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Abstract— Japan's complex and varied topography gives rise to 

distinct seasonal landscapes, which serve as a major attraction 

for domestic and international tourists. Among these natural 

phenomena, the autumnal transformation of foliage—

particularly the vivid yellowing of ginkgo leaves—holds 

considerable appeal. However, the phenological timing of leaf 

senescence and abscission exhibits substantial spatial variability, 

often leading to visitor dissatisfaction when travel coincides with 

either the premature stage prior to coloration or the post-

abscission phase. To mitigate this issue, we propose a predictive 

system designed to estimate the timing of autumnal leaf 

coloration. This system employs Internet of Things (IoT) 

technologies to collect environmental data, including 

photographic imagery of ginkgo trees and measurements of 

solar radiation. The acquired data are then processed to forecast 

the imminent onset of leaf yellowing and subsequent abscission. 

A prototype implementation of the system was developed, and 

its predictive performance was empirically validated, 

demonstrating its efficacy in estimating key phenological 

transitions. 

Keywords-Yellow Leaves Tourism; Internet of Things; 

Artificial Intelligence; Estimating. 

I.  INTRODUCTION 

This paper is an extended version of earlier published 
work [1]. This paper added a quantitative evaluation of the 
results when deep learning was not used for image 
classification, clarifying the effectiveness of using deep 
learning. 

They also made modifications to the definition of the 
yellowing rate and recalculated the time series analysis, 
resulting in improved accuracy. 

Japan has a rugged landscape and is blessed with a diverse 
range of flora and fauna. These offer fascinating and 
unforgettable experiences for many tourists, both from Japan 
and abroad. Ginkgo trees, with their brilliant golden and 
vibrant yellow leaves, are a particularly popular tourist 
attraction. However, the period during which ginkgo trees 
shimmer in their beautiful golden hue is short. At most, they 
last about a week, and this period only occurs once a year in 
the fall. The time when ginkgo leaves turn yellow varies 
depending on the location. Even in the same location, weather 

conditions vary from year to year, so the leaves may not turn 
yellow on a specific day. If tourists visit before the ginkgo 
trees turn yellow, they will only see the green trees and miss 
out on the excitement. Even after the leaves have fallen, they 
will be sad to see them. Knowing when the leaves turn yellow 
is very important. 

Biological seasonal observations [2] are conducted as a 
systematic approach to observing seasonal changes in various 
plants and animals, such as the yellowing of ginkgo leaves and 
the blooming of cherry blossoms. The Japan Meteorological 
Agency began this observation in 1953 and has covered 34 
species and 41 phenomena. Biological seasonal observations 
rely on visual observation, which poses a challenge due to the 
enormous human cost involved. The scope of observations is 
being significantly reduced. It has also been pointed out that 
in urban environments, shading caused by buildings may 
affect biological seasonality. However, there is little research 
on the biological seasonal observation of local plants in urban 
environments [3][4][5] that could reduce human costs. 

To address these challenges, we propose a method that 
reduces human labor while enabling the detection and 
prediction of yellowing in specific ginkgo trees within urban 
environments. First, we developed an IoT device capable of 
automatically collecting fixed-point photographs of ginkgo 
trees along with local meteorological data. From the captured 
images, the number of yellow leaf pixels is extracted to 
quantify the degree of yellowing. However, the apparent color 
of ginkgo leaves in images varies depending on factors such 
as cloud cover, camera performance, and leaf density. Simple 
pixel-based extraction cannot adequately account for these 
variations, often misclassifying green or other regions as 
yellow leaf pixels. To overcome this limitation, we employ 
deep learning–based color identification that is robust to such 
image variations. Moreover, recognizing that natural 
phenomena such as leaf yellowing and leaf fall progress 
continuously rather than as binary states, we aim to predict 
ginkgo phenology with higher granularity by extracting 
indicators representing the degree of yellowing and the extent 
of leaf fall, and conducting regression analyses using these 
indicators as objective variables. 

This paper is organized as follows: Section II introduces 
related research. Section III explains the observation data. 
Section IV explains the observation system built using IoT 
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devices. Section V explains how to analyze the collected 
observation data. Section VI presents the classification results, 
and Section VII discusses the prediction of the time when 
leaves will turn yellow. Section VIII summarizes this paper 
and discusses future challenges. 

II. RELATED RESEARCH 

As biological phenological observations have been 
reduced, various studies on biological phenological 
observations have been reported to solve the problem. Below, 
we will discuss research related to the development of 
biological phenological observation methods. 

In Endo et al.'s research [6][7], we proposed a method to 
estimate the timing of relic season changes in biological 
phenological observations at low cost from X (formerly 
Twitter) location-attached posts. By analyzing the names of 
organisms such as ginkgo and maple in the posts and co-
occurring words indicating their location and state, the timing 
of biological phenological changes was estimated from the 
frequency of posts. Furthermore, the effectiveness of the 
proposed method was verified by comparing with observation 
data from the Japan Meteorological Agency. 

In Iha et al.'s research [8], we used post data related to 
cherry blossoms from March to the end of April 2022 as a 
dataset and performed time series prediction of the number of 
posts using machine learning. As a result, we confirmed an 
improvement in the precision and recall of the time series 
prediction model of the number of posts compared to 
conventional methods. 

In Ito et al.'s research [9], they developed a robot that can 
automatically measure plant growth information by utilizing 
low-cost IoT devices and open source image processing 
libraries. This robot was used to periodically capture images 
of spinach growth, demonstrating its potential for application 
in growth prediction and detection of poor growth. 

In a study by Sato et al. [10], multispectral observations 
using a drone and IoT devices were used to observe the growth 
status of wheat using vegetation indices. 

As described above, many methods have been researched 
for efficiently observing biological phenologies and plants 
using SNS(Social Networking Service) and IoT devices, but 
there has been no research on a system that can estimate the 
best time for yellow leaves to appear. 

There are studies such as Meier et al. [11] and Kim et al. 
[12] that have attempted to predict the period of leaf yellowing 
and leaf fall based on long-term observation data from a 
botanical perspective, but these predictions are not based on 
data that can be observed using simple IoT devices. These 
studies rely on expensive observation data, such as human 
observation, and are different from the goal of this research, 
which is to develop a system that collects data at low cost and 
predicts the period of leaf yellowing. 

III. OBSERVATION DATA 

Biological phenological observations were performed in 
accordance with the Japan Meteorological Agency's 
biological phenological observation guidelines, and fixed-
point photography was performed on ginkgo trees at the 
Polytechnic University as specimen trees (Figure 1). In 

addition, meteorological information from the surrounding 
area (hereinafter referred to as sensor measurements) is 
measured as a feature used to predict the yellowing and falling 
of ginkgo leaves. The sensor measurements are temperature, 
humidity, air pressure, carbon dioxide concentration, and 
illuminance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure  1. Specimen Trees. 

Green and yellow leaves are related to photosynthesis. 
Photosynthesis is greatly affected by illuminance and carbon 
dioxide concentration. For this reason, in addition to basic 
sensors such as temperature, we also prepared sensors for 
illuminance and carbon dioxide concentration for observation. 

The measurement sensor needs to be installed near the 
specimen tree. Because it also requires a power supply, the 
sensor was installed outside a window of a building near the 
specimen tree. The ginkgo tree on the far left of Figure 1 is 
closest to the sensor. However, because this tree reflects light 
and is prone to casting shadows, the ginkgo tree enclosed in a 
red frame was used as the specimen tree. 

The observation period is from November 1, 2024 to 
January 10, 2025. The measurement frequency was one image 
and sensor measurement value set per minute. However, each 
sensor measurement value was taken for 24 hours, but images 
were taken only from 6:00 to 18:00. This is because it gets 
dark after 6pm, making it difficult to determine the color of 
the leaves. It is possible to take pictures at night using 
expensive, specialized cameras. However, visual inspection 
requires personnel costs, so we are trying to use IoT devices 
to reduce the cost. We avoided using expensive equipment. 
Furthermore, image data from times when no photography is 
taking place will be substituted with the last image, i.e., the 
image taken at 6pm. We did not consider using the next image 
taken, i.e., the image taken at 6am, because the image data 
cannot be determined until a photo can be taken the next day 
at 6am. 

IV. OBSERVATION SYSTEM 

The configuration of the measurement system is presented 
in Figure 2. Measurements related to the ginkgo trees are 
obtained using devices from the M5Stack series. Fixed-point 
photographs of the trees are captured with a Timer Camera. 
Temperature, humidity, and atmospheric pressure are 
recorded using the HAT-YUN module, CO₂ concentration is 
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measured with an SGP30 sensor, and illuminance is measured 
with a BH1750FVI-TR sensor. All sensor data are collected 
and processed by an M5Stick microcontroller.  

 

 

Figure  2. Overview of the observation system and data flow. 

Images of the ginkgo trees will be saved to Google Drive 
and the sensor measurements will be saved to a spreadsheet 
using a script written in Google Apps Script provided by 
Google. 

V. ANALYSIS METHOD 

In preliminary experiments, we performed pixel-by-pixel 
determination of yellow leaves in acquired images. We 
defined the green and yellow ranges and classified them into 
three classes, including the rest. Specifically, the green range 
was defined as (160, 20, 15) to (210, 55, 50) in HSV, and the 
yellow range was defined as (36, 15, 30) to (60, 40, 70) in 
HSV. However, green and yellow leaves shine due to reflected 
light and do not fall within the predetermined green and 
yellow ranges. Conversely, shadows sometimes resulted in 
actual green or yellow leaves that also did not fall within the 
predetermined green and yellow ranges. We manually 
reviewed 5,000 images that did not fall within the yellow or 
green range of HSV. 13.5% were green leaf images and 9.6% 
were yellow leaf images. This indicates a 20% or greater 
chance of misclassifying leaves as green or yellow due to glare 
or shadows. Conversely, we manually reviewed 5,000 images 
that fell within the yellow or green range of HSV. 16.2% were 
not green or yellow, but were recorded as green or yellow due 
to glare or shadows. In other words, determining the green and 
yellow ranges in advance does not accurately determine green 
or yellow leaves. Therefore, we used machine learning to 
classify images into three classes using the following 
procedure. 

Furthermore, we defined the yellowing and fallen leaf 
rates. From the acquired image, an area that only contains 
ginkgo leaves (hereafter, ginkgo image) is cut out. 
Furthermore, the ginkgo image is divided into 10x10 pixel 
images (hereafter, square images), and each square image is 
classified into "green", "yellow", and "other". The 
classification method is to first select only ginkgo images at 
times when the illuminance, one of the sensor measurement 
values, is between 1000 and 10000 lux. These images are 
divided into square images and labeled as "green", "yellow", 
and "other". These square images are used as learning data for 
training, and a model is generated that classifies the images 
into three classes: "green", "yellow", and "other". When an 

image containing only ginkgo leaves is divided into 10x10 
pixels using this model, the number of images classified into 
each class is counted (Yellow Classification Count : y, Green 
Classification Count : g). In calculating the index, the ratio of 
the number of yellow class classifications to the total number 
of green and yellow class classifications (hereafter referred to 
as leaf amount), which indicates the entire ginkgo leaf, is 
defined as the "yellow leaf rate," Eq. (1) and the "fallen leaf 
rate" Eq.(2) is defined as the rate at which the leaf amount at 
the time of measurement has decreased from the maximum 
leaf amount obtained up to the time of measurement (hereafter 
referred to as maximum leaf amount : max(y + g)). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Learning and Classification Flow. 

In earlier published work [1], we used the leaf yellowing 
rate given by Eq. (1). This is a natural definition, as it is the 
percentage of yellow leaves. However, it changes when leaf 
fall begins. When leaf fall begins, not only does the number 
of yellow leaves decrease, but the leaf amount also decreases. 
Therefore, if we use the yellowing leaf rate in Eq.(1), the value 
will change abnormally large when leaf fall begins. It is even 
possible for the yellowing leaf rate to increase even though the 
number of yellow leaves is decreasing. This has a negative 
impact on time series estimation. Time series estimation in 
earlier published work also did not achieve high accuracy. 
Therefore, we will modify the definition to Eq.(3), which can 
accurately represent the change in the decrease in yellow 
leaves after leaf fall begins. In this study, we recalculated 
using the yellowing leaf rate in Eq.(3). 

Yellow leaf rate (old) =
𝑦

g+𝑦
× 100[%]                 () 

Fallen leaf rate =(1 −
𝑔+𝑦

max(g+𝑦)
) × 100[%]         () 

Yellow leaf rate (new) =
𝑦

max⁡(g+𝑦)
× 100[%]         () 

According to the observation conditions of ginkgo in the 
biological phenology observation of the Japan Meteorological 
Agency [2], the yellow leaf day refers to the first day when the 
majority of the leaves have turned yellow when viewed as a 
whole and almost no green parts are visible. The defoliation 
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cut split classify 
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day refers to the first day when approximately 80% of the 
leaves of the specimen tree have fallen. Therefore, the leaves 
are judged to be yellow when the yellow leaf rate is 80% or 
more of the maximum leaf amount, and the leaves are judged 
to be fallen when the defoliation rate is 80% or more. 

Multivariate time series prediction is performed using 
LightGBM. If we can tell from camera images that the leaves 
are turning yellow or starting to fall, it will lead to a reduction 
in human costs. However, tourists need more information. 
What will the yellowing of the leaves be like in the next few 
days? When will the leaves start to fall? Information like that. 
For this, time series forecasting is necessary. Accuracy is 
verified using the yellow leaf rate and defoliation rate as the 
objective variables, and sensor measurements and processed 
data from them as explanatory variables. 

VI. CLASSIFICATION RESULTS  AND DISCUSSION 

The results of three-class image classification using the 
image classification model ResNeXt are shown below. The 
three classes are yellow, which means yellow leaves, green 
before the leaves turn yellow, and other colors, which mean 
fallen leaves. Evaluation data was classified using the model 
determined to be the best by generalized k (k=5)-fold cross-
validation, and the evaluation results shown in Table I were 
obtained. According to Table I, the precision rate for the green 
class classification is a little low at 0.892. However, all other 
colors were above 0.92. We counted the number of areas that 
were green, yellow, and other colors in the ginkgo image, and 
we believe that we were able to calculate the indices of yellow 
leaf rate and fallen leaf rate with high accuracy. 

TABLE  I. EVALUATION OF IMAGE CLASSIFICATION OF SQUARE IMAGES 

Class 
Name 

Precision Recall F-Value 

Green 0.892 0.928 0.909 

Yellow 0.945 0.927 0.935 

Others 0.921 0.928 0.924 

Details of the precision rate are shown in Table II. The 

precision rate is an evaluation index that indicates how 

accurate the prediction was. Looking at Table II, we see that 

the proportion of images classified as green that were actually 

labeled as yellow was 0.082, and the proportion of images 

labeled as other was 0.027. In other words, there were more 

images erroneously predicted to be green that were labeled as 

yellow than as other. This suggests that while the system was 

relatively accurate in classifying images where the correct 

answer was other classes such as trunks and branches, it is 

possible that the classification of green and yellow classes did 

not capture the subtle changes that occur when leaves change 

from green to yellow. The classification accuracy is 

significantly better than the classification performed in the 

preliminary experiment using a specified HSV value range. 

In particular, there are almost no cases where leaves that 

should have been classified as green or yellow because they 

were shining in the light are misclassified as neither green nor 

yellow. However, with the specimen tree, after the day the 

leaves turned yellow, images were observed in which 

shadows were cast by the sunlight, and these parts were 

mistakenly classified as green. Therefore, it is necessary to 

aim to improve accuracy by devising photography methods 

and image processing methods that are not affected by the 

direction of the sun or shadows. 

TABLE  II. DETAILS OF PRECISION RATE 

 Classification results 

Green Yellow Others 

 
Actual 

Green 0.892 0.042 0.040 

Yellow 0.082 0.945 0.039 

Others 0.027 0.013 0.921 

TABLE  III. OBJECTIVE AND EXPLANATORY VARIABLES OF THE PREDICTION 

MODEL 

Objective variables Explanatory variables 

 

Yellowing and fallen leaf 

rates three days later 

Average yellowing rate 

for the past three days 

Average falling leaf rate 

for the past three days 

Illuminance 

Average of illuminance 

and CO2 integrated value 

for three days 

Additional value of 

average illuminance 

from 6:00 to 18:00 on the 

same day 

VII. PREDICTION RESULTS AND DISCUSSION 

Using the ResNeXt image classification model, we were 
able to classify images into three classes: green leaves, yellow 
leaves, and others, with an accuracy of over 90%. Using these 
results, it became possible to calculate the rate at which leaves 
turn yellow and fall to determine whether the best time to see 
the yellow leaves is. Tourists need more information than this. 
Not just whether the leaves are turning yellow now, but also 
predictions about when they will turn yellow and when they 
will fall. We will build a predictive model using changes in 
past image data and weather information from sensors. 

The objective variables and explanatory variables used in 
the LightGBM analysis were defined as shown in Table III for 
the leaf yellowing rate prediction model and leaf fall rate 
prediction model. Note that temperature, humidity, and air 
pressure, which were planned to be used as explanatory 
variables, were not used as explanatory variables because only 
fixed values were recorded from the middle of the observation 
period. For the explanatory variables in Table III, the 
objective variables were predicted based on the average leaf 
yellowing rate over the past three days and the average leaf 
fall rate over the past three days. In addition, the objective 
variables were predicted based on the average illuminance and 
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the integrated value of illuminance and CO2 over three days, 
as sunlight and photosynthetic activity would affect the 
objective variables. Furthermore, the average illuminance 
value from 6:00 to 18:00 on the same day was added to replace 
the integrated temperature to improve the prediction accuracy. 
Regarding the objective variables, the prediction period for 
yellowing and leaf fall judgment in previous studies was three 
days later, so the objective variables in this study were set to 
the leaf yellowing rate and leaf fall rate three days later from 
the last day of the average value of the past three days. Note 
that these data are saved every minute. Therefore, for the data 
at 12:00 on November 10, 2024, the average value of the 
explanatory variables over the past three days is the average 
value of the data from 11:59 on November 8 to 11:59 on 
November 10, 2024, and the target variables are the yellowing 
and falling leaf rates at 12:00 on November 13, 2024. 

Figures 4 and 5 show the measured and predicted values 
of the percentage of yellowing leaves defined by Eq. (1) and 
Eq. (3), respectively, and Figure 6 shows the measured and 
predicted values of the percentage of defoliation. Furthermore, 
Table IV shows the evaluation of the yellowing leaf rate 
prediction model and the defoliation rate prediction model. 

 

 

Figure 4.  Actual value (blue) and predicted value (green) of 

the yellowing rate (Eq.(1)). 

 

 

 

 

 

 

Figure 5. Actual value (blue) and predicted value (green) of the 

yellowing rate (Eq.(3)). 

 

Figure 6. Actual value (red) and predicted value (gray) of leaf fall rate. 

Figures 4, 5 and 6 show that the predicted values of the 
yellowing and falling leaf rates fluctuate about five days later 
than those calculated from the ginkgo image. In addition, after 
the fluctuation, there is no fluctuation and the rate remains flat 
for about three days. The reason for the approximately five-
day delay in the fluctuation is thought to be that the data 
learned when the model output the predicted value of the 
evaluation data was from five days ago, so it was not possible 
to predict it as time-series data. In addition, the reason for the 
leveling off is that the yellowing and falling leaf rates were 
restricted to extract only the ginkgo image and only the time 
when the illuminance was within a certain range, leaving the 
yellowing and falling leaf rates blank for the time when the 
illuminance was outside the certain range. To fill this gap, the 
leaf yellowing rate and leaf fall rate from the most recent time 
when the illuminance was within a certain range were used. 
As a result, while the explanatory variables fluctuated during 
the learning data period, the objective variables, the leaf 
yellowing rate and leaf fall rate, did not fluctuate and 
remained flat during the period when the illuminance was 
outside of a certain range, so it is thought that the predicted 
values also produced similar outputs. 

The data used in earlier published work contained 
approximately 10% overlapping timestamps. This is thought 
to be due to delays in data communication, so in this study, 
the duplicated data was removed. 

 

TABLE  IV. RMSE OF EACH REGRESSION MODEL 

Model RMSE 

The yellowing leaf rate (Eq.(1)) 
prediction model 

0.163 

The yellowing leaf rate (Eq.(3))  
prediction model 

0.114 

The defoliation rate prediction model. 0.083 

 
Table IV shows that the RMSE (Root Mean Squared 

Error) of the leaf yellowing prediction model based on the 
percentage of yellowing leaves defined in Eq. (3) is 0.114. 
RMSE is an index that indicates the difference between the 
predicted value and the actual percentage of leaf yellowing or 
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falling. This means that there is an average error of 0.114 
between the predicted and actual values. This is a significant 
improvement over the RMSE of 0.163 for the leaf yellowing 
prediction model based on the percentage of yellowing leaves 
defined in Eq. (1). Comparing Figures 4 and 5, the difference 
becomes more pronounced as the percentage of falling rate 
increases, as shown in Figure 6. However, an RMSE of 0.114 
means that even if the leaf yellowing rate is predicted to be 
0.8, the actual result is 0.686 if it is low, or 0.914 if it is high, 
which is still not sufficient accuracy. 

VIII. CONCLUSION AND FUTURE WORK 

In this study, we first proposed a method for quantifying 
the degree of leaf yellowing and defoliation in ginkgo trees 
using deep learning–based image classification. Although 
variations in observation dates and leaf density influence the 
apparent leaf color in ginkgo images, the developed 
high‑accuracy classification model enabled reliable extraction 
of yellowing and falling rates. 

We then evaluated a prediction method that estimates the 
yellowing and falling rates three days in advance, using 
processed meteorological data as explanatory variables. 

Several challenges remain for observation methods 
utilizing IoT devices. First, the accuracy of image 
classification must be improved by developing imaging 
strategies that minimize the influence of sunlight direction and 
shadows. Additionally, it will be necessary to detect 
anomalies in meteorological measurements and to address 
sensor failures through sensor redundancy. 

In this study, malfunctions occurred in the temperature, 
humidity, and atmospheric pressure sensors, rendering their 
measurements unusable. Incorporating these sensor values, in 
addition to illuminance and carbon dioxide concentration data, 
is expected to further improve prediction accuracy. In 
particular, atmospheric pressure is closely related to weather 
conditions and may complement illuminance measurements. 

Future challenges also remain in the method for estimating 
yellowing and falling rates from ginkgo images. The dataset 
must be expanded by developing image processing techniques 
capable of accurately extracting color information from 
images that are excessively bright or dark. Moreover, because 
images were captured only between 6:00 and 18:00, a future 
task is to obtain continuous image data throughout the day 
without relying on costly equipment. Since the measurement 
site in this study was limited to a single location, it will also 
be necessary to verify the applicability of the proposed 
method to trees in different environments. 

By addressing these issues, we aim to achieve fully 
automated prediction of yellowing and falling timing for 
individual specimen ginkgo trees. 
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