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Abstract—With the exponential growth in the collection
of personal data, ensuring compliance with data protection
regulations such as the General Data Protection Regulation
(GDPR) has become a critical challenge. In this work, we
present a formal approach to GDPR compliance verification
based on data provenance. We model the behavior of systems
as provenance graphs, capturing the lifecycle of personal data
across processes. Compliance patterns corresponding to key GDPR
principles and rights are expressed as Prolog rules, enabling logical
inference over these graphs. We present a verification tool which
evaluates whether system executions meet legal obligations, and
provides interpretable feedback in case of violations. We provide
experimental validation on synthetic graphs to demonstrates the
feasibility of our approach.
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I. INTRODUCTION

With the increase in the number of computer systems and the
proliferation of online services, the collection and processing
of personal data has grown at an unprecedented scale. This
growing dependence on data-intensive services makes the
protection of personal data a critical concern. In response, legal
frameworks such as the General Data Protection Regulation
(GDPR) have been introduced to establish rights for individuals
and responsibilities for data controllers and processors.

While the GDPR provides a clear legal foundation, its
effective implementation remains a significant challenge. Ver-
ifying that a system complies with GDPR requirements
involves analyzing both the system’s specifications and its
actual behavior during runtime. Being capable of enforcing,
monitoring, and verifying compliance within the complex and
dynamic ecosystems of modern digital infrastructures is still
a challenge today. Indeed, compliance must be ensured at
several levels: the design of processes, the configuration of
data storage systems, and the execution of actions such as
consent collection, data sharing, and deletion.

Manual compliance verification is not only tedious and error-
prone, but often infeasible for complex systems with high data
volumes and dynamic behaviors. Furthermore, existing auditing
tools tend to focus on static policies or incomplete logs, and do
not capture the full context of data usage over time. There is
thus a growing need for formal, automated methods to evaluate
GDPR compliance.

Fortunately, the increasing computerization of data process-
ing offers an opportunity to support, and in some cases auto-
mate, parts of the compliance verification process. In particular,
by leveraging structured representations of system behavior
and data lifecycles, based on provenance models, it becomes
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possible to formalize and check compliance requirements seen
as patterns in provenance graphs.

Approach. Our work proposes a formal approach to repre-
sent and verify compliance with key GDPR principles using
provenance graphs. This representation enables us to track data
processing chains and apply rule-based checks, thus bridging
the gap between legal requirements and executable system
behaviors. Our method complements existing compliance-by-
design efforts by offering a verification mechanism capable of
evaluating compliance post hoc, based on actual data processing
traces.

Provenance provides a natural foundation for compliance
verification because it captures who performed which oper-
ations on which data, when, and under which dependencies.
Leveraging this representation, we identify the legal primitives
relevant to GDPR, such as data items, data subjects, processing
activities, purposes and rights-related actions, and map them
to provenance entities, activities, and relations following the
Open Provenance Model. This creates a uniform vocabulary in
which legal requirements can be expressed independently of
the underlying system. Then, we formalize GDPR principles,
such as lawfulness of processing, the right to be forgotten,
data minimization, and access rights, as declarative logic
patterns over the provenance graph. These patterns specify
constraints on the provenance graph structure, often involving
specific sequences or combinations of events. For example,
purpose limitation is formalized as a relationship between
consent events, permitted purposes, and subsequent uses of
personal data. Patterns are declarative and reusable: once
defined, they apply to any provenance graph that adheres
to the underlying schema, regardless of the system domain.
This shifts the focus from tool-specific implementation details
to a general, principle-driven method for analysing GDPR
compliance through provenance.

The formal patterns constitute the foundation of our approach:
they map regulatory concepts to precise constraints on the
provenance graph, define reusable templates for expressing
GDPR obligations, and support principled analyses of real
system behaviors. To evaluate these patterns over concrete
provenance data, we rely on a Prolog-based engine. The logical
specifications are encoded directly as Prolog predicates. When
the provenance graph is loaded, these predicates are instantiated
with the corresponding entities, activities, and timestamps,
allowing the engine to systematically traverse the graph and
determine whether the constraints are satisfied or violated.
This approach ensures coherence between the abstract legal

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

127



formalization and the executable checks performed on real
execution traces.

To assess scalability, we also developed a provenance
graph generator based on modular building blocks (called
“bricks”) representing common user interactions. These building
blocks can be assembled in various configurations to simulate
realistic data flows in different application domains (e.g., social
networks, online shopping, public administration). This enables
us to test our approach on large and diverse graphs under
controlled conditions.

Contributions. This work presents a comprehensive frame-
work for the automated verification of GDPR compliance based
on data provenance. It extends [1] by providing a detailed
presentation of the generalized provenance model and by
formalizing a significant subset of GDPR principles in the
form of provenance patterns. Moreover, a graph generator was
implemented, and an experimental evaluation using the Prolog
prototype was carried out to assess performance results.

Our key contributions are:

« A formal representation of selected GDPR principles and data
subject rights as logic-based patterns that can be evaluated
over provenance graphs.

o A verification tool, implemented in Java and Prolog, that al-
lows auditors to configure compliance checks, select specific
rights or principles to verify, and receive detailed feedback
on potential non-compliance or pending verifications.

« A method to produce synthetic but realistic datasets for
experimentation. We generate realistic provenance graphs
based on reusable components.

o An experimental validation showing the feasibility of our
method on both manually crafted and large, synthetic
provenance graphs, with performance analysis and scalability
insights.

Overall, our work demonstrates how logical reasoning over
provenance data can provide a powerful foundation for auto-
mated, explainable, and customizable compliance verification
tools. This contributes to the broader effort of making digital
systems not only more transparent, but also more accountable
with respect to data protection regulations.

The structure of this paper is as follows. Section II discussed
the state of the art. Section III introduces the context of the
General Data Protection Regulation (GDPR) and motivates
our work. Section IV presents the necessary preliminaries on
provenance modeling and describes our extensions to capture
GDPR requirements. In Section V, we detail our formal
approach for modeling compliance requirements. Section VI
outlines our methodology for semi-automated compliance
verification together with a prototype tool implementation.
Section VII reports on the experiments conducted to validate
our approach. Finally, we conclude with the perspectives for
future research in Section VIII.

II. RELATED WORK

The General Data Protection Regulation has triggered a broad
range of research efforts aimed at understanding, supporting,
and enforcing data protection principles within digital systems.
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Several studies have sought to analyze whether real-world
systems comply with GDPR requirements [2][3][4]. These
works often rely on case studies, audits, or systematic eval-
uations of privacy policies and data processing practices.
While valuable for revealing compliance gaps, such approaches
are mostly retrospective and provide limited automation or
generalizability.

Another line of research focuses on developing technical
solutions to support compliance checking in a more systematic
way, see for instance [5][6][7]. These works are based on the
formalization of legal norms themselves. This effort is crucial
to support both design- and runtime compliance, as it provides
the formal foundation upon which reasoning, verification, and
automation can be built. Translating legal texts into formal
logic is a complex and delicate task that requires capturing the
subtleties of legal language, its contextual dependencies and
normative intent in a structured, machine-interpretable form.

Various approaches have been proposed to bridge the gap
between natural legal language and logical formalism. A widely
adopted strategy involves the use of ontologies to model legal
knowledge. As discussed in [8], ontologies provide a structured
representation of legal concepts and their interrelations, making
it easier to translate legal provisions into sets of logical rules.
This modeling facilitates knowledge sharing, consistency check-
ing, and reasoning over legal domains. While ontology-based
approaches offer rich semantic models of GDPR concepts, they
primarily support reasoning over declared system properties.
In contrast, our approach focuses on operational compliance:
provenance graphs capture the actual flow of personal data
and the causal structure of system executions. This makes it
possible to detect violations that arise from concrete system
behavior, rather than from inconsistencies in the system’s
specification. Ontology-based models and provenance-based
verification may be complementary: ontologies can supply high-
level semantic annotations, whereas provenance provides the
fine-grained, event-level evidence required for auditing real
system executions.

Another notable development is LegalRuleML [9], an XML-
based extension specifically designed to represent legal norms,
their conditions of applicability, and the structure of legal
arguments. LegalRuleML aims to support automated reasoning
and interoperability between legal information systems, offering
a standardized way to encode normative content.

Complementary to these formalization efforts, some research
has focused on making logical representations accessible and
verifiable by legal experts. For instance, Bartolini et al. [10] pro-
pose using RIO logic to express legal provisions in a structured
but human-readable format. This representation allows legal
practitioners to validate the formalization of regulations while
preserving the rigor needed for automated compliance checking.
Such approaches enhance the transparency and trustworthiness
of logic-based systems used in legal contexts.

Since the adoption of the GDPR in 2016, considerable
research has focused on designing systems that are compliant
by design, in line with Article 25 of the regulation. In [11], the
authors extract Technical and Organizational Measures (TOMs)
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directly from the GDPR text to support the development of
a compliance-assisting tool. This tool relies on contractual
relationships between users and organizations, implemented
through knowledge graphs. This formalization allows the
system to reason over contractual obligations and compliance
requirements in a machine-interpretable way.

Building upon this foundation, [12] extends the previous
work by incorporating the notion of consent and adapting the
tool to the context of smart cities and [oT environments. The
primary goal of this enhancement is to ensure GDPR compli-
ance for resource-constrained or distributed infrastructures.

Other studies, such as [13], approach compliance by focusing
on business process modeling. The authors propose a method-
ology for aligning business workflows with the obligations
imposed on data controllers by the GDPR. While the work
offers a structured approach to incorporating privacy by design,
it remains theoretical, demonstrated only through a case study
involving a telecommunications operator, and does not include
a dedicated tool or automation component.

Similarly, [14] employs business process models to embed
compliance features in IoT systems. Their work stands out
by introducing smart contracts and blockchain technologies
to facilitate automated compliance verification. Drawing on
the methodology of [15], they address several key GDPR
principles, including confidentiality, consent, data minimization,
data protection, and data transfer.

Also, numerous frameworks and guidelines have been
proposed to support developers in incorporating privacy re-
quirements throughout the system lifecycle. For instance,
Saltarella et al. [16] survey approaches that support system
designers in aligning their architectures with GDPR principles
from the outset. Similarly, Rhahla et al. [17] present a
comprehensive study of academic and industrial tools intended
to facilitate GDPR compliance, with a focus on development-
time integration.

Compared to these approaches, that emphasizes design-time
compliance or high-level modeling, our contribution aims
to formalize and verify that runtime behaviors, specifically,
actions performed on personal data, adhere to the GDPR’s
principles and constraints. In contrast to the above efforts,
relatively few works have addressed the runtime verification of
actions and behaviors performed by systems, especially from
the perspective of compliance with GDPR obligations. Ensuring
that concrete system operations, such as data access, sharing,
deletion, or processing, respect legal constraints in practice
remains a largely open challenge. Existing approaches often
lack the granularity or formality needed to assess compliance
at the level of individual actions or data flows.

In [6], the authors translate a subset of GDPR articles into
temporal logic formulas to automate compliance verification.
Their approach leverages MonPoly, a monitoring tool that
processes system event logs by translating them into MFOTL
logic and compares them against GDPR rules to detect potential
violations. While effective for specific cases, this work remains
limited to a small subset of GDPR provisions and does not
address key principles such as purpose limitation.
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Building on a broader scope, [18] introduces a framework
developed within the European project Cloud4EU [19], which
combines different techniques to verify GDPR compliance in
cloud environments for the public sector. Their contribution lies
in the semi-automated translation of regulatory texts into logical
rules, enabling dynamic updates as new laws or amendments
are introduced. These rules can be applied both to runtime log
verification and to compliance-by-design approaches, where
traces generated from business models are checked against
GDPR requirements. Nevertheless, the use of LegalRuleML
within this framework remains relatively basic. As the authors
themselves highlight, the current metamodel is primarily geared
toward legal representation and requires significant extensions
to support advanced compliance reasoning.

Other lines of research explore the use of machine learning to
automate parts of this process, especially the translation of legal
texts. For example, [20] investigates text processing techniques
to facilitate compliance reasoning. Similarly, Zimmeck et
al. [21] apply natural language processing to automatically
extract GDPR-relevant requirements from privacy policies,
demonstrating the potential of NLP for large-scale analysis.
However, these approaches still face challenges in accurately
capturing certain GDPR concepts, whose semantic complexity
and context-dependence are difficult to formalize.

Our work follows the same general line of formal spec-
ification of [6], which relies on temporal logic to reason
about consent and event sequences, but we adopt a broader
provenance-based perspective. By introducing a set of purpose-
oriented and constraint-based provenance patterns, our frame-
work supports the expression of GDPR principles that involve
conditional or evolving requirements. This makes it suitable
for capturing a wider range of compliance scenarios, including
the verification not only of whether consent exists for a given
piece of data, but also of whether the specific purpose stated
in the consent request is actually respected. Moreover, in
contrast with approaches based on temporal logic or high-
level ordering constraints between events, our provenance-
based representation provides explicit temporal information
attached to provenance activities. Therefore, we can determine
exactly when a consent was granted, how long it remained
valid, and during which period a given piece of personal
data was accessed, transmitted, or stored. By using in the
analysis concrete time intervals extracted in the provenance
graph directly from system logs, our approach captures forms of
temporal misuse that cannot be detected using purely qualitative
or symbolic temporal relations.

III. CONTEXT AND MOTIVATIONS

A. The General Data Protection Regulation

In order to safeguard the privacy of its citizens, the European
Union adopted a directive in 1995 [22], introducing the notions
of informed consent, the right of access and rectification, and
the obligations of data controllers with respect to the collection,
processing, and storage of personal data. This directive laid
the foundation for the General Data Protection Regulation
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(GDPR), which came into force in 2018 and has since become
the cornerstone of European data protection law.

The GDPR establishes a comprehensive framework that
regulates the collection, processing, and dissemination of
personal data, and it applies to any organization, whether
public or private, operating within the EU or targeting European
residents. In its Article 4, the regulation defines key concepts
to delineate its scope. Personal data is understood as any
information relating to an identified or identifiable natural
person, the data subject. Processing is broadly defined as
any operation performed on personal data, from collection
and recording to storage, modification, or dissemination. The
notion of data controller refers to the person or organization
that determines the purposes and means of the processing and
is ultimately responsible for compliance. Consent is defined as
a freely given, specific, informed, and unambiguous indication
by the data subject of their agreement for personal data to be
processed for a clearly stated purpose.

The regulation is articulated around a set of fundamental
principles that ensure lawful, fair, and transparent processing,
restrict the use of data to explicit and legitimate purposes,
and require that only the necessary amount of information be
collected and maintained accurately over time. It also limits
storage to what is strictly necessary, obliges organizations
to guarantee the confidentiality and integrity of data through
appropriate safeguards, and finally, introduces the principle of
accountability, by which controllers must be able to demonstrate
their compliance at all times. In addition to these principles, the
GDPR includes a wide range of rights for individuals, including
the right of access, rectification, erasure (often referred to as
the "right to be forgotten") as well as the rights to restrict
processing, to data portability, and to object to certain forms of
processing. Together, these provisions aim to give individuals
effective control over their personal information in the digital
society.

B. Motivations

Although the objectives of the GDPR are clear, ensuring
compliance in practice represents a considerable challenge
for organizations. This challenge is both organizational and
technical, since it requires translating often complex legal
requirements into operational practices and embedding them
within the functioning of information systems. A particularly
delicate issue concerns the notion of purpose. Organizations
must not only declare the reasons why they collect and process
personal data, but also guarantee throughout the entire lifecycle
of the data that these purposes are respected and remain
aligned with the consent initially given by individuals. Tracking
and documenting these purposes across complex systems is
a demanding task, especially when data is reused in multiple
contexts.

Compliance also demands meticulous documentation of
processing activities, the legal bases invoked, the consents
obtained, and the technical and organizational measures put in
place to ensure security. These obligations are generally verified
through audits, which assess the adequacy of procedures.
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However, such audits are often labor-intensive and retrospective
in nature. Automating them, at least partially, is a pressing
need if organizations are to sustain compliance in a scalable
and efficient manner.

Further difficulties arise from the necessity to ensure that
modifications such as rectification or erasure are consistently
propagated across all replicas. This issue of replication con-
sistency is critical for respecting principles such as accuracy
and storage limitation, as well as rights such as the right to
erasure.

These different challenges leave traces within the systems
themselves, in the form of logs or event records that capture
the sequence of operations performed on data. By analyzing
these traces, it becomes possible to assess whether certain
principles or rights have been respected, thereby opening the
way to automated forms of compliance verification. However,
it is important to recognize that not all principles or rights
lend themselves to such automation. Certain notions embedded
in the GDPR, such as fairness and transparency, cannot be
automatically verified because they depend on communication
methods and contextual nuances that system traces cannot
capture. The automation of legal verification therefore has
limits: while it can significantly reduce human error, accelerate
verification processes, and help maintain continuous compli-
ance, it cannot fully replace human judgment when it comes to
subjective assessments. For instance, the evaluation of whether
a request for consent is expressed in clear and understandable
terms (article 12 to 14) remains outside the reach of automated
systems. Similarly, the principle of data minimization raises
complex challenges, since determining whether a dataset is
“necessary” (article 5.1.c) for a given purpose often requires
domain expertise and contextual knowledge. In such cases,
compliance is better supported by establishing precise specifica-
tions of procedures and processes, and then verifying that these
specifications are respected. Furthermore, many parts of the
GDPR, such as Chapters 6, 7, and 8, dealing respectively with
supervisory authorities, cooperation mechanisms, and remedies
and penalties, regulate institutional, procedural and enforcement
aspects rather than the technical or operational rules of data
processing.

Given these limitations, our work focuses on the subset of
GDPR provisions that can be addressed through system-level
analysis. More specifically, we concentrate on the principles
of lawfulness, purpose limitation, and storage limitation, as
well as the rights of access and erasure. These aspects are
particularly amenable to verification through system traces and
provenance data, since they can be formalized as constraints on
the occurrence, timing, and consistency of processing events.
Our approach therefore emphasizes the automation of articles
directly concerned with event compliance, while considering
semi-automated methods for those that require complementary
verification.

In this way, we aim to contribute to the broader goal of
bridging the gap between legal requirements and system imple-
mentation, by providing methods that support both automation
where feasible and human oversight where necessary.
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C. Examples

In this work, we concentrate on three aspects that we consider
fundamental: the traceability of purposes, the enforcement of
storage limitations, and the consistency of data erasure across
replicas.

Purpose traceability requires that consented purposes ac-
company personal data throughout all processing activities,
ensuring that data is not diverted from its legitimate use.

Example 1 (Purpose traceability): A system respects the
purpose limitation principle when personal data is processed
exclusively for the purposes explicitly consented to by the data
subject. Consider the following situation in an online forum:
Bob joins a discussion group, and as part of this action, his
personal data is associated with the creation of cookies. Two
different scenarios illustrate compliance and non-compliance.

Compliant scenario: Bob joins a cooking interest group.
In this context, the forum generates an analytics cookie used
solely to improve the performance of the website. The cookie
remains internal to the platform and is accessible only to the
maintenance team, fully aligned with the purpose to which
Bob initially consented.

Non-compliant scenario: Bob joins the same cooking
interest group, and the forum once again creates an analytics
cookie. However, despite Bob having explicitly withdrawn
his consent for any sharing with third parties, the cookie is
nonetheless transmitted to an external kitchenware vendor. This
constitutes a clear violation of the purpose limitation principle,
as the data is processed beyond the scope of the consent
provided.

Concerning storage limitations, temporal constraints must
be verified to check that data is retained no longer than
necessary and that requests from data subjects are honored
within prescribed deadlines.

Example 2 (Data storage limitation): The storage limitation
principle requires that personal data be retained only for as
long as necessary in relation to the purposes for which it was
collected. Automating compliance with this principle typically
involves checking that data subject information is deleted or
anonymized once the retention period has expired. Consider
the case of Alice, who creates an account on an online forum
and contributes content. The following scenarios illustrate
compliance and non-compliance.

Compliant scenario: Alice registers on the forum and
actively participates by posting reviews. After five years of
inactivity, the system enforces its retention policy and deletes
Alice’s account data. Two years later, when Alice attempts to
log in again, she receives an error message indicating that the
account no longer exists. This demonstrates compliance with
the predefined five-year retention limit.

Non-compliant scenario: Alice registers on the forum and
posts several reviews. After seven years without activity, she
attempts to log in again and is still able to access her account
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with all of her personal data intact. This persistence of data
beyond the declared five-year limit constitutes a violation of
the storage limitation principle.

Data erasure consistency, finally, is needed to guarantee
that compliance-related actions such as deletion are properly
applied across all copies of the data within the system.

Example 3 (Consistency of data deletion across copies):
Compliance with the right to erasure requires that when a
deletion request is made, all copies of the corresponding data
within the system are removed. These copies may exist in
different modules of the system, such as the main database,
user activity logs, or temporary caches. Consider the following
scenarios for David, who has an account in an online forum.

Compliant scenario: David requests the deletion of his
account. The system processes the request by erasing his
personal data from the main user database, cleaning the activity
logs, and clearing cached data related to his profile. When
David later attempts to log in, his account no longer exists,
confirming that all copies of his data have been consistently
deleted.

Non-compliant scenario: David deletes his account, and
the system removes it from the main user database. However,
his data remains in the activity logs used by the forum
administrators. Weeks later, traces of David’s activity are still
accessible, revealing that the deletion request was not fully
enforced across all system copies, thus violating the GDPR.

Together, these challenges highlight the necessity of sys-
tematic and automated approaches to compliance verification,
which we aim to address through the use of provenance
information.

IV. PRELIMINARIES

In this section we present the Open Provenance model [23]
and its generalization to represent GDPR requirements.

A. The Open provenance model

Provenance information is usually represented as a labeled
direct graph (called provenance graph) that expresses how
objects evolve in the system. A provenance graph is a triple
G = (W,&,L), where N is a set of nodes, £ is a set of
directed edges between nodes, and L is a set of labels. A node
in the graph can represent an artifact, which is an immutable
piece of data, a process, which is used to denote the action
performed on an artifact and resulting in a new artifact; or
an agent, which is used to denote the entity controlling or
affecting the execution of a process. We denote the sets of
artifacts, processes, and agents as O, P, and A, respectively
(with N = OUPUA and O, P, A pairwise disjoint). Edges
represent labeled casual dependencies between nodes. Role
labels R C L define the function of an agent or an artifact in
a process.

The Open Provenance model defines three main causal
dependencies (see Table I): used, wasGeneratedBy, and
wasControlledBy. The first two dependencies indicate a link
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between an artifact and a process: used connects a process to
the artifacts used in the process and wasGeneratedBy links a
process to the resulting artifact. Dependency wasControlledBy
indicates which agent controls a process. The Open Provenance
model also includes additional dependencies that can be derived
from a provenance graph by composing dependencies. For
instance, composed dependency was TriggeredBy indicates that
the execution of a process was triggered by another process,
and dependency wasDerivedFrom denotes that an artifact was
derived from another artifact. As done in [24], we make the
role parameter explicit to be able to specify what role the
first artifact played in the creation of the new one. Multi-step
dependencies can be defined by transitive closure. For instance,
wasDerivedFrom™ captures, for an artifact, all artifacts used
to derive it, possibly indirectly. Similarly, wasTriggeredBy™
captures, for a process, all its direct and indirect triggering
processes. The latter is also used to define the indirect use
(used™) and generation of artifacts (wasGeneratedBy™).

To reason over temporal aspects and information evolution
in a system, we extend the Open Provenance model with time
observations, following [23]. We assume time is measured by an
observer according to a single clock (or synchronized clocks),
in such a way that time observations may be comparable.
Moreover, observed time is expected to be compatible with
causal dependencies, e.g., an artifact must exist before it is
being used, a process generates artifacts before it ends, etc. In
other words, causality implies time precedence. Provenance
causal dependencies are decorated with time information
expressed as timestamps associated with edges. We consider a
series of ordered time points denoted as tsy,...,ts, € T,
with ts; < tsy < < ts,, which represent specific
points in time. We define a time interval [tss,ts.], as the
interval of time between tss € 7T, starting time point, and
tse € T, ending time point. We assume that a process runs
for a time interval [tss,ts.], with tss,ts. € T. All used or
generated artifacts are used or created during this time window.
Accordingly, in the provenance model with time observations,
edges "wasControlledBy" are extended with the time interval
[tss,tse], and edges "used" and "wasGeneratedBy" are ex-
tended with a timestamp ts € [tss,ts.] indicating that the
artifact was used by the process (in the case of used) or
that the artifact was created by the process (in the case of
wasGeneratedBy) at a given time ts.

Following [24], we introduce two custom dependencies
to capture the owner and the contributors of an artifact, as
presented in the third block of Table I. In particular, owns
captures the classical assumption in discretionary access
control where the agent creating an artifact owns that artifact;
contributedTo extends dependency wasControlledBy to
identify the agents that have contributed, directly or indirectly,
to the creation of an artifact. While in [24], the dependency
wasControlledBy and, in turn, the dependency contributedTo
were used only to link a process with an agent involved
actively in a process, here we extend these dependencies to
link a process to an agent involved actively or passively in the
creation of an artifact. To this end, we explicitly model a role in
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contributedTo to denote in which way a subject was involved
in the creation. If the role in contributedTo is owner, the
casual dependency has the same meaning as the one in [24].

We also introduce the dependency notAvailable to capture
that a previously created artifact is no longer available in the
system (i.e., the artifact has been deleted).

As done previously, we can extend these dependencies with a
timestamp. We suppose that an agent has owned an artifact since
its generation (i.e., the timestamp associated with the edge owns
matches the time parameter in the composing wasGeneratedBy
dependency). Similarly, for the dependency contributedTo,
its timestamp coincides with the time associated with the
generation of the artifact. The notAvailable dependency has
a timestamp indicating the time when the artifact has been
deleted (thus matching the timestamp of the composing used
dependency). It is worth noting that the definition of this
last dependency uses a predicate action that, given a specific
process instance, returns its type. This is needed because
policies typically specify "types" of actions rather than process
instances, as demanded by the provenance graph.

Provenance information can be represented graphically, as
illustrated in Fig. 1. Following the standard notation for
provenance graphs [23], artifacts are represented as circles,
processes as rectangles, and agents as octagons. Edges are
annotated with the type of dependency, the role of artifacts and
agents in processes and the temporal information. For instance,
in the graph of Figure 1, one can see that the artifact data
report has been generated by the process sendData using
the artifact data request.

B. Extending provenance information for compliance

In the context of the GDPR, it is crucial to represent personal
data in a way that allows one to identify the processes acting
upon it, the purposes for which it is used, the consent given by
data subjects, and the degree of compliance with user rights.

To achieve this, we extend the provenance model so that
it explicitly distinguishes personal data and better captures
consent mechanisms. This extension is implemented through
the introduction of additional artifact nodes and enriched node
attributes.

a) Specific nodes.: When personal data is involved,
individuals are typically presented with a template of possible
choices for granting or denying consent (a privacy policy
template). In the provenance graph, such a template is rep-
resented as an artifact node. Once the individual makes a
decision, the corresponding consent is also modeled as an
artifact. If consent is later modified, a new artifact is created to
represent the updated state. This new artifact is linked to the
previous one via a wasDerivedFrom edge, ensuring versioning
of consent. For instance, in Figure 1, Bob’s consent evolves
from consent_bob_v0 to consent_bob_uv1 after he adjusts the
purposes he had initially authorized.

Purposes themselves are captured as attributes associated
with consent artifacts. It is important to note that artifacts in
the provenance model are immutable objects: any modification
to data or consent does not overwrite the existing artifact but
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Basic casual dependencies from [23]

used(p: P,d: O,r: R,tsy : T)
wasGeneratedBy(d : O,p: P,r: R,tsq: T)
wasControlledBy(p : P,s: A, 7 : R,tsp € T,tse : T)

wasDerivedFrom(d; :

wasTriggeredBy(p1 : P,p2 : P,tsy : T) =3d € O,r1,72 € R,tsg € T : used(p1,d,r1,tsy) A wasGeneratedBy(d, p2, 72, tsgy)
O,dy : O,r: R,tsg : T) =3p € P,r; € R,tsy € T : wasGeneratedBy(d1,p, r;, tsg) A used(p, da, 7, tsy)

Multi-step casual dependencies from [23]

used™(p: P,d: O, tsy : T,tse : T) = Ip; € P,r € R,tsy € T : wasTriggeredBy™ (p, p;, tsyr, tse) A used(p;, d, 7, tsp)

wasGeneratedBy ™t (d: O,p: P,tsy : T,tse : T) = Ip; € P,r € R,ts., € T : wasGeneratedBy(d, p;, r, ts¢) A wasTriggeredBy™ (p;, p, tsp, tsl)

wasTriggeredBy ™ (p1 : P,pa : P,tsy : T, tse : T) = (wasTriggeredBy(p1, pe, tse) A (tsy = tse)) V (Ip; € P, ts € T : wasTriggeredBy(p1, pi, tse)
AwasTriggeredBy ™ (p;, p2, tsp, ts))

wasDerivedFrom™ (dy : O,ds : O, tsy, : T,tse : T) = (wasDerivedFrom(dy, da, 7, tse) A (tsy, = tse)) V (3d; € O,r; € R,ts. € T : wasDerivedFrom(dy, d;, i, tse)
AwasDerivedFrom™ (d;, dz, tsy, ts.r))

Additional casual dependencies

owns(s: A,d: O,tsg : T)=3p € P,r € R,tsp,tse € T : wasGeneratedBy(d, p, r, tsy) A wasControlledBy(p, s, owner, tsy, ts¢)
contributedTo(s : A,d: O,r: R,tsg:T)=3p € P,tsp,lse €T : wasGeneratedBy ™ (d, p, tsg,ts) A wasControlledBy(p, s, 7, tsp, tse)
notAvailable(d : O,ts: T) =3p € P,r € R : used(p, d, r,ts) A action(p) = delete

TABLE I. CASUAL DEPENDENCIES FOR OUR MODEL

instead gives rise to a new artifact. This new version is linked
back to its predecessor through a wasDerivedFrom dependency
with the role update, thereby maintaining the integrity of the
evolution history.

b) Specific attributes: Our model relies on two main
types of attributes. The first serves to distinguish artifacts that
constitute personal data. Since the GDPR explicitly governs
the processing of personal data, only these artifacts are subject
to compliance checks; other data in the system remains outside
its scope unless it embeds personal information. To capture
this distinction, we introduce the Boolean attribute dp. For
example, dp(email_bob) = True indicates that the artifact
email_bob represents personal data.

The second type of attribute encodes the purposes for which
consent has been granted. A purpose corresponds to an action
performed by a process (e.g., purchase, information request)
captured by the predicate action, introduced in the previous
section.

Since consent links personal data to authorized purposes,
this relation is captured within a dedicated purposes at-
tribute on consent artifacts. This attribute can be formalized
as a list of tuples, each associating an artifact (personal
data) with the set of authorized purposes. We denote the
purposes attribute of the cons artifact as purposes(cons) =
[(artefacty, listy), ..., (artefact,, listy)].

When the system does not allow purpose specification at the
level of individual artifacts, a simplified representation is used:
k =1 and artifact; = _ , meaning that the consent purposes
apply globally to all personal data.

C. Running example

To illustrate our approach, we introduce a running example
that will be used throughout the paper. Figure 1 depicts an
online forum modeled as a provenance graph. In this system,
users can create accounts to join discussion groups, where they
are able to post and reply to messages. The forum adopts a
global approach to purposes: consent is defined at the account
level and does not depend on individual data items.

In the example, Bob creates an account (create_account
process) and provides several pieces of personal information
such as his e-mail address and telephone number, which are

stored by the system. At registration, an identity number is
automatically assigned, along with a personal wall and a friends
list, each of these elements being considered personal data
under the GDPR. Bob must also specify the purposes for which
his data may be processed. Initially, he authorizes its use for
both marketing (including third-party sharing) and analytics
(service improvement), a choice represented in the graph by
the artifact consent_bob_v0. Later, he revises his preferences
by withdrawing consent for marketing while keeping analytics
enabled. This update produces a new artifact, consent_bob_v1,
linked to the previous one as described in the preceding section.

Subsequently, Bob joins a cooking interest group. At this
point, the system generates a cookie, which is sent to an
external vendor of kitchenware, despite Bob’s updated consent.
This illustrates a non-compliant behavior with respect to the
principle of purpose limitation.

The graph also shows the role of the Data Controller (DC'
agent). For example, Bob requests access to his personal data,
and the controller provides a response. He later asks for the
deletion of his phone number (ask_erase process), but this
request remains unfulfilled, highlighting another case of non-
compliance.

Notice that the graph, timestamps are expressed in minutes
and, for readability reasons, node attributes (such as purpose
or personal data markers) are not explicitly visualized in the
provenance graph, even though they are formally associated
with the corresponding artifacts.

Example 4 (Purpose attribute): In the scenario illustrated in
Figure 1, purposes are defined globally. The purpose attribute
of the artifact consent_bob_uv0 is expressed as:

purposes(consent_bob_v0) =

” N

[( _,["thirdParties”,” analysis”,” improvement”])]

This notation means that Bob’s consent applies uniformly to
all his personal data, authorizing its use for third-party sharing,
analysis, and service improvement.

Now consider an extended version of the forum that includes
an integrated online shop. To better align with the principle of
data minimization, the system allows users to grant different
consent for each category of personal data. For instance, Bob
may agree that his physical address, e-mail, and bank account
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can be used when purchasing products, but restrict refunds
to rely solely on his bank account number. In this case, the
consent attribute would be represented as follows:

purposes(consent_bob_v0) =

[(name_bob, [? buy”,” refund”]),
(address_bob, [?buy”]), (email_bob, [” buy”]),
(bank_account_bob, [” buy”,” refund”])]

This finer-grained modeling provides a more precise representa-
tion of user preferences, ensuring that data is processed strictly
within the scope for which explicit consent has been granted.

Our work proposes to use provenance graphs to represent
the evolution of the system over time and to model the
principles and rights defined in the GDPR using patterns,
defined as path expressions in the next section.

V. MODELING PRINCIPLES AS PROVENANCE PATTERNS

Some of the GDPR principles introduced in Section III are
directly related to data processing, which makes the compliance
verification easier to be automated or semi-automated.

In this section we formalize the selected GDPR principles
as patterns in a provenance graph representing the system
execution history, then we focus on user rights verification.
A pattern is a path expression composed of conjunctions
and/or disjunctions of causal dependencies. Possibly, temporal
constraints or constraints on attribute values can be included
in patterns. The constraints on attribute values ensure that the
value of the attribute in the graph corresponds to the value in
the pattern. If the attribute value is a list, as in the case of
the purposes attribute, the constraint is verified if the value
belongs to the list.

When we use negation in our patterns, we follow the negation
by failure principle, similar to what is used in Prolog. This
means that a pattern is considered negated (i.e., false) if the
system fails to find any instance that satisfies it. In other words,
rather than proving that the negated condition is logically false,
we assume it is false because no matching example can be
found.

A. Principles of the GDPR

In this section we start by formalizing the lawfulness
principle, related to the notions of consent and purpose. Then,
we model the storage limitation principle, related to the notion
of legal retention limit.

1) Consent and purpose limitation: As previously intro-
duced, consent and purpose are closely linked. Indeed, the
GDPR stipulates in its basic principles that any data processing
must be consented to and imposes purpose limitation as a
principle. We present next how to formally define the patterns
related to the purpose and the presence or absence of consent.

We write isPurpose(PU, D, C) if the purpose PU has been
consented for the personal data D in the consent artifact
C. If the piece of data is not specified, we simply write
isPurpose(PU, _,C'), where _ stands for any personal data
and the purpose is called global.
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Personal data cannot be used if the data subject has not given
consent for the intended purpose (Art. 6.1.a). To determine
whether the data subject has consented to the use of his or her
personal data D for the purpose PU, there must be a consent
artifact C' for which PU is a purpose for D. The following
path expression formalizes this:

consent(C, D, PU,T) =
wasControlledBy(P1,.S,” owner”, TB, TE)A
wasGeneratedBy(C, P1,” consent”, T)A
isPurpose(PU, D, C')

where C represents the consent (artifact) created by the process
"consent" P1 controlled by the data subject S as owner of the
personal data D. The timestamps 7', T'B, and T'E are included
in the pattern because there may be multiple instances of the
consent C' within the graph. The consent may correspond either
to the one initially provided by the data subject (as represented
by the consent process in Figure 1) or to a subsequent
modification (the update process in the same figure). Once
the value of T is instantiated, it uniquely identifies a specific
occurrence of C, allowing it to refer to a single artifact.

Example 5 (Pattern for consent):

In the scenario presented in Figure 1, the pattern
consent(consent_bob_v0, email_bob,” analysis”,T) is eval-
uated to true.

This is because the path

wasControlledBy(consent, Bob,” owner”, 16, 20)A
wasGeneratedBy(consent_bob_uv0, consent,” consent”, 17)

exists in the provenance graph. The consent artifact
consent_bob_uv0 contains the global purpose “analysis” and
the timestamp of its generation is indeed 17.

2) Consent revocation and update: As stated in Article 7.3
of the GDPR, the data subject must be able to withdraw his/her
consent at any time. Consent revocation is modeled using the
predicate revoke and the following pattern:

revoke(C, T') = used(P, C,” revokeConsent”, T)

where C' refers to the consent artifact, 7' is the timestamp
indicating the time of revocation, and P denotes the process
responsible for revoking the consent. Since the revocation
applies to all purposes of all associated artifacts, the predicate
is independent of any specific data or purpose.

Instead of being entirely revoked, consent preferences can be
modified by the data subject, either to add or remove purposes.
In such cases, a new artifact is created in the provenance graph,
derived from the previous consent artifact, through a process
that performs an update initiated by the data subject.

The following pattern allows us to verify whether a consent
artifact C' has been updated by the data subject S at a given
time 7":

nextConsent(C,C1,T) =
wasControlledBy(P1, S,” owner”, TB, TE)A\
used(P1, C, " updateConsent” , TU)A
wasGeneratedBy(C'1, P1,” consent”, T)
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Figure 1. Extract from the provenance graph of an online forum.

Notice that nextConsent(C, C'1,T') refers to the artifact rep-
resenting the update that directly follows the consent version
denoted by C. It is important to note that since artifacts
represent immutable objects, any modification to the original
object leads to the creation of a new artifact. Consequently,
for a given C, there can be only one corresponding instance
of C'1.

We can easily verify whether a consent artifact is the
latest existing version, using the predicate lastConsent and
the following pattern:

lastConsent(C') =
consent(C, D, PU,T) A =(nextConsent(C,C1,TU))

As explained earlier, —(nextConsent(C,C1,TU)) is inter-
preted as negation by failure. This means the pattern

lastConsent(C') holds true if C' represents a consent and there
is no pair (C'1,TU) such that nextConsent(C, C'1,TU) exists
in the graph. In other words, C' is considered the latest consent
definition when no subsequent update artifact follows it.

Example 6 (Consent update):

In the provenance graph shown in Figure 1, Bob
has updated his consent once, resulting in the cre-
ation of a new artifact, consent_bob_vl. The pattern
nextConsent(C,C1,T) can be instantiated with C' =
consent_bob_v0, C1 = consent_bob_v1, and T = 29. Con-
sequently, lastConsent(consent_bob_uv0) evaluates to False,
while lastConsent(consent_bob_v1) evaluates to True.

3) Lawfulness: As stated in Article 5 of the GDPR, an
artifact is considered to have been used lawfully if it was
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Article | Pattern

| Description

Principle: Purpose Limitation

6.1(a) consent(C, D, PU, T)

consent C given for data D to be used for PU purpose at time T

7.3 revoke(C, T') consent C revoked at time T
7.3 nextConsent(C, C1,T) updated consent C into CI at time T
7.3 lastConsent(C') C has no updates

Principle: Lawfullness

—isPersonal(D)

artifact D is not personal data and doesn’t derived from personal data

51(a) | validConsent(D, PU,C, T, TG, TU)

consent C for D and PU valid at time T

5.1(a) validConsent™ (D, PU,C, T, TG, TU)

consent C for personal data from which D is derived and PU valid at time T

5.1.(a) | legal(P,D,C, TG, TU)

treatement of D by process P lawfull

Principle: Storage Limitation

- usagelnLimit(D, P)

process P used D during the authorized interval

- delationComplete(D)

D has been deleted before the end of the authorized period

retentionValid(D)

authorized period to use D not expired

5.1(e) | storageLimitation(D)

compliance of the storage limitation for D

Rigth: To Be Forgotten

- askErase(S, D, T)

request from S to delete D at time T

- eraseNotDoneYet(D)

D not deleted yet but still in the allowed time

- erased(D)

D erased during authorized period

copiesErased(D)

D replications erased during authorized period

17(a) eraseComplete(D)

compliant to the erase principle for the request on D

Right: To Access

15.1 askAccess(U,TB,TE)

user U asked for access at time TE

15.1 rigthAccess(U)

U’s request answered in time

TABLE II. PATTERNS EXPRESSING GDPR PRINCIPLES AND RIGHTS

processed solely for purposes to which the data subject has

given valid consent. In the context of a provenance graph, this

means that all paths leading from a consent artifact to a process
must demonstrate that the processing was authorized.

More precisely, for each process P that uses a data artifact,
the provenance path must confirm two conditions: the data
subject had provided valid consent for the specific purpose at
the time of processing, and this consent had not been revoked
during the execution of P.

From the structure of the graph, two lawful processing
scenarios can be distinguished:

o Non-personal data path: For the artefact used by P not to
contain personal data, it is required that the artefact is not
classified as personal data, with the attribute dp = False. it
is also necessary that the artefact was derived only from
data nodes annotated with the attribute dp = False. In this
case, no personal data is involved, and thus no consent is
required. This scenario corresponds to the path:

—isPersonal(D) = (dp(D) = False) A
VD’(wasDerivedFrom+(D, D'\ TS, TE)
A (dp(D’) = False))

o The artifact used by process P is personal data D, processed
for a specific purpose PU, and:
i) There exists a consent artifact C' such that the data subject
has given valid consent for purpose PU, and this consent
was still valid (i.e., not revoked) at the time D was used by
P. In this case, the data D is personal and is processed for
a specific purpose PU by a process P. The processing is
lawful if there exists a valid consent C' that applies at the
time of processing 7.
Consent is considered valid at time 7" if any of the following
hold: consent C' was given and never revoked; consent C

was given and revoked, but after time 7'; consent C' was
updated after time 7', meaning the version valid at 7" was still
in force. This is expressed by the following path expression:

validConsent(D, PU,C, T, TG,TU) =

(consent(C, D, PU, TG) A (TG < T) A lastConsent(C)
A= (revoke(C, TU)) )V

(consent(C, D, PU, TG) A (TG < T) A lastConsent(C)
Arevoke(C,TU) A (TU > T))V

(consent(C, D, PU, TG)

ANTG < T) A nextConsent(C,C1,TG1) A (TG1 > T))

ii) D was derived from other personal data artifacts D’, and
each of those D’ has an associated valid consent for the
same purpose PU at the time D is processed by P. The
corresponding path expression is as follows:

validConsent™ (D, PU,C, T, TG, TU) = VD’
(wasDerivedFrom™ (D, D', T'S,TE) A dp(D') = False)V
(wasDerivedFrom™ (D, D', T'S,TE) A dp(D’) = True A
validConsent(D’, PU,C, T, TG, TU))

In both cases, the provenance graph provides a traceable
path that allows us to verify compliance by following the data
lineage and matching it with the consent.

Summarizing, the process P on an artifact D has been
carried out legally if and only if the following pattern finds an
instantiation in the provenance graph:

—isPersonal(D) V (used(P,D, R, T) A action(P) = PU

A validConsent™ (D, PU,C, T, TG, TU) A

dp(D) = True AvalidConsent(D, PU,C,T,TG,TU))
Here P is the process that performed an action PU on

the artifact D, C is the consent of the artifact contain-
ing the consent to perform PU, R represents a role and
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T, TG, TU,TG1 are timestamps. This path expression is
denoted legal_ DP(P,D,C,TG,TU). An action is lawful if
consent has been given for all personal data used by P before
the action is performed. If the data is not of a personal
nature (first line of the expression), the action is automatically
considered to comply with this principle.

Example 7 (Lawful processing): In the scenario depicted
in Figure 1, a marketing cookie is created at time 7' = 21
by the process createCookie. This process operates under the
purpose thirdParties, which refers to the creation of cookies
intended for third-party use. To do so, it uses Bob’s identity
on the website, denoted id_bob. This processing is considered
lawful if and only if at least one of the conditions defined
previously is satisfied. In this case, it is the third condition
(involving updated consent) that applies.

The assignment P = createCookie, PU = thirdParties,
D = id_bob, T = 21, R = id, C = consent_bob_v0,
C = consent_bob_vl, TG = 17 and TG1 = 29 satisfies
the third clause of the disjunction, since the original consent
consent_bob_v0 was given at TG = 17 and updated by
consent_bob_v1 at TG1 = 29, which occurs after the data
usage at 7' = 21. As a result, the consent was still valid when
the data was used, and the creation of the cookie is therefore
lawful.

4) Storage limitation: The retention of personal data is
governed by Article 5.1(e) of the GDPR, which states that
personal data should not be kept longer than necessary for the
purposes for which it is processed, except in specific cases
such as archiving in the public interest.

In practice, this means that personal data should not be
stored without use for a period exceeding the retention limit
defined by the system, based on its operational requirements.

A system respects this storage limitation principle for a given
piece of personal data D if the data has not remained unused
beyond the authorized retention duration. More specifically,
there must be no interval between two consecutive uses
of D that exceeds the maximum permitted retention time
(TLIMIT).

This condition can be expressed by the following pattern:

usagelnLimit(D, P) = used(P, D, R, T) A
((used(P",D, R, T") N(T'>T)N(T' =T <TLIMIT))
V —(used(P', D, R, T"Y A (T' > T)))

The negation here is interpreted again using negation by failure.
That is, for a process P that uses D, either there exists another
process P’ that also uses D within a time interval not exceeding
the retention period, or P is the last process to have used D.
The verification of whether the retention period is still valid
after the last use is performed by the predicate. retentionValid.

Between the last use of the personal data artifact D and the
current time, two conditions can ensure compliance with the
GDPR’s storage limitation principle (Article 5.1(e)): either the
data has been explicitly deleted, i.e., there exists a deletion event
notAvailable(D, T') recorded in the provenance graph; or the
data is still retained, but the defined retention period has not yet
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been exceeded, meaning the condition TCURRENT —TU <
TLIMIT holds, where T'U is the last time the data was used.
The path expression confirming that the data was previously
deleted is as follows.
delationComplete(D) = used(P, D, R, TU)A
notAvailable(D, T) A (T —TU <=TLIMIT)

In the case that the data has not been deleted yet and the
retention period has not been exceeded, the following path
expression will have a match in the graph.

retentionValid(D) =
used(P, D, R, TU) A —(notAvailable(D,T))
ANTCURRENT —TU <=TLIMIT)

In both cases, there is no need to verify that P is the last process
to have used D. If the path exists for some process P, the time
condition also holds for the actual last process P’, since P’
was executed more recently than P. This ensures that the data
is either used regularly within the permitted retention period
or deleted once that period has elapsed, thereby guaranteeing
compliance with the storage limitation principle.

A system is compliant with the storage limitation principle
for a personal data artifact D, if the following pattern has an
instantiation:

storageLimitation(D) = VP (usagelnLimit(D, P)A
(delationComplete(D) V retentionValid(D)))

This ensures that personal data is never retained passively
beyond its legal retention limit.

Example 8 (Limitation of personal data storage): Suppose
that the forum shown in Figure 1 has a data retention
period of 5 years. Bob has not logged into his account for
7 years. His email address and all his personal data have
not been used since his last login. This situation is repre-
sented in the graph by the path used(P, email_bob, R, TU) A
—(used(P’, email_bob, R, TU') A (TU < TU’)) If the
system is compliant, we would find the dependency
notAvailable(email_bob, T') with T € [TU,TU + TLIMIT).
The sub-pattern delationComplete(email_bob) evaluates to
True.

In the case where the system fails to delete the data, the
pattern delationComplete(emai_bob) would evaluate to false,
as would the pattern retentionValid(email_bob), because the
retention period has been exceeded.

It is important to emphasize that these patterns yield a
Boolean result depending on whether a matching instantiation
exists in the provenance graph. However, this result must be
interpreted with care: there is a difference between actual
compliance, meaning that the processing is and will remain
compliant over time, and the absence of non-compliance simply
because a retention deadline has not yet been reached.

In the latter case, the pattern does not confirm lasting
compliance, but rather the current absence of a violation.
Therefore, an a posteriori check may be required.

For instance, if the verification in the previous example
were performed three years after the last use of Alice’s email,
the pattern would return true, indicating compliance at that
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moment. However, it would still be necessary to later verify
that the email was either deleted before the retention limit
expired, or reused within the allowed time frame.

B. User rights

Just as certain articles related to data protection principles
can be automatically verified through pattern-based approaches,
the same applies to some rights, or at least to specific provisions
within the articles that define them. In this section, we illustrate
this with two key rights: the right to be forgotten and the right
of access.

As with the principles, pattern-based detection may only
identify a single instance of non-compliance, necessitating
further verification over time. Moreover, some articles require
additional manual checks, especially when they impose con-
ditions on the content to be provided to individuals, or when
they involve requirements concerning the clarity, granularity,
or comprehensibility of the explanations and notifications to
be delivered.

a) Right to be forgotten: In accordance with Article 17a
of the GDPR, data subjects have the right to request the erasure
of certain personal data, and data controllers are obliged to
comply with such requests within a specified time frame.

To verify whether the right to erasure (Article 17a of the
GDPR) has been correctly exercised, we first identify a relevant
pattern in the provenance graph. Specifically, we look for a pro-
cess P performing the action askErase on a data item D under
the control of a user U identified as the data owner. This can be
captured by the following path in the graph used(P, D, R, T') A
wasControlledBy (P, U,” owner”, TB,TFE) where T, TB,TE
are timestamps, and the action associated with process P is
askErase. We define the askErase pattern to formalize this
detection as follows:

askErase(S, D, T) = owns(S, D, TU) A used(P, D, R, T)A
wasControlledBy(P, S, R, TB,TE)A

action(P,” askErase” )\

= (used(P’, D, R, T") A action(P’,”askErase”) A (T' < T))

This pattern identifies the earliest request for deletion of data D,
ensuring that we retrieve the first occurrence of such a request
in time, i.e there exists no prior instance of a process P’ asking
for the erasure of the data. Since a user may issue multiple
deletion requests before receiving a response, capturing only
the initial request is essential to assess whether the controller
met the deadline and thus complied with the regulation.

A system is considered compliant if and only if the requested
data and all its copies are deleted within the authorized time
frame. The deletion of a data item D, following a user’s request,
is captured by the pattern

Erased(D) = askErase(S, D, T)A
notAvailable(D, TU) A (TU —T < TLIMIT)

with TLIMIT being the deadline for performing the ac-
tion in a compliant manner. Here askErase(D,T") denotes
that the first request for erasure of D occurred at time 7T,
notAvailable(D, TU) indicates that D became unavailable (i.e.,
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deleted) at time TU, TLIMIT is the regulatory deadline for
performing the deletion.

To ensure compliance, it is not sufficient to delete only the
original data item; all copies of that data must also be deleted.
The deletion of derived or copied data D, resulting from a
copy operation on D, is expressed by the following condition:

copiesErased(D) = askErase(D, T)A
VD' (wasDerivedFrom™ (D, D',” copy”, TU', TG) A
notAvailable(D", TU') A (TU' — T < TLIMIT))

This states that for all data artifacts D’ derived from D via
one or more copy operations (denoted by wasDerivedFrom™),
D' must also be made unavailable (i.e., deleted) within the
same time constraint relative to the original request time 7.

We can define full compliance for a data item D with respect
to Article 17a using the following predicate:

eraseComplete(D) =
Erased(D) A copiesErased(D)

This formalization ensures that both the original data and
all its copies are deleted in a timely manner, satisfying the
obligations imposed by Article 17a.

However, as previously mentioned, a compliance check can
be performed at any time. This implies that there may be
cases where a deletion request has been submitted, but the
corresponding data has not yet been deleted, while still being
within the allowed deadline.

We define the case of a pending deletion request using the
pattern :

eraseNotDoneYet(D) =
askErase(S, D, T) A =(notAvailable(D, TU))A
(TCURRENT —T <TLIMIT)

where TCURRENT represents the date on which the ver-
ification is carried out. askErase(S,D,T) indicates that a
deletion request for data D was made at time 7' by the
owner S; —notAvailable(D,TU) indicates that the data D
is still available at time TCURRENT; TLIMIT is the legal
deadline to complete the deletion.

This pattern captures the intermediate state where the data
has not yet been deleted, but the deadline has not been exceeded
(hence, the system is not yet non-compliant).

Finally, to verify whether the system is globally compliant
with respect to the deletion request for a personal data item
D, we define the following pattern:

eraseCompliant(D) =
(askErase(S, D, T') A eraseComplete(D))V
askErase(S, D, T') A eraseNotDoneYet(D)

This expression states that compliance is satisfied either because
the data and all its derived copies have been deleted within
the deadline (eraseComplete(D)), or because the request has
been issued but the allowed deadline has not yet expired
(eraseNotDoneYet(D)).

Therefore, our framework allows us to distinguish between
full compliance, ongoing compliance (pending fulfillment), and
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non-compliance (which occurs when the deadline has passed
without deletion).

Example 9 (Right to be forgotten): We consider a scenario
derived from the system shown in Figure 1. According to
Article 17a of the GDPR, a data controller must delete a data
subject’s personal data within a specified period after receiving
a valid erasure request. Suppose that this deadline is set to
30 days. Given that timestamps are expressed in minutes, this
results in a deadline of TLIMIT = 30 x 24 x 60 = 43.200.

Bob, after receiving his personal data report from the forum,
submits a request to delete his phone number phone_bob.
The provenance graph records this request at timestamp 7' =
44.800.

At the time of the compliance verification, 12
days have passed since Bob sent the request, i.e.,
TCURRENT = 61.983. We compute the elapsed time:
TCURRENT—-T = 61.983—44.800 = 17.183 < TLIMIT.
This means that the request has been made and is still within
the allowable period for compliance. As a result, the
following instantiation holds: eraseCompliant(phone_bob) =
askErase(”bob” , phone_bob, 44800) A
eraseNotDoneYet(phone_bob).

The system is therefore considered compliant at this stage,
even though the deletion has not yet been executed. However,
a follow-up check must be performed after the deadline to
ensure that the data, and all its copies, were actually erased in
time.

b) Right of access: The GDPR grants data subjects
the right to access all personal data held about them and
to understand how their information has been processed.
Article 15.1 specifies the obligations of the data controller
in responding to such requests. While some aspects of this
compliance check can be automated, it cannot be fully verified
through event logs alone, as these do not capture the content of
the response document. In this context, the defined predicates
can verify that a response was issued following a request, but
they do not guarantee that the response includes all the required
information.

As with the right to be forgotten, an access request has been
made if the following path is present in the graph:

askAccess(U,TB,TE) =

wasControlledBy (P, U,” owner” , TB, TE)A
action(P,” askAccess”) A used(P, D, R, TU)A
dp(D) = True A owns(U, D, TU")A

- (wasControIIedBy(P’, U,” owner”, TB',TE")A
action(P’,”askAccess”) A (TE' < TE))

The pattern askAccess(U, TE) retrieves the timestamp TF
corresponding to the first access request initiated by the data
subject U.

The system is considered compliant with the right of access
if the data controller S’ provides a response to the request
within a legally defined time limit 7"LIM I'T. Compliance can
be verified if at least one of the two disjunctive conditions in
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the following pattern is instantiated in the provenance graph:

rigthAccess(U) = (askAccess(U, TB,TFE)
AwasControlledBy(P’, S’, R,TB’',TFE")
Aaction(P’,”sendData”) A (TE' — TE < TLIMIT))V
(askAccess(U, TB, TE)A

(TCURRENT — TE < TLIMIT))

Here, P and P’ denote processes, and T'B, TB’, TE, and
TE’ represent timestamps. The first disjunct checks whether
the response has already been sent in time, while the second
allows for the possibility that the request has been made but
the deadline has not yet passed.

The example that follows illustrates its application to the
scenario depicted in Figure 1.

Example 10 (Right of access): Suppose that, in the case of
the online forum, the data controller has a legal obligation
to respond to a data access request within 30 days, which
corresponds to a time limit of TLIMIT = 43.200 minutes.

According to the provenance graph, Bob submitted a data
access request labeled data_request at timestamp TE = 37,
and later received a response labeled data_report at timestamp
TE' = 44.730. This sequence satisfies the structural require-
ments of the first conjunction in the pattern rigthAccess(U),
as it includes the expected control and action events.

However, the time constraint is not satisfied: the response
was provided 44.730 — 37 = 44.693 minutes (approximately
32 days) after the initial request, which exceeds the allowed
time limit of 30 days. Therefore, the system fails to comply
with Article 15 of the GDPR in this instance and Bob’s right
of access was not respected.

VI. COMPLIANCE VERIFICATION

In this section, we present a prototype tool designed to
assist in the verification of GDPR compliance. In this work,
we consider provenance graphs as input. We do not address the
problem of constructing provenance graphs from traces or event
logs. In practice, this task is non-trivial, as logs differ widely in
structure, semantics, and level of detail, and therefore require
context-specific parsing and mapping choices. Developing such
extraction pipelines is outside the scope of the present work and
constitutes an interesting direction for future research. We focus
here on the verification aspects of the framework. The tool
allows users to select specific principles and rights to examine,
offering a flexible and targeted approach to auditing. In addition
to verifying compliance, the tool provides informative feedback
by flagging situations that may warrant further investigation or
future monitoring. To support a more thorough audit process, it
also extracts contextual data linked to potential non-compliance,
enabling auditors to better understand the origin and scope
of detected issues. This facilitates not only initial compliance
checks but also ongoing assessments and documentation.

A. Methodology

To demonstrate and evaluate our approach, we rely on
the case study representing a simplified online forum system
of Section IV-C. This system is modeled as a provenance
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graph, where nodes represent data, users, system processes,

and consent artifacts, and edges capture data flows and

dependencies.
Our methodology proceeds as follows:

o For each relevant GDPR principle or data subject right (e.g.,
purpose limitation, consent, right of access, right to erasure),
we define one or more formal compliance patterns. These
patterns express the structural and temporal requirements that
must be satisfied within the provenance graph. A summary
of the patterns associated with each principle is given in
Table 1II.

o We then encode both the provenance graph and the com-
pliance patterns in a logic programming language (Prolog).
The provenance information is translated into a set of facts,
while the compliance patterns are encoded as rules using the
templates defined in Section V.

o Our verification tool uses a Prolog solver to check whether
the patterns are satisfied by the graph. If a pattern is not
satisfied, the system identifies the precise point of failure
and, when possible, provides suggestions for further analysis
or actions needed to reach compliance.

o This approach supports both automated compliance verifi-
cation and semi-automated auditing. For example, in the
forum case study, the system can verify whether Bob’s
updated consent (consent_bob_uv1) is correctly enforced in
subsequent data usage, or whether his request for erasure
has been processed within a reasonable timeframe.

This logic-based methodology enables precise, explainable,
and extensible analysis of compliance with GDPR requirements,
using provenance data as evidence.

B. Prototype Architecture

We have developed a Java-based auditing tool that verifies
GDPR compliance by encoding the formal patterns from the
previous section in Prolog [25]. The tool integrates a reasoning
engine to analyze data processing workflows and identify
potential violations. Our approach allows us to benefit from
the efficient reasoning capabilities provided by Prolog solvers
for path condition resolution rather than relying on an ad-hoc
algorithm. In particular, we implemented rules for resolving
path queries based on the obtained provenance graph.

The tool reports non-conformities, along with warnings
that suggest further verifications when the analysis cannot be
concluded at current time. Auditors can configure the analysis
by selecting specific GDPR principles, relevant data types, and
processing steps, enabling fine-grained and targeted audits. A
preliminary version of this tool was introduced in [1].

The main components of the prototype are illustrated in
Figure 2. Through the interface, the auditor selects the system
to audit and specifies the GDPR principles, personal data, or
data subjects to be analyzed. These inputs are translated into
Prolog queries by a dedicated translator module. The solver then
executes the queries over the provenance graph representing
the system’s data flows and returns the results to the interface.
The output includes detailed information about any detected
non-conformities.
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We describe next the architecture of our prototype, explaining
how its components interact and how the patterns have been
adapted to deliver precise feedback to the auditor.

a) Interface: The interface, developed in Java using the
JavaFX graphics library, allows auditors to configure the scope
of the audit. They can select the system to analyze and
optionally restrict the verification to specific processes, personal
data, or data subjects whose rights should be checked. The
system’s activity must be provided as a provenance graph,
encoded as a Prolog file, which is loaded through the interface.

The auditor can further refine the audit by choosing the
GDPR principles to be verified or focusing on specific com-
ponents rather than conducting a full-system analysis (which
is the default behavior). These configuration options are sent
to the translator module (see Figure 2), which generates the
corresponding Prolog queries. The available audit options are
presented through a menu, as shown in Figure 3.

The results returned by the solver are finally displayed to
the auditor in textual form (Figure 4).

b) Translator: The translator module serves two main
purposes. First, it converts the auditor’s selections into param-
eterized Prolog queries. Second, it extracts relevant elements
(such as personal data, data subjects, and processes) from the
provenance graph. These extracted entities are used both to
populate the interface with appropriate choices and to instantiate
variables in the generated queries.

Based on the selected principles and nodes, the translator
generates a list of Prolog queries and sends them, along with
the system data, to the Prolog solver using the JPL library.
For instance, in the case study shown in Figure 1, if the
auditor wants to verify all GDPR principles related to Bob’s
email address, namely the lawfulness of processing, the right
to erasure, and storage limitation, the translator produces the
following queries:

legal(P,” email_bob”,C,TG,T).
eraseComplete(”email_bob”).
storageLimitation(”email_bob”).

In the case of the principle of lawfulness, the verification
applies to all processes P involving Bob’s email. The translator
therefore also sends a list of relevant processes to the solver,
enabling it to instantiate the variable P during query evaluation.

c) Reasoning module: The reasoning module integrates
the Prolog solver, which is responsible for verifying path
queries on the provenance graph. It also includes the formal
definitions of GDPR predicates, each encoding a principle or
a right, as introduced in the previous section.

When a path query is received from the translator, the
reasoning module constructs the corresponding Prolog goal
and invokes the solver to evaluate it. The solver applies the
deduction rules (i.e., the Prolog program encoding causal
dependencies and compliance patterns) to prove or refute the
query.

Each GDPR principle is implemented as a Prolog rule,
systematically decomposed into conjunctions and disjunctions
of sub-predicates to enable granular compliance checking and
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Figure 3. Prototype interface

more informative feedback to the auditor. These rules typically predicate composed of several sub-predicates, each serving

follow the structure: a specific verification function:

predicate (parameters) :-— e check parameters: This sub-predicate restricts ver-

( parameter check, ification to the relevant nodes in the graph. For in-

( compliance check; (deadline check, stance, the principle of lawfulness only applies to per-
notify future verification); sonal data. A rule like used (P,D, R, T), action (P)
(\+ compliance check, \+ deadline check, = PU, isPersonal (D) ensures that the predicate

notify non-compliance) )); legal (P,D,C, TG, T) is only applied if D is personal
(\+ parameter check, data (i.e., dp (D) = True) and if P is a process under
notify missing parameters). audit that actually uses D.

e verification compliance and verification
where \+ denotes negation. This structure ensures that, for each deadline: These sub-predicates form the core of the
query, the solver can determine not only whether a principle  compliance patterns. The first verifies whether the required
is satisfied, but also whether additional verification is needed, conditions are satisfied (e.g., whether a request has been
or whether a compliance failure should be reported. processed), while the second checks whether the system is

The patterns introduced in Section V are decomposed into still within the allowed timeframe for fulfilling a request.
Prolog sub-rules to provide interpretable feedback to the auditor. If the action has not yet occurred but the deadline has

Each GDPR principle or right is defined through a main not passed, the display future check predicate is
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GDPR compliance checking

[1] CONSENT ISSUE - process sendCookie used marketing_cookie for purpose thirdParties at time 26 without consent
[2] ERASE REQUEST ISSUE - erase of data phone_bob was asked at 35 but not done in time

[3] ACCESS REQUEST ISSUE - subject 'Bob' asked for access at time 37 and was not sent data in time

[4] STORAGE LIMITATION ISSUE - data marketing_cookie was last used at 26 and not deletedin time

[5] STORAGE LIMITATION ISSUE - data phone_bob was last used at 35 and not deleted in time

[6] STORAGE LIMITATION ISSUE - data id_bob was last used at 21 and not deleted in time

Visualize graph

New compliance checking

Figure 4. Compliance results display

triggered to inform the auditor that further verification will
be needed later. Not all principles include a deadline check
(e.g., lawfulness does not), but rights like access and erasure
do.

e display non-compliant data: This sub-predicate
collects and returns the relevant information when non-
compliance is detected, such as the involved data, process,
and violated principle or right. It also causes the main
predicate to fail (i.e., return false), signaling a violation.

e display no parameters: This sub-predicate is used
when the selected nodes are not subject to the principle being
checked. It provides feedback indicating that the rule does
not apply in this context.

This modular structure enables precise compliance verifica-
tion and interpretable output, which helps auditors understand
and act on the results more easily.

The full predicate first verifies whether the instantiated
parameters are valid. If they are not applicable, it immediately
proceeds to the final step, providing feedback through the
display no parameters predicate.

When the parameters are valid, the predicate returns true
only if either the compliance check or the deadline
check (which also includes relevant information) succeed.
If neither check passes, the predicate triggers display
non-compliant data to present detailed information
about the violation and returns false.

The results are sent to the interface for displaying, including
information about the personal data, time and processes
involved in the possible violation.

VII. EXPERIMENTAL VALIDATION

To validate our approach, we first tested the correction of
the GDPR compliance patterns on small provenance graphs
corresponding to the scenarios discussed in Section IV-C.
For these initial experiments, we systematically modified
key parameters, such as the purposes attached to consent,
the timestamps of consent creation, or the timing of actions
like data deletion or disclosure, in order to verify that the
solver correctly reported all cases of non-compliance. Once

the patterns were validated on these controlled examples, we
evaluated the performance of the prototype on larger graphs
produced by the synthetic graph generator described next.

The results show that the tool maintains acceptable perfor-
mance for offline audits of graphs of moderate size. Patterns
addressing lawfulness, storage limitation, the right to be
forgotten, and the right of access are all verified within a
few seconds even on the larger generated graphs. However,
checks involving the consent principle require noticeably more
time: as the graph grows, verifying the complex relationships
between personal data, purposes, and consent updates can take
significantly longer. Improving the efficiency of these consent-
related verifications will therefore be an important focus of
future optimization efforts.

A. Graph generator

In order to generate provenance graphs that reflect realistic
scenarios, we developed a generator of provenance graphs. Our
approach relies on the assembly of smaller subgraphs, referred
to as bricks, each representing the execution of a process within
the system. These bricks can be either general (e.g., accessing
a webpage) or specific to a particular context (e.g., purchasing
a product).

Each context is composed of 3 to 5 specific bricks, in
addition to a set of 10 general-purpose bricks that are common
across contexts. Some bricks are triggered bricks, meaning they
are conditionally activated by certain actions. To capture this
dependency, each standard brick capable of triggering another
includes a reference, in its facts, to the corresponding triggered
brick (subgraph).

Figure 5 illustrates this mechanism: the general brick
sendMail, which defines the subgraph for sending an email,
embeds a reference to the triggered brick sendAnalysisCookie,
which represents the action of sending an analysis cookie. The
variables marked as %VAR% are instantiated during graph
generation. The keyword CAN indicates that the triggered brick
is optional and will be included based on a random probability
between 0.1 and 1.
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wasControlledBy('%PROCESS:sendMail%’,DC’, ’owner’, %T%, %TC%).
wasGeneratedBy('message’,%PROCESS:sendMail%’, ’'mail to send’, %T%).
used('%PROCESS:sendMail%’, %DATA:mail%’, 'address to send to’, %T%).
%CAN:/TRIGGERED/sendAnalysisCookie%
used('%PROCESS:sendMail?%’, 'message’, ‘'mail sent’, %TF%).

Figure 5. sendMail brick

To determine the most effective parameters for data storage
and retrieval, we considered three distinct usage contexts: a
forum or social networking website, an online store, and a
public service portal (e.g., a water management platform). For
each context, we defined the types of data it may contain
(such as email addresses or analytic cookies) as well as the
corresponding building blocks (or bricks). Each brick specifies
whether it can be reused for the same user. For example, while
a user can create an account only once, they may update their
information multiple times.

The graph generator takes four parameters, the first of
which is mandatory: the name of the output file containing
the generated graph encoded as Prolog facts. The other three
parameters are optional: the number of users (or a file listing
the user names), the desired context, and a repetition factor.
The factor, i.e., an integer greater than or equal to 1, controls
the repetition of reusable bricks, thereby increasing the graph’s
size. A factor of 1 prevents repetition, while higher values
allow bricks to be reused more frequently. If the parameters
are not provided, the generator randomly selects values and
assigns a default factor of 1.

Bricks are randomly selected, instantiated, and incorporated
into the graph. When a triggered brick is added, the generator
ensures that all necessary sub-elements for executing the
associated action are also included.

Figure 6 illustrates a graph generated with 20 users and a
repetition factor of 1, within the public service context. The
graph is visualized using the Neo4] tool.

B. Generated graphs results

First, to estimate verification times, we performed prelim-
inary tests and imposed a maximum duration of four hours
per process. For graphs containing up to 200 users, all GDPR
principles except Lawfulness were verified well within this limit:
the principle Right of access, for instance, was verified in 4s
and the principle Storage limitation was verified in 20s. For the
Lawfulness principle, however, the solver did not consistently
complete within the allotted time once graphs reached this
scale.

To keep the evaluation consistent and reproducible, we
subsequently limited the verification time to five minutes per
graph. Under this setting, even graphs of moderate size, such
as the example in Figure 6, were fully checked in 18 seconds.
Our detailed experiments therefore focus on graphs of up to
50 users, with repetition factors from 1 to 5 across the three
defined contexts, which already provide a representative basis
for assessing performance.

Our experiments confirmed that the verification time in-
creases with the complexity of the graph, particularly in terms
of the number of dependencies. This complexity is influenced
both by the repetition factor and the nature of the context-
specific bricks, which often introduce additional dependencies.
As a result, graphs with larger file sizes tend to require more
time for analysis. For example, graphs between 85 and 90
kilobytes (KB) in size were verified in an average of 17 seconds.
This time increased to 41 seconds for graphs between 100 and
110 KB, and up to 1.5 minutes for those ranging from 110 to
125 KB.

However, file size alone does not fully determine verification
time (see Figure 8). We observed significant variability in
execution times for graphs of similar size. In particular,
contexts with a high volume of personal data tend to incur
longer verification times. This is largely due to the repeated
evaluation of the isPersonal predicate, which plays a key
role in determining whether specific compliance rules are
applicable. The more frequently this predicate needs to be
resolved, the longer the verification process takes. Indeed, by
checking each principle individually, we observe that the time
required to verify the principle of Lawfulness (and therefore the
validConsent predicate that uses isPersonal) is 100
times higher than for the other principles (see Figure 7). For
the graph in Figure 6, the verification time for the Lawfulness
principle is 17s, whereas the verification of the Right of access
principle takes only 3ms.

While our experiments did not cover very large provenance
graphs, the framework supports a modular verification strategy.
The interface allows selecting specific principles, processes,
data types, or individual users, enabling the analysis of per-
user (or per-principle) graphs. Such a decomposition is, in
principle, more scalable and is naturally supported by the tool’s
interface. All the experiments were performed on a MacBook
Pro equipped with an Apple M2 chip and 16 GB of RAM.

VIII. CONCLUSION

In this paper, we propose a modeling of the core principles
and rights of the GDPR, based on the provenance model. Our
representation captures these principles and rights by combining
conjunctions and disjunctions of causal dependencies from the
OPM, temporal constraints on timestamps, and conditions on
node attributes.

These compliance patterns are flexible and can be extended
to cover additional GDPR articles or other data protection
regulations. For instance, the Health Insurance Portability and
Accountability Act (HIPAA) imposes retention periods for
medical records, a requirement that can be expressed similarly
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Figure 6. Neo4;j representation of a provenance graph extract generated by the generator with 20 users and factor 1
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Figure 7. Time per principle for a graph of 20 users

to the right to be forgotten using path expressions with temporal
constraints. Likewise, the structural similarity between GDPR
and GDPR-UK articles allows our patterns to be easily adapted
to ensure compliance with the latter regulation.

We validate our approach through a prototype tool that
implements compliance patterns based on causal dependency
paths, allowing partial automation of GDPR compliance
verification using a Prolog solver. To demonstrate the feasibility
of our approach, we conducted experiments on both small- and
large-scale scenarios using a graph generator. This generator
produces provenance graphs that can incorporate or exclude
non-conformities, reflecting actions specific to each type of
system. Increasing the variety of building blocks in the graph
generator would allow more actions to be represented, thereby
expanding the applicability of our approach.

Future work will focus on extending this approach to
leverage real system logs or system traces for provenance
graph generation, enabling the analysis of real-world scenarios

beyond synthetic ones.
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