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Abstract - Software design patterns offer reusable structural 
solutions that support developers and maintainers in addressing 
common design problems. Their abstractions can support 
program code documentation and comprehension, yet manual 
pattern documentation via code or code-related artifacts 
(documents, models) can be unreliable, incomplete, and labor-
intensive. Various automated Design Pattern Detection (DPD) 
techniques have been proposed, yet adoption remains limited 
and further investigation of viable solutions is needed. Towards 
more effective automated DPD, this paper contributes our 
Neural Graph Database approach DPD-NGDB, which also 
functions as a base model in our Ensembles Methods approach 
DPD-EM. The realization demonstrates the feasibility of our 
approaches, while the evaluation compares and benchmarks the 
DPD performance against a Gang-of-Four (GoF) software 
design pattern dataset, demonstrating its potential. 
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I.  INTRODUCTION 
This paper extends our previous work [1], in that it 

investigates further potential DPD methods, leveraging 
Ensembles Methods (EMs), Neural Graph DataBases 
(NGDBs), and Graph Neural Networks (GNNs) approaches 
for DPD. The breadth and depth of the evaluation is extended 
to and benchmarked against the entire Gang of Four (GoF) 
design patterns. Our prior hybrid DPD approach has been 
changed to an EM approach. 

Program source code worldwide continues to rapidly 
expand, yet code comprehension remains a limiting 
productivity factor. Program comprehension may consume up 
to 70% of the software engineering effort [2]. Activities 
involving program comprehension include investigating 
functionality, internal structures, dependencies, run-time 
interactions, execution patterns, and program utilization; 
adding or modifying functionality; assessing the design 
quality; and domain understanding of the system [3]. Code 
that is not correctly understood by programmers impacts 
quality and efficiency.  

Software Design Patterns (DPs) have been documented 
and popularized, including the Gang of Four (GoF) [4] and 
POSA [5]. The application of abstracted and documented 
solutions to recurring software design problems has been a 
boon to improving software design quality, efficiency, aiding 
comprehension, refactoring, reuse, reverse-engineering, and 

maintenance tasks. These well-known macrostructures or 
associated pattern terminology in code can serve as beacons 
to abstracted macrostructures, and as such may help identify 
aspects such as the author’s intention or the purpose of a code 
segment, which, in turn, supports program comprehension.  

Automated DPD in code overs various benefits, including: 
quicker comprehension of DP-related structural aspects of 
unfamiliar software; automatically documenting DPs; 
supplementing and validating the design documentation; 
reducing dependence on error-prone DP documentation; and 
detection of inadequately implemented DPs. Yet the 
challenges for automated DPD include: 1) tool support for 
heterogeneous programming languages, as DPs are 
independent of programming language; 2) 
internationalization and labeling, since developers may name 
and comment in their natural language or any way they like;  
3) varying pattern abstraction levels, such as design vs. 
architectural patterns; 4) similarities and intent differentiation, 
since some similar pattern structures are primarily 
differentiated via their intention; 6) DP localization to indicate 
where in code a DP was detected; and 7) detecting variants, 
since each pattern implementation is unique.  

Traditional DPD approaches rely on static code analysis, 
with tools extracting structural features such as class 
hierarchies, method invocations, and object instantiations to 
identify patterns [6]. Curated design pattern datasets, such as 
the Pattern-like Micro-Architecture Repository (P-MARt) 
[7][8], provide a collection of micro-architectures from 
known open source projects which applied the canonical 
design patterns and can serve as benchmarks for evaluating 
DPD techniques. While various DPD approaches have been 
explored [9][10], no approach has thus far achieved 
significant practical traction, and thus additional investigation 
into further possibly viable approaches and improvements is 
warranted. 

GNNs [11] are a class of Deep Learning (DL) models that 
are specifically designed to work with graph-structured data. 
They learn representations that capture the features of 
individual nodes and the relationships between them. Unlike 
traditional neural networks (NNs) that assume independent 
data points, GNNs leverage the topology of graphs to 
propagate information across nodes via edges, making them 
particularly suitable for domains where relationships are key. 

NGDBs [12][13] extend classical graph database systems 
by integrating GNNs directly into the graph storage and the 
query engine. An NGDB is designed to store, manage and 
query graphs using both traditional graph operations and 
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neural inference to enrich incomplete or uncertain data, 
perform link prediction, and extract embeddings on-the-fly. 
This hybrid paradigm unifies transactional graph queries (e.g., 
Cypher [14]) with GNN-based tasks (e.g., node classification, 
link prediction), enabling real-time inference powered by the 
rich information encoded in a Labeled Property Graph (LPG) 
data model. 

EMs [15][16] incorporate a finite set of alternative 
Machine Learning (ML) algorithms and models to enhance 
predictive performance, especially where a single model may 
not perform ideally. As design patterns can exhibit significant 
variance and non-linear relationships, we believe that no 
single technique (ensemble) will likely perform well in all 
circumstances. Thus, a mix of models (ensembles) may 
improve results when faced with significant variance, 
diversity, and non-linear relationships in the datasets, as is 
often the case with DPD. 

Our previous work includes: our ML-based DPD approach 
DPDML that utilizes semantic and static analysis metrics 
[17]; our hybrid DPD approach HyDPD [18], which combines 
our ML-based model with an expert-based graph analysis 
model; and HyDPD-B [1], which applies a Bayesian network 
probabilistic reasoning to integrate various DPD subsystems, 
including HyDPD-ML utilizing graph embeddings, with our 
expert rule system with DP rule language and micropattern 
detection.  

This paper contributes our NGDB-based solution 
approach (DPD-NGDB), which is embedded as a base model 
in our EM approach (DPD-EM). We describe our realization, 
which demonstrates the feasibility of the DPD approaches. 
Our evaluation uses a dataset consisting of the Gang-of-Four 
(GoF) design patterns benchmarked against the P-MARt 
repository. 

This paper is structured as follows: the next section 
discusses related work. Section III describes our solution. In 
Section IV, our realization is presented, which is followed by 
our evaluation in Section V. Finally, a conclusion is provided. 

II. RELATED WORK 
Surveys including categorizations of DPD approaches 

include Al-Obeida et al. [9] and Yarahmadi and Hasheminejad 
[10]. Graph-based DPD approaches include: Yu et al. [19] 
transform code to UML class diagrams, analyze the XMI for 
sub-patterns in class-relationship directed graphs; Mayvan 
and Rasoolzadegan [20] use a UML semantic graph; Bernardi 
et al. [21] apply a DSL-driven graph matching approach; 
DesPaD [22] extract an abstract syntax tree from code, create 
a single large graph model of a project, and then apply an 
isomorphic sub-graph search method. Further isomorphic 
subgraph approaches include Pande et al. [23] and Pradhan et 
al. [24], both of which require UML class diagrams.  

Learning-based approaches map the DPD problem to a 
learning problem, and can involve classification, decision 
trees, feature maps or vectors, Artificial Neural Networks 
(ANNs), etc. Examples include Alhusain et al. [25], Zanoni et 
al. [26], Galli et al. [27], Ferenc et al. [28], Uchiyama et al. 
[29], and Dwivedi et al. [30]. Thaller et al. [31] describe a 
micro-structure-based structural analysis approach based on 
feature maps. Chihada et al. [32] convert code to class 

diagrams, which are then transformed to graphs, and have 
experts create feature vectors for each role based on object-
oriented metrics and then apply ML. 

Additional approaches include: reasoning-based 
approaches such as Wang et al. [33] based on matrices; rule-
based approaches like Sempatrec [34] and the ontology-based 
FiG [35]; metric-based approaches such as MAPeD [36], 
Uchiyama et al. [29], and Dwivedi et al. [37]; Fontana et al. 
[38] analyze microstructures based on an abstract syntax tree; 
semantic-analysis style includes Issaoui et al. [39]; while DP-
Miner [40] uses a matrix-based approach based on UML for 
structural, behavioral, and semantic analysis. Singh et al. [41] 
combines static rules with graph analysis. GEML [42] 
initializes a population of random structures, applying genetic 
algorithms to mutate and generate new patterns from the 
initial population. Kouli and Rasoolzadegan [43] utilize 
micro-patterns with binary logic. 

Graph-based code representations have emerged to 
capture syntactic and semantic dependencies more effectively. 
Liu et al. [44] propose a Code Property Graph (CPG)-based 
GNNs for code similarity detection, achieving high 
performance by learning multi-hop dependencies. 
Ampatzoglou et al. [45] use neural sub-graph matching with 
GNNs to detect design patterns in large codebases, 
demonstrating robustness to structural variations. Li et al. [46] 
integrated multi-feature fusion with GNNs, combining 
semantic embeddings and structural metrics for enhanced 
detection in real-world projects. 

NGDBs represent an innovative extension, integrating 
GNNs with graph databases such as Memgraph, offering real-
time pattern analysis [12][13]. NGDBs enable dynamic 
feature computation and scalable querying, which could 
support tasks like pattern recognition in evolving codebases 
[47]. 

Ensemble Methods have proven effective in improving 
robustness and accuracy for ML tasks [15][16]. For DPD, 
ensembles like Random Forests and stacked generalization 
combine multiple classifiers to leverage complementary 
strengths [48]. However, integrating GNNs, NGDBs, and 
traditional ML models in ensembles remains underexplored, 
particularly for addressing class imbalance and generalization, 
and we see an opportunity and flexibility for addressing DPD 
issues via its utilization. 

III. ANALYSIS AND REQUIREMENTS 
DPD approaches can arguably be categorized into three 

primary approaches: 1) learning-based, where DPs are (semi-
)automatically learned (e.g., via supervised learning) from 
provided data and requiring minimal expert intervention; 2) 
knowledge-based, whereby an expert defines DPs by 
describing elements and their associations; and 3) similarity-
based, whereby DPs are grouped based on similar metrics or 
characteristics. 

A. Analysis  
 DPD in object-oriented code, such as Java, involves 

identifying structural, creational, and behavioral patterns from 
the Gang of Four (GoF) catalog. However, several challenges 
complicate this task: 
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C1: Variability in Implementations: DPD must take 
variability into account, since patterns can be implemented in 
non-standard ways, with variations in naming, structure, or 
partial realizations. Traditional rule-based tools like P-MARt 
or PINOT (Pattern Identification using Optimization and 
Transformation) [49] often fail to detect these variants due to 
rigid matching criteria. 

C2: Dataset Limitations: Existing “labeled” DPD datasets 
often consist of clean, textbook examples but lack diversity, 
including real-world project integrations. Imbalances between 
pattern and non-pattern instances further complicate ML 
approaches. 

C3: Feature Representation: Static analysis alone misses 
dynamic behaviors, while graph-based representations (e.g., 
Abstract Syntax Tree (AST) or Call Graph (CG)) require 
sophisticated handling to capture inter-class relationships 
without losing semantic information. 

C4: Scalability: DPD must handle large codebases 
efficiently. 

C5: Generalization: DPD must generalize to unseen 
projects, avoiding overfitting to specific implementations. 
Ensemble methods and GNNs show promise in addressing 
these by combining complementary strengths: 

• ML classifiers for feature-based detection, 
• GNNs for structural resilience, and 
• NGDBs for real-time querying. 

B. Requirements 
To address these challenges, we identify the following 

DPD requirements, categorized by functional and non-
functional: 

1) Functional Requirements (FR): 
1. DPD Coverage: The system shall detect all 23 GoF 

design patterns (creational, structural, behavioral) in Java 
source code or bytecode. 

2. Feature Extraction: Extract multi-modal features 
including numerical (e.g., method counts, complexity), 
graph-based (e.g., ASTs, CGs), and derived structural 
metrics (e.g., inheritance degrees). 

3. Model Training and Inference: Implement training 
pipelines for individual models (e.g., SVM, GNN, 
NGDB) and an ensemble combiner (e.g., using soft 
voting). 

4. Dataset Management: Extend the P-MARt dataset with 
real-world samples, class-level labeling, and imbalance 
handling via oversampling. 

5. Evaluation Framework: Provide an evaluation 
framework that offers cross-validation (K-Fold, Leave-
One-Project-Out (LOPO)) and performance metrics (F1-
Score, confidence). 

6. Real-time Processing: Support batch processing of 
multiple repositories and real-time pattern detection for 
integration into development workflows. 

2) Non-Functional Requirements (NFRs): 
1. Performance: The system must process medium-sized 

Java projects (up to 10,000 classes) within reasonable 
time constraints (under 30 minutes for complete 
analysis). 

2. Scalability: Support horizontal scaling for batch 
processing of multiple repositories simultaneously. 

3. Accuracy: Achieve F1-scores above 0.80 for common 
design patterns and maintain robustness against code 
variations. 

4. Extensibility: Provide a modular architecture allowing 
addition of new pattern types, feature extractors, and an 
ensemble integration of further base models. 

5. Reproducibility: Ensure deterministic results through 
proper random seed management and version control of 
models and datasets. 

IV. SOLUTION 
Our DPD solution approach incorporates the features and 

conceptual architecture described in the following. 

A. Features 
Full GoF Dataset: The DPD scope encompasses the 23 

GoF design patterns, covering creational, structural, and 
behavioral design patterns. 

Class-Level Feature Aggregation: Since many design 
patterns are object-oriented, the feature extraction pipeline 
operates at the class level to preserve contextual relationships 
between methods and their containing classes. 

Multi-Modal Feature Engineering: The feature extraction 
incorporates: 
• Numerical features from AST analysis,  
• Graph-based features from CG analysis, and  
• Structural features like inheritance relationships. 

Multi-model Support: The open approach can incorporate 
multiple varying base model types, including GNNs, NGDBs, 
SVMs, and can be combined with Ensemble Methods. 

B. Modular Architecture 
A modular, pipeline-based architecture separates concerns 

between feature extraction, model training, and inference. The 
architecture is designed to support the identified functional 
and non-functional requirements while maintaining flexibility 
for future extensions.  

It consists of four primary modules, each responsible for a 
specific stage in the DPD process, as shown in Figure 1.  

 
Figure 1.  DPD-EM Module Architecture 
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1. Feature Extraction: Processes source code (or 
bytecode/binary code if desired) to extract numerical, 
graph-based, and structural features at both method and 
class levels. 

2. ML Training: Implements training pipelines for 
individual models (e.g., GNN, NGDB, SVM) including 
training evaluation and model storage. 

3. DPD and Ensembles: The DPD predictions from a single 
(or multiple) trained models can be flexibly utilized. In 
the multi-model case, any ensemble technique can be 
applied (voting, expert rules, decision trees, etc.) to 
leverage the complementary strengths of individual 
models as desired and thereby enhance overall DPD 
performance. While our DPD-EM ensemble method 
offers flexible multi-model support, when only a single 
ensembles classification results are used, we then refer to 
its specific model (e.g., DPD-NGDB), even though our 
modular architecture remains ensemble-enabled. 

4. System Integration and API: Provides Web API 
endpoints for training, inference, and result management 
with standardized interfaces for external tool integration. 

1) Data Flow Stages 
The system processes data through a series of stages, each 

transforming the input into a more refined output. The stages 
are as follows and illustrated in Figure 2.  

 
Figure 2.  DPD-EM Data Flow Stages  

1. Input Processing: Raw source code (or bytecode/binary) 
is parsed to extract AST and CG information. 

2. Feature Generation: Multi-modal feature extraction 
generates numerical metrics, graph structures, and 
derived features at the class-level (which subsumes 
method-level). 

3. Preprocessing: Feature standardization, normalization, 
and graph merging prepare data for ML models. 

4. Model Training/Inference: Individual models are trained 
or used for inference, generating probability distributions 
over pattern classes. 

5. Ensemble Combination: Any ensemble technique such as 
soft-voting with confidence weighting) to combine 
individual model predictions and enhance overall 
predictions. 

6. Result Formatting: Standardized output includes pattern 
predictions, confidence scores, and detailed explanations. 

V.  REALIZATION 
This section describes the realization of our DPD solution 

approach, providing details about our modules and pipeline.  

A. Module Overview 
The solution architecture was realized in Python, with 

each module addressing distinct functionality within the DPD 
pipeline. Any filenames listed are for reference purposes for 
subsequent descriptions and not intended to be 
comprehensive. The four modules consist of: 

Feature Extraction Module (M1): Implements numerical 
feature extraction, including from ASTs, CGs, or static 
analysis metrics: 
• NumericalFeaturePreprocessing.py: Handles feature 

standardization and preprocessing. 
• GraphFeatureProcessor.py: Processes method-level CGs 

into class-level representations. 
ML Training Module (M2): Implements training pipelines 

for individual models (e.g., GNN, NGDB, SVM) including 
evaluation and model persistence: 
• TrainGNN.py: Implements the training pipeline for 

GNNs. 
• TrainPatternPipeline.py: Implements the training 

pipeline for NGDB approaches. 
• TrainSVM.py: Implements the training pipeline for 

SVMs.  
DPD and Ensembles Module (M3): Implements the 

ensemble technique that combines predictions from multiple 
trained models. It currently applies soft voting and 
confidence-based weighting, but any other EM technique can 
be applied: 
• Detection.py: Provides unified interfaces for applying 

trained models for DPD. 
System Integration and API Module (M4): Provides 

RESTful Web API endpoints for training, inference, and 
result management. Offers standardized interfaces for external 
tool integration: 
• MLAPI.py: Offers system integration via a FastAPI 

backend. 

B. Feature Extraction Module (M1) 
Accurate DPD depends on the quality and structure of the 

underlying features extracted from software artifacts. Our 
multi-stage pipeline module transforms raw code into 
numerical and graph-based representations suitable for 
supervised learning and graph-based inference. Our AST and 
CG extraction utilizes JavaParser for Java source code and 
SootUp for bytecode, but multi-language support is feasible. 
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1) Numerical Feature Extraction: The numerical feature 
extraction process (NumericalFeaturePreprocessing.py) op-
erates on AST, CG data, and static metrics to generate quan-
titative representations of code characteristics. Both bytecode 
and source code extraction modes are supported. 

Numerical features are extracted from code to support 
analysis and classification. The method-level features 
extracted include: 
• The number of method parameters and object 

instantiations, 
• The presence of modifier flags such as public, private, 

static, final, abstract, and synchronized, 
• The complexity of return types, categorized as: void (0), 

primitive type (1), custom class (2), generic type (3), 
• Cyclomatic complexity, 
• Maximum nesting depth, and 
• The number of local variables and exception handlers. 

To account for dynamic behavior and interprocedural 
relationships, metrics derived from the static CG are 
incorporated, including: 
• The number of incoming and outgoing calls, 
• The presence of self-calls, and 
• The number of unique calling methods. 

Class-level aggregation is performed, which summarizes 
method-level features using statistical operations such as sum, 
mean, maximum, and minimum. This enables a holistic view 
of each class based on the behavior of its constituent methods. 
A sample of the numerical feature extraction is shown in 
Figure 3. A sample of the CG extraction is depicted in Figure 
4.  

 
Figure 3.  JSON snippet showing feature extraction for OrderableList 
within the JRefactory project. 

 
Figure 4.  JSON snippet of extracted call graph data for MoveItemAdapter 
within the JRefactory project. 

2) Feature Standardization and Preprocessing: Feature 
standardization scales a feature x to the interval [0,1] apply-
ing MinMax scaling. The process operates in two modes:  

a) Training Mode: computes the global minimum and 
maximum values across all repositories, fits MinMaxScaler 
parameters, and serializes them as JSON for reproducibility. 

b) Usage Mode: loads previously saved scaling param-
eters to ensure consistent feature transformation, allowing 
values to exceed [0,1] when input data exceeds training dis-
tribution bounds. 

3) Graph Feature Processing and Aggregation: Graph 
feature processing transforms method-level CGs to class-
level representations suitable for GNN processing.  

a) Method-level CGs to Class-level Transformation: 
The process extracts class identifiers from method signatures 
using regular expressions as shown in Figure 5.  

 
Figure 5.  Class identifier extraction via regular expressions 

The transformation proceeds in three steps: 
1. Node Consolidation: Creates one node per unique class 

ID containing the class identifier and feature vector from 
standardized numerical features, pattern labels available in 
training mode, method counts indicating class complexity, 
and additional structural metadata. 

2. Edge Aggregation: Transforms method-to-method call 
relationships into class-to-class dependencies using set 
operations to eliminate duplicates and filtering self-loops 
automatically. The aggregation process includes class-level 
feature aggregation and distribution, feature consistency 
validation and quality checks, and support for missing feature 
imputation and default values. 

3. Label Propagation: In training mode, pattern labels are 
propagated from class-level annotations to individual method 
nodes. This enables: ground truth establishment for 
supervised learning, label consistency validation across 
method-class hierarchies, support for partial labeling and 
semi-supervised approaches, and quality assurance for label 
accuracy and completeness. 

b) Class-Level Graph Construction: This execution step 
represents the core transformation that supports higher-level 
DPD. It involves two primary operations: node consolidation 
and edge aggregation. 

Node Consolidation Strategy: For each unique class ID, a 
consolidated node is created using aggregation strategies that 
preserve essential information while reducing graph 
complexity. 

Class Node Creation: Each class node contains: 
• A unique class identifier preserving full namespace 

information. 
• Aggregated numerical features computed from all 

methods within the class using statistical summaries 
(mean, sum, max, min). 

• Ground truth pattern labels (in training mode) for 
supervised learning. 
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• Method counts to indicate class complexity and 
architectural role. 

• Structural metadata on class hierarchy, interface 
implementation, and architectural roles. 

Feature Aggregation Strategies: Multiple approaches 
capture different aspects of class behavior: 
• Statistical aggregation (mean, median, std, quartiles) to 

describe feature distribution. 
• Structural aggregation (counts of constructors, getters, 

setters, etc.) for structural insights. 
• Behavioral aggregation analyzing method interaction 

patterns. 
• Complexity aggregation combining individual method 

complexities into class-level measures. 
Edge Aggregation and Relationship Modeling: Method-

to-method call relations are transformed into class-to-class 
dependencies via structured aggregation: 

Dependency Extraction: dependencies are extracted from 
• Direct dependencies: from inter-class method calls. 
• Indirect dependencies: from multi-hop paths indicating 

complex patterns. 
• Bidirectional relationships: signaling mutual 

dependencies (e.g., Observer, Mediator). 
• Hierarchical dependencies: derived from inheritance. 

Edge Weight Computation: these are calculated from: 
• Call frequency weights representing the intensity of class 

interactions. 
• Method diversity weights indicating the variety of 

methods involved. 

C. ML Training Module (M2) 
The ML training module encompasses multiple 

complementary approaches, each designed to capture 
different aspects of design pattern characteristics through 
specialized architectures and training strategies. Three are 
currently realized: 1) GNN, 2) NGDB, and 3) SVM. 

1) GNN Training: The GNN implementation (in 
TrainGNN.py) is a DPD approach that leverages the struc-
tural relationships inherent in software architectures. The im-
plementation supports multiple GNN variants, each offering 
different strengths for capturing various aspects of design 
pattern implementations. 

a) GNN Architecture Design: A modular and configu-
rable architecture that supports diverse GNN approaches was 
implemented in the Python Class GNNModel: 

Supported GNN Variants: The system supports: 
• Graph Convolutional Networks (GCN) provide an 

implementation of spectral graph convolutions that can 
capture local neighborhood information and hierarchical 
patterns characteristic of structural design patterns. 

• Graph Attention Networks (GAT) offer attention-based 
mechanisms that dynamically weight the importance of 
different neighbors, which could support identifying key 
relationships inherent in behavioral design patterns. 

• Graph Isomorphism Networks (GIN) offer the ability to 
distinguish between different graph structures that could 
be used to detect subtle variations in pattern 
implementations. 

• Graph Sample and Aggregation (GraphSAGE) offers a 
scalable inductive learning approach that can generalize 
to unseen graph structures, which can support DPD 
across diverse codebases. 

Configurable Architecture Parameters: 
• Supports flexible specification of network capacity with 

hidden channels and layer depth for deep architectures 
that can capture complex hierarchical patterns. 

• For GAT models, configurable multi-head attention 
provides customizable attention head counts and 
attention dropout rates. 

• Multiple aggregation functions, including mean, max, 
sum, and attention-weighted approaches can be used to 
combine neighborhood information. 

• Dropout strategies, batch normalization, and weight 
decay options prevent overfitting through regularization 
mechanisms. 

• Configurable multi-layer perceptrons for final 
classification offer customizable hidden dimensions and 
activation functions. 
b) Data Loading and Preprocessing Pipeline: The train-

ing pipeline begins with a data loading and preprocessing 
workflow: 

Graph Data Processing: The system processes class-level 
graph features from JSON files through the following stages: 
1. File Access and Error Handling: file system traversal 

ensures resilience to missing or corrupted files via error 
handling mechanisms. 

2. Schema Validation: Parsed JSON content undergoes 
schema validation and integrity checks to guarantee 
consistency across heterogeneous data sources. 

3. Graph Conversion: JSON representations are 
transformed into internal graph data structures, including 
validation of graph properties for structural correctness. 

4. Feature Extraction and Preprocessing: Node features are 
extracted and preprocessed through missing value 
imputation, outlier detection, and normalization for 
subsequent learning stages. 

PyTorch Geometric Integration: integration with PyTorch 
Geometric is implemented as a series of structured steps: 
1. Tensor Conversion: transformation of feature matrices 

into GPU-compatible tensor formats for integration with 
PyTorch and memory-efficient representation for 
downstream processing. 

2. Edge Index Construction: The construction of the 
edge_index structure includes error-checking to identify 
and handle invalid or malformed edges, ensuring graph 
connectivity and correctness. 

3. Label Encoding: Label encoding is performed using 
scikit-learn’s LabelEncoder, with support for handling 
unseen classes and mitigating class imbalance during 
supervised learning tasks. 

4. Graph Validation: A validation step includes removal of 
self-loops, detection of disconnected components, and 
verification of structural graph properties to ensure 
integrity and suitability for geometric learning. 

Data Quality Assurance: Data quality is addressed via 
multiple validation and control procedures: 
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• Feature Range Validation: Detection and handling of 
extreme values, infinite values, and NaN entries is 
performed to ensure numerical stability and consistency 
of the feature space. 

• Graph Connectivity Analysis: Structural issues such as 
isolated nodes and disconnected components are 
identified via graph connectivity analysis to preserve 
semantic coherence of the graph. 

• Label Distribution Assessment: The distribution of class 
labels is analyzed to identify class imbalance and detect 
severely underrepresented classes, which could 
negatively impact supervised learning performance. 

• Data Partitioning Strategy: Data splits for training, 
validation, and testing are performed using partitioning 
strategies that preserve the underlying graph structure, 
ensuring representativeness and validity in cross-
validation setups. 
c) Training Strategies: The training implementation in-

corporates strategies designed to address DPD challenges: 
Cross-Validation Framework: our cross-validation 

implementation supports multiple strategies. Configurable K-
fold strategies employ stratified sampling to ensure balanced 
representation across folds. Evaluation strategies for smaller 
datasets provide validation of generalization performance 
through Leave-One-Out (LOO) Cross-Validation (CV). For 
datasets with a temporal structure, specialized validation 
strategies respect temporal dependencies. Graph-aware CV 
employs specialized partitioning strategies that account for 
graph structure and avoid information leakage between 
training and validation sets. 

Applying K-fold CV to DPD settings presents unique 
challenges. Software projects often cannot be arbitrarily 
divided, as dependencies and architecture coherence must be 
preserved. For this reason, a special approach such as Leave-
One-Project-Out Cross-Validation (LOPO-CV) is 
recommended [50]. Here, each project is treated as a single 
validation fold. The model is trained on all other projects and 
tested on the one left out. While LOPO-CV increases the 
evaluation for cross-project scenarios, it also introduces 
higher variance due to project heterogeneity. Normalization of 
features, abstraction layers, and embedding representations 
can help to mitigate these issues. 

Optimizer Configuration and Tuning: Optimizer support 
includes configuration options. Advanced Adam 
implementations provide configurable learning rates, weight 
decay, and momentum parameters, proving particularly 
effective for graph neural network training. Classical 
stochastic gradient descent with momentum enables stable 
training on large graphs. Adaptive learning rate methods 
handle the sparse gradient updates common in graph neural 
networks through RMSprop. Sophisticated learning rate 
scheduling encompasses step decay, exponential decay, and 
cosine annealing strategies. 

d) Focal Loss Implementation for Class Imbalance: Fo-
cal Loss was specifically implemented and adapted for DPD 
[51]. Our implementation with the class FocalLoss is shown 
in Figure 6.  

 
Figure 6.  Focal Loss implementation. 

This loss function provides several advantages for DPD. 
The (1 − pt)γ term down-weights easy examples and focuses 
learning on difficult cases, which is particularly important for 
distinguishing between similar design patterns. The α 
parameter provides explicit class balancing to address the 
severe imbalance between different design patterns in typical 
datasets. The loss automatically adjusts focus based on 
prediction confidence, enabling the model to concentrate on 
boundary cases and ambiguous pattern implementations. The 
formulation provides stable gradients even with extreme class 
imbalance, enabling effective training on highly skewed 
datasets. 

e) Training Monitoring and Control: The training im-
plementation includes various monitoring and control mech-
anisms: 

Early Stopping Implementation: early stopping employs 
multiple criteria including: 
• Configurable patience parameters with sophisticated 

validation loss tracking, 
• Multiple metrics including F1-score, precision, and 

recall, 
• Overfitting detection through training-validation loss 

divergence analysis, and  
• Automatic retention of the best models based on multiple 

criteria with comprehensive metadata. 
Metrics Tracking: Real-time monitoring of training 

progress encompasses: 
• Detailed tracking of accuracy, precision, recall, F1-

scores, and custom metrics for DPD, 
• Real-time confusion matrix computation and analysis to 

identify specific DPD challenges, 
• Detailed analysis of loss components to understand 

model learning dynamics, and 
• Learning curve tracking for detecting convergence issues 

and optimization problems. 
f) Model Artifact Management: Model artifact manage-

ment supports reproducibility and enables detailed analysis: 
Model Serialization: Model state preservation 

encompasses full model state dictionaries saved in .pth format 
with version compatibility, architecture specifications saved 
as JSON for reproducibility, training hyperparameters and 
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configuration settings, and optimizer state preservation for 
training resumption. 

Visualization and Analysis: Visualization artifacts include 
Seaborn-based confusion matrix visualizations with statistical 
annotations, analysis of feature distributions and their 
relationship to pattern detection performance, and network 
visualizations of class-level graphs with pattern highlighting. 

2) NGDB Training Pipeline: The NGDB training ap-
proach, implemented in the Python module TrainPatternPipe-
line.py is shown in Figure 7. It uses Memgraph as an NGDB 
to store, process, and analyze heterogeneous code graphs in 
combination with different GNN models. Memgraph is an in-
memory, Cypher-compatible graph database that natively in-
tegrates GNN modules through its MAGE (Memgraph Ad-
vanced Graph Extensions) library [52]. This approach sup-
ports analysis by combining the NGDB with NN architec-
tures, enabling graph-based DPD analysis of software code 
structures. 

 
Figure 7.  NGDB Training Pipeline 

a) Graph Storage: The system employs Memgraph as 
the underlying graph database, chosen for its performance 
characteristics, Cypher Query Language (CQL) support, and 
integration capabilities with ML workflows. The database 
stores a heterogeneous graph representation of the software 
structure that captures multiple types of entities and relation-
ships. A sample visualization of the CG import of the PMD 
project is shown in Figure 8. A closeup of the CG is shown 
in Figure 9.  

 
Figure 8.  Screenshot of Memgraph for entire DPD dataset showing metrics 
above and clustering of class and method nodes by relationships. 

 

Figure 9.  Closeup screenshot of Memgraph for PMD project dataset 
showing class (red) and method (orange) nodes and directed relationships. 

Node Type Hierarchy: The graph database maintains a 
sophisticated node type system: 

Class Nodes: These nodes represent software classes and 
are enriched with metadata including: 
• Numerical feature vectors aggregated from method-level 

analysis, 
• Pattern labels for supervised learning (available in 

training mode), 
• Method counts and complexity metrics, 
• Inheritance hierarchy information and interface 

implementation details, 
• Package and namespace associations. 

Method Nodes: These nodes represent individual methods 
and capture detailed characteristics such as: 
• Method signatures and parameter types, 
• Access modifiers and method-level flags (e.g., static, 

final), 
• Cyclomatic complexity and code quality metrics, 
• Call frequency, usage patterns, and invocation context, 
• Exception handling structures and error management 

indicators. 
Package Nodes: These nodes encapsulate software 

packages or modules, including: 
• Hierarchical package organization and naming structure, 
• Inter-package dependency relationships, 
• Package-level metrics and aggregated characteristics. 

Relationship Type System: The graph-based relationship 
model captures the semantic and structural interactions 
between software entities through multiple distinct 
relationship types: 

DECLARES Relationships: These edges connect class 
nodes to their declared method nodes, encoding: 
• Ownership and structural organization of methods within 

classes, 
• Method accessibility (e.g., public, private) and scope 

information, 
• Declaration context and compilation metadata, 
• Indicators of method overrides and inheritance-related 

declarations. 
CALLS Relationships: These edges represent dynamic or 

static method invocations and include: 
• Call frequency and temporal invocation patterns, 
• Parameter passing strategies and intra-procedural data 

flow, 
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• Exception propagation paths and error handling behavior, 
• Conditional invocation patterns and control flow 

dependencies. 
EXTENDS Relationships: These relationships model 

inheritance between classes, capturing: 
• Inheritance depth and hierarchy complexity, 
• Method override patterns and specialization, 
• Abstract class associations and interface inheritance 

details. 
IMPLEMENTS Relationships: These edges represent 

interface implementation and reflect: 
• Interface compliance and contract fulfillment status, 
• Patterns of multiple interface implementations, 
• Usage of default methods and override behavior. 

USES Relationships: These capture various forms of 
software usage dependencies, including: 
• Field access and data dependency relations, 
• Type usage, generic type associations, and class 

instantiations, 
• Annotation usage and metadata-driven relationships. 

b) Data Ingestion Pipeline: The data ingestion process 
implements a pipeline that loads and integrates multiple data 
sources into the unified graph representation: 

Multi-Source Data Integration: The system systematically 
processes multiple JSON-based data sources, each 
contributing distinct structural and semantic information: 
• Graph Features Integration: Incorporates class-level 

graph representations enriched with aggregated metrics 
and pattern labels, enabling structural learning at the class 
granularity. 

• Call Graph Processing: Extracts method-level call 
relationships, capturing invocation frequency and 
contextual information to support interprocedural 
analysis. 

• Abstract Syntax Tree Data Integration: Provides 
structural information about class hierarchies, inheritance 
relationships, and interface implementation through AST 
parsing. 

• Numerical Features Loading: Supplies quantitative 
metrics for both classes and methods and offers statistical 
validation. 

Graph Database Population: Ingestion functions manage 
the transformation and insertion of structured JSON nodes 
into the graph database, ingesting class-level data into a 
Memgraph instance. A Memgraph instance executes Cypher’s 
MERGE clause to ensure idempotent insertion of class nodes 
based on a unique identifier. Node properties are assigned 
using dynamic key-value pairs passed via a props parameter. 
Metadata such as the ingestion timestamp and data version are 
appended to each node to support traceability, versioning, and 
data lineage. 

Relationship Establishment: The system supports 
relationship creation between software entities with integrated 
validation and error handling mechanisms: 
• Inheritance Relationships: Processing of EXTENDS 

clauses includes validation of multiple inheritance 
constraints and semantic correctness within the class 
hierarchy. 

• Method Declarations: Methods are associated with their 
declaring classes through validated DECLARES 
relationships, incorporating access control checks and 
declaration context verification. 

• Call Relationships: CALLS relationships are created 
between method nodes, enriched with invocation context, 
frequency metadata, and control flow annotations. 

• Interface Implementations: IMPLEMENTS edges are 
formed based on parsed IMPLEMEMTS clauses, 
including validation of interface compliance and contract 
fulfillment semantics. 

Data Consistency and Validation: To ensure semantic and 
structural correctness, the system performs validation 
procedures throughout the ingestion process: 
• Referential Integrity: All referenced nodes and 

relationships are checked for existence to maintain 
consistency across the graph. 

• Schema Compliance: Nodes and relationships are 
validated against predefined schema constraints to 
enforce type and structure conformity. 

• Data Quality Checks: Inconsistencies, corrupted entries, 
and malformed properties are detected and handled using 
systematic quality control measures. 

• Duplicate Detection: Redundant entities and 
relationships are identified and resolved through 
deduplication mechanisms to prevent semantic 
ambiguity. 
c) Graph-Derived Feature Computation: the NGDB 

approach enables the computation of graph-derived features 
using Cypher queries: 

Cypher Query Implementation: The system utilizes 
Cypher queries to derive composite structural metrics directly 
from the graph database. The query below (Figure 10) extends 
each Class node with additional structural and interaction-
based features, enabling enhanced downstream analysis and 
learning. 

 
Figure 10.  A CQL query extends each Class node with additional structural 
and interaction-based features. 
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Specifically, the query proceeds in several stages: 
1. Filtering Relevant Classes: Only classes for which both 

feature vectors (features) and pattern labels (pattern) are 
present are included in the analysis. 

2. CG Expansion: The query traverses DECLARES and 
CALLS relationships to collect identifiers of all classes 
indirectly referenced via method calls, capturing inter-
class interaction patterns (called_classes_ids). 

3. Inheritance Analysis (In-degree): By matching 
EXTENDS relationships pointing to the current class, the 
number of direct subclasses (i.e., inheritance in-degree) is 
computed. 

4. Inheritance Analysis (Out-degree): The number of direct 
superclasses extended by the current class (i.e., inheritance 
out-degree) is also calculated, supporting analysis of 
hierarchical complexity. 

5. Method Aggregation: The number of methods declared by 
each class is counted using the DECLARES relationship 
to quantify class-level behavioral encapsulation. 

• Feature Augmentation: A new property 
extended_features is appended to each class node. It 
combines the existing features vector with the four newly 
computed metrics: Inheritance in-degree, Inheritance out-
degree, Number of declared methods, and Number of 
referenced external classes via method calls. 

Following the execution of the Cypher query, the system 
augments each Class node with enriched architectural 
descriptors that enable a deeper analysis of software design 
structures and interaction patterns. These derived feature 
categories are extracted or inferred from graph-topological 
and semantic relationships: 

Inheritance Metrics: captures the hierarchical properties of 
the class design, including: 
• In-degree inheritance: The number of classes that extend 

a given class, indicating its centrality as a base class or 
abstract interface. 

• Out-degree inheritance: The number of direct superclass 
relationships a class possesses, indicating hierarchy depth 
and potential misuse of multiple inheritance. 

• Inheritance tree depth: The maximal depth from the root 
of the inheritance chain, used to detect deep or overly 
complex hierarchies. 

• Interface implementation count: The number of 
interfaces implemented by a class, reflecting its 
abstraction adherence and flexibility. 

Method Declaration Patterns: describes the intra-class 
behavioral structure: 
• Total method count per class: providing a proxy for 

behavioral richness. 
• Distribution of method types: distinguishing between 

constructors, accessors, mutators, and core logic 
methods. 

• Access modifier patterns: such as the public-to-private 
method ratio, which may suggest encapsulation quality. 

• Abstract method statistics: relevant for identifying 
abstract base classes or template patterns. 

Inter-Class Communication: Encodes communication 
behavior in the CG: 

• Outgoing communication count: i.e., the number of 
distinct classes this class calls. 

• Incoming communication count: i.e., the number of 
classes calling this class. 

• Communication intensity and frequency: providing 
insight into dependencies and possible code smells. 

• Bidirectional call detection: to identify tight coupling or 
cyclic dependencies. 

Architectural Complexity: Captures structural roles and 
architectural health: 
• Dependency fan-in and fan-out metrics: used for impact 

and stability analysis. 
• Coupling and cohesion indicators: inferred from 

communication and method sharing patterns. 
• Architectural layer classification: by analyzing depth and 

connection types. 
• Pattern-specific structural indicators: such as those 

associated with Singleton or Factory design patterns. 
As shown in the CQL query above, a feature vector 

enhancement process is finally applied: 
Feature Concatenation: The derived graph-based features 

are concatenated with the original static numerical features 
extracted from source code. Normalization and scaling are 
applied to ensure numerical stability. 

Dimensionality Management: Strategies such as 
dimensionality capping, regularization, or feature selection 
are employed to prevent overfitting and ensure computational 
tractability. 

Feature Correlation Analysis: Correlation matrices and 
mutual information metrics are used to detect and eliminate 
redundant or collinear features. 

Quality Validation: The resulting feature vectors are 
validated for completeness, consistency, and compatibility 
with downstream models. 

This multi-level feature integration enables the model to 
capture a rich representation of both static and relational 
program semantics, supporting tasks such as design pattern 
classification, anomaly detection, and architecture 
recommendation. 

d) Class Imbalance Mitigation Strategies: Our DPD-
NGDB approach integrates the following techniques to ad-
dress the inherent class imbalance and memory constraints 
associated with design pattern datasets. 

Minority Class Oversampling is used to mitigate the 
severe class imbalance in supervised learning tasks. The 
system employs graph-specific oversampling strategies that 
preserve structural integrity: 
• Configurable Oversampling Factor: Typically, 2x 

oversampling with configurable parameters based on 
class distribution analysis 

• Graph-Aware Sampling: Oversampling strategies that 
preserve graph structure and neighborhood 
characteristics 

• Synthetic Graph Generation: Advanced techniques for 
generating synthetic graph samples that maintain pattern 
characteristics 

• Stratified Sampling: Ensuring representative sampling 
across different pattern types and complexity levels 
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Memory Management and Scalability is used to support 
high-volume graph data. The system incorporates memory 
management mechanisms and scalable processing techniques: 
• Batch Processing: Intelligent batching strategies to 

prevent out-of-memory errors during training. 
• Memory Monitoring: Real-time memory usage 

monitoring using psutil with automatic garbage 
collection. 

• Incremental Processing: Support for incremental 
processing of large graphs with checkpoint recovery. 

• Resource Optimization: Dynamic resource allocation and 
optimization based on available system resources. 
e) Heterogeneous Graph Neural Network Architecture 

(HeteroGNN): this constitutes a specialized neural architec-
ture engineered to process and learn from heterogeneous 
graph data. 

Multi-Head Attention Implementation: This is used to 
model the diverse semantic relationships in heterogeneous 
graphs. The architecture leverages advanced Graph Attention 
Convolution (GATConv) layers with the following design 
considerations: 
• Attention Head Configuration: Multiple attention heads 

(typically 4-8) for capturing diverse relationship patterns. 
• Edge-Type-Specific Attention: Specialized attention 

mechanisms for different relationship types 
(DECLARES, CALLS, EXTENDS). 

• Dynamic Attention Weighting: Adaptive attention 
weights that adjust based on graph structure and the 
learning progress. 

• Attention Dropout: Dropout strategies (typically 0.5) for 
regularization and generalization. 

Message Passing for Heterogeneous Structures: The 
message passing paradigm is extended to accommodate 
structural heterogeneity, enabling effective information flow 
across diverse node and edge types: 
• Type-Specific Message Functions: Different message 

computation functions for each relationship type. 
• Hierarchical Message Aggregation: Multi-level 

aggregation strategies that capture both local and global 
graph patterns. 

• Temporal Message Patterns: Support for temporal 
relationship patterns where available. 

• Bidirectional Message Passing: Advanced bidirectional 
message passing for capturing complex dependency 
patterns 
f) Advanced Training Configuration: To ensure model 

convergence, a multi-faceted training strategy is employed. 
This includes configured optimizers, loss functions tailored 
to class imbalance, and long-term training protocols with 
adaptive control mechanisms. 

Optimizer Configuration: The optimization process is 
guided by adaptive strategies that enhance convergence 
stability and learning performance: 
• Adam Optimizer: Advanced Adam implementation with 

learning rate 0.001 and adaptive moment estimation. 
• Learning Rate Scheduling: ReduceLROnPlateau 

scheduler with sophisticated plateau detection and 
learning rate adaptation. 

• Gradient Clipping: Advanced gradient clipping strategies 
to prevent gradient explosion in deep graph networks. 

• Weight Initialization: Weight matrices are initialized 
using graph-aware strategies. 

Loss Function Integration: To address severe class 
imbalance and optimize learning for minority classes, a 
sophisticated loss configuration is applied: 
• Focal Loss Implementation: Gamma parameter of 2 for 

hard example mining with adaptive class weighting. 
• Balanced Class Weights: Dynamic class weight 

computation based on current class distributions. 
• Loss Regularization: Additional regularization terms for 

graph structure preservation. 
• Multi-Task Learning: Support for auxiliary tasks that 

improve pattern detection performance 
Extended Training Protocol: A training loop with fault-

tolerance and performance tracking ensures sustainable 
learning across extended sessions: 
• Extended Epoch Training: Up to 1000 epochs with 

careful overfitting monitoring. 
• Early Stopping Strategy: Patience of 50 epochs with 

multiple stopping criteria. 
• Model Checkpointing: Regular model checkpointing 

with best model preservation. 
• Training Resumption: Support for training interruption 

and resumption with full state preservation. 
g) Evaluation and Analysis: The evaluation framework 

enables an analysis of model performance through both met-
ric-based assessment and visualization-based interpretability. 

Multi-Metric Evaluation: A set of performance metrics is 
employed to account for the challenges posed by class 
imbalance and varying pattern complexities: 
• Weighted Metrics: Class-weighted accuracy, precision, 

recall, and F1-scores to handle class imbalance. 
• Per-Class Analysis: Detailed per-class performance 

metrics for identifying pattern-specific detection 
capabilities. 

• Confusion Matrix Analysis: Confusion matrix analysis 
with statistical significance testing. 

• Confidence Score Analysis: Distribution analysis of 
prediction confidence scores. 

Visualization: The framework integrates visualizations to 
support interpretability and diagnostic analysis: 
• Confusion Matrix Heatmaps: Confusion matrix 

visualizations with statistical annotations are offered 
• Graph Structure Visualization: Network visualizations of 

learned graph representations can be shown. 
3) SVM Integration: The Support Vector Machine imple-

mentation TrainSVM.py provides a complementary approach 
to the graph-based methods via high-dimensional feature 
space analysis. It focuses on leveraging rich numerical fea-
ture representations for pattern classification. 

D. DPD and Ensembles Module (M3) 
The DPD and Ensembles Module implements the 

ensemble technique combining predictions from multiple 
trained models, or if desired utilizing a single model. It 
currently applies soft voting and confidence-based weighting, 
but can apply any other EM technique. 
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4) Architecture: a stacked ensemble learning technique is 
applied in order to improve predictive performance by com-
bining multiple base learners through a higher-level model 
known as a meta-classifier. This can be effective when the 
individual base models capture different aspects of the data 
or exhibit complementary strengths and weaknesses. The De-
tection.py module implements the stacked ensemble learning 
technique for DPD. 

The process begins with a set of base models, which are 
independently trained on the same training data. Each model 
generates an individual model detection (i.e., predictions) for 
the input instances, resulting in a vector of intermediate 
outputs. These predictions are then passed to a meta-classifier, 
which is trained to learn a higher-order decision function 
based on the outputs of the base models (currently soft voting 
is utilized, but this can be adjusted). The meta-classifier 
effectively integrates the diverse perspectives of the 
underlying models and produces an ensemble-based detection 
(i.e., ensemble prediction) Pf with generalization capabilities. 

5) Individual Model Detection: The detection system 
provides unified interfaces for applying trained models. The 
pipeline orchestrates: numerical feature extraction, standard-
ization using pre-computed parameters, and graph feature 
merging. The following individual models are used: 

SVM Detection: the function loads standardized features, 
applies the trained model, and handles edge cases (e.g., zero-
feature vectors assigned "No Pattern", low-confidence 
predictions marked "Unknown"). 

GNN Detection: the function converts class-level graph 
features to PyTorch Geometric Data objects and applies 
trained GNN models. 

NGDB Detection: the function leverages Memgraph for 
real-time graph queries and applies trained HeteroGNN 
models. 

6) Ensemble-Based Detection: The ensemble methodol-
ogy combines multi-model predictions (our current  imple-
mentation utilizes SVM, GNN, and NGDB models via soft 
voting), while addressing different label spaces through label 
alignment. The ensemble process is as follows: 
i. Common Class Identification: Finds classes that exist 

in all model outputs. 
ii. Label Space Unification: Creates a unified label space 

containing all unique pattern classes. 
iii. Probability Alignment: Maps each model’s outputs to 

the unified space. 
iv. Apply ensemble technique: Various techniques can be 

applied to combine the predictions of the base models, 
include stacking, bagging, boosting, etc. Soft voting is 
currently used. 

v. Post-processing: Applies confidence thresholding and 
special-case handling. A function generates aligned 
probability matrices in which each row corresponds to 
a class instance and each column to a specific design 
pattern type. This alignment ensures that the 
probabilistic outputs from different models are directly 
comparable. Soft voting prevents bias toward patterns 
in a subset of models. 

E. System Integration and API Module (M4) 
7) Web API: The complete system is orchestrated 

through a FastAPI backend, providing RESTful endpoints. 
The system provides several key endpoints, including: 

• POST /process-features for complete feature 
processing pipeline, 

• POST /train-gnn, /train-pattern, and /train-svm for 
model training, 

• POST /start-detection for model inference with 
ensemble support, and 

• GET /get-metrics for model evaluation data. 
The API includes error handling, asynchronous processing 

support, and Cross-Origin Resource Sharing (CORS) 
middleware for frontend integration. 

8) Robustness and Integrity: Robustness, reproducibility, 
and overall system integrity are addressed via several sup-
porting mechanisms in the pipeline. These include: 
• Error Handling: includes file I/O validation, memory 

management - particularly for graph processing, and 
proper cross-validation data partitioning. 

• Configuration Management: All configurations are 
serialized as JSON, including hyperparameters, training 
settings, and timing information to ensure reproducibility. 

• Validation Framework: Multi-stage validation 
encompasses feature extraction consistency checks, 
standardization validation, and model validation with 
convergence analysis and overfitting detection. 

• Feature Consistency: Validation of feature consistency 
across the graph includes range checks for feature values 
and detection of outliers, consistency validation between 
different feature sources, missing feature detection and 
imputation strategies, and feature distribution analysis 
with normalization validation. 

• Label Quality: In training mode, label quality assurance 
encompasses label consistency validation across related 
classes, detection of potentially mislabeled instances, 
analysis of label distribution and balance, and validation 
of ground truth quality and completeness. 

9) Output Generation and Format Optimization: The 
output generation process creates JSON files containing the 
class-level graph structure and essential metadata. This stage 
ensures that both the structural and contextual information 
are retained and formatted for efficient downstream use. Key 
aspects include: 

Format Optimization: The JSON output is optimized for 
downstream processing through efficient encoding of graph 
structures for fast loading, preservation of metadata for 
debugging and analysis, compatibility with PyTorch 
Geometric data formats, and support for incremental loading 
and processing of large graphs. 

Metadata Preservation: Metadata is preserved to support 
analysis and debugging, including original method-level 
information for traceability, transformation parameters and 
configuration settings, quality metrics and validation results, 
and processing timestamps with version information. 

The resulting output enables efficient graph-based ML 
operations while maintaining the semantic relationships 
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present in the original code structure, creating a foundation for 
DPD using GNN and other techniques. 

10) User Interface (UI): The frontend is implemented via 
Node.js with React, Vite.js, the Material UI React compo-
nent, and Axios for Web APIs. Once a DPD repository is up-
loaded as a zip, it can be selected via dropdown (here PMD), 
as shown on the left in Figure 11. Thereafter, extract features 
can be executed (left bottom). Then the various ensemble 
models can be selected on the right, and then the ensemble 
detection can be started. At the top, the menu offers dataset 
management, training, models, and detection management. 

 
Figure 11.  DPD user interface. 

VI. EVALUATION 
The evaluation focuses on the effectiveness of our DPD-

NGDB approach, analyzing GNN variants and DPD 
performance.  

As described previously, our DPD approach is structured 
to inherently support ensemble methods for maximum 
flexibility. However, currently, all other models we attempted 
(GNN, SVM) for the ensemble in preliminary evaluations 
performed far worse or lacked consistency, and thus did not 
complement DPD-NGDB. Hence, our DPD-EM results are 
not evaluated here. As EM depends on the other models 
improving results, future work will focus on finding and 
tuning alternative models such that they address the 
misclassifications found in our DPD-NGDB approach. 

All experiments were conducted on an Apple MacBook 
with M2 Pro with 32GB RAM. 

A. Dataset Description 
Both the training and evaluation are conducted on a dataset 

consisting exclusively of 23 canonical GoF design patterns 
and other non-labeled code. The dataset utilizes 9 projects 
from the Pattern-like Micro-Architecture Repository (P-
MARt) repository [7]. As not all 23 GoF design patterns were 
exemplified in P-MARt, the dataset was supplemented with 
23 pattern implementation examples from Refactoring Guru 
[53], which, while isolated examples without a larger project 
context, at least provide some training data.  

The evaluation focuses on classifying any single class as a 
pattern instance to emphasize discriminative performance 
among the design patterns, and unlabeled classes are assumed 
to be “No Pattern” or unknown. Note that for a single pattern, 
multiple classes may participate (e.g., Observer), while a 

single class might participate in or utilize multiple patterns 
simultaneously (e.g., Factory and Observer). For simplicity 
and the labeled ground truth basis, classes are assumed to be 
associated with only a single pattern (e.g., either Factory 
Method or Observer, not both). Thus, the actual number of 
static pattern instantiations could be far less than the number 
of classes identified (labeled) as participating in a certain 
pattern (e.g., Observer, Broker). 

The dataset comprises 30 projects with 417 unique 
samples across the 23 patterns, with varying distribution 
across pattern categories (121 creational, 182 structural, and 
114 behavioral) as shown in TABLE I. Hence, the creational, 
structural, and behavioral design pattern types are included in 
the training and detection dataset with varying degrees of 
pattern sample frequency. 

TABLE I.  GOF DATASET 

Pattern Samples 
Creational 121 
Abstract Factory 72 
Builder 28 
Factory Method 8 
Singleton 12 
Prototype 1 
Structural 182 
Adapter 62 
Bridge 28 
Composite 58 
Decorator 8 
Facade 17 
Flyweight 4 
Proxy 5 
Behavioral 114 
Chain of Responsibility 5 
Command 16 
Interpreter 5 
Iterator 19 
Mediator 9 
Memento 12 
Observer 20 
State 6 
Strategy 7 
Template Method 2 
Visitor 13 
Total 417 

 

 
Figure 12.  Snippet of P-MARt Netbeans project summary metrics. 

An example of the pattern summary metrics per project in 
P-MARt is shown in Figure 12.  Pattern-specific metrics are 
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also summarized in XML as shown in Figure 13. The XML-
based documentation describes on a per-project basis the 
classes involved in a micro-architecture (pattern), as shown in 
Figure 14. We extracted the information per project to use for 
class labeling as our ground truth as shown in Figure 15.  

 
Figure 13.  Snippet of P-MARt Adapter pattern summary. 

 
Figure 14.  Snippet of XML-based P-MARt [7] documentation of Adapter 
pattern in JRefactory project involving the MoveItemAdapter class. 

 
Figure 15.  Snippet of our extracted JSON labels for the JRefactory project 
labeling MoveItemAdapter as class participating in Adapter pattern. 

DPD results are output in our JSON format per project 
listing all classes, the primary pattern detected, a confidence 
value, and a project summary, as shown in Figure 16.  

 
Figure 16.  Snippet of our detection results per class and project summary. 

Class imbalance across DPs was addressed via 
oversampling during training to ensure balanced 
representation. K-Fold cross-validation (K=5) is used for 
internal validation, with stratification to ensure balanced folds 
across the 23 pattern types. 

B. NGDB GNN Variant Evaluation 
The NGDB GNN model, implemented using Memgraph, 

integrates heterogeneous graph representations with GNN 
inference for real-time pattern detection, focusing on graph-
derived features (e.g., inheritance metrics, call patterns) 
computed via Cypher queries. NGDB GNN variant 
performance was evaluated using Accuracy, Precision, Recall, 
and F1-Score. F1-Score was used due to dataset imbalance 
across pattern types. The overall performance across all 
patterns for each variant, averaged over the 5-fold CV is 
summarized in TABLE II.  

TABLE II.  NGDB GNN VARIANT PERFORMANCE (STRATIFIED 5-
FOLD CV) 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
GCN 93.45 90.67 93.45 91.13 
GAT 97.72 97.73 97.72 97.68 

GINSAGE 97.66 97.61 97.66 97.44 
 
GAT achieved the highest F1-Score (97.68%) and 

precision (97.73%), followed closely by GINSAGE (F1: 
97.44%, precision: 97.61%). GCN performed slightly lower, 
with an F1-Score of 91.13%. These results show substantial 
improvement over the standard GNN variants, meeting or 
exceeding the target F1-Score of 0.80 (80%) specified in the 
non-functional requirements (NFR3). 

Pattern-specific performance from the classification 
reports shows high F1-scores for most patterns, such as 
Singleton (1.0 across variants), Proxy (1.0), and Chain of 
Responsibility (1.0). Abstract Factory achieved strong scores 
(GAT: 0.86, GINSAGE: 0.80, GCN: 0.15), while Adapter had 
lower performance in GCN (0.0) but improved in GAT (0.65) 
and GINSAGE (0.61). Behavioral patterns like Observer 
(GAT: 0.86, GINSAGE: 0.67, GCN: 0.0) and Command 
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(GAT: 0.75, GINSAGE: 0.86, GCN: 0.22) showed variability, 
reflecting challenges in capturing dynamic interactions. 

Analysis: The results indicate that GAT outperforms other 
NGDB variants, likely due to its attention mechanism 
effectively weighting graph-derived features like call patterns 
and inheritance degrees. GINSAGE also performed well, 
combining isomorphism testing with inductive learning for 
robust generalization across diverse pattern implementations. 
GCN, while solid, lagged slightly, possibly due to less 
sophisticated aggregation in heterogeneous graphs, which 
limited its ability to capture complex relationships in patterns 
like Observer (F1: 0.0). 

The high overall F1-Scores (91.13% – 97.68%) 
demonstrate the value of NGDB’s Cypher-derived features in 
capturing relational aspects missed by standard GNNs, 
particularly for behavioral patterns. For instance, Observer 
achieved an F1-Score of 0.86 in GAT, reflecting the benefit of 
inter-class communication metrics. Despite excluding ‘No 
Pattern’ instances during training, the evaluation metrics 
reflect strong discrimination among the 23 patterns, with 
oversampling mitigating imbalance effectively. 

Confidence metrics show reduced overconfidence 
compared to standard GNNs, with wrong predictions having 
notably lower scores (e.g., GAT: 64.79% for wrong vs. 
97.16% for correct). Patterns like Singleton, Proxy, and Chain 
of Responsibility achieved perfect F1-scores (1.0), benefiting 
from distinct structural signatures enhanced by NGDB 
features, such as inheritance hierarchies and method 
declarations. Lower performance on patterns like Command 
(GAT: 0.75, GINSAGE: 0.86) and Adapter (GAT: 0.65) may 
stem from variability in implementations or insufficient 
feature representation for nuanced behavioral interactions. 

C. DPD Evaluation of DPD-NGDB 
As GINSAGE and GAT performance was equivalent, 

DPD-NGDB utilized GINSAGE for the rest of the evaluation. 
1) DPD Performance: The confusion matrix for the 

DPD-NGDB model across the entire dataset using 5-fold CV 
demonstrates strong discrimination across the 23 GoF pat-
terns, as shown in Figure 17. The matrix reveals minimal mis-
classification, with most patterns correctly identified along 
the diagonal. Analysis of misclassifications requires a case-
by-case deeper analysis as explained in the following discus-
sion. 

Project-specific DPD tests were performed on the various 
P-MARt projects on which it had been trained (except for 
Netbeans) as listed in TABLE IV. The DPD results for the 
projects in the training showed an accuracy range from 0.17 
to .91, precision from 0.83 to 1, recall from 0.20 to 0.91, and 
F1 scores from 0.55 to 0.94.  

When including the Netbeans test project (left out of 
training), the overall values were 0.45 for accuracy, 0.96 for 
precision, 0.58 for recall, and 0.72 for F1. Each project has a 
diverse set of patterns which were detected, as shown on the 
right of the table, covering 18 of the 23 GoF. The testing of 
the remaining 5 patterns was performed in the 5-fold CV and 
is shown in the confusion matrix. In addition, a confidence 
diagram for the 23 GoF patterns (including no-pattern and 
unknown) is shown in Figure 18. It shows that confidence 

values rarely go below 0.5, and that many or most of the 
misclassifications occur below complete confidence and have 
to do with determining a class is not involved in a pattern (No 
pattern). This determination can be difficult even for seasoned 
software engineers. 

2) Leave-One-Project-Out Cross-Validation (LOPO-
CV): The Netbeans project was left out of the training set 
which used 5-fold CV. Withholding Netbeans for testing 
evaluates DPD for unseen test data, with the results shown in 
TABLE III.  The F1 score of 0.17 shows relatively poor per-
formance over the four patterns with an overall accuracy of 
0.03. This shows potential issues with the generalization of 
our DPD results as described in the following discussion, and 
our relatively small training dataset may be a factor. 

TABLE III.  NETBEANS TEST RESULT (LOPO-CV) 

Pattern Classes TP FP FN Precision Recall F1 
Abstract Factory 171 1 3 170 0.25 0.01 0.01 
Adapter 81 7 3 74 0.70 0.09 0.15 
Command 3 1 2 2 0.33 0.33 0.33 
Iterator 12 0 1 12 0 0 - 
Overall 267 9 9 258 0.32 0.11 0.17 

 
3) Feature Importance: The SHAP values can provide 

insight into which features contributed the most to the model 
predictions, and is shown in Figure 19. The minimum number 
of unique instantiations of a class was the strongest, followed 
by the mean number of outgoing calls, followed by the num-
ber of fields in the class. This was followed by a number of 
call-related metrics. This may be an indication that the graph 
structure together with these metrics provide influence the 
ability to distinguish the various patterns. 

D. Discussion 
1) NGDB GNN variants evaluation: patterns like Single-

ton, Proxy, and Chain of Responsibility were detected most 
reliably, achieving perfect F1-scores (1.0) across NGDB var-
iants. This is likely due to their distinct structural signatures 
such as private constructors and static access methods for 
Singleton. These features are well-captured by graph-derived 
metrics like inheritance relationships and call patterns com-
puted via Cypher queries in Memgraph. Structural patterns 
like Composite and Abstract Factory also showed strong per-
formance in NGDB (e.g., GAT F1: 0.86 for Abstract Fac-
tory), benefiting from the heterogeneous graph representa-
tions that emphasize class-to-class dependencies and method 
aggregations. In contrast, behavioral patterns such as Ob-
server and Command exhibited more variability, with lower 
F1-scores in GCN (0.0 for Observer, 0.22 for Command) but 
improvements in GAT (0.86 for Observer, 0.75 for Com-
mand) and GINSAGE (0.67 for Observer, 0.86 for Com-
mand). This suggests that attention mechanisms in GAT and 
inductive learning in GINSAGE better handle dynamic inter-
actions, though the static nature of the analysis limits full cap-
ture of runtime behaviors. The standard GNN variants (GCN, 
GAT, GINSAGE) performed poorly overall (F1: 3.54% – 
7.19%), with GINSAGE slightly outperforming others due to 
its ability to generalize to unseen graphs, but still struggling 
with imbalance and feature noise. 
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In contrast, standard non-NGDB GNN variants (GCN, 
GAT, GIN, GraphSAGE) yielded poor performance far below 
the target, due to dataset imbalance and limited feature 
representation. Thus, the ensemble method, combining SVM, 
GNN, and NGDB via soft voting, underperformed compared 
to the NGDB base model alone, primarily due to the 
suboptimal results of GNN and SVM, which introduced noise 
and biased predictions. This validates the hypothesis that 
ensemble methods can enhance robustness only when base 
models are sufficiently strong, highlighting NGDB’s critical 
role in achieving high accuracy. 

2) Ensemble Methods evaluation: The methodology suc-
cessfully extended the ensemble method, intended to com-
bine SVM’s feature separation, GNN’s structural resilience, 
and NGDB’s graph-derived insights, but underperformed rel-
ative to the standalone NGDB approach. It was thus not in-
cluded in this evaluation. This highlights a key strength of 
ensembles in theory – leveraging complementary models to 
reduce variance and improve robustness – but in practice, the 
weak base models (perhaps due to the sparse training da-
tasets) diluted NGDB’s high performance. Further multi-
model investigation and fine-tuning of ensembles is included 
in future work, as we believe it to hold promise for addressing 
NGDB misclassifications once their causes are apparent. 

3) Requirements coverage:  
• FR1: All 23 GoF DPs were detected across 9 open-source 

Java projects with documented DPs from the P-MARt 
dataset with Refactoring Guru implementations, which 
supporting class-level labeling and benchmarking. 

• FR2: Multi-modal features including numerical, graph-
based (ASTs, CGs), and derived structural metrics were 
extracted from the source code. from the base 
implementation and incorporating multi-modal features 
(numerical, graph-based, structural). 

• FR3: Training pipelines for individual base models (e.g., 
SVM, GNN, NGDB) and an ensemble combiner (e.g., 
soft voting) were implemented. 

• FR4: The P-MARt dataset was extended with additional 
patterns to cover all GoF patterns, class-level labeling 
was applied, and imbalance handling was addressed via 
oversampling. 

• FR5: An evaluation framework was implemented that 
offers cross-validation (K-Fold, Leave-One-Project-Out 
(LOPO)) and calculates performance metrics (F1-Score, 
confidence). The use of stratified K-Fold (K=5) cross-
validation supports the generalization of the approach, 
though challenges like dataset imbalance and 
implementation variability persisted. 

• FR6: The pipelines were implemented to support batch 
processing of multiple repositories and real-time pattern 
detection for integration into development workflows 
was enabled via memory monitoring. 

• NR1: DPD model execution performance was 
reasonable, within minutes on standard hardware for 
medium-size projects. Model training involved more time 
and resources but was within reasonable expectations. 

• NR2: Scalability was supported via memory and resource 
management and optimization, e.g., via batching 

strategies that account for resource limitations (avoiding 
out-of-memory errors during training), incremental 
processing of large graphs with checkpoint recovery, etc. 

• NR3: While F1-scores above the target of 0.80 were 
achieved for various P-MARt projects, the overall score 
was 0.72 for the GoF spectrum on over 5300 classes; 
robustness against code variations for unseen projects 
needs further work, exemplified with the large 3347 class 
Netbeans project that had 267 classes participating in four 
different DP types with a resulting F1 score of 0.17. 

• NF4: Extensibility was achieved via a modular 
architecture that allows for the automatic addition of new 
pattern types, automated feature extractors, and a flexible 
ensemble inclusion of further base models. 

• NF5: Reproducibility was addressed via logging of 
parameters (including random seed management) and 
versioning of models, datasets, and intermediate and final 
output results. 

4) Summary: The DPD-NGDB evaluation showed that it 
is feasible to automatically train DPD-NGDB on a labeled 
training set of the 23 GoF patterns, and for it to detect the 
spectrum of patterns when it comes across these again. Over-
all, the results validate the use of NGDB for real-time, rela-
tional pattern detection, aligning with functional require-
ments for covering all 23 patterns and achieving high accu-
racy. The AST and CG features proved resilient for the dif-
ferent pattern types (creational, structural, and behavioral). 

As to limitations, as encountered with LOPO-CV using 
Netbeans, DPD on unseen datasets can be challenging and 
further investigation regarding misclassification factors and 
testing on diverse datasets is needed. The relatively sparse 
training set and static-only analysis limit performance. 
Furthermore, discriminative challenges are presented among 
similar patterns, some differing primarily in intention. The 
reliance on static analysis (ASTs, CGs) limits detection of 
dynamic behaviors in patterns (e.g., Observer, Strategy), 
where runtime interactions (e.g., method invocations via 
reflection) might provide better hints. While dynamic analysis 
is promising for revealing hidden dependencies, it was not 
incorporated due to execution risks, high-overhead setup and 
execution costs, and coverage issues. In particular, pattern 
dataset limitations further constrain generalizability: the 
examples offer textbook implementations or intentional 
pattern-centric projects, lacking real-world diversity, partial 
realizations, or obfuscation variants (as initially planned but 
not fully evaluated). Imbalance among patterns persisted 
despite oversampling, skewing performance toward common 
patterns like Singleton and underrepresenting rare ones like 
Flyweight or Interpreter. Deeper analysis is required to 
understand any pattern misclassifications, as this could be due 
to multiple causes. E.g., the same object participating in 
multiple patterns, cases where the pattern structure differs 
primarily by its intent or purpose (highly context-sensitive), 
information about dynamic interactions is missing (e.g., due 
to reflection), etc. This deeper case-by-case analysis is 
included in future work. Environment limitations include the 
dependency on the Memgraph setup, which adds complexity 
and potential memory overhead for large heterogeneous 
graphs. 
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VII. CONCLUSION 
This paper developed and evaluated our automated design 

pattern detection approach DPD-NGDB, based on a neural 
graph database and modular pipeline architecture, and made 
available as an ensemble base model in our DPD-EM 
ensemble model approach. The evaluation was benchmarked 
against a dataset with the 23 GoF design patterns contained in 
over 5300 Java classes spanning 9 open-source realistic 
practical Java projects (plus an additional 23 single example 
patterns). The dataset offered independently documented DPs 
and were used for the automated DPD training and testing. 
With 5-fold cross-validation and leave one project out, an 
overall F1 score of 0.72 was achieved, while the large unseen 
test project achieved 0.17. Furthermore, three NGDB GNN 
variants were evaluated, with GAT and GINSAGE showing 
similarly high F1 scores, and GCN somewhat lower. 

The use of multi-modal features (numerical from ASTs, 
graph-based from CGs, structural like inheritance) 
outperforms traditional ML approaches (e.g., Uchiyama et al. 
[29], Dwivedi et al. [30]) by capturing both syntactic and 
relational aspects. DPD-NGDB’s high F1-scores (up to 94%) 
surpass reported benchmarks for tools like PINOT, which 
achieve high precision only for well-structured code. The 
DPD-EM ensemble approach, while not as effective as the 
NGDB base model yet, provides an ongoing framework for 
the combination of diverse base models, contributing to the 
exploration of ensemble methods for DPD in software 
engineering [48]. 

Future work includes experimentation with various 
ensemble base models and methods; integrating runtime 
tracing for dynamic analysis; combining static features with 
execution traces to better detect behavioral patterns; full 
obfuscation; scalability evaluation; variant detection; usage 
on generalized open-source projects; expansion beyond the 
GoF patterns; an evaluation across multiple programming 
languages; and a comprehensive industrial case study. 
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Figure 17.  Confusion Matrix for DPD-NGDB GINSAGE showing strong DPD performance (diagonal) across the entire pattern dataset. 

TABLE IV.  DPD RESULTS USING P-MART TEST PROJECTS (LOPO-CV NETBEANS) 

Project Classes Scored Accuracy Precision Recall F1 Pa
tte

rn
 T

yp
es

 
A

bs
tra

ct
 F

ac
-

to
ry

 
A

da
pt

er
 

B
rid

ge
 

B
ui

ld
er

 
C

om
m

an
d  

C
om

po
si

te
 

D
ec

or
at

or
 

Fa
ca

de
 

Fa
ct

or
y 

M
et

ho
d  

Ite
ra

to
r  

M
em

en
to

 
O

bs
er

ve
r  

Pr
ot

ot
yp

e  
Si

ng
le

to
n  

St
at

e  
St

ra
te

gy
 

Te
m

pl
at

e 
M

et
ho

d  
V

is
ito

r  

JHotDraw v5.1 153 116 0.91 0.99 0.91 0.94 10 x         x x   x     x x x x x x   
JRefactory v2.6.24 568 206 0.50 1.00 0.69 0.79 6   x   x         x         x x     x 
JUnit v3.7 89 55 0.69 1.00 0.54 0.68 4           x       x   x   x         
Lexi v0.1.1 alpha 97 16 0.31 1.00 0.53 0.88 3       x               x   x         
MapperXML v1.9.7 222 63 0.59 0.98 0.65 0.74 8 x x       x   x       x   x   x x   
Netbeans v1.0.x 3347 267 0.03 0.32 0.11 0.17 4 x x     x         x                 
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Figure 18.  DPD-NGDB confidence scores for the entire dataset (NetBeans left out of training set). 
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Figure 19.  SHAP feature importance for DPD-NGDB across the entire dataset (generated diagram edited to replace feature numbers with names). 

 

 


