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Abstract—The selection of appropriate DBMS for document-
oriented applications significantly impacts system performance
and operational efficiency. While prior studies have compared
SQL and NoSQL technologies, many focus on narrow use cases
or outdated system builds, offering limited guidance for today’s
multifaceted application requirements. This paper presents a
systematic case study comparing PostgreSQL and MongoDB
in a cloud-based environment, considering the needs of Cloud
OLTP applications. By using an extended YCSB benchmark
across 80 scenarios that vary dataset size, workload composition,
and concurrency, the study highlights how systematic evaluation
reveals nuanced performance trade-offs. PostgreSQL exhibited
consistent strengths in mixed and high-concurrency workloads,
while MongoDB demonstrated advantages in low-concurrency
read-heavy and write-intensive scenarios. The findings under-
score the importance of aligning workload characteristics with
DBMS capabilities, and illustrate how structured, reproducible
evaluation can inform more balanced database selection for
Cloud OLTP applications.
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I. INTRODUCTION

Information systems (ISs) have become so prevalent that
they have become crucial, if not critical, in facilitating the
day-to-day human activity.

Systems must meet users’ stringent Quality of Service
(QoS) expectations. For example, studies indicate that re-
sponse times of e-Commerce ISs exceeding two seconds can
decrease user satisfaction and result in lost business [1], [2].

In tandem, users of transactional ISs also expect a high
level of Quality of Data (QoD). For example, the customer
experience on an e-Commerce IS will degrade if an order
is placed online, only to be subsequently cancelled because
it cannot be fulfilled due to depleted stocks. Business can
be lost if the e-Commerce retailer cannot publish the latest
prices or the newest products: prospective customers will look
elsewhere to find the newest and cheapest alternatives.

Effectively, one of the core functions of a transactional IS is
in line with the adages “Data is the new oil” [3] and “Data is
the soul of the real world” [4]. Prospective customers demand
fast access to the most up-to-date version of the dataset.

Data must be stored in some location, typically referred to as
a database, and managed by a dedicated database management
system (DBMS). Here, QoS and QoD can become competing
objectives. Updating the data as fast as possible improves
QoD, but this can have a negative impact on QoS: users’
operations that read data and which must complete as fast
as possible to guarantee the necessary QoS, start competing

for hardware resources with write operations that are required
for effective QoD.

The proliferation of data-intensive applications has fun-
damentally transformed the landscape of DBMSs, creating
new challenges for system architects in selecting appropriate
technologies for workloads sustained by ISs. Modern ap-
plications increasingly require systems capable of handling
diverse data models, high transaction volumes, and stringent
performance requirements while maintaining data consistency
and availability. Furthermore, a new class of applications has
been defined. “Cloud Online Transaction Processing” (“Cloud
OLTP”) applications [5] prioritise QoS, without necessarily
requiring complex query capabilities and sophisticated trans-
action models (e.g., ACID).

This evolution has sparked considerable debate between
traditional relational database systems and Not Only SQL
(NoSQL) alternatives, particularly in scenarios involving
document-oriented data structures. Modern applications in-
creasingly demand DBMSs that can efficiently handle semi-
structured data while maintaining the reliability and consis-
tency guarantees traditionally found in relational systems.
This creates a technology selection dilemma: system architects
must choose between mature relational DBMSs with document
capabilities and purpose-built document-oriented NoSQL sys-
tems, often without sufficient realistic evidence to guide their
decisions. Despite the growing body of literature comparing
database technologies [6], [7], systematic performance evalu-
ations focusing on document-oriented Cloud OLTP workloads
remain scarce. Existing studies often emphasise specific use
cases [7] or fail to account for the multi-faceted nature of
modern application requirements, including the need for both
transactional integrity and query performance across varying
load conditions [8]. Furthermore, the rapid evolution of both
PostgreSQL and MongoDB technologies means that studies
that compare DBMSs have a short shelf-life.

The fundamental challenge addressed in this research cen-
tres on conducting a systematic and empirical comparison
of DBMS performance for document-oriented transactional
workloads. We then use this methodology to specifically
investigate the comparative performance characteristics of
PostgreSQL and MongoDB when handling applications that
require simultaneous support for transactional integrity, high
availability, and scalable document management capabilities.

Our research contributes to the existing body of knowledge
by presenting a case study that applies established systematic
benchmarking practices to evaluating SQL and NoSQL in
Cloud OLTP contexts, using PostgreSQL and MongoDB as
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examples for SQL and NoSQL technologies, respectively. Our
empirical experiments evaluate both systems systematically
by: (1) using identical hardware and network conditions in
a production-like cloud environment, (2) examining perfor-
mance across multiple workload compositions and scale fac-
tors, (3) analysing both throughput and latency characteristics
under varying concurrent load conditions, and (4) providing
practical guidance for system architects facing similar tech-
nology selection decisions.

We also aim to address some of the limitations identified in
prior database comparison studies, including:

• Limited Scenario Coverage: Some studies [7] focus on
narrow use cases without comprehensive workload vari-
ation, whilst in our work we perform tests along an 80-
scenario matrix, hence providing broader coverage.

• Configuration Bias: Other studies [9] acknowledge that
database comparison exercises do not ensure equivalent
transactional and durability guarantees. We address this
systematically, for example by ensuring that our work-
loads require a majority write concern for MongoDB.

In this context, this research provides:

1) Benchmark Methodology: A reproducible, cloud-based
experimental approach for evaluating document-oriented
database performance in cloud environments.

2) Empirical Performance Comparison: Evidence-based
guidance for system architects and developers facing
similar technology selection decisions.

3) Empirical Performance Data: Comprehensive perfor-
mance measurements comparing PostgreSQL and Mon-
goDB under comparable, realistic conditions.

4) Workload-Specific Insights: Detailed analysis of how
different workload characteristics affect the relative per-
formance of each system.

Our aim is therefore to advance beyond “which is faster”
comparisons toward establishing systematic evaluation ap-
proaches that future database management comparison studies
can adopt. We identify metrics, such as response time, to allow
us to compare very different DBMSs, each using a vanilla
configuration that is readily available in realistic setups.

The remainder of this paper is structured as follows: Sec-
tion II reviews relevant literature on database management
performance comparisons and OLTP workload characteristics.
Section III describes our experimental methodology, including
infrastructure setup and benchmark configuration. Section IV
presents detailed results and analysis across different workload
scenarios, and discusses the implications of our findings and
provides recommendations for practical applications. Finally,
Section V concludes with a summary of key contributions and
directions for future research.

II. LITERATURE REVIEW

A. Choice of DBMS technology

The choice of DBMS technology significantly impacts ap-
plication performance, scalability, and operational complexity.

This remains a critical technical choice for the success of an
IS application.

Choosing the right DBMS technology, or even the right
mix of DBMS technologies, from the wide range of available
options, is not a trivial exercise and it typically follows a
prescribed method.

1) Type of Workload: First, one must identify the type of
workload that the DBMS will sustain. Online transactional
processing (OLTP) workloads consist of WRITE operations
that modify small amounts of data, and READ queries that
process a few records and retrieve the majority of the attributes
available [10]. Cloud OLTP [5] is similar to OLTP, but each
operation affects a single record. In contrast, Online analytical
processing (OLAP) workloads typically consist of read-only
queries that traverse a large amount of records, performing
aggregations and retrieving a small set of attributes [10].
Workloads consisting of both transactional and analytical
queries are referred to as Hybrid Transactional and Analytical
Processing (HTAP) [11].

In this study, we tackle specifically the case for Cloud OLTP
workloads.

2) Data Integrity and Modeling: Second, we must identify
the DBMS features that are most pertinent to the application
at hand. These may include:

1) Data integrity: does the DBMS need to enforce any
application-specific operation pre-conditions or rules
that determine whether an operation on a data element
is accepted?

2) Data modeling: which data structures lend themselves
best to both store the dataset, and satisfy the data man-
agement operations (e.g., READ and WRITE queries)
in a manner that the correctness, QoS and QoD require-
ments of the application are optimisable?

Two of the most popular data models are the relational
data model and the document data model. Codd’s relational
data model [12] popularised DBMSs, and stores data in tables
which are matrices of rows and columns. Conversely, the
document data model stores data as a series of documents iden-
tified by some unique key [13]. Relational DBMSs (RDBMSs)
support the former data model, whilst Document-Oriented
DBMSs support the latter. Some DBMSs have the capability
to support more than one data model, and a popular data
format in DBMSs that support the document data model is
the JavaScript Object Notation (JSON). Relational DBMSs
are typically managed via the Structured Query Language
(SQL), a domain-specific language first standardised in the
late eighties [14]. Conversely, non-relational DBMSs rely on
other languages and are collectively referred to as No-SQL
DBMSs [15]

3) Scalability: Another aspect of consideration is the need
for horizontal scalability. Systems that require the DBMS
to scale horizontally need to opt for a distributed DBMS
(DDBMS) [16]. This need can be driven by several objectives,
as illustrated in Figure 1. The way data is distributed across
several machines for horizontal scalability can also differ, as
shown in Figure 2, Figure 3, and Figure 4. The choice of data
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distribution strategy affects a DBMS’s capability in achieving
the requirements for horizontal scalability.

Traditional RDBMSs, exemplified by PostgreSQL1, have
long dominated transactional workloads due to their adoption
of ACID2 guarantees, mature optimisation techniques, and
standardised SQL. However, the rise of document-oriented
NoSQL databases, such as MongoDB [17], has challenged
this dominance by offering flexible schema designs, horizontal
scaling capabilities, and optimisations specifically tailored for
document-based operations.

The technological dichotomy of RDBMSs and NoSQL
databases presents particular challenges for applications man-
aging semi-structured data that can be effectively modeled
using either relational or document data models. Such applica-
tions often exhibit mixed workload characteristics, combining
high-frequency read operations with periodic write-intensive
tasks, demanding both transactional consistency and query
performance optimisation. The decision between relational and
document-oriented approaches becomes further complicated
when considering operational factors such as horizontal scal-
ability requirements, data consistency guarantees, and infras-
tructure complexity.

Recent advances in multi-model database capabilities have
blurred traditional boundaries between relational and NoSQL
systems. PostgreSQL’s native JSON support and document
querying capabilities enable it to handle document-oriented
workloads effectively, while MongoDB has introduced fea-
tures to strengthen data consistency guarantees and transac-
tional support. This convergence necessitates empirical eval-
uation to understand the performance implications of each
approach under realistic workload conditions.

B. Functional DBMS Requirements for OLTP

OLTP and Cloud OLTP applications, including those han-
dling document-based data, benefit from several features that
a DBMS can offer, namely:

• Transactional Features [18], [19]
– OLTP Workload Suitability: The system must han-

dle workloads where data retrieval and modification
operations are typically restricted to small sets of
records.

– Data Integrity Constraints: The system must pro-
vide mechanisms to enforce business rules and main-
tain data consistency, further ensuring that concurrent
operations do not violate application-specific con-
straints.

– Strong Consistency Guarantees: For critical
operations, the DBMS must provide a view where
concurrent data changes appear to be applied in a
total order across all clients, preventing anomalies
in multi-user environments.

1https://www.postgresql.org/, Dec 15, 2025
2Atomicity, Consistency, Isolation, and Durability

Figure 1: Objectives of DBMS scalability
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Figure 2: Data Distribution via full Replication (Mirroring)
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• Operational Features [20]–[23]
– High Availability: The system must minimise down-

time and provide continuous service availability.
– Horizontal Scalability for Performance: The sys-

tem should support replication-based scaling to dis-
tribute read workloads across multiple nodes, partic-
ularly important for applications with varying traffic
patterns.

– Data Model Flexibility: The system must efficiently
support either relational or document data models,
allowing applications to choose the most appropriate
representation for their specific use cases.

• Performance Features [5]
– Fast Read Operations: Given that many OLTP

applications exhibit read-heavy characteristics, the
system must optimise for rapid data retrieval opera-
tions.

– Fast Write Operations: The system must efficiently
handle data modification operations without signifi-
cantly impacting concurrent read performance.

– Mixed Workload Support: The system should
maintain consistent performance across varying ra-
tios of read and write operations.

C. Systematic Assessment Methodology

Although we do not consider our efforts as an exclusive
exercise in benchmarking, in our methodology we adopt a
strict approach and follow several objectives that are typical of
benchmarking. Benchmark design is characterised by several
key objectives [24], including:

1) Relevance: the assessment should interact with the sys-
tem under test (SUT) in a manner that is realistic, and
thus in-line with the typical interaction that the SUT
should expect in a real-world deployment.

2) Repeatability: the assessment process should aim for
a level of confidence that running the same assessment
multiple times would yield similar results.

3) Fairness: the assessment should be specific to the do-
main at hand. An example of an unfair assessment is
one that measures the performance of complex queries
in RDBMS to elicit a conclusion that a distributed file
system has poor performance. Fair assessments also look
at multiple qualities of a system under test: for example,
focusing solely on performance quality when comparing
systems that are functionally different is not considered
a fair assessment.

4) Portability: it should be possible to execute the assess-
ment against different systems, which implies that one
must carefully select the system features to examine,
and find a balance between using a small subset of
system features (which would render the benchmark
design obsolete), and using system-specific or cutting-
edge features, which may only be offered by a limited
number of SUTs (reducing portability). This quality also
emphasises affordability, in that a portable assessment

does not necessarily require complex logic or expensive
infrastructures.

5) Understandability: the assessment should seek to elicit
meaningful metrics and the workload should be mean-
ingful to the domain of the SUT.

Benchmarks depend on workload generators to raise re-
quests to SUTs, and different types of workloads exist.
Trace-based workloads are configured with a precise set of
activities (typically extracted from monitors deployed on a
live installation) that are replayed at runtime. In contrast,
synthetic workloads generate artificial requests to the SUT, in a
manner that the workload mix follows pre-defined probability
distributions.

In general, trace-based workloads align better to the re-
peatability objective of benchmarking however, because they
rely on execution traces from live system installations, they
are exposed to several challenges including: a) traces may
not be long enough to generalise benchmark results; b) it is
difficult to obtain and share traces, especially due to security
considerations; and c) traces may not include corner cases,
preventing benchmarking from testing an SUT’s behaviour in
atypical situations.

Synthetic workloads can be used to overcome the challenges
of trace-based workloads, and several techniques are used to
improve their alignment to the benchmarking objectives. For
example, a synthetic workload can be designed based on obser-
vations from live applications, from which realistic probability
distributions that fit live workloads are elicited, hence aligning
to the relevance benchmarking objective. Furthermore, one can
increase the probability that the actual workload generated
aligns to the workload distribution required by running a
synthetic workload over a longer period, hence improving the
aspect of repeatability. Furthermore, benchmark results are as-
sessed based on repeated iterations to improve repeatability by,
for example, minimising the impact of transient external events
(e.g., transient events in a cloud infrastructure). Consequently,
several studies report average values based on the throughput
of three benchmark workload executions [9], [25].

Synthetic workloads are a popular choice in diverse bench-
marking studies, including benchmarks for runtime verification
[26], for serverless cloud computing [27], and programming
frameworks [28]. Synthetic workloads are also prevalent in
DBMS benchmarks. The Transaction Processing Performance
Council (TPC) puts forward the specifications of several
synthetic benchmarks, each modelled differently to remain
relevant and representative for different domains. For example,
the TPC-C benchmark [29] is widely used to assess the
performance of transactional DBMSs [30]. The Yahoo! Cloud
Serving Benchmark [5], or YCSB, is a synthetic workload gen-
erator, built on the basis of observations of typical web serving
use cases at Yahoo!, and is used to study the performance of
cloud data serving systems, such as DDBMSs [31]–[34].

III. IMPLEMENTATION

A. Requirements and Systems Analysis

This experiment addresses the following key questions:
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1) How do PostgreSQL and MongoDB compare in terms
of transaction throughput for document-oriented Cloud
OLTP workloads across different read/write ratios?

2) What are the latency3 characteristics of read and write
operations for both systems under varying concurrent
load conditions?

3) How do system metrics scale with increasing dataset
sizes and concurrent user loads for both PostgreSQL
and MongoDB?

4) Under what specific workload conditions does each sys-
tem demonstrate superior throughput, and what factors
contribute to these differences?

5) What practical considerations should guide the selection
between PostgreSQL and MongoDB for applications
with similar functional requirements?

B. Scope and Limitations

This exercise focuses specifically on document-oriented
workloads using the document data model capabilities of
both systems. The evaluation encompasses varying workload
compositions (read/write ratios), dataset sizes, and concurrent
user loads using standardised benchmarking methodologies.

The experiment is constrained to specific versions of Post-
greSQL and MongoDB and to a single configuration of
each DBMS deployed in cloud-based Database-as-a-Service
(DBaaS) environments. Various other valid configurations
for each DBMS were beyond the scope of this study. The
evaluation uses synthetic workloads generated by the YCSB
framework [5], which may not capture all nuances of real-
world application patterns. Additionally, the study focuses on
performance metrics and does not extensively evaluate factors
such as administrative complexity, development productivity,
or long-term maintenance costs.

C. Assessment Objectives

This study aims to address specific research objectives. The
primary objective is to conduct a comprehensive empirical per-
formance comparison between PostgreSQL and MongoDB for
document-oriented Cloud OLTP workloads, evaluating their
relative strengths and weaknesses across different operational
scenarios. Other secondary objectives include:

1) Throughput Analysis: Quantify the transaction process-
ing capabilities of both systems under varying workload
compositions and concurrent user loads.

2) Latency Characterisation: Measure and compare the
response time characteristics for both read and write
operations across different system configurations.

3) Scalability Assessment: Evaluate how both systems per-
form as dataset sizes and concurrent user loads increase.

4) Workload Sensitivity Analysis: Determine how
changes in read/write ratios affect the relative perfor-
mance of each system.

5) Practical Guidance Development: Provide evidence-
based recommendations for system architects selecting

3We define latency as the time elapsed between when a client submits an
operation to when the result of that operation arrives back at the client

between these technologies for specific application con-
texts. We thus aim to carry out this exercise in a way
that could prove useful and familiar to system architects
faced with the question “Which DBMS should I use?”.

D. Methodology Overview

This empirical analysis adopts a rigorous experimental
approach to evaluate the comparative performance of Post-
greSQL and MongoDB for document-oriented Cloud OLTP
workloads, and is carried out in the following context:

• The analysis focuses on the Document data model. This
is the only data model that is natively supported by both
SUTs and thus, in the spirit of fairness, is the only one
considered.

• Analysis is performed using the YCSB tool, which has
been used in other DBMS empirical performance analy-
ses [35], [36]. YCSB already supports PostgreSQL and
MongoDB. However, for PostgreSQL, it provided support
for simulating a workload by a single client (i.e., thread).
For our use case, we extended YCSB with a client-side
connection pooler, and in doing so enabled the simulation
of workloads via multiple clients. Our extension was also
proposed on the official YCSB GitHub repository 4.

• The SUTs were deployed in DBaaS mode using Aiven
for PostgreSQL and Atlas for MongoDB.

• MongoDB clients connected with the majority write con-
cern, in an effort to approximate the durability guarantees
of PostgreSQL.

E. System Under Test Configuration

Figure 5 illustrates the SUT infrastructure setup used for
this empirical performance evaluation. The configuration of
the two DBMSs chosen for evaluation is given in Table I.

Figure 5: SUT Infrastructure Setup

Both systems were deployed in Microsoft Azure’s France
Central region to ensure consistent network latency and in-
frastructure characteristics. The DBaaS approach was chosen
to reflect realistic production deployment scenarios, aligned
with our practical guidance development objective, while

4https://github.com/brianfrankcooper/YCSB/pull/1709, Oct 18, 2025
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TABLE I: Database Management System Specifications

Specification PostgreSQL MongoDB
Version PostgreSQL v16.2 MongoDB v7.0
Deployment Aiven PostgreSQL (DBaaS) MongoDB Atlas (DBaaS)
Service Plan Business-64 M60 (low CPU optimisation)
Configuration 2 servers (primary-secondary) 3 servers (1 primary, 2 replicas)
Hardware 8 vCPUs, 64 GiB RAM/server 8 CPU cores, 64GB RAM/server
Storage Premium SSD v1, 1000GB 1024GB, 5000 IOPS (192 MB/s)
Connection Limit 1000 32000
Network Performance – Extremely High
Backup – Continuous Cloud Backup

eliminating infrastructure management variables that could
affect performance measurements.

The synthetic workload generation was performed using a
dedicated load server with the following specifications:

• Cloud Platform: Microsoft Azure
• Machine Type: D32s_v5
• CPU: 32 vCPUs
• Memory: 128GB RAM
• Storage: 80GB SSD
• Operating System: Linux Ubuntu
• Network: Co-located in France Central region
This configuration provided sufficient resources to generate

high-concurrency workloads without causing client-side bot-
tlenecks that could skew performance measurements.

F. Empirical Performance Evaluation Framework

The characteristics of the dataset generated by YCSB were:
• Data Model: Document-based (JSON format)
• Record Count: 1,000,000 documents for database seeding
• Document Structure: Semi-structured data typical of

document-oriented applications, generated using the de-
fault YCSB data load generator (i.e., JSON documents
with ten properties of 100 bytes each).

• Key Distribution: Zipfian distribution to simulate realistic
access patterns

To ensure fair evaluation, the standard YCSB framework
was extended with the following enhancements:

• Client-side connection pooling for PostgreSQL to enable
multi-threaded workload simulation

• Optimised database drivers for both systems
• Enhanced metrics collection for latency analysis
The PostgreSQL extension addressing single-client limi-

tations was contributed to the official YCSB repository5,
ensuring reproducibility and community benefit.

G. Experimental Design

The experimental design evaluated system performance
across multiple workload dimensions to capture realistic ap-
plication scenarios:

Read/Write Ratios: Four distinct workload compositions
were tested to represent different application characteristics:

• 100% READ / 0% WRITE: Read-only analytical queries

5https://github.com/brianfrankcooper/YCSB/pull/1709, Oct 18 2025

• 95% READ / 5% WRITE: Read-heavy with occasional
updates

• 80% READ / 20% WRITE: Balanced read-write work-
load

• 70% READ / 30% WRITE: Write-intensive transactional
workload

Dataset Scaling: Performance evaluation was conducted
across four dataset sizes to assess scalability characteristics:

• 10,000 records: Small dataset (baseline)
• 100,000 records: Medium dataset
• 500,000 records: Large dataset
• 1,000,000 records: Maximum dataset size
Concurrency Levels: Five concurrent user load levels were

tested to evaluate system behaviour under varying contention,
defined by virtual users (vUsers):

• 60 vUsers: Low concurrency (baseline)
• 120 vUsers: Moderate concurrency
• 240 vUsers: High concurrency
• 480 vUsers: Very high concurrency
• 960 vUsers: Maximum concurrency stress test
The complete experimental design resulted in 80 unique

scenarios per database system (i.e., 4 workload types × 4
dataset sizes × 5 concurrency levels). Each scenario was
executed three times to ensure measurement consistency and
reduce the impact of transient system variations, resulting in
240 individual test runs per system and 480 total benchmark
executions.

Each benchmark run was conducted for a duration of 60
seconds to allow for system stabilisation and meaningful
performance measurement collection. The total experimental
execution required approximately eight hours of continuous
benchmarking.

H. Database-Specific Configurations

PostgreSQL was configured to optimise document-oriented
workload performance while maintaining ACID compliance.
Data storage uses native JSONB format for document stor-
age and indexing. Connection Management uses built-in
connection pooling with optimised parameters. The Consis-
tency Level retains full ACID compliance with default Read
Committed isolation level. Replication to read replicas is
asynchronous.

MongoDB was also configured with production-
recommended settings for transactional workloads. Write
Concern was configured as Majority write for durability



242International Journal on Advances in Software, vol 18 no 3&4, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

guarantees. Read Preference is given to the Primary
for consistency. Connection Management uses native
connection pooling and multiplexing. Replication to the
replica set requires majority acknowledgment. The majority
write concern configuration was specifically chosen to
approximate the durability and consistency guarantees
provided by PostgreSQL, ensuring fair and meaningful
comparison between systems.

We acknowledge that both DBMSs chosen for this exercise
are intrinsically very different technologies, and as such it
is not trivial to achieve a precise like-for-like configuration.
However, we chose a configuration for each DBMS that
is considered familiar to system architects and application
developers, in line with our objectives.

I. Metrics Collection

Performance evaluation focused on two primary metrics
categories. Throughput Metrics include Operations per sec-
ond (overall system throughput), Read operations per sec-
ond, Write operations per second and Transaction completion
rates. Latency Metrics include Average response time for
read operations, Average response time for write operations,
95th percentile latency measurements and Maximum observed
latencies under load. All metrics were collected using YCSB’s
built-in measurement framework, with additional custom in-
strumentation for detailed latency analysis across different
concurrency levels and workload compositions.

J. Data Analysis Approach

Performance analysis employed comparative statistical
methods to identify significant performance differences be-
tween systems. Results were aggregated across multiple test
runs to ensure statistical reliability, with percentage-based
comparisons used to normalise performance differences across
varying absolute throughput levels.

The analysis framework generated comprehensive perfor-
mance profiles for each system across all tested scenarios,
enabling identification of workload-specific performance char-
acteristics and optimal use case recommendations.

IV. RESULTS

The empirical performance evaluation across 80 distinct
scenarios per database system reveals significant performance
variations between PostgreSQL and MongoDB under dif-
ferent workload conditions. Figure 6 presents a summary
of results as percentage differences in average throughput
between MongoDB and PostgreSQL, where positive values
indicate MongoDB superiority and negative values indicate
PostgreSQL superiority. Figures 7, 8, 9, 10, and 11 illustrate
in detail the performance profile of both SUTs under each
scenario.

The empirical results demonstrate that PostgreSQL con-
sistently outperforms MongoDB in the majority of tested
scenarios, particularly excelling in mixed read-write work-
loads. However, MongoDB exhibits competitive advantages
in specific operational contexts, notably under write-heavy

workloads with maximum server saturation and read-heavy
workloads under low concurrent user loads.

A. Throughput Analysis

1) Overall Performance Characteristics: Across all tested
scenarios, PostgreSQL demonstrates superior throughput per-
formance in approximately 75% of cases, with performance
advantages ranging from 20% to 40% compared to MongoDB.
This performance superiority is most pronounced in scenarios
involving mixed workload compositions, where PostgreSQL’s
optimised query execution and transaction management pro-
vide significant advantages.

The performance difference between systems varies sub-
stantially based on workload characteristics:

• Read-Only Workloads (100% READ): PostgreSQL
shows 15-35% better performance under medium to high
concurrency levels (i.e., 240-960 virtual users)

• Read-Heavy Workloads (95% READ/5% WRITE):
PostgreSQL maintains 10-30% performance advantage
across most scenarios

• Balanced Workloads (80% READ/20% WRITE):
PostgreSQL demonstrates 20-40% superior performance
consistently

• Write-Intensive Workloads (70% READ/30%
WRITE): PostgreSQL shows 15-25% better
performance, with exceptions under maximum load
conditions

2) MongoDB Performance Advantages: MongoDB demon-
strates competitive advantages in specific scenarios:

Write-Heavy, High-Concurrency Scenarios: MongoDB
exhibits approximately 20% better throughput performance
compared to PostgreSQL under write-intensive workloads
(i.e., 70% READ/30% WRITE) when operating at maximum
concurrent user loads (960 virtual users). This advantage
likely stems from MongoDB’s optimised write handling and
connection management under high contention scenarios.

Read-Heavy, Low-Concurrency Scenarios: Under read-
dominated workloads (i.e., 100% READ) with low concurrent
user loads (i.e., 60-120 virtual users), MongoDB demonstrates
30-40% superior performance compared to PostgreSQL. This
advantage diminishes as concurrency increases, suggesting
that MongoDB’s document-oriented query processing provides
benefits primarily under low-contention conditions.

B. Latency Analysis

1) Read Operation Latency: The latency analysis reveals
distinct performance characteristics for read operations be-
tween the two SUTs:

MongoDB Read Performance: MongoDB consistently
demonstrates superior read operation latency across all tested
scenarios, with average improvements of approximately 5ms
compared to PostgreSQL. This advantage remains relatively
stable across different concurrency levels and dataset sizes,
suggesting fundamental differences in document retrieval op-
timisation.
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Percentage Difference in Average Throughput between MongoDB and PostgreSQL
Positive values indicate MongoDB superiority, negative values PostgreSQL superiority
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Figure 6: Summary of results as a Percentage Difference in Average Throughput between MongoDB and PostgreSQL with different workloads, dataset sizes
and number of virtual users
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Figure 7: Detailed Throughput and Latency Results for the scenario 100% READ/ 0% WRITE



245International Journal on Advances in Software, vol 18 no 3&4, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 2 3 1 2 3 1 2 3 1 2 3

Run Number / Dataset Size

0

10

20

30

40

Th
ro

ug
hp

ut
 (k

ilo
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

10000 100000 500000 100000010000 100000 500000 1000000

No. of vUsers: 60

1

2

3

4

5

6

7

8

La
te

nc
y 

(m
illi

se
co

nd
s)

1 2 3 1 2 3 1 2 3 1 2 3

Run Number / Dataset Size

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (k

ilo
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

10000 100000 500000 100000010000 100000 500000 1000000

No. of vUsers: 120

2

4

6

8

10

12

La
te

nc
y 

(m
illi

se
co

nd
s)

1 2 3 1 2 3 1 2 3 1 2 3

Run Number / Dataset Size

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (k

ilo
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

10000 100000 500000 100000010000 100000 500000 1000000

No. of vUsers: 240

5

10

15

20

25

30

La
te

nc
y 

(m
illi

se
co

nd
s)

1 2 3 1 2 3 1 2 3 1 2 3

Run Number / Dataset Size

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (k

ilo
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

10000 100000 500000 100000010000 100000 500000 1000000

No. of vUsers: 480

20

40

60

80

100

La
te

nc
y 

(m
illi

se
co

nd
s)

1 2 3 1 2 3 1 2 3 1 2 3

Run Number / Dataset Size

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (k

ilo
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

10000 100000 500000 100000010000 100000 500000 1000000

No. of vUsers: 960

50

100

150

200

250

La
te

nc
y 

(m
illi

se
co

nd
s)

Cluster Size: default. Workload Type: 99% READ / 1% WRITE
mongo
postgres

(avg_latency_read, mongo)
(avg_latency_read, postgres)

(avg_latency_write, mongo)
(avg_latency_write, postgres)

Figure 8: Detailed Throughput and Latency Results for the scenario 99% READ/ 1% WRITE
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Figure 9: Detailed Throughput and Latency Results for the scenario 95% READ/ 5% WRITE
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Figure 10: Detailed Throughput and Latency Results for the scenario 80% READ/ 20% WRITE
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Figure 11: Detailed Throughput and Latency Results for the scenario 70% READ/ 30% WRITE



249International Journal on Advances in Software, vol 18 no 3&4, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PostgreSQL Read Performance: Although PostgreSQL
exhibits slightly higher read latencies than MongoDB, the
difference remains minimal (5ms average) and does not sig-
nificantly impact overall application responsiveness in most
practical scenarios.

2) Write Operation Latency: Write operation performance
reveals the most significant performance difference between
the systems.

PostgreSQL Write Performance: PostgreSQL demon-
strates substantially superior write operation performance
across all tested scenarios. Write latencies remain consistently
low even under high concurrent loads, maintaining sub-50ms
response times in most configurations.

MongoDB Write Performance: MongoDB exhibits higher
write operation latencies, particularly under high concurrency
conditions. The most severe performance degradation occurs
in write-intensive scenarios with maximum concurrent users,
where MongoDB write latencies can exceed PostgreSQL by
up to 250ms. For example, in the 95% READ/5% WRITE
scenario with 960 virtual users, MongoDB write operations
average 250ms longer than equivalent PostgreSQL operations.

C. Scalability Analysis

1) Dataset Size Scaling: Both systems demonstrate rea-
sonable scalability characteristics as dataset sizes increase
from 10,000 to 1,000,000 records, whilst using the same
infrastructure and DBMS configuration.

PostgreSQL Scaling: PostgreSQL maintains consistent
performance across dataset size variations, with throughput
degradation remaining below 15% as dataset size increases
by two orders of magnitude. This consistent performance
suggests effective query optimisation and indexing strategies
for document-based operations.

MongoDB Scaling: MongoDB exhibits similar dataset scal-
ing characteristics, with performance degradation comparable
to PostgreSQL across different dataset sizes. However, the
absolute performance remains lower than PostgreSQL in most
scenarios.

2) Concurrency Scaling: The concurrent user load analysis
reveals different scaling patterns for each system:

PostgreSQL Concurrency Handling: PostgreSQL demon-
strates consistent performance scaling as concurrent user
loads increase, maintaining stable throughput levels even at
maximum concurrency (i.e., 960 virtual users). The system
exhibits graceful degradation without performance cliffs or
severe bottlenecks.

MongoDB Concurrency Handling: MongoDB shows
more variable performance under increasing concurrency
loads. While the system handles low to moderate concurrency
effectively, performance becomes inconsistent at high concur-
rency levels (i.e., throughput does not increase when concur-
rency increases), particularly for write-intensive operations.

D. Workload Composition Sensitivity

1) Read/Write Ratio Impact: The analysis reveals signifi-
cant sensitivity to workload composition for both systems:

Read-Dominant Workloads: As read operations dominate
the workload (moving from 70% to 100% read operations),
MongoDB’s relative performance improves, particularly under
low concurrency conditions. However, PostgreSQL maintains
superior absolute performance in most scenarios.

Write-Intensive Workloads: Increasing write operation
percentages generally favour PostgreSQL due to its superior
write latency characteristics. The performance gap between
systems widens as write operations become more prevalent,
except under maximum concurrency conditions where Mon-
goDB shows some advantages.

E. Statistics Reporting

All reported performance differences are based on the mean
of three independent benchmark runs per scenario, improving
reporting reliability. The consistent patterns observed across
multiple test runs and scenario variations provide confidence
in the robustness of the observed performance characteristics.

The most significant findings, including PostgreSQL’s 20-
40% throughput advantages and MongoDB’s 250ms write
latency penalties under high concurrency, were consistently
observed across all repetitions, indicating systematic rather
than random performance differences.

F. Performance Thresholds

Both database systems demonstrated the capability to handle
substantial transaction loads:

• Maximum Observed Throughput: Both systems
achieved over 20,000 transactions per second under op-
timal conditions

• Sustained Performance: Both systems maintained over
15,000 transactions per second across most scenarios

• Baseline Performance: Even under adverse conditions,
both systems sustained minimum throughput levels ex-
ceeding 10,000 transactions per second

These performance levels significantly exceed typical ap-
plication requirements and demonstrate the suitability of both
systems for high-throughput Cloud OLTP applications.

G. Summary of Key Findings

The comprehensive performance evaluation yields the fol-
lowing primary observations:

1) PostgreSQL General Superiority: PostgreSQL demon-
strates superior performance in approximately 75% of
tested scenarios, with advantages ranging from 20-40%

2) MongoDB Niche Advantages: MongoDB shows com-
petitive performance in read-heavy, low-concurrency
scenarios (30-40% advantage) and write-heavy, high-
concurrency scenarios (20% advantage)

3) Latency Trade-offs: MongoDB offers superior read
latency (5ms improvement) while PostgreSQL provides
substantially better write latency (up to 250ms improve-
ment under high load)

4) Scalability Characteristics: Both systems demonstrate
reasonable scaling behaviour across dataset sizes and
concurrency levels
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5) High Absolute Performance: Both systems exceed
20,000 transactions per second, indicating suitability for
demanding Cloud OLTP applications

V. CONCLUSION

This study identified the intricacies of delivering the QoS
and QoD required by users of an IS sustaining a transactional
workload, under the characteristics of Cloud OLTP [5].

We discussed several of the many characteristics of a DBMS
that have an important bearing on the choice of product for
a particular use-case. We then walked through the use-case
considered in our problem domain, and briefly described how
and why MongoDB and PostgreSQL are a good fit. Lastly, we
detailed a thorough performance comparison of a representa-
tive setup of these two DBMSs, using a workload suitable for
the document data model. Results for this comparison exercise
show that PostgreSQL outperforms MongoDB in the general
case, but MongoDB performs faster in other cases.

This exercise brings forth several observations, including
that:

• An optimal choice of DBMS technology depends on a
thorough understanding of the problem domain at hand,
ensuring that the DBMS delivers the necessary functions
to support the dataset, the operations that will be per-
formed on it, and the system and business requirements
that need to be satisfied.

• NoSQL DBMSs are not necessarily faster than SQL-
based DBMSs in all cases. Our empirical analysis has
shown that both MongoDB and PostgreSQL can meet
stringent QoS and QoD requirements.

• The data model should not be the only deciding factor
as to whether to use an SQL-based or NoSQL DBMS:
many SQL-based DBMSs support multiple data models,
including the document data model used by NoSQL
DBMSs.

• Deploying a distributed DBMS requires careful thought
as to which level of data consistency and durability guar-
antees are needed and expected from the DBMS. For ex-
ample, MongoDB does not guarantee that cross-document
changes occurring in the master node are replicated in the
same order to read-only replicas6, whilst PostgreSQL’s
replication methodology based on the write-ahead log
(WAL) does provide these guarantees7.

Nonetheless, the rigorous approach of this effort is not
considered to constitute a thorough analysis of this non-
trivial topic. Notably, the comparison was done on a single,
representative setup of PostgreSQL and MongoDB available
at the time of writing. Similar exercises can be carried out on
several other setups, and we identify five areas that represent
limitations of this study and where future research efforts can
be directed:

6https://www.mongodb.com/docs/manual/core/replica-set-sync/
#multithreaded-replication, accessed Nov 9, 2025

7https://www.postgresql.org/docs/current/protocol-replication.html,
accessed Nov 9, 2025

1) Configuration Scope: This study examined one repre-
sentative configuration per system. Future work should
explore the impact of different consistency levels, stor-
age engines, and optimisation parameters, e.g., different
configurations of READ and WRITE concerns for Mon-
goDB, the impact of READs handled by slave nodes
and WRITEs handled by master nodes and weaker data
consistency levels such as Eventual Consistency and
Causal Consistency [37]–[39].

2) Workload Patterns: YCSB workloads, while standard,
may not capture all real-world access patterns. Industry-
specific benchmarks (e.g., e-Commerce, IoT telemetry)
would introduce workload and dataset variety (e.g., vary-
ing amounts of data records, varying document sizes)
and thus broaden applicability.

3) Version Evolution: DBMSs evolve rapidly, so perfor-
mance comparisons should be conducted periodically to
track performance evolution across versions.

4) Hardware Diversity: Cloud-based evaluation provides
consistency but may not reflect performance on spe-
cialised hardware configurations.

5) Operational Complexity: Performance is only one di-
mension of database selection. Future framework exten-
sions should incorporate operational metrics, develop-
ment productivity, and total cost of ownership.

REFERENCES

[1] Y. Lee, A. N. Chen, and V. Ilie, “Can online wait be managed?
The effect of filler interfaces and presentation modes on
perceived waiting time online,” MIS Quarterly, pp. 365–394,
2012.

[2] S. Papastavrou, P. K. Chrysanthis, and G. Samaras, “Perfor-
mance vs. freshness in web database applications,” World wide
web, vol. 17, no. 5, pp. 969–995, 2014.

[3] C. Humby, “Data is the new oil,” Proc. ANA Sr. Marketer’s
Summit. Evanston, IL, USA, vol. 1, 2006.

[4] M. Xiaolei, L. Sen, and Y. Xiaofei, “Traffic Data Management
Technology in ITS,” Intelligent Road Transport Systems, p. 97,
2022.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with YCSB,” in
Proceedings of the 1st ACM Symposium on Cloud Computing,
ACM, 2010, pp. 143–154.

[6] M. Salahuddin, S. Majeed, S. Hira, and G. Mumtaz, “A Sys-
tematic Literature Review on Performance Evaluation of SQL
and NoSQL Database Architectures,” Journal of Computing &
Biomedical Informatics, vol. 7, no. 02, 2024.

[7] A. Makris, K. Tserpes, G. Spiliopoulos, D. Zissis, and D.
Anagnostopoulos, “MongoDB Vs PostgreSQL: A comparative
study on performance aspects,” GeoInformatica, vol. 25, no. 2,
pp. 243–268, 2021.

[8] T. Taipalus, “Database management system performance com-
parisons: A systematic literature review,” Journal of Systems
and Software, vol. 208, p. 111 872, 2024.

[9] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C.
Matser, “Performance evaluation of NoSQL databases: a case
study,” in Proceedings of the 1st Workshop on Performance
Analysis of Big Data Systems, 2015, pp. 5–10.



251International Journal on Advances in Software, vol 18 no 3&4, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] M. Bach and A. Werner, “Hybrid column/row-oriented
DBMS,” in Man–Machine Interactions 4: 4th International
Conference on Man–Machine Interactions, ICMMI 2015
Kocierz Pass, Poland, October 6–9, 2015, Springer, 2015,
pp. 697–707.

[11] C. Camilleri, J. G. Vella, and V. Nezval, “HTAP With Reactive
Streaming ETL,” Journal of Cases on Information Technology
(JCIT), vol. 23, no. 4, pp. 1–19, 2021.

[12] E. F. Codd, “A relational model of data for large shared data
banks,” Communications of the ACM, vol. 13, no. 6, pp. 377–
387, 1970.

[13] H. Hashem and D. Ranc, “Evaluating NoSQL document
oriented data model,” in IEEE 4th International Conference on
Future Internet of Things and Cloud Workshops (FiCloudW),
IEEE, 2016, pp. 51–56.

[14] ISO 9075:1987 - information processing systems — database
language — SQL, https://www.iso.org/standard/16661.html,
Accessed: 21-May-2024, 1987.

[15] C. Strozzi, “NoSQL: A relational database management sys-
tem,” Lainattu, vol. 5, p. 2014, 1998.

[16] C. Camilleri, J. G. Vella, and V. Nezval, “D-Thespis: A Dis-
tributed Actor-Based Causally Consistent DBMS,” in Transac-
tions on Large-Scale Data-and Knowledge-Centered Systems
LIII, Springer, 2023, pp. 126–165.

[17] DoubleClick, ShopWiki, and GiltGroupe, Mongodb, https: / /
www.mongodb.org, https://www.mongodb.org, 2007.

[18] R. Elmasri and S. Navathe, Fundamentals of Database Sys-
tems, 7th ed. Pearson/Addison Wesley, 2017.

[19] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi, “Fast distributed transactions and strongly con-
sistent replication for OLTP database systems,” ACM Transac-
tions on Database Systems (TODS), vol. 39, no. 2, pp. 1–39,
2014.

[20] K. Domdouzis, P. Lake, and P. Crowther, Concise guide to
databases: A practical introduction. Springer, 2021.

[21] P. Lake and P. Crowther, “Database Availability,” in Concise
Guide to Databases: A Practical Introduction, Springer, 2013,
pp. 221–239.

[22] Z. H. Liu and D. Gawlick, “Management of Flexible Schema
Data in RDBMSs-Opportunities and Limitations for NoSQL,”
in CIDR, 2015.

[23] C. Camilleri, J. G. Vella, and V. Nezval, “Thespis: Causally-
consistent OLTP,” in 2021 16th Conference on Computer
Science and Intelligence Systems (FedCSIS), IEEE, 2021,
pp. 261–269.

[24] D. Bermbach, E. Wittern, and S. Tai, Cloud service bench-
marking. Springer, 2017.

[25] S. Chowdhury and W. Golab, “A scalable recoverable skip
list for persistent memory,” in Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures,
2021, pp. 426–428.

[26] L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir,
“On benchmarking for concurrent runtime verification,” in
International Conference on Fundamental Approaches to Soft-
ware Engineering, Springer International Publishing Cham,
2021, pp. 3–23.

[27] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T.
Hoefler, “Sebs: A serverless benchmark suite for function-as-
a-service computing,” in Proceedings of the 22nd International
Middleware Conference, 2021, pp. 64–78.

[28] C. Camilleri, J. G. Vella, and V. Nezval, “Actor model frame-
works: An empirical performance analysis,” in International
Conference on Information Systems and Management Science,
Springer, 2022, pp. 461–472.

[29] F. Raab, “TPC-C - The Standard Benchmark for Online
Transaction Processing (OLTP),” in The Benchmark Handbook
for Database and Transaction Systems (2nd Edition), Morgan
Kaufmann Publishers Inc, 1993.

[30] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal,
and L. Alvisi, “Obladi: Oblivious serializable transactions in
the cloud,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), 2018, pp. 727–743.

[31] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson,
and W. Lloyd, “Not Causal! Scalable Causal Consistency with
No Slowdown Cascades,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17),
2017, pp. 453–468.

[32] K. Shudo and T. Yaguchi, “Causal consistency for distributed
data stores and applications as they are,” in IEEE 40th Annual
Computer Software and Applications Conference (COMP-
SAC), IEEE, vol. 1, 2016, pp. 602–607.

[33] M. Zawirski, “Dependable eventual consistency with repli-
cated data types,” Ph.D. dissertation, Universite Pierre et Marie
Curie, 2015.

[34] C. Camilleri, J. G. Vella, and V. Nezval, “Horizontally Scalable
Implementation of a Distributed DBMS Delivering Causal
Consistency via the Actor Model,” Electronics, vol. 13, no. 17,
p. 3367, 2024.

[35] S. Ferreira, J. Mendonça, B. Nogueira, W. Tiengo, and
E. Andrade, “Benchmarking Consistency Levels of Cloud-
Distributed NoSQL Databases Using YCSB,” IEEE Access,
2025.

[36] N. B. Seghier and O. Kazar, “Performance benchmarking
and comparison of NoSQL databases: Redis vs MongoDB vs
Cassandra using YCSB tool,” in International Conference on
Recent Advances in Mathematics and Informatics (ICRAMI),
IEEE, 2021, pp. 1–6.

[37] C. Camilleri, J. G. Vella, and V. Nezval, “Thespis: Actor-Based
Causal Consistency,” in 2017 28th International Workshop on
Database and Expert Systems Applications (DEXA), IEEE,
Aug. 2017, pp. 42–46. DOI: 10.1109/DEXA.2017.25.

[38] C. Camilleri, J. G. Vella, and V. Nezval, “ThespisTRX:
Causally-Consistent Read Transactions,” International Journal
of Information Technology and Web Engineering (IJITWE),
vol. 15, no. 1, pp. 1–16, 2020.

[39] C. Camilleri, J. G. Vella, and V. Nezval, “ThespisDIIP: Dis-
tributed Integrity Invariant Preservation,” in Database and
Expert Systems Applications, M. Elloumi, M. Granitzer, A.
Hameurlain, C. Seifert, B. Stein, A. M. Tjoa, and R. Wagner,
Eds., Cham: Springer International Publishing, 2018, pp. 21–
37, ISBN: 978-3-319-99133-7.


