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Abstract - Software design patterns offer reusable structural
solutions that support developers and maintainers in addressing
common design problems. Their abstractions can support
program code documentation and comprehension, yet manual
pattern documentation via code or code-related artifacts
(documents, models) can be unreliable, incomplete, and labor-
intensive. Various automated Design Pattern Detection (DPD)
techniques have been proposed, yet adoption remains limited
and further investigation of viable solutions is needed. Towards
more effective automated DPD, this paper contributes our
Neural Graph Database approach DPD-NGDB, which also
functions as a base model in our Ensembles Methods approach
DPD-EM. The realization demonstrates the feasibility of our
approaches, while the evaluation compares and benchmarks the
DPD performance against a Gang-of-Four (GoF) software
design pattern dataset, demonstrating its potential.
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I.  INTRODUCTION

This paper extends our previous work [1], in that it
investigates further potential DPD methods, leveraging
Ensembles Methods (EMs), Neural Graph DataBases
(NGDBs), and Graph Neural Networks (GNNs) approaches
for DPD. The breadth and depth of the evaluation is extended
to and benchmarked against the entire Gang of Four (GoF)
design patterns. Our prior hybrid DPD approach has been
changed to an EM approach.

Program source code worldwide continues to rapidly
expand, yet code comprehension remains a limiting
productivity factor. Program comprehension may consume up
to 70% of the software engineering effort [2]. Activities
involving program comprehension include investigating
functionality, internal structures, dependencies, run-time
interactions, execution patterns, and program utilization;
adding or modifying functionality; assessing the design
quality; and domain understanding of the system [3]. Code
that is not correctly understood by programmers impacts
quality and efficiency.

Software Design Patterns (DPs) have been documented
and popularized, including the Gang of Four (GoF) [4] and
POSA [5]. The application of abstracted and documented
solutions to recurring software design problems has been a
boon to improving software design quality, efficiency, aiding
comprehension, refactoring, reuse, reverse-engineering, and

maintenance tasks. These well-known macrostructures or
associated pattern terminology in code can serve as beacons
to abstracted macrostructures, and as such may help identify
aspects such as the author’s intention or the purpose of a code
segment, which, in turn, supports program comprehension.

Automated DPD in code overs various benefits, including:
quicker comprehension of DP-related structural aspects of
unfamiliar software; automatically documenting DPs;
supplementing and validating the design documentation;
reducing dependence on error-prone DP documentation; and
detection of inadequately implemented DPs. Yet the
challenges for automated DPD include: 1) tool support for
heterogeneous programming languages, as DPs are
independent of programming language; 2)
internationalization and labeling, since developers may name
and comment in their natural language or any way they like;
3) varying pattern abstraction levels, such as design vs.
architectural patterns; 4) similarities and intent differentiation,
since some similar pattern structures are primarily
differentiated via their intention; 6) DP localization to indicate
where in code a DP was detected; and 7) detecting variants,
since each pattern implementation is unique.

Traditional DPD approaches rely on static code analysis,
with tools extracting structural features such as class
hierarchies, method invocations, and object instantiations to
identify patterns [6]. Curated design pattern datasets, such as
the Pattern-like Micro-Architecture Repository (P-MARt)
[7][8], provide a collection of micro-architectures from
known open source projects which applied the canonical
design patterns and can serve as benchmarks for evaluating
DPD techniques. While various DPD approaches have been
explored [9][10], no approach has thus far achieved
significant practical traction, and thus additional investigation
into further possibly viable approaches and improvements is
warranted.

GNNs [11] are a class of Deep Learning (DL) models that
are specifically designed to work with graph-structured data.
They learn representations that capture the features of
individual nodes and the relationships between them. Unlike
traditional neural networks (NNs) that assume independent
data points, GNNs leverage the topology of graphs to
propagate information across nodes via edges, making them
particularly suitable for domains where relationships are key.

NGDBs [12][13] extend classical graph database systems
by integrating GNNs directly into the graph storage and the
query engine. An NGDB is designed to store, manage and
query graphs using both traditional graph operations and
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neural inference to enrich incomplete or uncertain data,
perform link prediction, and extract embeddings on-the-fly.
This hybrid paradigm unifies transactional graph queries (e.g.,
Cypher [14]) with GNN-based tasks (e.g., node classification,
link prediction), enabling real-time inference powered by the
rich information encoded in a Labeled Property Graph (LPG)
data model.

EMs [15][16] incorporate a finite set of alternative
Machine Learning (ML) algorithms and models to enhance
predictive performance, especially where a single model may
not perform ideally. As design patterns can exhibit significant
variance and non-linear relationships, we believe that no
single technique (ensemble) will likely perform well in all
circumstances. Thus, a mix of models (ensembles) may
improve results when faced with significant variance,
diversity, and non-linear relationships in the datasets, as is
often the case with DPD.

Our previous work includes: our ML-based DPD approach
DPDML that utilizes semantic and static analysis metrics
[17]; our hybrid DPD approach HyDPD [18], which combines
our ML-based model with an expert-based graph analysis
model; and HyDPD-B [1], which applies a Bayesian network
probabilistic reasoning to integrate various DPD subsystems,
including HyDPD-ML utilizing graph embeddings, with our
expert rule system with DP rule language and micropattern
detection.

This paper contributes our NGDB-based solution
approach (DPD-NGDB), which is embedded as a base model
in our EM approach (DPD-EM). We describe our realization,
which demonstrates the feasibility of the DPD approaches.
Our evaluation uses a dataset consisting of the Gang-of-Four
(GoF) design patterns benchmarked against the P-MARt
repository.

This paper is structured as follows: the next section
discusses related work. Section III describes our solution. In
Section IV, our realization is presented, which is followed by
our evaluation in Section V. Finally, a conclusion is provided.

1I. RELATED WORK

Surveys including categorizations of DPD approaches
include Al-Obeida et al. [9] and Yarahmadi and Hasheminejad
[10]. Graph-based DPD approaches include: Yu et al. [19]
transform code to UML class diagrams, analyze the XMI for
sub-patterns in class-relationship directed graphs; Mayvan
and Rasoolzadegan [20] use a UML semantic graph; Bernardi
et al. [21] apply a DSL-driven graph matching approach;
DesPaD [22] extract an abstract syntax tree from code, create
a single large graph model of a project, and then apply an
isomorphic sub-graph search method. Further isomorphic
subgraph approaches include Pande et al. [23] and Pradhan et
al. [24], both of which require UML class diagrams.

Learning-based approaches map the DPD problem to a
learning problem, and can involve classification, decision
trees, feature maps or vectors, Artificial Neural Networks
(ANN:Ss), etc. Examples include Alhusain et al. [25], Zanoni et
al. [26], Galli et al. [27], Ferenc et al. [28], Uchiyama et al.
[29], and Dwivedi et al. [30]. Thaller et al. [31] describe a
micro-structure-based structural analysis approach based on
feature maps. Chihada et al. [32] convert code to class
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diagrams, which are then transformed to graphs, and have
experts create feature vectors for each role based on object-
oriented metrics and then apply ML.

Additional  approaches include: reasoning-based
approaches such as Wang et al. [33] based on matrices; rule-
based approaches like Sempatrec [34] and the ontology-based
FiG [35]; metric-based approaches such as MAPeD [36],
Uchiyama et al. [29], and Dwivedi et al. [37]; Fontana et al.
[38] analyze microstructures based on an abstract syntax tree;
semantic-analysis style includes Issaoui et al. [39]; while DP-
Miner [40] uses a matrix-based approach based on UML for
structural, behavioral, and semantic analysis. Singh et al. [41]
combines static rules with graph analysis. GEML [42]
initializes a population of random structures, applying genetic
algorithms to mutate and generate new patterns from the
initial population. Kouli and Rasoolzadegan [43] utilize
micro-patterns with binary logic.

Graph-based code representations have emerged to
capture syntactic and semantic dependencies more effectively.
Liu et al. [44] propose a Code Property Graph (CPG)-based
GNNs for code similarity detection, achieving high
performance by learning multi-hop  dependencies.
Ampatzoglou et al. [45] use neural sub-graph matching with
GNNs to detect design patterns in large codebases,
demonstrating robustness to structural variations. Li et al. [46]
integrated multi-feature fusion with GNNs, combining
semantic embeddings and structural metrics for enhanced
detection in real-world projects.

NGDBs represent an innovative extension, integrating
GNNs with graph databases such as Memgraph, offering real-
time pattern analysis [12][13]. NGDBs enable dynamic
feature computation and scalable querying, which could
support tasks like pattern recognition in evolving codebases
[47].

Ensemble Methods have proven effective in improving
robustness and accuracy for ML tasks [15][16]. For DPD,
ensembles like Random Forests and stacked generalization
combine multiple classifiers to leverage complementary
strengths [48]. However, integrating GNNs, NGDBs, and
traditional ML models in ensembles remains underexplored,
particularly for addressing class imbalance and generalization,
and we see an opportunity and flexibility for addressing DPD
issues via its utilization.

III.  ANALYSIS AND REQUIREMENTS

DPD approaches can arguably be categorized into three
primary approaches: 1) learning-based, where DPs are (semi-
)automatically learned (e.g., via supervised learning) from
provided data and requiring minimal expert intervention; 2)
knowledge-based, whereby an expert defines DPs by
describing elements and their associations; and 3) similarity-
based, whereby DPs are grouped based on similar metrics or
characteristics.

A. Analysis

DPD in object-oriented code, such as Java, involves
identifying structural, creational, and behavioral patterns from
the Gang of Four (GoF) catalog. However, several challenges
complicate this task:
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C1: Variability in Implementations: DPD must take
variability into account, since patterns can be implemented in
non-standard ways, with variations in naming, structure, or
partial realizations. Traditional rule-based tools like P-MARt
or PINOT (Pattern Identification using Optimization and
Transformation) [49] often fail to detect these variants due to
rigid matching criteria.

C2: Dataset Limitations: Existing “labeled” DPD datasets
often consist of clean, textbook examples but lack diversity,
including real-world project integrations. Imbalances between
pattern and non-pattern instances further complicate ML
approaches.

C3: Feature Representation: Static analysis alone misses
dynamic behaviors, while graph-based representations (e.g.,
Abstract Syntax Tree (AST) or Call Graph (CQG)) require
sophisticated handling to capture inter-class relationships
without losing semantic information.

C4: Scalability: DPD must handle large codebases
efficiently.

CS5: Generalization: DPD must generalize to unseen
projects, avoiding overfitting to specific implementations.
Ensemble methods and GNNs show promise in addressing
these by combining complementary strengths:

. ML classifiers for feature-based detection,

. GNN:s for structural resilience, and

. NGDB:s for real-time querying.

B. Requirements

To address these challenges, we identify the following
DPD requirements, categorized by functional and non-
functional:

1) Functional Requirements (FR):

1. DPD Coverage: The system shall detect all 23 GoF
design patterns (creational, structural, behavioral) in Java
source code or bytecode.

2. Feature Extraction: Extract multi-modal features
including numerical (e.g., method counts, complexity),
graph-based (e.g., ASTs, CGs), and derived structural
metrics (e.g., inheritance degrees).

3. Model Training and Inference: Implement training
pipelines for individual models (e.g., SVM, GNN,
NGDB) and an ensemble combiner (e.g., using soft
voting).

4. Dataset Management: Extend the P-MARt dataset with
real-world samples, class-level labeling, and imbalance
handling via oversampling.

5. Evaluation Framework: Provide an evaluation
framework that offers cross-validation (K-Fold, Leave-
One-Project-Out (LOPO)) and performance metrics (F1-
Score, confidence).

6. Real-time Processing: Support batch processing of
multiple repositories and real-time pattern detection for
integration into development workflows.

2) Non-Functional Requirements (NFRs):

1. Performance: The system must process medium-sized
Java projects (up to 10,000 classes) within reasonable
time constraints (under 30 minutes for complete
analysis).
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2. Scalability: Support horizontal scaling for batch
processing of multiple repositories simultaneously.

3. Accuracy: Achieve Fl-scores above 0.80 for common
design patterns and maintain robustness against code
variations.

4. Extensibility: Provide a modular architecture allowing
addition of new pattern types, feature extractors, and an
ensemble integration of further base models.

5. Reproducibility: Ensure deterministic results through
proper random seed management and version control of
models and datasets.

IV. SOLUTION

Our DPD solution approach incorporates the features and
conceptual architecture described in the following.

A. Features

Full GoF Dataset: The DPD scope encompasses the 23
GoF design patterns, covering creational, structural, and
behavioral design patterns.

Class-Level Feature Aggregation: Since many design
patterns are object-oriented, the feature extraction pipeline
operates at the class level to preserve contextual relationships
between methods and their containing classes.

Multi-Modal Feature Engineering: The feature extraction
incorporates:

e Numerical features from AST analysis,
*  Graph-based features from CG analysis, and
*  Structural features like inheritance relationships.

Multi-model Support: The open approach can incorporate
multiple varying base model types, including GNNs, NGDBs,
SVMs, and can be combined with Ensemble Methods.

B. Modular Architecture

A modular, pipeline-based architecture separates concerns
between feature extraction, model training, and inference. The
architecture is designed to support the identified functional
and non-functional requirements while maintaining flexibility
for future extensions.

It consists of four primary modules, each responsible for a
specific stage in the DPD process, as shown in Figure 1.

Feature Extraction Pipeline
Extracts numerical, graph-based, and structural features

Machine Learning Training Module
Trains SVM, GNN, NGDB models

Ensemble Detection Engine
Combines predictions using soft voting and confidence weighting

API and Integration Layer
Provides RESTful endpoints for external tools

Figure 1. DPD-EM Module Architecture
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1. Feature Extraction: Processes source code (or
bytecode/binary code if desired) to extract numerical,
graph-based, and structural features at both method and
class levels.

2. ML Training: Implements training pipelines for
individual models (e.g., GNN, NGDB, SVM) including
training evaluation and model storage.

3. DPD and Ensembles: The DPD predictions from a single
(or multiple) trained models can be flexibly utilized. In
the multi-model case, any ensemble technique can be
applied (voting, expert rules, decision trees, etc.) to
leverage the complementary strengths of individual
models as desired and thereby enhance overall DPD
performance. While our DPD-EM ensemble method
offers flexible multi-model support, when only a single
ensembles classification results are used, we then refer to
its specific model (e.g., DPD-NGDB), even though our
modular architecture remains ensemble-enabled.

4. System Integration and API. Provides Web API
endpoints for training, inference, and result management
with standardized interfaces for external tool integration.

1) Data Flow Stages
The system processes data through a series of stages, each
transforming the input into a more refined output. The stages

are as follows and illustrated in Figure 2.

1. Input Processing
Parse Java source/bytecode to extract AST and call graph

Y
2. Feature Generation
Extract numerical, graph, and class-level features

Y
3. Preprocessing
Standardize, normalize, and merge graphs

Y
4. Model Training / Inference
Generate class probabilities with ML models

Y
5. Ensemble Combination
Soft voting with confidence weighting

Y
6. Result Formatting
Pattern predictions, scores, explanations

Figure 2. DPD-EM Data Flow Stages

1. Input Processing: Raw source code (or bytecode/binary)
is parsed to extract AST and CG information.

2. Feature Generation: Multi-modal feature extraction
generates numerical metrics, graph structures, and
derived features at the class-level (which subsumes
method-level).

3. Preprocessing: Feature standardization, normalization,
and graph merging prepare data for ML models.
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4. Model Training/Inference: Individual models are trained
or used for inference, generating probability distributions
over pattern classes.

5. Ensemble Combination: Any ensemble technique such as
soft-voting with confidence weighting) to combine
individual model predictions and enhance overall
predictions.

6. Result Formatting: Standardized output includes pattern
predictions, confidence scores, and detailed explanations.

V. REALIZATION

This section describes the realization of our DPD solution
approach, providing details about our modules and pipeline.

A. Module Overview

The solution architecture was realized in Python, with
each module addressing distinct functionality within the DPD
pipeline. Any filenames listed are for reference purposes for
subsequent descriptions and not intended to be
comprehensive. The four modules consist of:

Feature Extraction Module (M1): Implements numerical
feature extraction, including from ASTs, CGs, or static
analysis metrics:
¢ NumericalFeaturePreprocessing.py:

standardization and preprocessing.
*  GraphFeatureProcessor.py: Processes method-level CGs
into class-level representations.

ML Training Module (M2): Implements training pipelines
for individual models (e.g., GNN, NGDB, SVM) including
evaluation and model persistence:

e TrainGNN.py: Implements the training pipeline for
GNNE.

*  TrainPatternPipeline.py: Implements the
pipeline for NGDB approaches.

e TrainSVM.py: Implements the training pipeline for
SVMs.

DPD and Ensembles Module (M3): Implements the
ensemble technique that combines predictions from multiple
trained models. It currently applies soft voting and
confidence-based weighting, but any other EM technique can
be applied:

*  Detection.py: Provides unified interfaces for applying
trained models for DPD.

System Integration and API Module (M4): Provides
RESTful Web API endpoints for training, inference, and
result management. Offers standardized interfaces for external
tool integration:

*  MLAPILpy: Offers system integration via a FastAPI
backend.

B. Feature Extraction Module (M1)

Accurate DPD depends on the quality and structure of the
underlying features extracted from software artifacts. Our
multi-stage pipeline module transforms raw code into
numerical and graph-based representations suitable for
supervised learning and graph-based inference. Our AST and
CG extraction utilizes JavaParser for Java source code and
SootUp for bytecode, but multi-language support is feasible.

Handles feature

training
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1) Numerical Feature Extraction: The numerical feature
extraction process (NumericalFeaturePreprocessing.py) op-
erates on AST, CG data, and static metrics to generate quan-
titative representations of code characteristics. Both bytecode
and source code extraction modes are supported.
Numerical features are extracted from code to support
analysis and classification. The method-level features
extracted include:
* The number
instantiations,

*  The presence of modifier flags such as public, private,
static, final, abstract, and synchronized,

*  The complexity of return types, categorized as: void (0),
primitive type (1), custom class (2), generic type (3),

*  Cyclomatic complexity,

*  Maximum nesting depth, and

e The number of local variables and exception handlers.

To account for dynamic behavior and interprocedural
relationships, metrics derived from the static CG are
incorporated, including:

e The number of incoming and outgoing calls,
*  The presence of self-calls, and
*  The number of unique calling methods.

Class-level aggregation is performed, which summarizes
method-level features using statistical operations such as sum,
mean, maximum, and minimum. This enables a holistic view
of each class based on the behavior of its constituent methods.
A sample of the numerical feature extraction is shown in
Figure 3. A sample of the CG extraction is depicted in Figure
4.

66350 "file": "./JRefactory_v2.6.24/src/org/acm/seguin/awt/OrderableList.java",
66351 "class_features": {

66352 "has_static_field": false,

66353 “num_methods": 4,

66354 "has_static_method": true,

66355 "methods_returning_interface": 0,

66356 “num_fields": 1,

66357 "num_abstract_methods": @,

of method parameters and object

66358 "num_extended_types": 1,

66359 "has_private_constructor": false
66360 "methods_returning_self_type": 0,
66361 “num_interfaces": @

66362 1,

66363 “methods": {

66364 "OrderableList.getData([1)": {
66365 “return_type": "Object[]",
66366 "all_instantiations": [],
66367 "exception_handlers": [I,
66368 "max_decision_node_depth": @,

66369 "unique_instantiations": [,
66370 "local_variables": [I,
66371 "modifiers": ["public"],
66372 "decision_nodes": [],

66373 "parameters": []

66374 }

Figure 3. JSON snippet showing feature extraction for OrderableList
within the JRefactory project.

19970 v {

19971 "calls": [

19972 "list.getSelectedIndex([1)",

19973 "olm.getSize([])",

19974 "olm.swap([item, newPos])",

19975 "list.setSelectedIndex([newPos])"

19976 1,

19977 "id": "MoveItemAdapter.actionPerformed([ActionEvent evt])"
19978 h

Figure 4. JSON snippet of extracted call graph data for MoveltemAdapter
within the JRefactory project.

International Journal on Advances in Software, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/software/

2) Feature Standardization and Preprocessing: Feature
standardization scales a feature x to the interval [0,1] apply-
ing MinMax scaling. The process operates in two modes:

a) Training Mode: computes the global minimum and
maximum values across all repositories, fits MinMaxScaler
parameters, and serializes them as JSON for reproducibility.

b) Usage Mode: loads previously saved scaling param-
eters to ensure consistent feature transformation, allowing
values to exceed [0,1] when input data exceeds training dis-
tribution bounds.

3) Graph Feature Processing and Aggregation: Graph
feature processing transforms method-level CGs to class-
level representations suitable for GNN processing.

a) Method-level CGs to Class-level Transformation:
The process extracts class identifiers from method signatures
using regular expressions as shown in Figure 5.

def extract_class_id (method_id) :
core = re.sub(r"\ (.x\)$", "",
idx = core.rfind(’'.’)
return core[:idx] if idx > 0 else core

method_id)

Figure 5. Class identifier extraction via regular expressions

The transformation proceeds in three steps:

1. Node Consolidation: Creates one node per unique class
ID containing the class identifier and feature vector from
standardized numerical features, pattern labels available in
training mode, method counts indicating class complexity,
and additional structural metadata.

2. Edge Aggregation: Transforms method-to-method call
relationships into class-to-class dependencies using set
operations to eliminate duplicates and filtering self-loops
automatically. The aggregation process includes class-level
feature aggregation and distribution, feature consistency
validation and quality checks, and support for missing feature
imputation and default values.

3. Label Propagation: In training mode, pattern labels are
propagated from class-level annotations to individual method
nodes. This enables: ground truth establishment for
supervised learning, label consistency validation across
method-class hierarchies, support for partial labeling and
semi-supervised approaches, and quality assurance for label
accuracy and completeness.

b) Class-Level Graph Construction: This execution step
represents the core transformation that supports higher-level
DPD. It involves two primary operations: node consolidation
and edge aggregation.

Node Consolidation Strategy: For each unique class ID, a
consolidated node is created using aggregation strategies that
preserve essential information while reducing graph
complexity.

Class Node Creation: Each class node contains:

* A unique class identifier preserving full namespace
information.

o Aggregated numerical features computed from all
methods within the class using statistical summaries
(mean, sum, max, min).

* Ground truth pattern labels (in training mode) for
supervised learning.
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*  Method counts to
architectural role.

e Structural metadata on class hierarchy,
implementation, and architectural roles.

Feature Aggregation Strategies: Multiple approaches
capture different aspects of class behavior:

»  Statistical aggregation (mean, median, std, quartiles) to
describe feature distribution.

*  Structural aggregation (counts of constructors, getters,
setters, etc.) for structural insights.

* Behavioral aggregation analyzing method interaction
patterns.

*  Complexity aggregation combining individual method
complexities into class-level measures.

Edge Aggregation and Relationship Modeling: Method-
to-method call relations are transformed into class-to-class
dependencies via structured aggregation:

Dependency Extraction: dependencies are extracted from
*  Direct dependencies: from inter-class method calls.

* Indirect dependencies: from multi-hop paths indicating
complex patterns.

* Bidirectional relationships: signaling
dependencies (e.g., Observer, Mediator).

*  Hierarchical dependencies: derived from inheritance.

Edge Weight Computation: these are calculated from:

*  Call frequency weights representing the intensity of class
interactions.

Method diversity weights indicating the variety of
methods involved.

C. ML Training Module (M2)

The ML training module encompasses multiple
complementary approaches, each designed to capture
different aspects of design pattern characteristics through
specialized architectures and training strategies. Three are
currently realized: 1) GNN, 2) NGDB, and 3) SVM.

1) GNN Training: The GNN implementation (in
TrainGNN.py) is a DPD approach that leverages the struc-
tural relationships inherent in software architectures. The im-
plementation supports multiple GNN variants, each offering
different strengths for capturing various aspects of design
pattern implementations.

a) GNN Architecture Design: A modular and configu-
rable architecture that supports diverse GNN approaches was
implemented in the Python Class GNNModel:

Supported GNN Variants: The system supports:

* Graph Convolutional Networks (GCN) provide an
implementation of spectral graph convolutions that can
capture local neighborhood information and hierarchical
patterns characteristic of structural design patterns.

*  Graph Attention Networks (GAT) offer attention-based
mechanisms that dynamically weight the importance of
different neighbors, which could support identifying key
relationships inherent in behavioral design patterns.

*  Graph Isomorphism Networks (GIN) offer the ability to
distinguish between different graph structures that could
be used to detect subtle wvariations in pattern
implementations.

indicate class complexity and

interface

mutual
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*  Graph Sample and Aggregation (GraphSAGE) offers a
scalable inductive learning approach that can generalize
to unseen graph structures, which can support DPD
across diverse codebases.

Configurable Architecture Parameters:

*  Supports flexible specification of network capacity with
hidden channels and layer depth for deep architectures
that can capture complex hierarchical patterns.

* For GAT models, configurable multi-head attention
provides customizable attention head counts and
attention dropout rates.

*  Multiple aggregation functions, including mean, max,
sum, and attention-weighted approaches can be used to
combine neighborhood information.

* Dropout strategies, batch normalization, and weight
decay options prevent overfitting through regularization
mechanisms.

* Configurable multi-layer perceptrons for final
classification offer customizable hidden dimensions and
activation functions.

b) Data Loading and Preprocessing Pipeline: The train-
ing pipeline begins with a data loading and preprocessing
workflow:

Graph Data Processing: The system processes class-level
graph features from JSON files through the following stages:
1. File Access and Error Handlzng file system traversal

ensures resilience to missing or corrupted files via error

handling mechanisms.

2. Schema Validation: Parsed JSON content undergoes
schema validation and integrity checks to guarantee
consistency across heterogeneous data sources.

3. Graph Conversion: JSON representations are
transformed into internal graph data structures, including
validation of graph properties for structural correctness.

4. Feature Extraction and Preprocessing: Node features are
extracted and preprocessed through missing value
imputation, outlier detection, and normalization for
subsequent learning stages.

PyTorch Geometric Integration: integration with PyTorch
Geometric is implemented as a series of structured steps:

1. Tensor Conversion: transformation of feature matrices
into GPU-compatible tensor formats for integration with
PyTorch and memory-efficient representation for
downstream processing.

2. Edge Index Construction: The construction of the
edge index structure includes error-checking to identify
and handle invalid or malformed edges, ensuring graph
connectivity and correctness.

3. Label Encoding: Label encoding is performed using
scikit-learn’s LabelEncoder, with support for handling
unseen classes and mitigating class imbalance during
supervised learning tasks.

4. Graph Validation: A validation step includes removal of
self-loops, detection of disconnected components, and
verification of structural graph properties to ensure
integrity and suitability for geometric learning.

Data Quality Assurance: Data quality is addressed via
multiple validation and control procedures:
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*  Feature Range Validation: Detection and handling of
extreme values, infinite values, and NaN entries is
performed to ensure numerical stability and consistency
of the feature space.

*  Graph Connectivity Analysis: Structural issues such as
isolated nodes and disconnected components are
identified via graph connectivity analysis to preserve
semantic coherence of the graph.

*  Label Distribution Assessment: The distribution of class
labels is analyzed to identify class imbalance and detect
severely underrepresented classes, which could
negatively impact supervised learning performance.

*  Data Partitioning Strategy: Data splits for training,
validation, and testing are performed using partitioning
strategies that preserve the underlying graph structure,
ensuring representativeness and validity in cross-
validation setups.
¢) Training Strategies: The training implementation in-

corporates strategies designed to address DPD challenges:

Cross-Validation Framework: our cross-validation
implementation supports multiple strategies. Configurable K-
fold strategies employ stratified sampling to ensure balanced
representation across folds. Evaluation strategies for smaller
datasets provide validation of generalization performance
through Leave-One-Out (LOO) Cross-Validation (CV). For
datasets with a temporal structure, specialized validation
strategies respect temporal dependencies. Graph-aware CV
employs specialized partitioning strategies that account for
graph structure and avoid information leakage between
training and validation sets.

Applying K-fold CV to DPD settings presents unique
challenges. Software projects often cannot be arbitrarily
divided, as dependencies and architecture coherence must be
preserved. For this reason, a special approach such as Leave-
One-Project-Out ~ Cross-Validation  (LOPO-CV) is
recommended [50]. Here, each project is treated as a single
validation fold. The model is trained on all other projects and
tested on the one left out. While LOPO-CV increases the
evaluation for cross-project scenarios, it also introduces
higher variance due to project heterogeneity. Normalization of
features, abstraction layers, and embedding representations
can help to mitigate these issues.

Optimizer Configuration and Tuning: Optimizer support
includes  configuration options. Advanced Adam
implementations provide configurable learning rates, weight
decay, and momentum parameters, proving particularly
effective for graph neural network training. Classical
stochastic gradient descent with momentum enables stable
training on large graphs. Adaptive learning rate methods
handle the sparse gradient updates common in graph neural
networks through RMSprop. Sophisticated learning rate
scheduling encompasses step decay, exponential decay, and
cosine annealing strategies.

d) Focal Loss Implementation for Class Imbalance: Fo-
cal Loss was specifically implemented and adapted for DPD
[51]. Our implementation with the class FocalLoss is shown
in Figure 6.
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class FocalLoss (torch.nn.Module) :
def __init__ (self, alpha=None, gamma=2):

() ._init__ ()
self.gamma = gamma # Focusing parameter
self.alpha = alpha # Class balancing parameter

def forward(self, inputs, targets):
#Computes the Negative Log-Likelihood loss ce
ce = F.nll_loss(inputs, targets, reduction="none"
#Convert to probability p_t
p_t = torch.exp(-ce)
#Loss modulated by focussing parameter gamma
loss = (1 - p_t) %% self.gamma * ce
#Correct imbalance in datasets
if self.alpha is not None:
loss = self.alpha[targets] * loss
#Return the mean loss across all samples
return loss.mean()

Figure 6. Focal Loss implementation.

This loss function provides several advantages for DPD.
The (1 — pr)’ term down-weights easy examples and focuses
learning on difficult cases, which is particularly important for
distinguishing between similar design patterns. The «
parameter provides explicit class balancing to address the
severe imbalance between different design patterns in typical
datasets. The loss automatically adjusts focus based on
prediction confidence, enabling the model to concentrate on
boundary cases and ambiguous pattern implementations. The
formulation provides stable gradients even with extreme class
imbalance, enabling effective training on highly skewed
datasets.

e) Training Monitoring and Control: The training im-
plementation includes various monitoring and control mech-
anisms:

Early Stopping Implementation: early stopping employs

multiple criteria including:

*  Configurable patience parameters with sophisticated
validation loss tracking,

e Multiple metrics including Fl-score, precision, and
recall,

*  Opverfitting detection through training-validation loss
divergence analysis, and

*  Automatic retention of the best models based on multiple
criteria with comprehensive metadata.

Metrics Tracking: Real-time monitoring of training

progress encompasses:

* Detailed tracking of accuracy, precision, recall, F1-
scores, and custom metrics for DPD,

*  Real-time confusion matrix computation and analysis to
identify specific DPD challenges,

e Detailed analysis of loss components to understand
model learning dynamics, and

*  Learning curve tracking for detecting convergence issues
and optimization problems.

f) Model Artifact Management: Model artifact manage-
ment supports reproducibility and enables detailed analysis:

Model _ Secrialization: Model state  preservation
encompasses full model state dictionaries saved in .pth format
with version compatibility, architecture specifications saved
as JSON for reproducibility, training hyperparameters and
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configuration settings, and optimizer state preservation for
training resumption.

Visualization and Analysis: Visualization artifacts include
Seaborn-based confusion matrix visualizations with statistical
annotations, analysis of feature distributions and their
relationship to pattern detection performance, and network
visualizations of class-level graphs with pattern highlighting.

2) NGDB Training Pipeline: The NGDB training ap-
proach, implemented in the Python module TrainPatternPipe-
line.py is shown in Figure 7. It uses Memgraph as an NGDB
to store, process, and analyze heterogeneous code graphs in
combination with different GNN models. Memgraph is an in-
memory, Cypher-compatible graph database that natively in-
tegrates GNN modules through its MAGE (Memgraph Ad-
vanced Graph Extensions) library [52]. This approach sup-
ports analysis by combining the NGDB with NN architec-
tures, enabling graph-based DPD analysis of software code
structures.

Graph Storage Encoding Model Training

GraphDB Memgraph GNN Training
(AST, Call Graph Data { LabelEncoder { (GCN,GAT) }
Evaluation Apply Model
Evaluation .
(ConfusionMatrix, GNN Inference |[*— Trained MOdel
(Weight9
F1-Score,...) | \

‘ Classificiations & Predictions

Figure 7. NGDB Training Pipeline

a) Graph Storage: The system employs Memgraph as
the underlying graph database, chosen for its performance
characteristics, Cypher Query Language (CQL) support, and
integration capabilities with ML workflows. The database
stores a heterogeneous graph representation of the software
structure that captures multiple types of entities and relation-
ships. A sample visualization of the CG import of the PMD
project is shown in Figure 8. A closeup of the CG is shown
in Figure 9.

Mo o memomn omcs e s ww o o ° omue sneweimecs o o

Figure 8. Screenshot of Memgraph for entire DPD dataset showing metrics
above and clustering of class and method nodes by relationships.
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Figure 9. Closeup screenshot of Memgraph for PMD project dataset
showing class (red) and method (orange) nodes and directed relationships.

Node Type Hierarchy: The graph database maintains a
sophisticated node type system:
Class Nodes: These nodes represent software classes and
are enriched with metadata including:
*  Numerical feature vectors aggregated from method-level
analysis,
* Pattern labels for supervised learning (available in
training mode),
*  Method counts and complexity metrics,
* Inheritance hierarchy information and
implementation details,
*  Package and namespace associations.
Method Nodes: These nodes represent individual methods
and capture detailed characteristics such as:
*  Method signatures and parameter types,
*  Access modifiers and method-level flags (e.g., static,
final),
*  Cyclomatic complexity and code quality metrics,
«  Call frequency, usage patterns, and invocation context,
*  Exception handling structures and error management
indicators.
Package Nodes: These nodes encapsulate software
packages or modules, including:
*  Hierarchical package organization and naming structure,
* Inter-package dependency relationships,
*  Package-level metrics and aggregated characteristics.
Relationship Type System: The graph-based relationship
model captures the semantic and structural interactions
between software entities through multiple distinct
relationship types:
DECLARES Relationships: These edges connect class
nodes to their declared method nodes, encoding:
*  Ownership and structural organization of methods within
classes,
*  Method accessibility (e.g., public, private) and scope
information,
*  Declaration context and compilation metadata,
* Indicators of method overrides and inheritance-related
declarations.
CALLS Relationships: These edges represent dynamic or
static method invocations and include:
*  Call frequency and temporal invocation patterns,
*  Parameter passing strategies and intra-procedural data
flow,

interface

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

113



*  Exception propagation paths and error handling behavior,
* Conditional invocation patterns and control flow
dependencies.
EXTENDS Relationships: These relationships model
inheritance between classes, capturing:
*  Inheritance depth and hierarchy complexity,
*  Method override patterns and specialization,
*  Abstract class associations and interface inheritance
details.
IMPLEMENTS Relationships: These edges represent
interface implementation and reflect:
* Interface compliance and contract fulfillment status,
*  Patterns of multiple interface implementations,
*  Usage of default methods and override behavior.
USES Relationships: These capture various forms of
software usage dependencies, including:
*  Field access and data dependency relations,
* Type usage, generic type associations, and class
instantiations,
*  Annotation usage and metadata-driven relationships.

b) Data Ingestion Pipeline: The data ingestion process
implements a pipeline that loads and integrates multiple data
sources into the unified graph representation:

Multi-Source Data Integration: The system systematically
processes multiple JSON-based data sources, each
contributing distinct structural and semantic information:

*  Graph Features Integration: Incorporates class-level
graph representations enriched with aggregated metrics
and pattern labels, enabling structural learning at the class
granularity.

e Call Graph Processing: Extracts method-level call
relationships, capturing invocation frequency and
contextual information to support interprocedural
analysis.

*  Abstract Syntax Tree Data Integration: Provides
structural information about class hierarchies, inheritance
relationships, and interface implementation through AST
parsing.

*  Numerical Features Loading: Supplies quantitative
metrics for both classes and methods and offers statistical
validation.

Graph Database Population: Ingestion functions manage
the transformation and insertion of structured JSON nodes
into the graph database, ingesting class-level data into a
Memgraph instance. A Memgraph instance executes Cypher’s
MERGE clause to ensure idempotent insertion of class nodes
based on a unique identifier. Node properties are assigned
using dynamic key-value pairs passed via a props parameter.
Metadata such as the ingestion timestamp and data version are
appended to each node to support traceability, versioning, and
data lineage.

Relationship  Establishment: The system supports
relationship creation between software entities with integrated
validation and error handling mechanisms:

*  Inheritance Relationships: Processing of EXTENDS
clauses includes wvalidation of multiple inheritance
constraints and semantic correctness within the class
hierarchy.
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*  Method Declarations: Methods are associated with their
declaring classes through validated DECLARES
relationships, incorporating access control checks and
declaration context verification.

*  Call Relationships: CALLS relationships are created
between method nodes, enriched with invocation context,
frequency metadata, and control flow annotations.

o Interface Implementations: IMPLEMENTS edges are
formed based on parsed IMPLEMEMTS clauses,
including validation of interface compliance and contract
fulfillment semantics.

Data Consistency and Validation: To ensure semantic and
structural correctness, the system performs validation
procedures throughout the ingestion process:

*  Referential Integrity: All referenced nodes and
relationships are checked for existence to maintain
consistency across the graph.

*  Schema Compliance: Nodes and relationships are
validated against predefined schema constraints to
enforce type and structure conformity.

*  Data Quality Checks: Inconsistencies, corrupted entries,
and malformed properties are detected and handled using
systematic quality control measures.

*  Duplicate  Detection: Redundant entities and
relationships are identified and resolved through
deduplication mechanisms to prevent semantic
ambiguity.
¢) Graph-Derived Feature Computation: the NGDB

approach enables the computation of graph-derived features

using Cypher queries:

Cypher Query Implementation: The system utilizes
Cypher queries to derive composite structural metrics directly
from the graph database. The query below (Figure 10) extends
each Class node with additional structural and interaction-
based features, enabling enhanced downstream analysis and
learning.

mg.execute (

wnn

MATCH (c:Class)

WHERE c.features IS NOT NULL AND c.pattern IS NOT NULL

OPTIONAL MATCH
(c) —[:DECLARES]-> (m:Method) - [ :CALLS] -> (other_m:Method)

<—[:DECLARES] - (other_c:Class)

WITH ¢, collect (DISTINCT other_c.id) as
called_classes_ids

OPTIONAL MATCH (sub:Class)-[:EXTENDS]->(c)

WITH c, called_classes_ids, count (DISTINCT sub) as
in_degree_inheritance

OPTIONAL MATCH (c)-[:EXTENDS]->(super:Class)

WITH ¢, called_classes_ids, in_degree_inheritance,

count (DISTINCT super) as out_degree_inheritance

OPTIONAL MATCH (c)-[:DECLARES]->(meth:Method)

WITH ¢, called_classes_ids, in_degree_inheritance,
out_degree_inheritance,

count (DISTINCT meth) as num_methods

SET c.extended_features = c.features + [
in_degree_inheritance, out_degree_inheritance,
num_methods, size(called_classes_ids)

]

)

Figure 10. A CQL query extends each Class node with additional structural
and interaction-based features.
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Specifically, the query proceeds in several stages:

1. Filtering Relevant Classes: Only classes for which both
feature vectors (features) and pattern labels (pattern) are
present are included in the analysis.

2. CG Expansion: The query traverses DECLARES and
CALLS relationships to collect identifiers of all classes
indirectly referenced via method calls, capturing inter-
class interaction patterns (called classes ids).

3. Inheritance  Analysis  (In-degree): By  matching
EXTENDS relationships pointing to the current class, the
number of direct subclasses (i.c., inheritance in-degree) is
computed.

4. Inheritance Analysis (Out-degree): The number of direct
superclasses extended by the current class (i.e., inheritance
out-degree) is also calculated, supporting analysis of
hierarchical complexity.

5. Method Aggregation: The number of methods declared by
each class is counted using the DECLARES relationship
to quantify class-level behavioral encapsulation.

e Feature Augmentation: A new property
extended features is appended to each class node. It
combines the existing features vector with the four newly
computed metrics: Inheritance in-degree, Inheritance out-
degree, Number of declared methods, and Number of
referenced external classes via method calls.

Following the execution of the Cypher query, the system
augments each Class node with enriched architectural
descriptors that enable a deeper analysis of software design
structures and interaction patterns. These derived feature
categories are extracted or inferred from graph-topological
and semantic relationships:

Inheritance Metrics: captures the hierarchical properties of
the class design, including:

*  In-degree inheritance: The number of classes that extend
a given class, indicating its centrality as a base class or
abstract interface.

*  Out-degree inheritance: The number of direct superclass
relationships a class possesses, indicating hierarchy depth
and potential misuse of multiple inheritance.

*  Inheritance tree depth: The maximal depth from the root
of the inheritance chain, used to detect deep or overly
complex hierarchies.

» Interface implementation count:
interfaces implemented by a class,
abstraction adherence and flexibility.

Method Declaration Patterns: describes the intra-class
behavioral structure:

*  Total method count per class: providing a proxy for
behavioral richness.

*  Distribution of method types: distinguishing between
constructors, accessors, mutators, and core logic
methods.

*  Access modifier patterns: such as the public-to-private
method ratio, which may suggest encapsulation quality.

*  Abstract method statistics: relevant for identifying
abstract base classes or template patterns.

Inter-Class Communication: Encodes communication
behavior in the CG:

The number of
reflecting its
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*  Outgoing communication count: i.e., the number of
distinct classes this class calls.

e Incoming communication count: i.e., the number of
classes calling this class.

*  Communication intensity and frequency: providing
insight into dependencies and possible code smells.

*  Bidirectional call detection: to identify tight coupling or
cyclic dependencies.

Architectural Complexity: Captures structural roles and
architectural health:

*  Dependency fan-in and fan-out metrics: used for impact
and stability analysis.

*  Coupling and cohesion indicators: inferred from
communication and method sharing patterns.

*  Architectural layer classification: by analyzing depth and
connection types.

*  Pattern-specific structural indicators: such as those
associated with Singleton or Factory design patterns.

As shown in the CQL query above, a feature vector
enhancement process is finally applied:

Feature Concatenation: The derived graph-based features
are concatenated with the original static numerical features
extracted from source code. Normalization and scaling are
applied to ensure numerical stability.

Dimensionality Management: Strategies such as
dimensionality capping, regularization, or feature selection
are employed to prevent overfitting and ensure computational
tractability.

Feature Correlation Analysis: Correlation matrices and
mutual information metrics are used to detect and eliminate
redundant or collinear features.

Quality Validation: The resulting feature vectors are
validated for completeness, consistency, and compatibility
with downstream models.

This multi-level feature integration enables the model to
capture a rich representation of both static and relational
program semantics, supporting tasks such as design pattern
classification, anomaly detection, and architecture
recommendation.

d) Class Imbalance Mitigation Strategies: Our DPD-
NGDB approach integrates the following techniques to ad-
dress the inherent class imbalance and memory constraints
associated with design pattern datasets.

Minority Class Oversampling is used to mitigate the
severe class imbalance in supervised learning tasks. The
system employs graph-specific oversampling strategies that
preserve structural integrity:

*  Configurable Oversampling Factor: Typically, 2x
oversampling with configurable parameters based on
class distribution analysis

*  Graph-Aware Sampling: Oversampling strategies that
preserve  graph  structure and  neighborhood
characteristics

*  Synthetic Graph Generation: Advanced techniques for
generating synthetic graph samples that maintain pattern
characteristics

»  Stratified Sampling: Ensuring representative sampling
across different pattern types and complexity levels
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Memory Management and Scalability is used to support
high-volume graph data. The system incorporates memory
management mechanisms and scalable processing techniques:
*  Batch Processing: Intelligent batching strategies to

prevent out-of-memory errors during training.

*  Memory Monitoring: Real-time memory usage
monitoring using psutil with automatic garbage
collection.

»  Incremental Processing: Support for incremental

processing of large graphs with checkpoint recovery.
*  Resource Optimization: Dynamic resource allocation and
optimization based on available system resources.

e) Heterogeneous Graph Neural Network Architecture
(HeteroGNN): this constitutes a specialized neural architec-
ture engineered to process and learn from heterogeneous
graph data.

Multi-Head Attention Implementation: This is used to
model the diverse semantic relationships in heterogeneous
graphs. The architecture leverages advanced Graph Attention
Convolution (GATConv) layers with the following design
considerations:

*  Attention Head Configuration: Multiple attention heads
(typically 4-8) for capturing diverse relationship patterns.

*  Edge-Type-Specific Attention: Specialized attention
mechanisms  for  different  relationship  types
(DECLARES, CALLS, EXTENDS).

*  Dynamic Attention Weighting: Adaptive attention
weights that adjust based on graph structure and the
learning progress.

»  Attention Dropout: Dropout strategies (typically 0.5) for
regularization and generalization.

Message Passing for Heterogeneous Structures: The
message passing paradigm is extended to accommodate
structural heterogeneity, enabling effective information flow
across diverse node and edge types:

*  Type-Specific Message Functions: Different message
computation functions for each relationship type.

*  Hierarchical —Message  Aggregation:  Multi-level
aggregation strategies that capture both local and global
graph patterns.

*  Temporal Message Patterns: Support for temporal
relationship patterns where available.

*  Bidirectional Message Passing: Advanced bidirectional
message passing for capturing complex dependency
patterns

1) Advanced Training Configuration: To ensure model
convergence, a multi-faceted training strategy is employed.
This includes configured optimizers, loss functions tailored
to class imbalance, and long-term training protocols with
adaptive control mechanisms.

Optimizer Configuration: The optimization process is
guided by adaptive strategies that enhance convergence
stability and learning performance:

*  Adam Optimizer: Advanced Adam implementation with
learning rate 0.001 and adaptive moment estimation.

e Learning Rate Scheduling: ReduceLROnPlateau
scheduler with sophisticated plateau detection and
learning rate adaptation.
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*  Gradient Clipping: Advanced gradient clipping strategies
to prevent gradient explosion in deep graph networks.

*  Weight Initialization: Weight matrices are initialized
using graph-aware strategies.

Loss Function Integration: To address severe class
imbalance and optimize learning for minority classes, a
sophisticated loss configuration is applied:

*  Focal Loss Implementation: Gamma parameter of 2 for
hard example mining with adaptive class weighting.

*  Balanced Class Weights: Dynamic class weight
computation based on current class distributions.

*  Loss Regularization: Additional regularization terms for
graph structure preservation.

*  Multi-Task Learning: Support for auxiliary tasks that
improve pattern detection performance

Extended Training Protocol: A training loop with fault-
tolerance and performance tracking ensures sustainable
learning across extended sessions:

*  Extended Epoch Training: Up to 1000 epochs with
careful overfitting monitoring.

*  Early Stopping Strategy: Patience of 50 epochs with
multiple stopping criteria.

*  Model Checkpointing: Regular model checkpointing
with best model preservation.

*  Training Resumption: Support for training interruption
and resumption with full state preservation.

g) Evaluation and Analysis: The evaluation framework
enables an analysis of model performance through both met-
ric-based assessment and visualization-based interpretability.

Multi-Metric Evaluation: A set of performance metrics is
employed to account for the challenges posed by class
imbalance and varying pattern complexities:

*  Weighted Metrics: Class-weighted accuracy, precision,
recall, and F1-scores to handle class imbalance.

e Per-Class Analysis: Detailed per-class performance
metrics for identifying pattern-specific detection
capabilities.

*  Confusion Matrix Analysis: Confusion matrix analysis
with statistical significance testing.

*  Confidence Score Analysis: Distribution analysis of
prediction confidence scores.

Visualization: The framework integrates visualizations to
support interpretability and diagnostic analysis:

*  Confusion Matrix Heatmaps: Confusion matrix
visualizations with statistical annotations are offered

o Graph Structure Visualization: Network visualizations of
learned graph representations can be shown.

3) SVM Integration: The Support Vector Machine imple-
mentation TrainSVM.py provides a complementary approach
to the graph-based methods via high-dimensional feature
space analysis. It focuses on leveraging rich numerical fea-
ture representations for pattern classification.

D. DPD and Ensembles Module (M3)

The DPD and Ensembles Module implements the
ensemble technique combining predictions from multiple
trained models, or if desired utilizing a single model. It
currently applies soft voting and confidence-based weighting,
but can apply any other EM technique.
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4) Architecture: a stacked ensemble learning technique is
applied in order to improve predictive performance by com-
bining multiple base learners through a higher-level model
known as a meta-classifier. This can be effective when the
individual base models capture different aspects of the data
or exhibit complementary strengths and weaknesses. The De-
tection.py module implements the stacked ensemble learning
technique for DPD.

The process begins with a set of base models, which are
independently trained on the same training data. Each model
generates an individual model detection (i.e., predictions) for
the input instances, resulting in a vector of intermediate
outputs. These predictions are then passed to a meta-classifier,
which is trained to learn a higher-order decision function
based on the outputs of the base models (currently soft voting
is utilized, but this can be adjusted). The meta-classifier
effectively integrates the diverse perspectives of the
underlying models and produces an ensemble-based detection
(i.e., ensemble prediction) Pr with generalization capabilities.

5) Individual Model Detection: The detection system
provides unified interfaces for applying trained models. The
pipeline orchestrates: numerical feature extraction, standard-
ization using pre-computed parameters, and graph feature
merging. The following individual models are used:

SVM Detection: the function loads standardized features,
applies the trained model, and handles edge cases (e.g., zero-
feature vectors assigned "No Pattern", low-confidence
predictions marked "Unknown").

GNN Detection: the function converts class-level graph
features to PyTorch Geometric Data objects and applies
trained GNN models.

NGDB Detection: the function leverages Memgraph for
real-time graph queries and applies trained HeteroGNN
models.

6) Ensemble-Based Detection: The ensemble methodol-
ogy combines multi-model predictions (our current imple-
mentation utilizes SVM, GNN, and NGDB models via soft
voting), while addressing different label spaces through label
alignment. The ensemble process is as follows:

L Common Class Identification: Finds classes that exist
in all model outputs.
il. Label Space Unification: Creates a unified label space

containing all unique pattern classes.

iii. Probability Alignment: Maps each model’s outputs to
the unified space.

iv. Apply ensemble technique: Various techniques can be
applied to combine the predictions of the base models,
include stacking, bagging, boosting, etc. Soft voting is
currently used.

v. Post-processing: Applies confidence thresholding and
special-case handling. A function generates aligned
probability matrices in which each row corresponds to
a class instance and each column to a specific design
pattern type. This alignment ensures that the
probabilistic outputs from different models are directly
comparable. Soft voting prevents bias toward patterns
in a subset of models.
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E. System Integration and API Module (M4)

7) Web API: The complete system is orchestrated
through a FastAPI backend, providing RESTful endpoints.
The system provides several key endpoints, including:

« POST /process-features for complete feature
processing pipeline,
e POST /train-gnn, /train-pattern, and /train-svm for
model training,
* POST /start-detection for model inference with
ensemble support, and
*  GET /get-metrics for model evaluation data.
The API includes error handling, asynchronous processing
support, and Cross-Origin Resource Sharing (CORS)
middleware for frontend integration.

8) Robustness and Integrity: Robustness, reproducibility,
and overall system integrity are addressed via several sup-
porting mechanisms in the pipeline. These include:

*  Error Handling: includes file I/O validation, memory
management - particularly for graph processing, and
proper cross-validation data partitioning.

*  Configuration Management: All configurations are
serialized as JSON, including hyperparameters, training
settings, and timing information to ensure reproducibility.

* Validation  Framework: = Multi-stage  validation
encompasses feature extraction consistency checks,
standardization validation, and model validation with
convergence analysis and overfitting detection.

* Feature Consistency: Validation of feature consistency
across the graph includes range checks for feature values
and detection of outliers, consistency validation between
different feature sources, missing feature detection and
imputation strategies, and feature distribution analysis
with normalization validation.

*  Label Quality: In training mode, label quality assurance
encompasses label consistency validation across related
classes, detection of potentially mislabeled instances,
analysis of label distribution and balance, and validation
of ground truth quality and completeness.

9) Output Generation and Format Optimization: The
output generation process creates JSON files containing the
class-level graph structure and essential metadata. This stage
ensures that both the structural and contextual information
are retained and formatted for efficient downstream use. Key
aspects include:

Format Optimization: The JSON output is optimized for
downstream processing through efficient encoding of graph
structures for fast loading, preservation of metadata for
debugging and analysis, compatibility with PyTorch
Geometric data formats, and support for incremental loading
and processing of large graphs.

Metadata Preservation: Metadata is preserved to support
analysis and debugging, including original method-level
information for traceability, transformation parameters and
configuration settings, quality metrics and validation results,
and processing timestamps with version information.

The resulting output enables efficient graph-based ML
operations while maintaining the semantic relationships
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present in the original code structure, creating a foundation for
DPD using GNN and other techniques.

10) User Interface (Ul): The frontend is implemented via
Node.js with React, Vite.js, the Material Ul React compo-
nent, and Axios for Web APIs. Once a DPD repository is up-
loaded as a zip, it can be selected via dropdown (here PMD),
as shown on the left in Figure 11. Thereafter, extract features
can be executed (left bottom). Then the various ensemble
models can be selected on the right, and then the ensemble
detection can be started. At the top, the menu offers dataset
management, training, models, and detection management.

Design Patter Detection HOME  DATASETMANAGEMENT ~TRAN  MODELS DETECT /INEUERBUTTON PATTERNTRAN

Upload Detection Repository

Pattern_GNN

Select Models for Ensemble Detection

Select Repository
‘GCN_Channel2048_Layerd_Dropout0.2_SiratiiedKFoids

‘START ENSEMBLE DETECTION

11-PMD V18

Extract Features

EXTRACT FEATURES

Extracted Features.

Detection Results
‘Composits (96%): ASTImportDeclarationTost
Composite (62%): ASTModel

11-PMD v1.8_ASTjson

Composite (91%): AbstractRuleTest
11-PMD v1.8_CallGraph json

‘Adapter (67%): BasicScopeFactory

‘Composits (90%): BasicScopeFactoryTest

Composite (99%): ClassScopeTest

Visior (65%): Dect

Figure 11. DPD user interface.

VI. EVALUATION

The evaluation focuses on the effectiveness of our DPD-
NGDB approach, analyzing GNN variants and DPD
performance.

As described previously, our DPD approach is structured
to inherently support ensemble methods for maximum
flexibility. However, currently, all other models we attempted
(GNN, SVM) for the ensemble in preliminary evaluations
performed far worse or lacked consistency, and thus did not
complement DPD-NGDB. Hence, our DPD-EM results are
not evaluated here. As EM depends on the other models
improving results, future work will focus on finding and
tuning alternative models such that they address the
misclassifications found in our DPD-NGDB approach.

All experiments were conducted on an Apple MacBook
with M2 Pro with 32GB RAM.

A. Dataset Description

Both the training and evaluation are conducted on a dataset
consisting exclusively of 23 canonical GoF design patterns
and other non-labeled code. The dataset utilizes 9 projects
from the Pattern-like Micro-Architecture Repository (P-
MARY) repository [7]. As not all 23 GoF design patterns were
exemplified in P-MARt, the dataset was supplemented with
23 pattern implementation examples from Refactoring Guru
[53], which, while isolated examples without a larger project
context, at least provide some training data.

The evaluation focuses on classifying any single class as a
pattern instance to emphasize discriminative performance
among the design patterns, and unlabeled classes are assumed
to be “No Pattern” or unknown. Note that for a single pattern,
multiple classes may participate (e.g., Observer), while a
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single class might participate in or utilize multiple patterns
simultaneously (e.g., Factory and Observer). For simplicity
and the labeled ground truth basis, classes are assumed to be
associated with only a single pattern (e.g., either Factory
Method or Observer, not both). Thus, the actual number of
static pattern instantiations could be far less than the number
of classes identified (labeled) as participating in a certain
pattern (e.g., Observer, Broker).

The dataset comprises 30 projects with 417 unique
samples across the 23 patterns, with varying distribution
across pattern categories (121 creational, 182 structural, and
114 behavioral) as shown in TABLE 1. Hence, the creational,
structural, and behavioral design pattern types are included in
the training and detection dataset with varying degrees of
pattern sample frequency.

TABLE L. GOF DATASET
Pattern Samples
Creational 121
Abstract Factory 72
Builder 28
Factory Method 8
Singleton 12
Prototype 1
Structural 182
Adapter 62
Bridge 28
Composite 58
Decorator 8
Facade 17
Flyweight 4
Proxy 5
Behavioral 114
Chain of Responsibility 5
Command 16
Interpreter 5
Iterator 19
Mediator 9
Memento 12
Observer 20
State 6
Strategy 7
Template Method 2
Visitor 13
Total 417

55 4 - Netbeans v1.0.x

56 Number of classes: 2238

57 Number of ghosts: 3244

58 Number of interfaces: 320

59 Number of association relationships: 41895

60  Number of aggregation relationships [1,n]: 1750

61  Number of aggregation relationships [1,1]: 6990

62 Number of composition relationships: @

63 Number of container-aggregation relationships [1,n]: 161
64 Number of container-aggregation relationships [1,1]: 430
65 Number of container-composition relationships: @

66 Number of creation relationships: 14131

67 Number of use relationships: 23355

68 Number of fields: 16736

69 Number of methods: 25446

70 Number of message sends: @

71 Number of pattern models: @

Figure 12. Snippet of P-MARt Netbeans project summary metrics.

An example of the pattern summary metrics per project in
P-MARt is shown in Figure 12. Pattern-specific metrics are
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also summarized in XML as shown in Figure 13. The XML-
based documentation describes on a per-project basis the
classes involved in a micro-architecture (pattern), as shown in
Figure 14. We extracted the information per project to use for
class labeling as our ground truth as shown in Figure 15.

194 Adapter

195 Adaptee: 65

196 Adapter: 86

197 Target: 37

198 Client: 64

199 —> Distribution of the micro-architectures per program:
200 JHotDraw v5.1: 1

201 JRefactory v2.6.24: 17

202 MapperXML v1.9.7: 2

203 Netbeans v1.0.x: 8

204 Nutch v0.4: 2

205 PMD v1.8: 1

206 —> Number of micro-architectures: 31

207 —> Number of roles: 4

208 —> Number of classing playing a role: 252

Figure 13. Snippet of P-MARt Adapter pattern summary.

<program type="Java">
<name>3 - JRefactory v2.6.24</name>
<designPattern name="Adapter">
<microArchitectures>
<microArchitecture number="13">
<roles>

<clients>
<client roleKind="AbstractClass"><entity>org.acm.seguin.awt.OrderableList</entity></client>

</clients>

<targets>
<target roleKind="AbstractClass"><entity>java.awt.event.ActionListener</entity></target>

</targets>

<adapters>
<adapter roleKind="Class"><entity>org.acm.seguin.awt.MoveItemAdapter</entity></adapter>

</adapters>

<adaptees>
<adaptee roleKind="Class"><entity>org.acm.seguin.awt.OrderableListModel</entity></adaptee>

</adaptees>

</roles>
</microArchitecture>

Figure 14. Snippet of XML-based P-MARt [7] documentation of Adapter
pattern in JRefactory project involving the MoveltemAdapter class.

1A

2 "classes": {

3 "OrderableList": "Adapter",

4 "ActionListener": "Adapter",

5 "MoveItemAdapter": "Adapter",

6 "OrderableListModel": "Adapter",

7 ""CafeSetup": "Adapter",

8 "ReloadActionAdapter": "Adapter",

9 "MultipleDirClassDiagramReloader": "Adapter",
10 "'CommandLineMenu": "Adapter",

11 ""ZoomAdapter": "Adapter",

12 "JumpToTypeAdapter": "Adapter",

13 "SourceBrowserAdapter": "Adapter",
14 "NewProjectAdapter": "Adapter",

15 "RefactoringAdapter": "Adapter",

16 "UndoAdapter": "Adapter",

17 "NodeViewer": "Factory Method",

18 "UMLNodeViewer": "Factory Method",

19 "NodeViewerFactory": "Factory Method"
20 "UMLNodeViewerFactory": "Factory Method",
21 "ReloaderSingleton": "Singleton",

22 "JavaParserVisitor": "Visitor",

23 "ChildrenVisitor": "Visitor",

24 "AddFieldVisitor": "Visitor",

25 "AddImplementedInterfaceVisitor": "Visitor",
26 "AddMethodVisitor": "Visitor",

27 "CompareParseTreeVisitor": "Visitor"
28 "EqualTree": "Visitor",

29 "LineCountVisitor": "Visitor",

30 "PrettyPrintVisitor": "Visitor",

31 "StubPrintVisitor": "Visitor",

32 "Node": "Visitor"

33 b

34 b

Figure 15. Snippet of our extracted JSON labels for the JRefactory project
labeling MoveltemAdapter as class participating in Adapter pattern.
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DPD results are output in our JSON format per project
listing all classes, the primary pattern detected, a confidence
value, and a project summary, as shown in Figure 16.

13347 "RERange": {

13348 "pattern": "No Pattern",
13349 "confidence": 1.0
13350 +,

13351 "CharacterIterator": {
13352 "pattern": "Iterator",
13353 "confidence": 0.74
13354 }

13355 +

13356 "pattern_counts": {

13357 "No Pattern": 3305,
13358 "Adapter": 9,

13359 "Unknown": 8,

13360 "Abstract Factory": 13,
13361 "Factory Method": 1,
13362 "Iterator": 2

13363 ¥

13364 }

Figure 16. Snippet of our detection results per class and project summary.

Class imbalance across DPs was addressed via
oversampling during training to ensure balanced
representation. K-Fold cross-validation (K=5) is used for
internal validation, with stratification to ensure balanced folds
across the 23 pattern types.

B. NGDB GNN Variant Evaluation

The NGDB GNN model, implemented using Memgraph,
integrates heterogeneous graph representations with GNN
inference for real-time pattern detection, focusing on graph-
derived features (e.g., inheritance metrics, call patterns)
computed via Cypher queries. NGDB GNN variant
performance was evaluated using Accuracy, Precision, Recall,
and F1-Score. F1-Score was used due to dataset imbalance
across pattern types. The overall performance across all
patterns for each variant, averaged over the 5-fold CV is
summarized in TABLE II.

TABLE II. NGDB GNN VARIANT PERFORMANCE (STRATIFIED 5-
FoLD CV)
Model [Accuracy (%)|Precision (%)|Recall (%)|F1-Score (%)
GCN 93.45 90.67 93.45 91.13
GAT 97.72 97.73 97.72 97.68
GINSAGE 97.66 97.61 97.66 97.44

GAT achieved the highest F1-Score (97.68%) and
precision (97.73%), followed closely by GINSAGE (F1:
97.44%, precision: 97.61%). GCN performed slightly lower,
with an F1-Score of 91.13%. These results show substantial
improvement over the standard GNN variants, meeting or
exceeding the target F1-Score of 0.80 (80%) specified in the
non-functional requirements (NFR3).

Pattern-specific performance from the classification
reports shows high Fl-scores for most patterns, such as
Singleton (1.0 across variants), Proxy (1.0), and Chain of
Responsibility (1.0). Abstract Factory achieved strong scores
(GAT: 0.86, GINSAGE: 0.80, GCN: 0.15), while Adapter had
lower performance in GCN (0.0) but improved in GAT (0.65)
and GINSAGE (0.61). Behavioral patterns like Observer
(GAT: 0.86, GINSAGE: 0.67, GCN: 0.0) and Command
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(GAT: 0.75, GINSAGE: 0.86, GCN: 0.22) showed variability,
reflecting challenges in capturing dynamic interactions.

Analysis: The results indicate that GAT outperforms other
NGDB variants, likely due to its attention mechanism
effectively weighting graph-derived features like call patterns
and inheritance degrees. GINSAGE also performed well,
combining isomorphism testing with inductive learning for
robust generalization across diverse pattern implementations.
GCN, while solid, lagged slightly, possibly due to less
sophisticated aggregation in heterogeneous graphs, which
limited its ability to capture complex relationships in patterns
like Observer (F1: 0.0).

The high overall FI1-Scores (91.13% — 97.68%)
demonstrate the value of NGDB’s Cypher-derived features in
capturing relational aspects missed by standard GNNs,
particularly for behavioral patterns. For instance, Observer
achieved an F1-Score of 0.86 in GAT, reflecting the benefit of
inter-class communication metrics. Despite excluding ‘No
Pattern’ instances during training, the evaluation metrics
reflect strong discrimination among the 23 patterns, with
oversampling mitigating imbalance effectively.

Confidence metrics show reduced overconfidence
compared to standard GNNs, with wrong predictions having
notably lower scores (e.g., GAT: 64.79% for wrong vs.
97.16% for correct). Patterns like Singleton, Proxy, and Chain
of Responsibility achieved perfect F1-scores (1.0), benefiting
from distinct structural signatures enhanced by NGDB
features, such as inheritance hierarchies and method
declarations. Lower performance on patterns like Command
(GAT: 0.75, GINSAGE: 0.86) and Adapter (GAT: 0.65) may
stem from variability in implementations or insufficient
feature representation for nuanced behavioral interactions.

C. DPD Evaluation of DPD-NGDB

As GINSAGE and GAT performance was equivalent,
DPD-NGDB utilized GINSAGE for the rest of the evaluation.

1) DPD Performance: The confusion matrix for the
DPD-NGDB model across the entire dataset using 5-fold CV
demonstrates strong discrimination across the 23 GoF pat-
terns, as shown in Figure 17. The matrix reveals minimal mis-
classification, with most patterns correctly identified along
the diagonal. Analysis of misclassifications requires a case-
by-case deeper analysis as explained in the following discus-
sion.

Project-specific DPD tests were performed on the various
P-MARt projects on which it had been trained (except for
Netbeans) as listed in TABLE IV. The DPD results for the
projects in the training showed an accuracy range from 0.17
to .91, precision from 0.83 to 1, recall from 0.20 to 0.91, and
F1 scores from 0.55 to 0.94.

When including the Netbeans test project (left out of
training), the overall values were 0.45 for accuracy, 0.96 for
precision, 0.58 for recall, and 0.72 for F1. Each project has a
diverse set of patterns which were detected, as shown on the
right of the table, covering 18 of the 23 GoF. The testing of
the remaining 5 patterns was performed in the 5-fold CV and
is shown in the confusion matrix. In addition, a confidence
diagram for the 23 GoF patterns (including no-pattern and
unknown) is shown in Figure 18. It shows that confidence
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values rarely go below 0.5, and that many or most of the
misclassifications occur below complete confidence and have
to do with determining a class is not involved in a pattern (No
pattern). This determination can be difficult even for seasoned
software engineers.

2) Leave-One-Project-Out Cross-Validation (LOPO-
CV): The Netbeans project was left out of the training set
which used 5-fold CV. Withholding Netbeans for testing
evaluates DPD for unseen test data, with the results shown in
TABLE III. The F1 score of 0.17 shows relatively poor per-
formance over the four patterns with an overall accuracy of
0.03. This shows potential issues with the generalization of
our DPD results as described in the following discussion, and
our relatively small training dataset may be a factor.

TABLE III. NETBEANS TEST RESULT (LOPO-CV)

Pattern Classes| TP|FP|FN |Precision|Recall| F1
Abstract Factory 171 1] 3]170 0.25] 0.01)0.01

Adapter 81| 7| 3| 74 0.70[ 0.09]0.15
Command 3 1] 2] 2 0.33] 0.33]0.33
Iterator 12| 0] 1| 12 0 0| -

Overall 267] 9] 9258 0.32] 0.11]0.17

3) Feature Importance: The SHAP values can provide
insight into which features contributed the most to the model
predictions, and is shown in Figure 19. The minimum number
of unique instantiations of a class was the strongest, followed
by the mean number of outgoing calls, followed by the num-
ber of fields in the class. This was followed by a number of
call-related metrics. This may be an indication that the graph
structure together with these metrics provide influence the
ability to distinguish the various patterns.

D. Discussion

1) NGDB GNN variants evaluation: patterns like Single-
ton, Proxy, and Chain of Responsibility were detected most
reliably, achieving perfect F1-scores (1.0) across NGDB var-
iants. This is likely due to their distinct structural signatures
such as private constructors and static access methods for
Singleton. These features are well-captured by graph-derived
metrics like inheritance relationships and call patterns com-
puted via Cypher queries in Memgraph. Structural patterns
like Composite and Abstract Factory also showed strong per-
formance in NGDB (e.g., GAT F1: 0.86 for Abstract Fac-
tory), benefiting from the heterogeneous graph representa-
tions that emphasize class-to-class dependencies and method
aggregations. In contrast, behavioral patterns such as Ob-
server and Command exhibited more variability, with lower
F1-scores in GCN (0.0 for Observer, 0.22 for Command) but
improvements in GAT (0.86 for Observer, 0.75 for Com-
mand) and GINSAGE (0.67 for Observer, 0.86 for Com-
mand). This suggests that attention mechanisms in GAT and
inductive learning in GINSAGE better handle dynamic inter-
actions, though the static nature of the analysis limits full cap-
ture of runtime behaviors. The standard GNN variants (GCN,
GAT, GINSAGE) performed poorly overall (F1: 3.54% —
7.19%), with GINSAGE slightly outperforming others due to
its ability to generalize to unseen graphs, but still struggling
with imbalance and feature noise.
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In contrast, standard non-NGDB GNN variants (GCN,
GAT, GIN, GraphSAGE) yielded poor performance far below
the target, due to dataset imbalance and limited feature
representation. Thus, the ensemble method, combining SVM,
GNN, and NGDB via soft voting, underperformed compared
to the NGDB base model alone, primarily due to the
suboptimal results of GNN and SVM, which introduced noise
and biased predictions. This validates the hypothesis that
ensemble methods can enhance robustness only when base
models are sufficiently strong, highlighting NGDB’s critical
role in achieving high accuracy.

2) Ensemble Methods evaluation: The methodology suc-
cessfully extended the ensemble method, intended to com-
bine SVM’s feature separation, GNN’s structural resilience,
and NGDB’s graph-derived insights, but underperformed rel-
ative to the standalone NGDB approach. It was thus not in-
cluded in this evaluation. This highlights a key strength of
ensembles in theory — leveraging complementary models to
reduce variance and improve robustness — but in practice, the
weak base models (perhaps due to the sparse training da-
tasets) diluted NGDB’s high performance. Further multi-
model investigation and fine-tuning of ensembles is included
in future work, as we believe it to hold promise for addressing
NGDB misclassifications once their causes are apparent.

3) Requirements coverage:

*  FRI: All 23 GoF DPs were detected across 9 open-source
Java projects with documented DPs from the P-MARt
dataset with Refactoring Guru implementations, which
supporting class-level labeling and benchmarking.

*  FR2: Multi-modal features including numerical, graph-
based (ASTs, CGs), and derived structural metrics were
extracted from the source code. from the base
implementation and incorporating multi-modal features
(numerical, graph-based, structural).

*  FR3: Training pipelines for individual base models (e.g.,
SVM, GNN, NGDB) and an ensemble combiner (e.g.,
soft voting) were implemented.

*  FR4: The P-MARt dataset was extended with additional
patterns to cover all GoF patterns, class-level labeling
was applied, and imbalance handling was addressed via
oversampling.

* FRS5: An evaluation framework was implemented that
offers cross-validation (K-Fold, Leave-One-Project-Out
(LOPO)) and calculates performance metrics (F1-Score,
confidence). The use of stratified K-Fold (K=5) cross-
validation supports the generalization of the approach,
though challenges like dataset imbalance and
implementation variability persisted.

*  FR6: The pipelines were implemented to support batch
processing of multiple repositories and real-time pattern
detection for integration into development workflows
was enabled via memory monitoring.

* NRI: DPD model execution performance was
reasonable, within minutes on standard hardware for
medium-size projects. Model training involved more time
and resources but was within reasonable expectations.

*  NR2: Scalability was supported via memory and resource
management and optimization, e.g., via batching
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strategies that account for resource limitations (avoiding
out-of-memory errors during training), incremental
processing of large graphs with checkpoint recovery, etc.

* NR3: While Fl-scores above the target of 0.80 were
achieved for various P-MARt projects, the overall score
was 0.72 for the GoF spectrum on over 5300 classes;
robustness against code variations for unseen projects
needs further work, exemplified with the large 3347 class
Netbeans project that had 267 classes participating in four
different DP types with a resulting F1 score of 0.17.

* NF4: Extensibility was achieved via a modular
architecture that allows for the automatic addition of new
pattern types, automated feature extractors, and a flexible
ensemble inclusion of further base models.

e NF5: Reproducibility was addressed via logging of
parameters (including random seed management) and
versioning of models, datasets, and intermediate and final
output results.

4)  Summary: The DPD-NGDB evaluation showed that it
is feasible to automatically train DPD-NGDB on a labeled
training set of the 23 GoF patterns, and for it to detect the
spectrum of patterns when it comes across these again. Over-
all, the results validate the use of NGDB for real-time, rela-
tional pattern detection, aligning with functional require-
ments for covering all 23 patterns and achieving high accu-
racy. The AST and CG features proved resilient for the dif-
ferent pattern types (creational, structural, and behavioral).

As to limitations, as encountered with LOPO-CV using
Netbeans, DPD on unseen datasets can be challenging and
further investigation regarding misclassification factors and
testing on diverse datasets is needed. The relatively sparse
training set and static-only analysis limit performance.
Furthermore, discriminative challenges are presented among
similar patterns, some differing primarily in intention. The
reliance on static analysis (ASTs, CGs) limits detection of
dynamic behaviors in patterns (e.g., Observer, Strategy),
where runtime interactions (e.g., method invocations via
reflection) might provide better hints. While dynamic analysis
is promising for revealing hidden dependencies, it was not
incorporated due to execution risks, high-overhead setup and
execution costs, and coverage issues. In particular, pattern
dataset limitations further constrain generalizability: the
examples offer textbook implementations or intentional
pattern-centric projects, lacking real-world diversity, partial
realizations, or obfuscation variants (as initially planned but
not fully evaluated). Imbalance among patterns persisted
despite oversampling, skewing performance toward common
patterns like Singleton and underrepresenting rare ones like
Flyweight or Interpreter. Deeper analysis is required to
understand any pattern misclassifications, as this could be due
to multiple causes. E.g., the same object participating in
multiple patterns, cases where the pattern structure differs
primarily by its intent or purpose (highly context-sensitive),
information about dynamic interactions is missing (e.g., due
to reflection), etc. This deeper case-by-case analysis is
included in future work. Environment limitations include the
dependency on the Memgraph setup, which adds complexity
and potential memory overhead for large heterogeneous
graphs.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

121



VII. CONCLUSION

This paper developed and evaluated our automated design
pattern detection approach DPD-NGDB, based on a neural
graph database and modular pipeline architecture, and made
available as an ensemble base model in our DPD-EM
ensemble model approach. The evaluation was benchmarked
against a dataset with the 23 GoF design patterns contained in
over 5300 Java classes spanning 9 open-source realistic
practical Java projects (plus an additional 23 single example
patterns). The dataset offered independently documented DPs
and were used for the automated DPD training and testing.
With 5-fold cross-validation and leave one project out, an
overall F1 score of 0.72 was achieved, while the large unseen
test project achieved 0.17. Furthermore, three NGDB GNN
variants were evaluated, with GAT and GINSAGE showing
similarly high F1 scores, and GCN somewhat lower.

The use of multi-modal features (numerical from ASTs,
graph-based from CGs, structural like inheritance)
outperforms traditional ML approaches (e.g., Uchiyama et al.
[29], Dwivedi et al. [30]) by capturing both syntactic and
relational aspects. DPD-NGDB’s high F1-scores (up to 94%)
surpass reported benchmarks for tools like PINOT, which
achieve high precision only for well-structured code. The
DPD-EM ensemble approach, while not as effective as the
NGDB base model yet, provides an ongoing framework for
the combination of diverse base models, contributing to the
exploration of ensemble methods for DPD in software
engineering [48].

Future work includes experimentation with various
ensemble base models and methods; integrating runtime
tracing for dynamic analysis; combining static features with
execution traces to better detect behavioral patterns; full
obfuscation; scalability evaluation; variant detection; usage
on generalized open-source projects; expansion beyond the
GoF patterns; an evaluation across multiple programming
languages; and a comprehensive industrial case study.
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Figure 17. Confusion Matrix for DPD-NGDB GINSAGE showing strong DPD performance (diagonal) across the entire pattern dataset.
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Figure 18. DPD-NGDB confidence scores for the entire dataset (NetBeans left out of training set).
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Global Feature Importance (SHAP) - sage
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Figure 19. SHAP feature importance for DPD-NGDB across the entire dataset (generated diagram edited to replace feature numbers with names).
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