and
teamwork were very enjoyable. It was great to see everyone
working together and sharing ideas.”

- “The process of folding airplanes is very interesting,
everyone worked together in unity, which was great. There
were no bad parts.”

- “The communication between team members is very
efficient, everyone expressed their ideas well, and everyone is
very friendly.”

In terms of language, which could be viewed either as a
barrier or as a bridge to communication, several students

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

153

emphasized the importance of a common language (i.e.,
Japanese, for the local Japanese students), in order to
communicate ideas clearly and effectively; the following two
comments illustrate this idea.

- “While English is fine and everyone can communicate, 1
think speaking in my native language would allow me to
express my ideas more fluently and clearly.”

- “Since Japanese is my first language, it would be easier for
me if the group members could speak Japanese as much as
possible.

In one other instance, one of the (usually very active)
students noted: “In previous assignment I wrote I want to
make a group with English speaker. I joined the English
speaker group then, but I can't speak as fast as foreigners and
they are so active, so I cannot act actively. It was more
difficult than I expected. But, it doesn't mean I should do
activity in same language group. I enjoyed this activity!”. This
student’s reflection highlights both the challenges and benefits
of participating in a multicultural group. After joining an
English-speaking group, he found it difficult to keep up with
the pace and high level of participation of more fluent
members. Despite these difficulties, he recognized the value
of the experience and, ultimately, found it enjoyable.

At the same time, students recognize that, more than the
language, willingness to communicate is essential for an
effective group work: “I prefer my group members to speak
same language of course because we'll get less
communication mistake for language problem. However more
important thing is not rather same language but rather will to
communicate each other. With same language, we cannot
communicate with unmotivated silent people.”

Some groups, made entirely of participants sharing a
native language, performed very well and underlined the
easiness of communication, as shown in the following
comment: “Since almost everyone in our group could say [sic]
Chinese, I think our communication was effective and concise
but enough for our work. After discussing our group work, we
even had time to talk with each other.”. Another observation
provided by a Chinese speaker (who can also communicate in
Japanese) is relevant: “As a Chinese student collaborating
with Japanese peers, we used both Japanese and English to
complement each other's understanding. This bilingual
approach enhanced our teamwork and ensured that everyone
was on the same page, which was critical for the success of
the activity”.

Similarly to the cooperative activity described in the
previous sub-section, although teamwork is central to
software engineering, not all students view it positively. Shy
or less confident students may experience group activities as
a source of anxiety rather than engagement, especially when
they involve colleagues that they do not know well, as
illustrated by the following comment: “It was an excellent
activity. At first 1 felt a little shy about talking and working
together with strangers, but after doing the actual works, 1
think we knew each other more and became more

»

harmonious.”.

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

In conclusion, as one student summarized, this activity
contributed to improving the students’ communication and
collaboration skills, providing valuable experience for their
future: “Overall, this activity not only enhanced our teamwork
and communication skills but also gave me a deep
understanding of the importance of process optimization and
continuous improvement in scientific research and
engineering practice. As a graduate student in science, I will
apply these insights to my future studies and research, striving
to improve my comprehensive abilities.”

V. DISCUSSION AND LESSONS LEARNED

Teaching this introductory software engineering course in
a multi-cultural classroom provided an invaluable experience,
to both the students and the instructor. This section will offer
further considerations regarding team formation, general
course perceptions, as well as key lessons learned through the
activities described in Section IV.

A. Team Formation

While conducting the class activities, the students found
themselves in different settings, in the form of different kinds
of teams - a different one each time. The process of team
formation can “significantly impact the learning process, the
social behavior of team members, and the team’s overall
performance” [23]. This concept has long been studied in
social sciences areas, like resource management, sociology
and psychology. Forming a capable team is significant for all
kinds of organizations, businesses, sports, etc. ([30] [31]), just
like it is important during the process of education, when
students work in teams. However, in software engineering,
studies on team formation are still relatively limited,
compared to studies focused on technology and process-
related aspects [32].

As explained earlier, three different types of teams were
created throughout the course: teams with Japanese students
only, teams with international students only, and teams with a
mixture of Japanese and international students. The instructor
chose different team formation styles for the purpose of
understanding the best setting, the one which allows the
easiest communication between students.

As student feedback showed, there is no perfect solution;
however, the different arrangements offered students different
experiences. Some Japanese speakers prefer mono-cultural
groups, whereas other prefer to be challenged to speak English
or to be part of groups with people from different cultures. The
same is true for the international students: some of them find
communication with other international students easiest,
whereas others are very eager to make Japanese friends. Even
when students had the choice to create their own groups,
without the instructor’s interference, various types of groups
were formed, based on the same principles as above. Further
work is needed to identify the best method of team formation
in collaborative projects, in order to yield the best results in a
multicultural software engineering class.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

154

B. Student Course Evaluation

As explained in Section 11, at the end of the course, as per
university rules, the students are required to provide a course
evaluation, based on a university-prepared questionnaire.
Their answers are provided anonymously, following a Likert
scale of 1 to 5, corresponding to “strongly agree”, “agree”,
“neutral”, “disagree” and “strongly disagree”, respectively.
As can be observed from the partially summarized results in
Table II, with only a few exceptions of respondents choosing
“neutral”, all the participants selected either “strongly agree”
or “agree” with the 5 statements. It is noteworthy that
participants reported an increased interest in the subject
following completion of the course. They mostly believed that
the ways in which the instructor explained and planned the
class contents were suitable for the course, and that there were
sufficient opportunities to ask questions during class. Finally,
their responses showed that the students were satisfied with
the course: 19 chose “strongly agree”, 11 chose “agree” and 1
chose “neutral”.

TABLE II. RESULTS OF END OF COURSE QUESTIONNAIRE
(1: STRONGLY AGREE; 2: AGREE; 3: NEUTRAL; 4: DISAGREE; 5: STRONGLY
DISAGREE)

1 2 3 4 5

“The instructions were well prepared for the
course.”

“The ways the instructor explained and planned
the class contents were suitable for the course.”
“Attending this course, I developed a stronger
interest in the field of study related to this | 16 | 13 | 2 | 0 | O
subject than before.”
“Overall, I am satisfied with this course.” 1911 [1]01]0
“You were given sufficient opportunities for wlslalolo
asking questions to the instructor(s).”

2219101010

231 810(0]0

The university-prepared course evaluation questionnaire
allowed the provision of free comments, as well. One of them
simply mentioned: “I really like the group work and
interacting with other students”. In another comment, one
student noted: “This interactive opinion exchange class on
software engineering principles provided a good opportunity
for discussion of essential topics. It is well-designed. [...] 1
was very happy to understand many different opinions!”
Notably, this student also included ideas for improving the
course, by suggesting specific additional topics to be covered
in the future (like SOLID design principles in C# [33]).

As one comment illustrates, at least some of the students
were highly satisfied with the course: “I am particularly
grateful to [professor] for her dynamic teaching approach,
which made complex concepts accessible and engaging. Her
ability to convey intricate software engineering principles in
a clear and practical manner significantly enhanced my
understanding and interest in the subject. I have no
suggestions for improvement at this time, as the course met all
my educational needs. Thank you, professor [...], for a truly
enriching learning experience.”

Another set of data was obtained through the questionnaire
prepared by the instructor at the end of the course. In this

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

questionnaire, also anonymous, the participants were asked
several questions; some of them elicited their opinions
regarding multicultural classrooms, in terms of
advantages/disadvantages of such an environment. Two more
questions addressed the issue of whether cultural differences
affect communication with their teachers, on one hand, and
their student colleagues, on the other hand. The answers to
these two questions are aggregated in Figure 6. As can be
observed, about one third of the students believe that, in a
multicultural classroom, communication is “definitely”
affected or affected “most of the time” (a total of 36.67%
students chose one of these two options, in both cases — with
teachers and with colleagues). “Definitely not” was chosen by
almost a quarter of the students (23.33%), for both situations
of communication.

40%
35%
30%
25%

20%
15%
10%
5%
0% -

Definitely Most of the Very little Definitely I don't know
yes time not

mteachers mcolleagues

Figure 6. Answers to question “In your experience, do cultural differences
affect communication/interaction with your teachers/student colleagues™?

C. Key Lessons

The key lessons drawn from our experience, as presented
in this paper, are the following.

a) The software engineering classroom can provide an
environment for students to experience developing an actual
software product. Instructors must provide practical
experience as much as possible, not only theoretical concepts.

b) Collaborative learning is especially useful in a software
engineering classroom because it mirrors real-world team-
based development, enabling students to practice technical
problem-solving alongside essential communication and
teamwork skills.

¢) Games make learning fun and practical; game-based
learning is valuable in a software engineering classroom
because it increases motivation and engagement, while
allowing students to apply theoretical concepts through
interactive practice.

d) Multicultural classrooms provide students with an
experience that reflects global work settings and offers a
glimpse into software engineering practices across cultures.

e) The need for effective strategies to engage students in
the classroom cannot be overstated. Fulfilling course
objectives and achieving student satisfaction are closely tied
to engagement, as higher levels of involvement typically
translate into greater effort and commitment to learning.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

155

VI. CONCLUSIONS AND FUTURE WORK

Based on the experience of teaching a graduate software
engineering course to a multicultural group of students, this
paper highlighted ways to achieve student engagement
through collaborative activities and games. Collaborative
learning is an excellent way to prepare students for real-world,
team-based software development, whereas game-based
learning boosts motivation and helps students apply theory
through interactive practice. Our study showed that group
work in multicultural classrooms not only exposes students to
linguistic and cultural differences but also helps them
recognize the importance of stepping outside their comfort
zone for personal and professional growth.

Future work will focus on evaluating the extent to which
course objectives are met through the proposed strategies, and
on identifying the most effective approaches for optimizing
cooperative and game-based learning, particularly in
multicultural settings, with attention to overcoming language
and cultural barriers through suitable team formation.
Moreover,. artificial intelligence can be considered to provide
useful tools to overcome the language barriers in class.

REFERENCES

[1] S. Vasilache, “Working together: Class activities as cross-
cultural bridges in software engineering teaching,” in Proc.
ICSEA 2024.

[2] The Joint Task Force on Computer Science Curricula,
“Computer science curricula 2023,” [Online]. Available:
https://ieeecs-
media.computer.org/media/education/reports/CS2023.pdf.
[Accessed: Nov. 30, 2025].

[3] S. Vasilache, “Bringing interactive instruction to the software
engineering classroom: A multicultural group case study,” in
Proc. IEEE Global Engineering Education Conf. (EDUCON),
2025, pp. 1-5.

[4] E. Lopez-Fernandez, P. Tovar, P. P. Alarcon, and F. Ortega,
“Motivation of computer science engineering students:
Analysis and recommendations,” in Proc. 2019 Frontiers in
Education Conf. (FIE 2019),2019.

[5] D. Lépez-Fernandez, A. Gordillo, P. P. Alarcon, and E. Tovar,
“Comparing traditional teaching and game-based learning
using teacher-authored games on computer science education,”
unpublished.

[6] M. A. Alsubaie, “Examples of current issues in the
multicultural classroom,” J. Educ. Pract., vol. 6, no. 10, pp.
86-89, 2015.G. G. Borges and R. C. G. de Souza, “Skills
development for software engineers: Systematic literature
review,” Inf. Softw. Technol., vol. 168, p. 107395, 2024.

[7] M. Malcon-Cervera and C. Montaudon-Tomas, “Multicultural
classrooms: Advantages for foreign and local students. A
comparative study,” in Proc. EDULEARNI7, IATED, 2017,
pp. 6477-6485.

[8] S. Vasilache, “Bringing interactive instruction to the software
engineering classroom: A multicultural group case study,” in
Proc. IEEE Global Engineering Education Conf. (EDUCON),
2025, pp. 1-5.

[9] M. Laal and M. Laal, “Collaborative learning: What is it?,”
Procedia — Social Behav. Sci., vol. 31, pp. 491495, 2012.

[10] M. Laal and S. M. Ghodsi, “Benefits of collaborative learning,”
Procedia — Social Behav. Sci., vol. 31, pp. 486—490, 2012.

[11] “Collaborative learning vs. cooperative learning in the
classroom,” Promethean World, [Online]. Available:

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

https://www.prometheanworld.com/resource-
center/blogs/collaborative-vs-cooperative-learning/.
[Accessed: Nov. 30, 2025].

[12] L. Garcia, C. Pacheco, F. Méndez, and J. A. Calvo-Manzano,
“The effects of game-based learning in the acquisition of ‘soft
skills’ on undergraduate software engineering courses: A
systematic literature review,” Comput. Appl. Eng. Educ., vol.
28, no. 5, pp. 1327-1354, 2020.

[13] M. J. Sousa and A. Rocha, “Game-based learning contexts for
soft skills development,” in Proc. World Conf. Inf. Syst.
Technol., Cham: Springer, 2017, pp. 931-940.

[14] B. S. Tan and K. S. Chong, “Unlocking the potential of game-
based learning for soft skills development: A comprehensive
review,” J. ICT Educ., vol. 10, no. 2, pp. 29-54, 2023.

[15] J. A. Medina-Merodio, A. Castillo-Martinez, R. Barchino, R.
Estriegana, and R. Robina-Ramirez, “Factors influencing the
acquisition of soft skills in a collaborative learning
environment supported by game-based application,” [EEE
Access, 2024.

[16] J. Marti-Parrefio, A. Galbis-Cérdova, and M. J. Miquel-
Romero, “Students’ attitude towards the use of educational
video games to develop competencies,” Comput. Hum. Behav.,
vol. 81, pp. 366-377, 2019.

[17] E. O’Farrell, M. Yilmaz, U. Gulec, and P. Clarke, “Playsafe:
Results from a virtual reality study using digital game-based
learning for safe agile software development,” in Proc. Eur.
Conf. Softw. Process Improvement, Cham: Springer, 2021, pp.
695-707.

[18] “The scaled agile framework (SAFe),” [Online]. Available:
https://framework.scaledagile.com/#big-picture. [Accessed:
Nov. 30, 2025].

[19] S. Beecham, T. Clear, J. Barr, M. Daniels, M. Oudshoorn, and
J. Noll, “Preparing tomorrow’s software engineers for work in
a global environment,” /EEE Softw., vol. 34, no. 1, pp. 9-12,
2017.

[20] P. Schmiedmayer et al., “Global software engineering in a
global classroom,” in Proc. ACM/IEEE 44th Int. Conf. Softw.
Eng.: Softw. Eng. Educ. Training (ICSE-SEET), 2022, pp. 113—
121.

[21] S. Vasilache, “A taste of distributed work environments:
Emergency remote teaching and global software engineering,”
in HCI Int. 2021 — Posters, C. Stephanidis, C. Antona, and S.
Ntoa, Eds. Cham: Springer, 2021, pp. 624-628.

[22] “Manaba,” [Online]. Available: https://manaba.jp/products/.
[Accessed: Nov. 30, 2025].

[23] J. Vilela, S. C. dos Santos, and D. Maia, “Impact of team
formation type on students’ performance in PBL-based
software engineering education,” in Proc. CSEDU (2), 2024,
pp. 327-338.

[24] IEEE Computer Society, “Software engineering body of
knowledge,” [Online]. Available:
https://www.computer.org/education/bodies-of-
knowledge/software-engineering. [Accessed: Nov. 30, 2025].

[25] A. M. O’Donnell and C. E. Hmelo-Silver, “Introduction: What
is collaborative learning? An overview,” in The Int. Handbook
of Collaborative Learning, 2013, pp. 1-15.

[26] G. Rodriguez-Pérez, R. Nadri, and M. Nagappan, “Perceived
diversity in software engineering: A systematic literature
review,” Empirical Softw. Eng., vol. 26, no. 5, p. 102, 2021.

[27] A. C. Homan, D. Van Knippenberg, G. A. Van Kleef, and C.
K. De Dreu, “Bridging faultlines by valuing diversity:
Diversity beliefs, information elaboration, and performance in
diverse work groups,” J. Appl. Psychol.,vol. 92,no. 5, p. 1189,
2007.

[28] B. Willmott, “The agile paper airplane game,” [Online].
Available: https://www.ppm.academy/post/the-agile-paper-
airplane-game. [Accessed: Nov. 30, 2025].

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

156

[29] “Scrum,” [Online]. Available:
[Accessed: Nov. 30, 2025].

[30] P. Zainal, D. Razali, and Z. Mansor, “Team formation for agile
software development: a review,” Int. J. Adv. Sci. Eng. Inf.
Technol., vol. 10, no. 2, pp. 555-561, 2020.

[31] D. Strnad and N. Guid, “A fuzzy-genetic decision support
system for project team formation,” Appl. Soft Comput., vol.
10, no. 4, pp. 1178-1187, 2010.

[32] M. L. Yilmaz, R. V. O’Connor, R. Colomo-Palacios, and P.
Clarke, “An examination of personality traits and how they

https://www.scrum.org.

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

impact on software development teams,” Inf. Softw. Technol.,
vol. 86, pp. 101-122, 2017.

[33] N. C. Ramachandrappa, “SOLID design principles in software
engineering,” Int. J. Comput. Trends Technol., vol. 72, no. 9,
pp. 18-23,2024.

[34] R. G. Tweed and D. R. Lehman, “Learning considered within
a cultural context: Confucian and Socratic approaches,” Am.
Psychol., vol. 57, no. 2, pp. 89-99, 2002.

[35] D. Byrne, The Attraction Paradigm, vol. 11. Cambridge, MA,
USA: Academic Press, 1971.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

157

